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Preface

This work spans topics in mathematical and numerical analysis which are seemingly unrelated.
The motivation comes from incompressible non-Newtonian fluid mechanics. Undoubtedly, un-
derstanding flows of non-Newtonian fluids is important for a broad range of applications in
natural sciences and engineering and as such they attracted much of attention across a range of
research fields, including, but not limited to, physics, scientific computing, and mathematics,
specifically the theory of partial differential equations (PDEs) and numerical analysis. On the
other hand, new tools and fundamental results are often designed and/or analyzed for only the
simplest models (e.g., Newtonian fluids) in simple scenarios (e.g., no-slip boundary conditions).
Hence there is space to develop successful techniques for more general complex problems. The
three following chapters, which are possible to be read independently, present such an effort in
thematically distant subjects, which share fluid mechanics as the greatest common divisor.

Chapter I presents a novel view on the classification of incompressible fluids. A previously
unnoticed class of activated Euler fluids is discovered. A large-data existence theory of in-
ternal flows of this class of fluids is provided in a comprehensive combination of situations
distinguishing steady and unsteady flows and a variety of boundary conditions.

Chapter II, motivated by its authors’ work on a posteriori estimation techniques for non-
Newtonian fluids [2], provides a theoretical result which is of independent interest in a pos-
teriori error estimation theory. Specifically it is shown that the norm of functionals on dual
Sobolev spaces W−1,q, 1 ≤ q ≤ ∞, is localizable by splitting into overlapping subdomains (e.g.,
mesh elements) assuming Galerkin orthogonality of the functional in question to the functions
constituting a subordinate partition of unity. More general situations in which the Galerkin
orthogonality is violated are discussed and a remedy is provided. The result is supported by
several numerical experiments. The significance of the result is that it allows one to establish
local efficiency of a posteriori error estimates for problems posed in W−1,q spaces. It was previ-
ously not obvious that this was possible unless q = 2, as the W−1,q norm, the natural residual
norm for a wide class of non-linear PDE problems, does not have an obvious local structure.

Chapter III provides a novel theory for a modern preconditioning technique for incom-
pressible fluids, the pressure convection-diffusion (PCD) preconditioner [6, section 9.2.1]. Al-
though the chapter focuses on Navier-Stokes fluids, it is a potential step towards generalizing
the technique to non-Newtonian fluids. The starting point of the work is the analysis of the
preconditioner in appropriate infinite-dimensional spaces, an approach often coined operator
preconditioning; see the survey monograph by Málek and Strakoš [8]. It is shown that the
preconditioner and its inverse are under certain conditions well-defined. A priori estimates uni-
form in certain norms of data are provided and certain spectral properties of the preconditioned
Schur complement are shown. Furthermore, GMRES convergence for the resulting precondi-
tioned saddle-point system is shown to be almost contractive with a contraction factor given
by the inf-sup constant of divergence and the norm of divergence. The analysis is stemming
from a novel approach based on the observation that the preconditioned Schur complement
is a compact perturbation of the Stokes Schur complement. This observation is the basis for
the proposed methodology for the analysis of the quality of the preconditioner. The chapter
continues by providing a new construction of the discrete variant of the preconditioner. It is fur-
ther shown that some properties of the infinite-dimensional counterpart of the preconditioner
are inherited by the discrete variant, e.g., surjectivity/injectivity and a priori norm/spectral
bounds. We comment on why other results are rather difficult to transfer. The proposed dis-
crete construction is then applied to several common finite element discretizations and novel
variants of the preconditioner are derived while a previously published one is obtained as well.

xi



xii PREFACE

The primary contribution of the chapter is that it provides very clear reasoning for (i) what
boundary conditions should be used for construction of the preconditiner and (ii) how they
should be incorporated in construction of the discrete preconditioner. It has been previously
observed that (i) is a critical issue:

These boundary conditions are not well understood, and a poor choice can critically
affect performance. (Elman and Tuminaro [7, p. 257])

So far rather heuristic arguments were used to deal with (i). In our work the choice of bound-
ary conditions in (i) emerges as a precondition to obtain the a priori estimates. In our opinion
issue (ii) has so far been covered by rather confusing and contradictory accounts in the existing
literature. Our results overcome this problem; we provide detailed comparison of our results
and published accounts in Section III.3.5. Our analysis treats both variants of the PCD precon-
ditioner given by different commutation orders in a unified way and provides a new argument
for preference towards the variant due to Elman and Tuminaro [7].

Appendix III.B contains a new result concerning contractive convergence of the GMRES
method. We consider a class of operators, which exhibit contractive GMRES convergence, i.e.,
the residual norms ∥rk∥ in subsequent GMRES steps fulfill

∥rk∥
∥rk−1∥

≤M for all k ∈ N

with some M < 1 independent of the initial residual r0. We show that when such operators are
compactly perturbed, contractive convergence with the same factor is preserved asymptotically,
i.e.,

lim sup
k→∞

∥rk∥
∥rk−1∥

≤M.

Moreover, a measure of compactness, specifically inclusion of the perturbation in a p-Schatten
class for some p ≥ 1, determines the rate of the approach; precisely it holds(︄

∥rk∥
∥r0∥

)︄ 1
k

≤M + ck− 1
p for all k ∈ N

with c ≥ 0 independent of r0.
Chapter I consists entirely of a preprint article by Blechta, Málek, and Rajagopal [1]. Chap-

ter II is a reprint of a published article by Blechta, Málek, and Vohralík [3]. Chapter III is
previously unpublished work solely by the present author. All chapters include a dedicated list
of references. The numbering of equations, bibliographical references, theorems, figures, sec-
tions, etc. is local to each chapter, i.e., omits the respective chapter number, with the exception
of a few cross-chapter references in Chapter III. In fact each chapter is self-contained and can
be read independently.

The author would like to thank to his doctoral advisor Josef Málek, who always provides
positive motivation. It was pleasure to work with him. Important acknowledgement belongs to
the coauthors of Chapters I and II, K.R. Rajagopal and Martin Vohralík, whose patience can
hardly be fully appreciated. The author thanks Howard Elman, Oliver Ernst, Martin Řehoř,
and Zdeněk Strakoš for motivating the research in Chapter III through their inspiring work [5,
4, 8, 9, . . . ], for stimulating discussions, and for providing valuable feedback. A very special
thanks for supporting my efforts belong to my family and to my partner Erin, who also carefully
read Chapter III and provided grammar and stylistic corrections.

Jan Blechta, Prague, April 30, 2019
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Chapter I

On the classification of
incompressible fluids and
a mathematical analysis of the
equations that govern their
motion1

1 Introduction
The concept of a fluid defies precise definition as one can always come up with a counter-example
to that definition that seems to fit in with our understanding of what constitutes a fluid. As
Goodstein [23] appropriately remarks “Precisely what do we mean by the term liquid? Asking
what is a liquid is like asking what is life; we usually know when we see it, but the existence
of some doubtful cases make it hard to define precisely.” The concept of a fluid is treated as a
primitive concept in mechanics, but unfortunately it does not meet the fundamental requirement
of a primitive, that of being amenable to intuitive understanding. This makes the study under
consideration that much more difficult as it is our intent to classify fluid bodies. In this study
we shall consider a subclass of the idealization of a fluid, namely that of incompressible fluid
bodies. While no material is truly incompressible, in many bodies the change of volume is
sufficiently small to be ignorable. Our ambit will include at one extreme materials that could
be viewed as incompressible Euler fluids and at the other extreme materials that offer so much
resistance to flow that they are “rigid-like” in their response, with a whole host of “fluid-like”
behavior exhibited by bodies whose response lie in between these two extremes, such as fluids
exhibiting shear thinning/shear thickening, stress thinning/stress thickening, etc.

Before discussing the constitutive classification of fluid bodies, it would be useful to consider
another type of classification that is used, namely that of flow classification with regard to the
flows of a specific fluid, so that we do not confuse these two types of classifications. One of
the most useful approximations and an integral part of fluid dynamics is the boundary layer
approximation for the flow of a Navier-Stokes fluid (see Prandtl [69], Schlichting [80]). The
main tenet of the approximation is the notion that for flows of a Navier-Stokes fluid past a
solid boundary, at sufficiently high Reynolds number, the vorticity is confined to a thin region
adjacent to the solid boundary. In this region, referred to as the boundary layer, the flow
is dominated by the effects of viscosity while these effects fade away as one moves further
away from the solid boundary. Sufficiently far from the boundary, the effects of viscosity are
negligible and the equations governing the flow are identical to those for an Euler (ideal) fluid

1This chapter is a preprint version of the article [Jan Blechta, Josef Málek, and K.R. Rajagopal. On the
classification of incompressible fluids and a mathematical analysis of the equations that govern their motion.
2019.] submitted for publication in Society for Industrial and Applied Mathematics (SIAM) who is a copyright
holder of the work. The preprint is separately available online at https://arxiv.org/abs/1902.04853v1.
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2 CHAPTER I. CLASSIFICATION OF INCOMPRESSIBLE FLUIDS

and one solves the problem by melding together the solution for the Euler fluid far from the
boundary and the boundary layer approximation in a thin layer adjacent to the boundary.
The reason for developing such an approach is the fact that in the “boundary layer region” an
approximation is obtained for the Navier-Stokes equations that is more amenable to analysis
than the fully non-linear equations. It is important to bear in mind that boundary layer theory
is an approximation of the Navier-Stokes equations in different parts of the flow domain, that
which is immediately adjacent to the solid boundary and that which is away from the solid
boundary. Great achievements in the field of aerodynamics are a testimony to the efficacy
and usefulness of such an approximation with regard to solving analytically or computationally
relevant problems in a particular geometrical setting. On the other hand, rigorous analysis of
the Prandtl boundary layer equations is, despite significant effort, far from being satisfactory
(see [4], [34, 35, 36], [45, 46], [53], [54], [64], [67, 66], [79, 78]). An alternative viewpoint for
modeling the boundary layer phenomena might thus bring some new insight on this issue.

The boundary layer approximation is not a constitutive approximation based on different
flow regimes though it seems to resemble such an approximation. That is, one does not as-
sume different constitutive assumptions for different regions in the flow domain, based on some
kinematical or other criterion, but based on the value for the Reynolds number one merely
carries out an approximation of the Navier-Stokes equation in the flow domain. It is possible,
for instance, to assign different constitutive relations, based on the shear rate, namely the fluid
being an Euler fluid below a certain shear rate and a Navier-Stokes or a non-Newtonian fluid
above the critical shear rate (such a classification is considered in Section 2.5), or as another
possibility a non-Newtonian fluid if the shear rate is below a certain value and a Navier-Stokes
fluid above that shear rate, or any such assumption for the constitutive response of the material,
and to solve the corresponding equations for the balance of linear momentum in the different
flow domains. Such distinct constitutive responses below and above a certain kinematical cri-
terion is akin to models for the inelastic response of bodies wherein below a certain value of the
strain or stress, the body behaves as an elastic body while for values above the critical value the
body responds in an inelastic manner, which in turn might lead to certain parts of a body to
respond like an elastic body while other parts could be exhibiting inelastic response. To make
matters clear, in a solid cylindrical body that is undergoing torsion, a yield condition based on
the strain would lead to the body beyond a certain radius to respond inelastically while below
that threshold for the radius it responds as an elastic body. In such an approach different
constitutive relations are used in different domains while in the classical boundary layer theory
one uses approximation of the equations of motion of a particular fluid.

In this paper, we adopt the approach of assuming different constitutive response relationships
in different flow domains of the fluid, based on the value of the shear rate or the value of the
shear stress. We consider the possibility that the character of the fluid changes when the certain
“activation” criterion is reached. Here we consider an “activation” criterion that is based on the
shear rate or the shear stress, but it could be any other criterion, say for instance the level of
the electrical field in an electrorheological fluid, or the temperature which changes the character
of the material from a fluid to a gas or a fluid to a solid, etc. Such an approach also provides
an alternative way to viewing the classical boundary layer approximation in that it allows the
fluid to behave like an Euler fluid in a certain flow domain and a Navier-Stokes fluid elsewhere.
Furthermore, based on other criteria such as the Reynolds number we can carry out further
approximations with regard to governing equations in the different flow domains.

Within the context of the Navier-Stokes theory, boundary layers occur at flows at sufficiently
high Reynolds numbers. However, in the case of some non-Newtonian fluids it is possible to have
regions that are juxtaposed to a solid boundary where the vorticity is concentrated even in the
case of creeping flow, i.e., flows wherein the inertial effect is neglected when the Reynolds number
is zero (see Mansutti and Rajagopal [62], [70], [38]). Thus, boundary layers are connected with
the nonlinearities in the governing equation and are not a consequence of just high Reynolds
numbers. Boundary layers can also occur at high Reynolds number in non-Newtonian fluids
of the differential type (see Mansutti et al. [61]) and of the integral type (see Rajagopal and
Wineman [74]). It is also possible that in non-Newtonian fluids one can have multiple decks
with dominance of different physical mechanisms in the different decks, and in these different
layers one can have the effects of viscosity, elasticity, etc., being significant, the delineation once
again being determined within the context of a specific governing equation (see Rajagopal et
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al. [76, 75]). On the other hand, we could have a more complicated situation wherein the flow
is characterized by different constitutive equations in different domains, and in these different
domains it might happen that one can further delineate different subregions.

In the first part of this study, we provide a systematic classification of the response of
incompressible fluid-like materials ranging from the ideal Euler fluid to non-Newtonian fluids
that exhibit shear thinning/shear thickening, stress thinning/stress thickening, as well as those
responses where the constitutive character of the material changes due to a threshold based on
a kinematical, thermal, stress or some other quantity (an example of the same is the Bingham
fluid which does not flow below a certain value of the shear stress and starts to flow once
the threshold is overcome) based on some criterion concerning the level of shear rate or shear
stress. We also provide a systematic study of both activated and non-activated boundary
conditions ranging from free-slip to no-slip. In carrying out our classification, we come across
the delineation of a class of fluids that, to our best knowledge, seems to have not been studied
by fluid dynamicists. This class of fluids is characterized by the following intriguing dichotomy:
(i) when the shear rate is below a certain critical value the fluid behaves as the Euler fluid (i.e.,
there is no effect of the viscosity, the shear stress vanishes), on the other hand (ii) if the shear
rate exceeds the critical value, dissipation starts to take place and fluid can respond as a shear
(or stress) thinning or thickening fluid or as a Navier-Stokes fluid. Implicit constitutive theory,
cf. [72] and also [71, 73], provides an elegant framework to express such responses involving
the activation criterion in a compact and elegant manner that is also more suitable for further
mathematical and computational analysis.

In the second part of the paper, we study the mathematical properties of three-dimensional
internal flows in bounded smooth domains for fluids belonging to this new class. We subject
such flows to different types of boundary conditions including no-slip, Navier-slip, free-slip and
activated boundary conditions like stick-slip. For this class of fluids and boundary conditions
we prove the global-in-time existence of a weak solution in the sense of Leray to initial and
boundary value problems.

2 Classification of incompressible fluids
Incompressible fluids are subject to the restriction on the admissible class of the velocity fields
v of the form

div v = 0 ,

which can be written alternatively as

trDDD = DDD : III = 0 , (2.1)

where DDD (sometimes denoted DDDv) stands for the symmetric part of the velocity gradient, i.e.,
DDD = 1

2 (∇v + (∇v)T ), v being the velocity.
Due to this restriction, it is convenient to split the Cauchy stress tensor TTT into its traceless

(deviatoric) part SSS and the mean normal stress, denoted by m (more frequently expressed as
−p), i.e.,

SSS = TTT− 1
3(trTTT)III and − p = m = 1

3 trTTT . (2.2)

Hence
TTT = mIII + SSS = −pIII + SSS ,

and, in virtue of (2.1), the stress power TTT :DDD satisfies

TTT :DDD = SSS :DDD .

The main result of this section will be the classification of fluids using a simple framework
that is characterized by a relation between SSS and DDD, i.e., we are interested in materials whose
response can be incorporated into the setting given by the implicit constitutive equation

G(SSS,DDD) = OOO . (2.3)
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|DDD|

|SSS|

|DDD|

|SSS|

|DDD|

|SSS|

Figure 1: From left to right, response of the Euler fluid (2.6), the Navier-Stokes fluid (2.4)
(or (2.5)), and fluid allowing only motions fulfilling (2.7)

The only restriction that we place is the requirement that response has to be monotone. For
relevant discussion concerning non-monotone responses, we refer the reader to [57], [50], and
[40].

The incompressible Navier-Stokes fluid is a special sub-class of (2.3) where the relation
between SSS and DDD is linear. This can be written either as

SSS = 2ν∗DDD with ν∗ > 0 , (2.4)

where ν∗ is called the (shear) viscosity, or as

DDD = α∗SSS := 1
2ν∗

SSS with α∗ > 0 , (2.5)

where the coefficient α∗ is called the fluidity. Note that the stress power takes then the form

SSS :DDD = 2ν∗|DDD|2 = α∗|SSS|2 .

There are two limiting cases when the stress power SSS :DDD vanishes. Either

SSS = OOO, (2.6)

which implies that the fluid under consideration is the incompressible Euler fluid (TTT = −pIII, see
(2.2)), or

DDD = OOO for all admissible flows. (2.7)

The latter corresponds to the situation where the body admits merely rigid body motions. More
precisely, the flows fulfilling (2.7) can be characterized through

v(t, x) = a(t)× x+ b(t) in all admissible flows.

Response of models (2.4) (or (2.5)), (2.6), and (2.7) is shown in the Figure 1.

2.1 Classical power-law fluids
Classical power law fluids are described by

SSS = 2ν̃∗|DDD|r−2DDD , (2.8)

which leads to
SSS :DDD = 2ν̃∗|DDD|r .

Since |DDD|r−2DDD should have meaning for |DDD| → 0, we require a lower bound on r, namely

r > 1 . (2.9)

Otherwise, if r = 1 then lim|DDD|→0DDD/|DDD| does not exist, and if r < 1 then |SSS| → +∞ and stress
concentration occurs at points where DDD vanishes (i.e., SSS plays the role of penalty for point where
DDD could vanish).



2. CLASSIFICATION OF INCOMPRESSIBLE FLUIDS 5

In what follows we study power-law fluids with the power-law index satisfying (2.9) and we
shall investigate the responses of these fluids for r → 1 and r →∞. The latter corresponds to
the case when the dual exponent r′ := r/(r − 1) tends to 1.

We introduce the generalized viscosity through

νg(|DDD|) = ν̃∗|DDD|r−2 . (2.10)

In order to have the same units for νg as for the viscosity ν∗ that appears in the formula for
the Navier-Stokes fluid (see (2.4)), DDD should scale as d∗ that has the unit s−1. Thus, we replace
(2.10) by

νg(|DDD|) = ν∗

(︃
|DDD|
d∗

)︃r−2
where [d∗] = s−1 and [ν∗] = kg m−1 s−1

and we replace (2.8) by

SSS = 2ν∗

(︃
|DDD|
d∗

)︃r−2
DDD with [d∗] = s−1 and [ν∗] = kg m−1 s−1. (2.11)

Of course, ν∗ in (2.11) and ν∗ in (2.4) are different in general; they however have the same
units.

On considering (2.11), we notice the following equivalence2

SSS = 2ν∗

(︃
|DDD|
d∗

)︃r−2
DDD ⇐⇒ DDD = 1

2ν∗

(︃
|SSS|

2ν∗d∗

)︃ 2−r
r−1

SSS , (2.12)

which gives rise to the following expressions for the generalized viscosity and generalized fluidity

νg(|DDD|) = ν∗

(︃
|DDD|
d∗

)︃r−2
and αg(|SSS|) = 1

2ν∗

(︃
|SSS|

2ν∗d∗

)︃ 2−r
r−1

.

It also allows us to express the stress power in the form (r′ := r/(r − 1))

SSS :DDD =
(︃

1
r

+ 1
r′

)︃
SSS :DDD = 1

r
SSS :DDD + 1

r′SSS :DDD

= 2ν∗d
2
∗

(︄
1
r

(︃
|DDD|
d∗

)︃r
+ 1
r′

(︃
|SSS|

2ν∗d∗

)︃r′)︄
.

Summarizing,

SSS = 2νg(|DDD|2)DDD = 2ν∗

(︃
|DDD|
d∗

)︃r−2
DDD ⇐⇒ DDD = αg(|SSS|2)SSS = 1

2ν∗

(︃
|SSS|

2ν∗d∗

)︃r′−2
SSS , (2.13)

emphasizing that the equivalence in (2.13) holds only if r ∈ (1,+∞) (which is equivalent to
r′ ∈ (1,+∞)).

Generalizing the approach used in [60], we will investigate the limits of SSS and νg as DDD tends
to zero or infinity, or vice versa, study limits of DDD and αg as SSS vanishes or tends to infinity.

2Indeed, starting for example from the formula on the left-hand side of (2.12), we conclude that

|SSS| =
2ν∗

dr−2
∗

|DDD|r−1,

which implies

|DDD|2−r =
(︃

dr−2
∗
2ν∗

|SSS|
)︃ 2−r

r−1

.

Hence

DDD =
1

2ν∗

(︂ |DDD|
d∗

)︂2−r

SSS =
(︂ 1

2ν∗

)︂1+ 2−r
r−1 (︁

dr−2
∗
)︁ 2−r

r−1 +1
|SSS|

2−r
r−1SSS =

1
2ν∗

(︂ |SSS|
2ν∗d∗

)︂ 2−r
r−1

SSS,

which leads to the formula on the right-hand side of (2.12).
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Letting |DDD| → 0+ we obtain, starting from the formula on the left-hand side of (2.13),

|SSS| → 0 if r > 1,
|SSS| ≤ 2ν∗d∗ if r = 1, (as |DDD| → 0+)
|SSS| → +∞ if r < 1,

and
|νg(|DDD|)| → 0 if r > 2,
νg(|DDD|) = 2ν∗ if r = 2, (as |DDD| → 0+)
|νg(|DDD|)| → +∞ if r < 2.

(2.14)

Thus, we note that the Cauchy stress TTT in the fluid tends to a purely spherical stress when r is
greater than 1 and the norm of DDD tends to 0+, or put differently, the constitutive relation for
the fluid reduces to that for an Euler fluid.

Similarly, letting |DDD| → +∞ we have

|SSS| → +∞ if r > 1,
|SSS| ≤ 2ν∗d∗ if r = 1, (as |DDD| → +∞)
|SSS| → 0 if r < 1,

and
|νg(|DDD|)| → +∞ if r > 2,
νg(|DDD|) = 2ν∗ if r = 2, (as |DDD| → +∞)
|νg(|DDD|)| → 0 if r < 2.

In order to investigate the behavior of DDD and fluidity in the limiting case, it is useful to employ
the expression on the right-hand side of (2.13). Thus, for |SSS| → 0+, we get

|DDD| → 0 if r′ > 1,
|DDD| ≤ d∗ if r′ = 1, (as |SSS| → 0+)
|DDD| → +∞ if r′ < 1,

and
|αg(|SSS|)| → 0 if r′ > 2,

αg(|SSS|) = 1
2ν∗

if r′ = 2, (as |SSS| → 0+)

|αg(|SSS|)| → +∞ if r′ < 2.

(2.15)

Similarly, letting |SSS| → +∞ we have

|DDD| → +∞ if r′ > 1,
|DDD| ≤ d∗ if r′ = 1, (as |SSS| → +∞)
|DDD| → 0 if r′ < 1,

and
|αg(|SSS|)| → +∞ if r′ > 2,

αg(|SSS|) = 1
2ν∗

if r′ = 2, (as |SSS| → +∞)

|αg(|SSS|)| → 0 if r′ < 2.

Next, we study the response of the classical power-law fluid with regard to its dependence
on the value of power-law index (r → 1+ and r′ → 1+). Figure 2 illustrates behavior for both
large r and r′ approaching 1.

Letting r → 1+ in (2.13), we observe that, for DDD ̸= OOO, SSS = 2ν∗d∗
DDD

|DDD| (and thus |SSS| ≤ 2ν∗d∗),
while for DDD = OOO and for any AAA ∈ R3×3

sym such that |AAA| ≤ 2ν∗d∗ we can find a sequence {DDDn}∞
n=1

converging to zero and
lim
n→∞

2ν∗d∗
DDDn
|DDDn|

= AAA .
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|DDD|

|SSS|

d∗

2ν∗d∗ r = 20
19

r = 3
2

r = 2r = 3r = 20

Figure 2: Response of the power-law model (2.11) for various values of r

Consequently, (2.13) for r → 1+ approximates the response that could be referred to as
rigid/free-flow like behavior :

if |DDD| ≠ 0 then SSS = 2ν∗d∗
DDD
|DDD|

,

if |DDD| = 0 then |SSS| ≤ 2ν∗d∗.

(2.16)

Instead of viewing (2.16) as multivalued response (both in the variables DDD and SSS), it is possible
to write (2.16) as a continuous graph over the Cartesian product R3×3×R3×3 (see the framework
(2.3)) defined through a (scalar) equation

(|SSS| − 2ν∗d∗)+ +
⃓⃓
2ν∗d∗DDD− |DDD|SSS

⃓⃓
= 0. (2.17)

For determining the behavior of (2.13) as r → +∞ we prefer to study (2.13)2 for r′ → 1+
and analogous to the above consideration we observe that

if |SSS| ≠ 0 then DDD = d∗

2ν∗

SSS
|SSS|
,

if |SSS| = 0 then |DDD| ≤ d∗

2ν∗
.

(2.18)

We can call this response Euler/rigid like response. We can again rewrite (2.18) as

(2ν∗|DDD| − d∗)+ +
⃓⃓
2ν∗|SSS|DDD− d∗SSS

⃓⃓
= 0. (2.19)

The models (2.16) and (2.18) are examples of fluids described within the context of an ac-
tivation criterion. More examples will be discussed in Subsections 2.4 and 2.5. The slash
formalism name1/name2 (that we will use also below) means that material behaves as name1
before activation and as name2 after the activation criterion is met.

2.2 Generalized power-law fluids and stress power-law fluids
The formula (2.13) suggests the introduction of generalized power-law fluids and generalized
stress power-law fluids by requiring that, for the former,

SSS = 2νg
(︁
|DDD|2

)︁
DDD

and, for the latter,
DDD = αg

(︁
|SSS|2
)︁
SSS

where νg and αg are non-negative continuous functions referred to as the generalized viscosity
and the generalized fluidity. The quantities |DDD|2 = trDDD2 and |SSS|2 = trSSS2 representing the second
invariants of DDD and SSS, respectively, can be viewed as natural higher dimensional generalizations
of the shear-rate and the shear stress, respectively.

We further introduce zero shear rate viscosity as

ν0 := lim
|DDD|→0

νg
(︁
|DDD|2

)︁
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and zero shear stress fluidity through

α0 := lim
|SSS|→0

αg
(︁
|SSS|2
)︁
.

It follows from (2.14) that for classical power-law fluids the zero shear rate viscosity vanishes
for r > 2, is finite for r = 2, and blows up if r ∈ (1, 2). A similar behavior can be inferred
from (2.15) for the zero shear stress fluidity: for r′ > 2 (i.e., for r ∈ (1, 2)) α0 is zero, for r = 2
it is positive, and for r′ ∈ (1, 2) (it means for r > 2) the generalized fluidity becomes singular
in the vicinity of the origin.

Such behavior is not experimentally observed in any fluid; more frequently both the zero
shear rate viscosity and zero shear stress fluidity are finite. The most popular generalizations
of the classical power-law fluid that exhibit these features as |DDD| → 0+ (resp. |SSS| → 0+) take
the form

SSS = 2ν∗

(︃
1
2 + 1

2
|DDD|2

d2
∗

)︃ r−2
2

DDD (2.20)

and

DDD = α∗

(︃
1
2 + 1

2
|SSS|2

(2ν∗d∗)2

)︃ r′−2
2

SSS. (2.21)

We refer the reader to [57] for further details; here we emphasize two observations. First,
although both (2.20) and (2.21) are invertible for r ∈ (1,+∞), (2.21) is not an inverse of (2.20)
and vice versa (compare it to (2.13)). Second, both formulas are defined for all r ∈ (−∞,+∞)
and r′ ∈ (−∞,+∞) respectively. The relationship r′ = r

r−1 is however understood as a relation
valid for r > 1.

If r < 1, then SSS considered as a function of DDD given by (2.20) is not monotone; the same
holds for (2.21) if r′ < 1. We refer the reader to [57] for more details and to [50] for further
nontrivial extensions.

2.3 Fluids that can be viewed as a mixture of power-law fluids
It is natural to consider the possibility that the total response of the fluid-like material is given
as the sum of particular responses (a simplified scenario for the mixtures) of the individual (in
our case two) contributors, i.e.,

SSS = SSS1 + SSS2. (2.22)

One may think of putting two dashpots into a parallel arrangement; the response of one
dashpot captures behavior of a fluid A, and the response of another dashpot corresponds to
a fluid B; see Figure 3. To illustrate the potential of this setting, we consider for illustration
three examples:

(i) SSS1 = 2ν∗

(︂
|DDD|
d∗

)︂r−2
DDD and SSS2 = 2ν̃∗

(︂
1
2 + 1

2
|DDD|2

d2
∗

)︂ q−2
2 DDD with r ∈ (1, 2), q > 2;

(ii) SSS1 = 2ν∗DDD and SSS2 fulfills DDD = 1
2ν̃∗

(︂
1
2 + 1

2
|SSS2|2

(2ν̃∗d∗)2

)︂ r′−2
2 SSS2 with r′ ∈ (1,+∞) \ {2};

(iii) SSS1 responds as in (2.17) and SSS2 responds as in (2.19).

The responses of fluids modeled by the constitutive expressions (i) and (ii) are shown in Figure 4
for some choice of parameters. Further examples will be provided in Subsection 2.5.

2.4 Fluids with bounded shear rate or bounded shear stress
We have seen in Subsection 2.1 that the models (2.16) and (2.18) exhibit an interesting feature,
namely, the stress SSS is bounded as the symmetric part of the velocity gradient is varied, and vice
versa. While there are several mathematical advantages to the stress SSS expressed as a function
of DDD, as this would greatly simplify the number of equations that one needs to consider when
one substitutes it into the balance of linear momentum (even an explicit expression of the
symmetric part of the velocity gradient as a function of SSS might lead to a simplified structure
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fluid A

fluid B

Figure 3: 1D mechanical analogue of an additive stress model (2.22)

|DDD|

|SSS|

d∗

2(ν∗ + ν̃∗)d∗

ν̃∗
ν∗

= 1
8

ν̃∗
ν∗

= 1

ν̃∗
ν∗

= 8

|DDD|

|SSS|

d∗

2(ν∗ + ν̃∗)d∗

r′ = 10
9

r′ = 2

r′ = 10

Figure 4: Response of models represented by (2.22). On the left, the case (i) with r = 3
2 and

q = 5
2 . On the right, the case (ii) with ν∗ = ν̃∗.

for the equations) experiments on colloidal fluids clearly show that a fully implicit theory
is necessary (see for example [12, 39] and further references in [68]). When considering the
models (2.20) and (2.21) with r = 1 and r′ = 1 (and adjusting a scaling by factor

√
2), we

obtain
SSS = 2ν∗

DDD√︂
1 + |DDD|2

d2
∗

(2.23)

and
DDD = α∗

SSS√︂
1 + |SSS|2

(2ν∗d∗)2

, (2.24)

and we observe that, in the case of (2.23),

|SSS| ≤ 2ν∗d∗ for all DDD,

and, in the case of (2.24),
|DDD| ≤ d∗ for all SSS.

It is convenient to generalize (2.23) and (2.24) in the following manner: for parameters
a, b ∈ (0,+∞) consider

SSS = 2ν∗
DDD(︂

1 +
(︂

|DDD|
d∗

)︂a)︂ 1
a

(2.25)

and
DDD = α∗

SSS(︃
1 +

(︂
|SSS|

2ν∗d∗

)︂b)︃ 1
b

. (2.26)

In both cases, it is worth studying the behavior of the fluids for large a and b. When
a → +∞ in (2.25), the constitutive relation approximates the response of the activated fluid
which behaves as the Euler fluid prior to the activation and the magnitude of the stress remains
bounded; analogously, when b → +∞ in (2.26), the constitutive relation approximates the
response such that the magnitude of DDD remains bounded and the body admits merely rigid
body motions till the activation takes place, see Figure 5.
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|DDD|

|SSS|

d∗

2ν∗d∗

a = 1
2

a = 1
a = 2
a = 4

a = ∞

|DDD|

|SSS|

d∗

2ν∗d∗

b
=

1 2

b
=

1
b

=
2

b
=

4

b = ∞

Figure 5: Response of stress-limiting model (2.25) on the left and shear-limiting model (2.26)
on the right

|DDD|

|SSS|

σ∗

|DDD|

|SSS|

r = 2

r = 5
2

δ∗ |DDD|

|SSS|

δ∗

Figure 6: Response of the Bingham fluid (on the left), activated Euler/Navier-Stokes fluid
(in the middle, r = 2), Euler/power-law fluid (in the middle, r = 5

2 , d∗ = δ∗), and Eu-
ler/Ladyzhenskaya fluid (on the right, r = 5

2 , d∗ = δ∗, ν∗ = ν̃∗)

2.5 Activated fluids
In this section we study two classes of fluids: the first class is activation based on the value of
the stress (similar in character to a Bingham fluid) while the second class is activation based
on the value of the shear rate.

The first class of fluids that are studied flow only if the generalized shear stress |SSS| =
(︁
trSSS2)︁ 1

2

exceeds a certain critical value σ∗, referred to as the yield stress. Once the fluid flows, we assume
the fluid behavior is described by the constitutive expression for a generalized power-law or
a generalized stress power-law fluid. In the parts of the subdomain where |SSS| is below σ∗ the
fluid can only translate or rotate as a rigid body. Such responses are traditionally described
(see [28]) through the dichotomy

|SSS| ≤ σ∗ ⇐⇒ DDD = OOO,

|SSS| > σ∗ ⇐⇒ SSS = σ∗
DDD
|DDD|

+ SSS2 with

{︃
either SSS2=2νg(|DDD|2)DDD,
or DDD=αg(|SSS2|2)SSS2.

(2.27)

In the case of the stress SSS2 = 2ν∗DDD we obtain the constitutive representation for the Bingham
fluid (see Figure 6 on the left) and if SSS2 = 2νg

(︁
|DDD|2

)︁
DDD then we obtain the constitutive repre-

sentation for the Herschel-Bulkley fluid. It is worth of observing that (2.27) can be equivalently
written within the context of the framework for implicit constitutive equations (2.3). Specifi-
cally, considering (2.27) with the expression SSS2 = 2νg

(︁
|DDD|2

)︁
DDD the equivalent formulation can

be expressed as

2νg
(︁
|DDD|2

)︁
DDD = (|SSS| − σ∗)+

|SSS|
SSS

where (t)+ = max{t, 0} for t ∈ R.
On the other hand, considering (2.27) with the expression DDD = αg

(︁
|SSS2|2

)︁
SSS2, the equivalent

representation reads

DDD = αg

(︄⃓⃓⃓⃓
SSS− σ∗

DDD
|DDD|

⃓⃓⃓⃓2)︄ (|SSS| − σ∗)+

|SSS|
SSS,
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which is in our opinion worthy of detailed investigation.
The next class is a dual to (2.27) in the following sense. If the generalized shear rate |DDD| is

below a critical value δ∗, the flow is frictionless. Inner friction between the fluid layers becomes
important only when |DDD| exceeds δ∗. Then the fluid can flow as a Navier-Stokes fluid, or a power-
law fluid (see Figure 6 on the right), or a generalized power-law fluid, or a generalized stress
power-law fluid. To summarize, analogous to (2.27), we can describe such a response through
the relation

|DDD| ≤ δ∗ ⇐⇒ SSS = OOO,

|DDD| > δ∗ ⇐⇒ DDD = δ∗
SSS
|SSS|

+ αg
(︁
|SSS|2
)︁
SSS.

It is not surprising that this relation can be written as an explicit relation for the stress SSS in
terms of the symmetric part of the velocity gradient DDD, namely

αg
(︁
|SSS|2
)︁
SSS = (|DDD| − δ∗)+

|DDD|
DDD. (2.28)

If there is νg such that

DDD = αg
(︁
|SSS|2
)︁
SSS ⇐⇒ SSS = 2νg

(︁
|DDD|2

)︁
DDD (2.29)

then (2.28) can be written in the form ((2.29) describes the behavior of the fluid after activation)

SSS = 2νg
(︁
|DDD|2

)︁ (|DDD| − δ∗)+

|DDD|
DDD.

Explicit equivalence holds for the Navier-Stokes fluid (see (2.5)) and for the standard power-law
fluids (see (2.13)). Then we obtain the response

SSS = 2ν∗
(|DDD| − δ∗)+

|DDD|
DDD (2.30)

and

SSS = 2ν∗

(︃
|DDD|
d∗

)︃r−2 (|DDD| − δ∗)+

|DDD|
DDD, (2.31)

respectively (see Figure 6 on the right). We call the response (2.30) the Euler/Navier-Stokes
fluid and the response (2.31) the Euler/power-law fluid. If

SSS =
(︄

2ν∗ + 2ν̃∗

(︃
|DDD|
d∗

)︃r−2
)︄

(|DDD| − δ∗)+

|DDD|
DDD,

with r > 2 we call this response Euler/Ladyzhenskaya fluid, since O. A. Ladyzhenskaya was the
first to consider the generalization of the Navier-Stokes constitutive equation to the form

SSS =
(︁
2ν∗ + 2ν̃∗|DDD|r−2)︁DDD (2.32)

and showed that unsteady internal flows of such fluids in a bounded smooth container admit
unique weak solutions if r > 5

2 (or d+2
2 in general dimension d); see [20, 18] for improvement of

the uniqueness result to r ≥ 11
5 . Ladyzhenskaya used kinetic theory arguments to derive (2.32)

with r = 4; see [48, 49, 47].

Simple shear flows of the Euler/Navier-Stokes fluid For the sake of illustration of
response of the fluid (2.30) we consider a simple shear flow of such a fluid. In order to char-
acterize such fluids it is also useful to consider a modified model which we call the regularized
Euler/Navier-Stokes fluid given by

SSS = 2ν∗

(︄
ϵ∗ + (|DDD| − δ∗)+

|DDD|

)︄
DDD (2.33)
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y

u

y0

ϵ∗ = 1

ϵ∗ = 1
2

ϵ∗ = 1
4

ϵ∗ = 0

Figure 7: Simple shear flows of the regularized Euler/Navier-Stokes fluid for various values of
the added viscosity ϵ∗ν∗ and fixed C > 0. Circles mark the point of activation y = y0 ±

√
2δ∗ϵ∗
2|C|

where |u′| =
√

2δ∗. The degenerate case ϵ∗ = 0 is activated everywhere, i.e., |u′| ≥
√

2δ∗.
Note that the velocity profiles are determined up to an additive constant (because no boundary
conditions are enforced); here we take u0 = 0.

with an extra parameter ϵ∗ ≥ 0. We will consider solutions of the balance equations (see (2.40),
(2.41) below) for the response of the fluids described by (2.33) (and the degenerate case (2.30))
in R2, with the velocity taking the form

v(x, y) = (u(y), 0) x, y ∈ R

for some u : R → R absolutely continuous on every compact interval in R. We note that now
we deal with solutions of the governing equations in R2 so there are no boundary conditions
involved. It is easy to check that if ϵ∗ > 0 then all such solutions of (2.40), (2.41), and (2.33)
fulfill (︂

ϵ∗ +H(|u′| −
√

2δ∗)
)︂
u′′ = −2C a.e. in R, (2.34a)

p(x) = −2ν∗Cx+ p0, (2.34b)

with some C ∈ R, H(t) = 1 if t > 0 and H(t) = 0 otherwise. The formulas (2.34) represent
a generalization of the well-known equations for simple shear flows of the Navier-Stokes fluid,
which is a special case with δ∗ = 0. In fact all the solutions of (2.34) take the form

u(y) =

⎧⎨⎩
− C

ϵ∗
(y − y0)2 + u0 |y − y0| ≤

√
2δ∗ϵ∗
2|C| ,

− C
1+ϵ∗

(︃
(y − y0)2 +

√
2δ∗
⃓⃓

y−y0
C

⃓⃓
− ϵ∗

(︂√
2δ∗

2C

)︂2
)︃

+ u0 |y − y0| ≥
√

2δ∗ϵ∗
2|C| ,

(2.35a)

p(x) = −2ν∗Cx + p0, (2.35b)

with any C, y0, u0, p0 ∈ R. In the interval
{︂
|y − y0| ≤

√
2δ∗ϵ∗
2|C|

}︂
the fluid is in the regime below

the “activation” threshold (where |u′| ≤
√

2δ∗) with the viscosity ϵ∗ν∗ while outside this interval
the threshold is exceeded and the generalized viscosity has the value ν∗

(︂
ϵ∗ + 1−

√
2δ∗

|u′|

)︂
. Taking

the limit ϵ∗ → 0+ one obtains

u(y) = −C
(︃

(y − y0)2 +
√

2δ∗

⃓⃓⃓⃓
y − y0

C

⃓⃓⃓⃓)︃
+ u0, (2.36a)

p(x) = −2ν∗Cx+ p0, (2.36b)

which indeed is a solution of the balance equations for the Euler/Navier-Stokes fluid (2.30) with
any C, y0, u0, p0 ∈ R. Now the flow exceeds the activation threshold everywhere except of y = y0
where u′(y0±) = ∓

√
2δ∗

C
|C| and the shear rate jumps there by virtue of the vanishing viscosity.

In Figure 7 we display a family of solutions (2.35a) for varying ϵ∗ and (2.36a) (matching ϵ∗ = 0)
for fixed values of C, y0.

Apart of the family of solutions (2.36) the Euler/Navier-Stokes fluid (2.30) admits also the
simple shear flows which do not exceed the threshold |u′| =

√
2δ∗, the viscosity is zero and
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Table 1: Summary of systematic classification of fluid-like response with the corresponding
|DDD|-|SSS| diagrams

Euler/rigid Navier-
Stokes/limiting
shear-rate

fluid body allowed
to move only
rigidly

Euler/shear-
thickening

shear-thickening rigid/shear-
thickening

Euler/Navier-
Stokes

Navier-Stokes rigid/Navier-
Stokes

Euler/shear-
thinning

shear-thinning rigid/shear-
thinning

Euler limiting rigid/free-flow

|DDD| ≤ δ∗ ⇐⇒ SSS = OOO no activation |SSS| ≤ σ∗ ⇐⇒ DDD = OOO

therefore any admissible velocity profile is a solution. Such solutions are characterized by

|u′| ≤
√

2δ∗ a.e. in R, (2.37a)
p = p0, (2.37b)

with some locally Lipschitz continuous u : R → R and p0 ∈ R. In fact the families (2.36) and
(2.37) are all possible weak solutions for a simple shear flow of the Euler/Navier-Stokes fluid.

2.6 Classification of incompressible fluids
The previous exposition should indicate the broad spectrum of fluid responses that can be
described within the setting

b
(︁
|DDD|2

)︁
DDD = a

(︁
|SSS|2
)︁
SSS, (2.38)

where a and b are continuous (not necessarily always differentiable) functions.
The following Table 1 summarizes these observations in a different way, paying attention

to the broad range of models covered by (2.38). It includes the Euler (frictionless) fluid at one
extreme and a fluid that only moves rigidly at the other extreme and contains the responses
ranging from the fluids enforcing the activation criterion |DDD| ≤ δ∗ ⇐⇒ SSS = OOO through non-
activated fluids to the fluids that are governed by the activation criterion |SSS| ≤ σ∗ ⇐⇒ DDD = OOO.
Vertically, the range of r is iterated from top to bottom: r = +∞, r ∈ (2,+∞), r = 2, r ∈ (1, 2),
and r = 1. Thus, at the bottom left corner we have perfectly frictionless Euler fluid and at the
top right corner we have a fluid that can only undergo rigid motions. In the middle of the table
the Navier-Stokes model is placed.

2.7 Activated boundary conditions
Boundary conditions can have as much impact on the nature of the flow as the constitutive
equation for the fluid in the bulk. We illustrate it explicitly in this subsection. Here, for the
sake of clarity, we restrict ourselves to internal flows, i.e., we assume that

v · n = 0 on ∂Ω, (2.39)

where n : ∂Ω → Rd denotes the mapping that assigns the outward unit normal vector to any
x ∈ ∂Ω. The behavior of the fluid at the tangential direction near the boundary is described by
the equations that reflect mutual interaction between the solid boundary and the fluid flowing
adjacent to the boundary. These are constitutive equations which we shall concern ourselves
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with. In order to specify them, in the spirit of previous parts of the paper, we first recall some
energy estimates.

Considering the constraint that the fluid can undergo only isochoric motions

div v = 0 in Ω, (2.40)

and assuming, for simplicity, that the density is uniform, i.e., ρ ≡ ρ∗ > 0, motions of such a
fluid are described by the balance equations for linear and angular momenta that take the form
(see also (2.2))

ρ∗

(︄
∂v

∂t
+

d∑︂
k=1

vk
∂v

∂xk

)︄
= divSSS−∇p in Ω,

SSS = SSS⊤ in Ω.

(2.41)

Forming the scalar product of the first equation with v and integrating the result over Ω, we
arrive at

d
dt

∫︂
Ω
ρ∗
|v|2

2 dx+
∫︂

Ω
div
(︃
ρ∗
|v|2

2 v

)︃
dx =

∫︂
Ω

div (SSSv) dx−
∫︂

Ω
SSS :DDD dx−

∫︂
Ω

div (pv) dx,

where we have used (2.40) twice. Gauss’ theorem and the requirement (2.39) then lead to

d
dt

∫︂
Ω
ρ∗
|v|2

2 dx+
∫︂

Ω
SSS :DDD dx+

∫︂
∂Ω

(−SSS) : (v ⊗ n) dS = 0, (2.42)

where a ⊗ b denotes the second order tensor with the components (a⊗ b)ij = aibj . In virtue
of the symmetry of SSS, see (2.41), we obtain

(−SSS) : (v ⊗ n) = (−SSS) : (n⊗ v) = (−SSSn)τ · vτ ,

where zτ denotes the projection of z : ∂Ω → Rd to the plane tangent to ∂Ω (at the point of
∂Ω under consideration). Finally, introducing the notation

s := (−SSSn)τ (projection of the normal traction to the tangent plane),

we can rewrite (2.42) in the form

d
dt

∫︂
Ω
ρ∗
|v|2

2 dx+
∫︂

Ω
SSS :DDDdx+

∫︂
∂Ω
s · vτ dS = 0.

The discussion in Section 2 thus far has been focused on discussing models within the context
of the framework G (SSS,DDD) = OOO (see (2.3)). In fact, the discussion concerned the restricted class
of models of the form

a
(︁
|DDD|2

)︁
DDD = b

(︁
|SSS|2
)︁
SSS, (2.43)

where a and b were non-negative continuous (not necessarily everywhere differentiable) func-
tions.

In a manner similar to the class of models defined through (2.43), we could develop analo-
gously the identical framework of relations linking s and vτ , i.e., to consider various classes of
boundary conditions that fit the form

h (s,vτ ) = 0,

where we deal with a (monotone) continuous function h : Rd × Rd → Rd, or a more restrictive
class

ã
(︁
|vτ |2

)︁
vτ = b̃

(︁
|s|2
)︁
s, (2.44)

where ã, b̃ : [0,+∞)→ [0,+∞) are non-negative continuous functions.
We shall not consider the problem within the context of such generality for the following two

reasons: (i) we do not have enough experimental data that would support nonlinear relations
between s and vτ , and (ii) the extension of the framework developed to take into account
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such nonlinear relations is straightforward and follows in a manner similar to that discussed in
Subsections 2.1–2.5.

In what follows, we restrict ourselves to both activated and non-activated responses that
are (after activation) linear. In a manner similar to that in the introductory part of Section 2
where we considered the product SSS :DDD, we notice here that the product s ·vτ vanishes if either

s = 0 on ∂Ω, (2.45)

or
vτ = 0 on ∂Ω for all admissible flows. (2.46)

The condition (2.45) is referred to as the free-slip condition condition, expressing the fact that
the boundary exhibits no friction to the flow, in the sense that the shear stress vanishes, and
fluid flows tangentially to the boundary. On the other hand, the condition (2.46), referred to as
the no-slip boundary condition, requires that flows adhere to the boundary. It has the character
of a boundary constraint.

A linear relation between s and vτ is known as the Navier-slip:

s = γ∗vτ with γ∗ > 0. (2.47)

We consider two types of activated boundary conditions. First, the relation

|s| ≤ s∗ ⇐⇒ vτ = 0,

|s| > s∗ ⇐⇒ s = s∗
vτ

|vτ |
+ γ∗vτ ,

(2.48)

which has been coined as the stick/slip condition in the literature, but which we will refer to as
the no-slip/Navier-slip condition for consistency; s∗ is the yield stress that is positive. It can
be rewritten into the form (2.44) through its equivalent characterization

γ∗vτ = (|s| − s∗)+

|s|
s. (2.49)

In analogy, the second type of activated condition is given through the description

|vτ | ≤ v∗ ⇐⇒ s = 0,

|vτ | > v∗ ⇐⇒ vτ = v∗
s

|s|
+ 1
γ∗
s,

(2.50)

where v∗ > 0. The equivalent description of (2.50), that can be referred to as the free-
slip/Navier-slip condition, takes the form

s = γ∗
(|vτ | − v∗)+

|vτ |
vτ . (2.51)

These responses are summarized in the Table 2.

Simple shear flows of the Navier-Stokes fluid and the Euler/Navier-Stokes fluid
subject to activated boundary conditions Finally, in order to emphasize the role of
boundary conditions in determining the nature of the flow, we consider Poiseuille flow between
two parallel plates located at y = ±L. All types of boundary conditions listed in Table 2 will
be considered. We can write boundary conditions (2.49) and (2.51) together as

γ∗
(|vτ | − v∗)+

|vτ |
vτ = (|s| − s∗)+

|s|
s on ∂(R× (−L,L)) (2.52)

requiring that at least one of v∗ and s∗ is zero. Let us consider a simple shear flow of the
Euler/Navier-Stokes fluid (2.36) in domain R×(−L,L) for given L > 0. As shown in Section 2.5
simple shear flows of the Euler/Navier-Stokes fluid are in the form (2.36) or (2.37). Let us
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Table 2: Classification of boundary activation of fluid response with the corresponding |vτ |-|s|
diagrams. The last row reflects the usage of the term slip in Section 3 to describe a broad class
of boundary conditions of the slip type.

free-slip free-slip/Navier-
slip

Navier-slip no-slip/Navier-slip no-slip

s = 0 |vτ | ≤ v∗ ⇐⇒
s = 0

s ∼ vτ |s| ≤ s∗ ⇐⇒
vτ = 0

vτ = 0

(2.45) (2.50) or (2.51) (2.47) (2.48) or (2.49) (2.46)

slip no-slip

assume symmetry y0 = 0 in (2.36a); it will be obvious later that the converse is not possible.
Normalizing (2.36a) to a given flow rate Q ∈ R such that∫︂ L

−L
u(u)dy = Q (2.53)

we obtain

u = −C
(︂
y2 +

√
2δ∗

⃓⃓⃓ y
C

⃓⃓⃓)︂
+ Q

2L + C

(︃
L2

3 +
√

2δ∗L

2|C|

)︃
, (2.54a)

p = −2ν∗Cx+ p0 (2.54b)

being defined for any C ∈ R \ {0}. It requires a trivial, but tedious, computation to check that
simple shear flow of Euler/Navier-Stokes fluid (2.54) solves the balance equations in R×(−L,L)
together with boundary condition (2.52) on {y = ±L} provided that

C = 3Q

4L3

[︄(︃
1 −

√
2δ∗L2 + 2v∗L

|Q|

)︃+

− 3ν∗

3ν∗ + γ∗L

(︄
1 −

√
2δ∗L2 + 2v∗L + 2s∗L2

3ν∗

|Q|

)︄+ ]︄
(2.55)

and p0 ∈ R is arbitrary. If C given by formula (2.55) is zero, then all flows which fulfill (2.37),
(2.52), and (2.53) are solutions; more precisely if C = 0 all the solutions are given by

|u′| ≤
√

2δ∗ a.e. in R, (2.56a)
γ∗|u| ≤ γ∗v∗ a.e. on {|y| = L}, (2.56b)∫︂ L

−L
udy = Q, (2.56c)

p = p0, (2.56d)

with some Lipschitz continuous u : [−L,L] → R and p0 ∈ R. Family (2.54), (2.55) and family
(2.56) represent in fact all possible simple shear flow solutions of motions of the Euler/Navier-
Stokes fluid subject to no-slip/Navier-slip or free-slip/Navier-slip boundary conditions (2.52).
We summarize combinations of bulk and boundary activation criterions in Table 3.

3 Mathematical analysis of flows of activated Euler fluids
Long-time and large-data existence theory (within the context of weak solutions) for a broad
class of fluids described by implicit constitutive relation (2.3) has been developed in [16, 17].
These works deal with internal flows of incompressible fluids with monotone responses, asymp-
totically behaving as |SSS| = O

(︁
|DDD|r−1)︁ as |DDD| → ∞ or |DDD| = O

(︁
|SSS|

r
r−1 −1)︁ as |SSS| → ∞ with
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Table 3: Solutions for simple shear flows of the Euler/Navier-Stokes fluid in combination with
different activated and classical boundary conditions. The middle column contains |vτ |-|s|
diagrams of boundary response (on the left) and |DDD|-|SSS| diagrams of bulk response (on the
right). The solid segments and the circles (colored red in the electronic version) mark the part
of the response being attained in the specific case. Note that no-slip/Navier-slip (contrary to
free-slip/Navier-slip) admits a mode with the activation threshold exceeded in the bulk with
the boundary under activation threshold. Also note that the free-slip condition admits only
Euler mode, frictionless solutions. For the Navier-Stokes limit just let δ∗ := 0.

free-slip/Navier-slip: (2.52) & s∗ = 0
|Q| ≤

√
2δ∗L

2 + 2v∗L (2.56)

|Q| ≥
√

2δ∗L
2 + 2v∗L (2.54), C = γ∗L

3ν∗+γ∗L

3(|Q|−
√

2δ∗L
2−2v∗L)

4L3
Q

|Q|

bdry bulk

no-slip/Navier-slip: (2.52) & v∗ = 0
|Q| ≤

√
2δ∗L

2 (2.56)

√
2δ∗L

2 ≤ |Q| ≤
√

2δ∗L
2+

2s∗L
2

3ν∗

(2.54), C = 3(|Q|−
√

2δ∗L
2)

4L3
Q

|Q|

|Q| ≥
√

2δ∗L
2 + 2s∗L

2

3ν∗
(2.54), C =[︁

γ∗L
3ν∗+γ∗L

3(|Q|−
√

2δ∗L
2)

4L3 + 3ν∗
3ν∗+γ∗L

s∗
2ν∗L

]︁
Q

|Q|
bdry bulk

free-slip: (2.52) & s∗ = 0 & v∗ →∞
free-slip: (2.52) & s∗ = 0 & γ∗ = 0
Q ∈ R (2.56)

bdry bulk

no-slip: (2.52) & v∗ = 0 & s∗ →∞
no-slip: (2.52) & v∗ = 0 & γ∗ →∞
|Q| ≤

√
2δ∗L

2 (2.56a), u(±L) = 0, (2.56c), (2.56d)

|Q| ≥
√

2δ∗L
2 (2.54), C = 3(|Q|−

√
2δ∗L

2)
4L3

Q
|Q|

bdry bulk

Navier-slip: (2.52) & v∗ = 0 & s∗ = 0
|Q| ≤

√
2δ∗L

2 (2.56)

|Q| ≥
√

2δ∗L
2 (2.54), C = γ∗L

3ν∗+γ∗L

3(|Q|−
√

2δ∗L
2)

4L3
Q

|Q|

bdry bulk
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6
5 < r < ∞ (or 2d

d+2 < r < ∞ in general dimension d).3 In order to get a pressure4 which
is integrable over the space-time cylinder in the unsteady case, the theory is developed with
a boundary condition allowing some kind of slip. The overview of the problem concerning the
connection between the integrability of the pressure and a specific boundary condition is given
in [31]; see also the original studies [43, 44]. Existence theory when the Navier-slip boundary
condition is enforced has recently been extended to the stick/slip boundary condition in [22,
21]. The theory for unsteady flows subject to the no-slip boundary condition can be found in
a more recent study [13], where the solenoidal Lipschitz approximations of solenoidal Bochner-
Sobolev functions are constructed and analyzed (from the point of view of dependence of their
mathematical properties on approximation parameters). With such constructions, the analysis
of the problem can be performed without introducing the notion of pressure.

In this section we will provide an existence theory for steady and unsteady flows of activated
Euler fluids considering various types of behavior after activation and various types of boundary
conditions. More specifically, we will study the system5

div v = 0 in (0, T )× Ω, (3.1a)
∂v

∂t
+ div(v ⊗ v)− divSSS = −∇p+ b in (0, T )× Ω, (3.1b)

SSS = 2ν∗ (|DDD| − δ∗)+ S(|DDD|) DDD
|DDD| in (0, T )× Ω, (3.1c)

v · n = 0 on (0, T )× ∂Ω, (3.1d)
h(s,vτ ) = 0 on (0, T )× ∂Ω, (3.1e)
v(0, ·) = v0 in Ω. (3.1f)

Here S : [0,∞)→ [0,∞) is supposed to be of the following forms: either

S ≡ 1

giving the Euler/Navier-Stokes fluid (2.30), or

S(d) =
(︁
d
d∗

)︁r−2 or S(d) =
(︂
A+

(︁
d
d∗

)︁2
)︂ r−2

2
, A > 0,

leading to the Euler/power-law fluid (2.31), or

S(d) = 1 +A
(︁
d
d∗

)︁r−2
, r > 2, A > 0,

leading to the Euler/Ladyzhenskaya fluid.
It is not difficult to verify (see Appendix B) that the graph G ⊂ R3×3

sym×R3×3
sym defined through

(SSS,DDD) ∈ G if and only if SSS and DDD fulfill (3.1c)

is a maximal monotone r-graph, i.e., G has the following properties:

(G1) (OOO,OOO) ∈ G;

(G2) (SSS1 − SSS2) : (DDD1 −DDD2) ≥ 0 for all (SSS1,DDD1) ∈ G and (SSS2,DDD2) ∈ G;

(G3) if SSS,DDD ∈ R3×3
sym satisfy (SSS− S̃SS) : (DDD− D̃DD) ≥ 0 for all (S̃SS, D̃DD) ∈ G, then (SSS,DDD) ∈ G;

(G4) there exist r ∈ (1,∞), α, β ∈ (0,∞) such that SSS : DDD ≥ α
(︁
|SSS|r′ + |DDD|r

)︁
− β whenever

(SSS,DDD) ∈ G and 1
r + 1

r′ = 1.
3In fact, in [16, 17] the results are established even in a more general setting replacing the Lebesgue spaces

by the Orlicz spaces.
4Subtle difference between thermodynamic pressure, the mean normal stress (the latter usually referred to as

pressure in mathematical literature on incompressible fluids), and the Lagrange multiplier is not to be discussed
in this paper and we refer interested reader to [59, 77]. Henceforth we refer to the Lagrange multiplier that
enforces the incompressibility condition as the “pressure”.

5We assume that density ρ is constant and we replace p
ρ

merely by p throughout the whole section. Note
that such p, although customarily called “pressure” in mathematical fluid dynamics literature, is actually the
mean normal stress scaled by the (constant) density.
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Suitable choices of the function h(s,vτ ) cover the boundary conditions (2.45), (2.46), (2.47),
(2.49), (2.51). Analogous to the above setting, we require that the graph B ⊂ R3 × R3 defined
through

(s,v) ∈ B ⇔ s and v fulfill (3.1e)

is a maximal monotone 2-graph, i.e., B has the following properties:

(B1) (0,0) ∈ B;

(B2) (s1 − s2) · (v1 − v2) ≥ 0 for all (s1,v1) ∈ B and (s2,v2) ∈ B;

(B3) if s,v ∈ R3 satisfy (s− s̃) · (v − ṽ) ≥ 0 for all (s̃, ṽ) ∈ B, then (s,v) ∈ B;

(B4) there are α̃, β̃ ∈ (0,∞) such that s · v ≥ α̃
(︁
|s|2 + |v|2

)︁
− β̃ for all (s,v) ∈ B.

The requirement (B4) can be easily verified for the boundary conditions (2.47), (2.49) and (2.51).
Note that there is no boundary term in the weak formulation of the problem in the case

of the free-slip condition (2.45); this condition does not invalidate the analysis. On the other
hand the no-slip boundary condition (2.46) needs to be treated separately.

Apart from the general purpose of this paper we are further motivated to study the prob-
lem (3.1) for the following reasons.

1. The most studied systems of PDEs (partial differential equations) in fluid mechanics are
the Euler equations (when SSS = OOO, or δ∗ →∞ in (3.1c)) and the Navier-Stokes equations
(when SSS = 2ν∗DDD, or δ∗ = 0 and S ≡ 1 in (3.1c)). The system of PDEs considered
here is placed between them, as δ∗ ∈ (0,∞). While (3.1a)–(3.1c) can, particularly for δ∗
large, share several features associated with the physics of the Euler fluid (or the Euler
equations), we will document that the mathematical properties of the flows described by
(3.1) are similar to those described by the Navier-Stokes equations. This is important
as recent achievements in the mathematical theory of the Euler equations considered in
a reasonable physical setting show that the equations exhibit pathological solutions within
the framework of weak solutions with bounded (kinetic) energy (see [24, 82]).
Fluids described by (3.1c) seem to have been completely overlooked both in physics and
mathematical fluid dynamics literature; this may well be due to the fact that such behavior
has not been observed. Below, we will focus on filling this lacuna and on developing the
mathematical foundations associated with the problem (3.1).

2. It is worth noticing that the activated Euler fluids characterized by (3.1c) represent the
models dual to the Bingham fluids that are obtained by interchanging the role of DDD and SSS
in (3.1c). A mathematical theory for Bingham fluids, in the spirit of the theory developed
here, is given in [21, 22, 63], where the reader can also find more references concerning
the earlier results on the analysis of flows of the Bingham fluids and their generalizations.

3. The set-up of the problem considered here will be also used to show how different types of
boundary conditions can be treated (while restricting ourselves to internal flows). We will
also focus on the relation between the considered boundary conditions and the properties
of the mean normal stress p.

4. Since the operator −divSSS is elliptic and degenerates for |SSS| ≤ δ∗, the theory presented
below can be viewed as an approach for studying degenerate problems.

5. Finally, the constitutive relation (3.1c) is regularized by

SSSϵ(DDD) =
(︄
ϵ|DDD|q−2 + 2ν∗

(|DDD| − δ∗)+

|DDD|
S(|DDD|)

)︄
DDD

with ϵ > 0 and q ≥ 2 large enough. This explicit regularization allows us to proceed
explicitly in the subsequent analysis.
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3.1 Function spaces
In what follows we assume that Ω ⊂ R3 is a domain, i.e., a bounded open connected set. For
1 ≤ p ≤ ∞, k ∈ N, Lp(Ω) and W k,p(Ω) denote the standard Lebesgue and Sobolev space
respectively, i.e., spaces of measurable functions of finite norm

∥f∥Lp(Ω) = ∥f∥p,Ω =
(︂∫︂

Ω
|f |p

)︂ 1
p

,

∥f∥Wk,p(Ω) = ∥f∥k,p,Ω =
k∑︂
j=0
∥|∇jf |∥p,Ω |∇jf | =

(︂∑︂
|α|=j

|Dαf |2
)︂ 1

2

respectively. When there is no risk of confusion the subscript Ω can be omitted. Often we will
use symbol Lp(Ω)3×3

sym to denote functions with values in symmetric tensors with Lp-integrable
components. Bold-face symbols Wk,p and Lp will denote vector-valued Sobolev and Lebesgue
functions respectively. Parentheses (·, ·)Ω will denote duality pairing in Lp(Ω) and L

p
p−1 (Ω)

including vector and tensor-valued case; the subscript Ω will be typically dropped where is
no danger of confusion. Analogously, angle brackets ⟨·, ·⟩V ∗,V denote a duality paring between
spaces V ∗ and V , where V ∗ denotes the dual of V ; the subscript can be omitted. For any vector-
valued function v, the symmetric part of the gradient is defined through DDDv := 1

2
(︁
∇v+(∇v)⊤)︁.

We use notation Lq(0, T ;X) and Ck(I;X) to denote Bochner spaces of functions with values
in the Banach space X and k-times continuously differentiable functions on interval I ⊂ R
with values in X respectively; Ck0 (I;X) denotes functions from Ck(I;X) which are compactly
supported in I.

The function spaces relevant to the problems that are being investigated vary depending on
the type of boundary conditions. Two cases are being considered separately. First, the case of
the no-slip boundary condition (the no-slip case, in short) and then other boundary conditions
that involve various kinds of slipping mechanisms (the slip case, in short), cf. Table 2.

3.1.1 No-slip case

We consider the space of compactly supported smooth functions and its subspace of solenoidal
functions:

C∞
0 :=

{︁
v : Ω→ R3; v smooth; suppv ⊂ Ω

}︁
, C∞

0,div := {v ∈ C∞
0 ; div v = 0}

and their closures in Lp-norm, W 1,p-norm (with 1 < p <∞) and W 3,2-norm:

W1,p
0 := C∞

0
∥·∥W 1,p

,

Lpn,div := C∞
0,div

∥·∥Lp

,

W1,p
0,div := C∞

0,div
∥·∥W 1,p

,

W3,2
0 := C∞

0
∥·∥W 3,2

,

W3,2
0,div := C∞

0,div
∥·∥W 3,2

.

As a consequence of the Poincaré and Korn inequalities, see [2, Corollary 6.31], [26, Theorem
5.15], the following norms are equivalent on W1,p

0 (and W1,p
0,div ⊂W1,p

0 ) for 1 < p <∞:

∥DDDv∥p ≤ ∥∇v∥p ≤ ∥v∥1,p ≤ CP∥∇v∥p ≤ CPCK∥DDDv∥p for all v ∈W1,p
0 , (3.2)

with ∥∇v∥p := ∥|∇v|∥p, ∥DDDv∥p := ∥|DDDv|∥p; the constant CP > 0 that appears due to the
Poincaré inequality depends on p and Ω, while the constant CK > 0 that appears due to the
Korn inequality depends only on p.

Note that for a domain Ω (without further regularity assumption on the smoothness of ∂Ω)
we have the embedding W3,2

0,div ↪→W3,2
0 ↪→W 1,∞(Ω)3. If additionally Ω is a C0,1 domain, i.e.,

Ω is a domain with Lipschitz boundary ∂Ω, then the following characterization holds true:

W1,p
0 =

{︁
v ∈W 1,p(Ω)3; v = 0 on ∂Ω in the sense of traces

}︁
,

W1,p
0,div =

{︂
v ∈W1,p

0 ; div v = 0
}︂

;
(3.3)

moreover we use (3.3) as a definition of W1,∞
0 and W1,∞

0,div in the case that p = ∞ and Ω is
a C0,1 domain.

We can occasionally denote the norm on
(︁
W1,p

0
)︁∗, the topological dual of W1,p

0 , by ∥·∥−1,p′ .
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3.1.2 Slip case

Here we assume Ω is a C0,1 domain. We denote by n : ∂Ω→ R3 the unit outer normal vector
to ∂Ω. The space of smooth vector-valued functions with vanishing normal component on the
boundary and its solenoidal subspace are then introduced through:

C∞
n :=

{︁
v : Ω→ R3; v smooth; v · n = 0 on ∂Ω

}︁
,

C∞
n,div := {v ∈ C∞

n ; div v = 0} .

Since ∂Ω is Lipschitz we can define the following spaces with vanishing normal trace:

W3,2
n :=

{︁
v ∈W 3,2(Ω)3; v · n = 0 on ∂Ω

}︁
,

W3,2
n,div := W3,2

n ∩ L2
n,div,

and subsequently, for 1 < p ≤ ∞,

W1,p
n := W3,2

n

∥·∥W 1,p

, W1,p
n,div := W3,2

n,div
∥·∥W 1,p

.

The condition v ·n = 0 on ∂Ω for Ω bounded is sufficient for validity of the Poincaré inequality:6

for 1 < p <∞ there exists CP > 0 depending on p and Ω such that

∥∇v∥p ≤ ∥v∥1,p ≤ CP∥∇v∥p for all v ∈W1,p
n . (3.4)

For the steady problem we will consider two inequalities of the Korn type depending on whether
the type of considered boundary conditions leads to the control of the trace of v on the boundary
or not.7 In the first case, it follows from [19, Lemma 1.11] and (3.4): for 1 < p <∞ there exists
CK > 0 depending on p and Ω such that

∥∇v∥p ≤ CK
(︁
∥DDDv∥p + ∥v∥2,∂Ω

)︁
for all v ∈W1,p

n with vτ ∈ L2(∂Ω). (3.5)

The second situation when s = 0 on ∂Ω requires us to rule out domains that admit nontrivial
rigid motions. We say that Ω is axisymmetric if there exists a rigid body motion tangential to
boundary, i.e., there is v ∈W1,∞

n with DDDv = OOO and ∇v ̸= OOO constant in Ω. In the other words,
there is v ∈W1,∞

n of the form v(x) = QQQ(x−x0) for some QQQ ⊂ R3×3 non-zero skew-symmetric
matrix and constant x0 ∈ R3. From [9, Theorem 11, Remark 12] it follows that if Ω is not
axisymmetric and 1 < p <∞ there exists CK > 0 depending on Ω and p such that

∥∇v∥p ≤ CK∥DDDv∥p for all v ∈W1,p
n . (3.6)

For the unsteady case we will use the following Korn-type inequality:8

∥∇v∥p ≤ CK
(︁
∥DDDv∥p + ∥v∥1

)︁
for all v ∈W1,p

n . (3.8)

6To verify it, assume for the sake of contradicion, that there is {vj}∞
j=1 ⊂ W1,p

n with ∥∇vj∥p → 0 and
∥vj∥1,p = 1. Relying on the compact Sobolev embedding, it follows that there is a (not relabeled) subsequence
{vj}∞

j=1 which converges strongly in Lp(Ω)3 to some v ∈ Lp(Ω)3. This implies that {vj}∞
j=1 is a Cauchy

sequence in W1,p
n and converges in W1,p

n to v ∈ W1,p
n with ∇v = OOO. Hence v is constant and by virtue of the

boundedness of Ω and the boundary condition it follows that v = 0, which is a contradiction.
7A priori estimates for a steady problem subject to a slip-type condition given by a maximal monotone

2-graph with (B4) will ensure control of ∥vτ ∥2,∂Ω. On the other hand, under the free-slip condition (2.45) there
is no a priori control over the tangential velocity ∥vτ ∥2,∂Ω and rigid motions, if admissible in W1,∞

n , prevent
one to obtain a steady solution.

8This is a consequence of another Korn-type inequality:

∥∇v∥p ≤ C′
K
(︁

∥DDDv∥p + ∥v∥p

)︁
for all v ∈ W1,p(Ω); (3.7)

see [56, Theorem 1.10]. To verify (3.8), assume that there is {vj}∞
j=1 ⊂ W1,p

n such that ∥∇vj∥p = 1 and
∥DDDvj∥p + ∥vj∥1 → 0. Poincaré inequality (3.4) implies that {vj}∞

j=1 is bounded in W1,p
n . By virtue of

its reflexivity there is a (not relabeled) subsequence such that vj ⇀ v weakly in W1,p
n and by the Sobolev

embedding vj → v in Lp. On the other hand vj → 0 in L1 hence by uniqueness of the limit we conclude v = 0.
Summarizing, the right-hand side of (3.7) (with vj in place of v) goes to zero but the left-hand side is equal to
unity, which is a contradiction.

We can see that (3.8) in fact holds independently of the considered boundary condition, i.e., for all W1,p.
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3.2 Analysis of steady flows
In this section, we investigate internal flows that are independent of time. Under such circum-
stances, the governing system of equations takes the form

div v = 0 in Ω, (3.9a)
div (v ⊗ v − SSS) = −∇p+ b in Ω, (3.9b)

(SSS,DDDv) ∈ G in Ω, (3.9c)
v · n = 0 on ∂Ω, (3.9d)

where G is a maximal monotone r-graph, fulfilling (G1)–(G4), of the form

G :=
{︂

(SSS,DDD) ∈ R3×3
sym × R3×3

sym; SSS = 2ν∗ (|DDD| − δ∗)+ S(|DDD|) DDD
|DDD|

}︂
. (3.10)

We will distinguish two cases depending on the class of boundary conditions considered.
The first case concerns the no-slip condition, i.e.,

vτ = 0 on ∂Ω. (3.11)

The second case includes all other boundary conditions involving tangential part of the normal
traction; it refers to either

s = 0 on ∂Ω

or

(s,vτ ) ∈ B on ∂Ω,

where B is a maximal monotone 2-graph fulfilling (B1)–(B4).

3.2.1 No-slip case

Let Ω ⊂ R3 be a domain, r ≥ 6
5 , b ∈

(︁
W1,r

0
)︁∗ and G be a maximal monotone r-graph specified

in (3.10). We say that

(v,SSS) ∈W1,r
0,div × L

r′
(Ω)3×3

sym

is a weak solution to (3.9), (3.10), (3.11) if

(SSS,DDDφ)− (v ⊗ v,∇φ) = ⟨b,φ⟩ for all φ ∈ C∞
0,div (3.12)

and

(SSS,DDDv) ∈ G a.e. in Ω; (3.13)

equivalently, we can require that (3.12) holds for all φ ∈W1, 3r
5r−6

0,div ∩W1,r
0,div.

Theorem 3.1. Let Ω ⊂ R3 be a domain. Let r > 6
5 , b ∈

(︁
W1,r

0
)︁∗ and G be a maximal monotone

r-graph of the form (3.10). Then there is a weak solution (v,SSS) ∈W1,r
0,div ×Lr

′(Ω)3×3
sym to (3.9),

(3.11) which fulfills (3.13) and

(SSS,DDDφ)− (v ⊗ v,DDDφ) = ⟨b,φ⟩

for all φ ∈
{︃ W1,r

0,div if r ≥ 9
5 ,

W1, 3r
5r−6

0,div if r ∈
(︁ 6

5 ,
9
5
)︁
.

(3.14)

In addition, if Ω is a C0,1 domain then there is

p ∈
{︃
Lr

′(Ω) if r ≥ 9
5

L
3r

2(3−r) (Ω) if r ∈
(︁ 6

5 ,
9
5
)︁ , ∫︂

Ω
pdx = 0, (3.15)

such that
(SSS,DDDφ)− (v ⊗ v,∇φ) = (p, divφ) + ⟨b,φ⟩

for all φ ∈
{︃ W1,r

0 if r ≥ 9
5 ,

W1, 3r
5r−6

0 if r ∈
(︁ 6

5 ,
9
5
)︁
.

(3.16)
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Proof. The case r ≥ 9
5 . Since W1,r

0,div is separable, there is a countable basis denoted by
{ωr}∞

r=1. For N ∈ N arbitrary, but fixed, we first look for the vector cN =
(︁
cN1 , . . . , c

N
N

)︁
∈ RN

such that

vN (x) :=
N∑︂
r=1

cNr ω
r(x)

satisfies the system of N nonlinear equations(︁
SSSN ,DDDωr

)︁
−
(︁
vN ⊗ vN ,∇ωr

)︁
= ⟨b,ωr⟩ , r = 1, . . . , N, (3.17)

where

SSSN := SSS
(︁
DDDvN

)︁
:= 2ν∗

(︁⃓⃓
DDDvN

⃓⃓
− δ∗

)︁+ S
(︁⃓⃓
DDDvN

⃓⃓)︁ DDDvN

|DDDvN | . (3.18)

Introducing the (continuous) mapping PN : RN → RN as(︂
PN

(︁
cN
)︁)︂
r

:=
(︁
SSSN ,DDDωr

)︁
−
(︁
vN ⊗ vN ,∇ωr

)︁
− ⟨b,ωr⟩ , r = 1, . . . , N,

then

PN
(︁
cN
)︁
· cN =

(︁
SSSN ,DDDvN

)︁
−
⟨︁
b,vN

⟩︁
. (3.19)

It follows from (G4) and (3.18) that

PN
(︁
cN
)︁
· cN > 0 for |cN | sufficiently large. (3.20)

As a consequence of Brouwer’s fixed-point theorem (see [51, p. 53]), (3.20) implies the existence
of cN fulfilling PN

(︁
cN
)︁

= 0, i.e., (3.17) holds, and, by (3.19),(︁
SSSN ,DDDvN

)︁
=
⟨︁
b,vN

⟩︁
. (3.21)

This together with (G4), (3.2) and Young’s inequality leads to

∥SSSN∥r′ + ∥∇vN∥r ≤ c1∥b∥(︁W1,r
0

)︁∗ + c2.

This implies the existence of v ∈W1,r
0,div and SSS ∈ Lr′(Ω)3×3

sym such that for suitable (not relabeled)
subsequences

vN ⇀ v weakly in W1,r
0,div, (3.22a)

DDDvN ⇀ DDDv weakly in Lr(Ω)3×3
sym, (3.22b)

SSSN ⇀ SSS weakly in Lr
′
(Ω)3×3

sym, (3.22c)

as N → ∞. Consequently, as W 1,q
0 (Ω) is compactly embedded into L2(Ω) for any q > 6

5 , we
also have

vN → v strongly in L2(Ω)3 as N →∞.

Then, (3.17) leads to, for r ≥ 9
5 ,

(SSS,DDDωs)− (v ⊗ v,∇ωs) = ⟨b,ωs⟩ , s = 1, 2, . . . . (3.23)

Note that the restriction r ≥ 9
5 is due to the requirement that for s ∈ N arbitrary∫︂

Ω
(v ⊗ v) :∇ωs dx <∞ for v,ωs ∈W1,r

0 .

Hence (3.23) implies that

(SSS,DDDω)− (v ⊗ v,∇ω) = ⟨b,ω⟩ for all ω ∈W1,r
0,div, (3.24)
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which completes the proof of (3.14) for r ≥ 9
5 . Taking ω = v in (3.24) one obtains

(SSS,DDDv) = ⟨b,v⟩ . (3.25)

Taking the limit with N →∞ in (3.21), we conclude from (3.25) and (3.22a) that

lim
N→∞

(︁
SSSN ,DDDvN

)︁
= (SSS,DDDv) .

In virtue of the graph convergence lemma (see Lemma A.6 in Appendix) this implies together
with (3.22) that (SSS,DDDv) ∈ G, i.e., (3.13) holds.
The case r ∈

(︁ 6
5 ,

9
5
)︁
. In this case, we consider, for ϵ > 0, the following approximating problem:

−div (SSS + ϵDDDv − v ⊗ v) = −∇p+ b in Ω,
div v = 0 in Ω,

(SSS,DDDv) ∈ G in Ω,
v = 0 on ∂Ω.

(3.26)

For fixed ϵ, the existence of a weak solution to (3.26) follows from the above proof for the case
r ≥ 9

5 . More precisely, following step-by-step the proof of existence via the Galerkin method
used above we can show that, for ϵ > 0 fixed, there is (vϵ,SSSϵ) ∈W1,2

0,div×Lr
′(Ω)3×3

sym such that9

(SSSϵ + ϵDDDvϵ − vϵ ⊗ vϵ,DDDφ) = ⟨b,φ⟩ for all φ ∈W1,2
0,div, (3.27a)

(SSSϵ,DDDvϵ) ∈ G a.e. in Ω. (3.27b)

Moreover, taking φ = vϵ in (3.27a),

(SSSϵ,DDDvϵ) + ϵ ∥DDDvϵ∥2
2 = ⟨b,vϵ⟩ .

The last identity together with the assumption (G4) implies the following estimate

∥SSSϵ∥r
′

r′ + ∥DDDvϵ∥rr + ϵ ∥DDDvϵ∥2
2 ≤ ∥b∥r

′(︁
W1,r

0

)︁∗ + C. (3.28)

This implies the existence of (v,SSS) ∈ W1,r
0,div × Lr

′(Ω)3×3
sym such that, for a suitable vanishing

subsequence {ϵn}∞
n=1 and (vn,SSSn) := (vϵn ,SSSϵn),

SSSn ⇀ SSS weakly in Lr
′
(Ω)3×3

sym, (3.29a)
DDDvn ⇀ DDDv weakly in Lr(Ω)3×3

sym, (3.29b)
vn → v strongly in Lq(Ω)3 for all q ∈

[︁
1, 3r

3−r
)︁
. (3.29c)

The last piece of information provides the strong convergence of {vn}∞
n=1 in L2(Ω)3 provided

that 3r
3−r > 2, which gives the bound stated in the formulation of the theorem, namely r > 6

5 .

9In order to verify that

lim sup
N→∞

∫︂
Ω
SSSN :DDDvN ≤

∫︂
Ω
SSS :DDDv,

one uses the identities ∫︂
Ω
SSSN :DDDvN + ϵ

∫︂
Ω

⃓⃓
DDDvN

⃓⃓2
=
⟨︁
b, vN

⟩︁
,∫︂

Ω
SSS :DDDv + ϵ

∫︂
Ω

⃓⃓
DDDv
⃓⃓2

=
⟨︁
b, v
⟩︁

,

the weak lower semicontinuity of the L2-norm of DDDvN , and the inequality

lim inf
n→∞

an + lim sup
n→∞

bn ≤ lim sup
n→∞

(an + bn)

applied to any sequences {an}∞
n=1, {bn}∞

n=1 with an ≥ 0, bn ≥ 0 for all n ∈ N.
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Consequently, v and SSS fulfill (3.14). It remains to prove that (SSS,DDDv) ∈ G a.e. in Ω. By the
graph convergence lemma (Lemma A.6), it is enough to show that

lim sup
n→∞

(︁
SSSn,DDDvn

)︁
≤
(︁
SSS,DDDv

)︁
.

To prove it, we first subtract (3.14) from (3.27a) to obtain

(SSSn − SSS,DDDφ) + ϵn (DDDvn,DDDφ) + (v ⊗ v − vn ⊗ vn,DDDφ) = 0

for all φ ∈W1,2
0,div ∩W1, 3r

5r−6
0,div .

(3.30)

Let B ⊂ R3 be an arbitrary ball of radius R such that B
2 ⊂ B ⊂ 2B ⊂ Ω and χ ∈ C∞

0 (B) be
such that χ = 1 in B

2 , χ ≤ 1 in B, and |∇χ| ≤ CR−1 in B. Then we set

un := χ
(︁
vn − v

)︁
− hn,

where hn ∈W1,r
0 (B) solves

divhn = ∇χ ·
(︁
vn − v

)︁
in B,

which is solvable as the compatibility condition
∫︁
B
∇χ ·

(︁
vn − v

)︁
= 0 is met. In fact, there

is a continuous linear operator B : {q ∈ Lp(B),
∫︁

Ω q = 0} → W1,p
0 (B) : g ↦→ u such that

divu = g, cf. Remark A.8 (ii). Consequently, un extended by zero in Ω \ B fulfill divun = 0
in Ω. Next we consider divergence-free Lipschitz approximations un,k to un from Lemma A.4.
Taking φ := un,k in (3.30) and letting n→∞, we conclude, using in particular the property (d)
of Lemma A.4 and (3.28), that

lim
n→∞

(︁
SSSn − SSS,DDDun,k

)︁
= 0. (3.31)

Using the properties of un,k (see Lemma A.4) and splitting the integral on the left-hand side
of (3.31) into integrals over On,k and B \ On,k, we conclude

lim
n→∞

(︁
SSSn − SSS,DDDun

)︁
B\On,k ≤ C2−k for all k ∈ N.

It follows from the definition of un, the properties of the operator B and the compactness of vn
that

lim
n→∞

∫︂
B\On,k

(SSSn − SSS) : (DDDvn −DDDv)χ ≤ C2−k for arbitrary k ∈ N,

which implies, by applying the Hölder inequality, that

lim
n→∞

∫︂
B

⃓⃓
(SSSn − SSS) : (DDDvn −DDDv)

⃓⃓ 1
2χ

1
2 ≤ C2−k for arbitrary k ∈ N.

This leads to

lim
n→∞

∫︂
B
2

⃓⃓
(SSSn − SSS) : (DDDvn −DDDv)

⃓⃓ 1
2 dx ≤ C2−k for arbitrary k ∈ N.

Let us set gn :=
⃓⃓
(SSSn − SSS) : (DDDvn −DDDv)

⃓⃓
. Clearly gn ≥ 0 and gn → 0 almost everywhere in B

2 .
But as B is arbitrary, we conclude that

gn → 0 almost everywhere in Ω. (3.32)

Since {gn}∞
n=1 is bounded in L1(Ω) and has the pointwise limit (3.32), Corollary A.3, a con-

sequence of the biting lemma (Lemma A.2), then implies existence of a subsequence {gnj}∞
j=1,

and a sequence of sets {Ek}∞
k=1 with Ω ⊃ E1 ⊃ E2 ⊃ . . ., |Ek| → 0 such that for all k ∈ N

gnj → 0 strongly in L1(Ω \ Ek).
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From the definition of gnj we conclude that

lim sup
j→∞

∫︂
Ω\Ek

(SSSnj − SSS) : (DDDvnj −DDDv) = 0,

which implies as a consequence of (3.29a) and (3.29b) that for all k ∈ N

lim sup
j→∞

∫︂
Ω\Ek

SSSnj :DDDvnj =
∫︂

Ω\Ek

SSS :DDDv.

Since |Ek| → 0, we can conclude from the graph convergence lemma (Lemma A.6) that

(SSS,DDDv) ∈ G almost everywhere in Ω

so that (3.13) holds and the first part of the theorem is proved.
On the pressure. Setting

⟨F ,φ⟩ := (SSS,DDDφ)− (v ⊗ v,∇φ)− ⟨b,φ⟩

we observe that

⟨F ,φ⟩ = 0 for all φ ∈ C∞
0,div

and

F ∈
{︃ (︁

W1,r
0
)︁∗ if r ≥ 9

5 ,(︁
W1, 3r

5r−6
0

)︁∗ if r ∈
(︁ 6

5 ,
9
5
)︁
.

(3.33)

By the de Rham theorem, see [6, Theorem 2.1], there is p ∈
(︁
C∞

0 (Ω)
)︁∗ such that

⟨F ,φ⟩ = ⟨−∇p,φ⟩ for all φ ∈ C∞
0 . (3.34)

Since Ω is C0,1 domain, the Nečas theorem (see Lemma A.7, Remark A.9) together with (3.33)
and (3.34) implies (3.15) and (3.16).

3.2.2 Slip case

In this part we replace the no-slip boundary condition either by

v · n = 0 and s = 0 on ∂Ω (3.35)

or by
v · n = 0 and (s,vτ ) ∈ B on ∂Ω,
where B fulfills the conditions (B1)–(B4).

(3.36)

We prove the following result.
Theorem 3.2. Let Ω ⊂ R3 be a C1,1 domain.10 Let further r > 6

5 , b ∈
(︁
W1,r

n

)︁∗, G be
a maximal monotone r-graph of the form (3.10).

(i) (Boundary condition (3.36)) Let B be a maximal monotone 2-graph. Then there is a weak
solution

(v,SSS, s) ∈W1,r
n,div × L

r′
(Ω)3×3

sym × L2(∂Ω)3

to (3.9) and (3.36) such that (︁
SSS,DDDv

)︁
∈ G a.e. in Ω, (3.37)(︁

s,vτ ) ∈ B a.e. in ∂Ω, (3.38)

and (︁
SSS,DDDφ

)︁
−
(︁
v ⊗ v,DDDφ

)︁
+
(︁
s,φ

)︁
∂Ω =

⟨︁
b,φ

⟩︁
for all φ ∈

{︃ W1,r
n,div if r ≥ 9

5 ,

W1, 3r
5r−6

n,div if r ∈
(︁ 6

5 ,
9
5
)︁
.

(3.39)

10In the case of the boundary condition (3.35), the required regularity of the boundary can be weakened at
the cost of losing the information concerning the pressure.
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(ii) (Boundary condition (3.35)) Assume that Ω is not axisymmetric. Then there is a weak
solution

(v,SSS) ∈W1,r
n,div × L

r′
(Ω)3×3

sym

to (3.9) and (3.35) such that (3.37) and (3.39) with s = 0 hold true.

In addition, there is

p ∈
{︃
Lr

′(Ω) if r ≥ 9
5

L
3r

2(3−r) (Ω) if r ∈
(︁ 6

5 ,
9
5
)︁ , ∫︂

Ω
p dx = 0 (3.40)

such that(︁
SSS,DDDφ

)︁
−
(︁
v ⊗ v,DDDφ

)︁
+
(︁
s,φ

)︁
∂Ω =

(︁
p,divφ

)︁
+
⟨︁
b,φ

⟩︁
for all φ ∈

{︃ W1,r
n if r ≥ 9

5 ,

W1, 3r
5r−6

n if r ∈
(︁ 6

5 ,
9
5
)︁
.

(3.41)

Proof. The proof of existence of v, SSS, s with (3.37), (3.38), and (3.39) follows the same scheme
as in the case of the no-slip boundary condition. The only differences are

(i) due to a different choice of the function spaces for the velocity as W1,r
0,div is replaced by

W1,r
n,div,

(ii) due to the presence of the term
∫︁
∂Ω s ·φ in the weak formulation of the balance of linear

momentum,

(iii) and due to the necessity to verify validity of the boundary condition h(s,vτ ) = 0.

Note that in the case s = 0 on ∂Ω, the last two differences disappear. In the case of the
stick/slip boundary condition vτ = 1

γ∗

(|s|−σ∗)+

|s| s we start with its approximation

vτ = 1
γ∗

(|s| − σ∗)+

|s|
s+ ϵ

γ∗
s, ϵ > 0.

Other boundary conditions of the type (3.36) employ similar approximations.
For r ≥ 9

5 , the proof then proceeds as in the case of no-slip boundary conditions up to the use
of the appropriate form of Korn’s inequality ((3.6) for boundary condition (3.35) assuming the
domain is not axisymmetric, or (3.5) for boundary condition (3.36)) and the following points.
The additional term

∫︁
∂Ω s

N · φ in the balance of linear momentum is treated using the weak
convergence sN ⇀ s in L2(∂Ω). Since W 1,r(Ω) ↪→ W 1− 1

r ,r(∂Ω) ↪→↪→ L2(∂Ω) provided r > 3
2

and Ω is a C0,1 domain, the space W1,r
n is compactly embedded into L2(∂Ω) even for r > 3

2 ,
and consequently vNτ → vτ strongly in L2(∂Ω) and thus∫︂

∂Ω
sN · vNτ →

∫︂
∂Ω
s · vτ . (3.42)

This implies (see Lemma A.6) that (s,vτ ) ∈ B a.e. on ∂Ω.
For r ∈

(︁ 6
5 ,

9
5
)︁
, the validity of (SSS,DDDv) ∈ G a.e. in Ω can be established in the same way as in

the no-slip case since the proof is based on local (interior) arguments. It remains to show that
(s,vτ ) ∈ B a.e. on ∂Ω. For r > 3

2 , it follows from (3.42) and Lemma A.6. To use Lemma A.6
also for r ∈

(︁ 6
5 ,

3
2
]︁
, it suffices to show that

lim sup
N→∞

∫︂
∂Ω
sN · vN ≤

∫︂
∂Ω
s · v.

However, for r > 1: W 1,r(Ω) ↪→↪→ L1(∂Ω), the strong convergence vNτ → vτ in L1(∂Ω) together
with Egorov’s theorem implies that for any δ > 0 there is Uδ ⊂ ∂Ω such that |∂Ω \ Uδ| < δ and
vNτ → vτ strongly in L∞(Uδ)3. Hence

lim sup
N→∞

∫︂
Uδ

sN · vNτ ≤
∫︂

Uδ

s · vτ .
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Consequently, by the graph convergence lemma (Lemma A.6 in Appendix), (s,vτ ) ∈ B a.e. in
Uδ. As δ > 0 was arbitrary, we conclude that (s,vτ ) ∈ B a.e. on ∂Ω. The proof of the first
part of the theorem is complete.

It remains to prove the existence of pressure (3.40) fulfilling (3.41). Let us define a linear
functional F through the relation⟨︁

F ,φ
⟩︁

:=
⟨︁
b,φ

⟩︁
−
(︁
SSS− v ⊗ v,DDDφ

)︁
−
(︁
s,φ

)︁
∂Ω for any φ ∈ C∞

n .

From (3.39) we can see that F ∈
(︁
W1,q

n

)︁∗ where q = r if r ≥ 9
5 and q = 3r

5r−6 if r ∈ ( 6
5 ,

9
5 ) and⟨︁

F ,φ
⟩︁
= 0 for all φ ∈W1,q

n,div. (3.43)

Now consider a variational problem to find p ∈ Lq′(Ω) with
∫︁

Ω p = 0 such that(︁
p,−∆ϕ

)︁
=
⟨︁
F ,∇ϕ

⟩︁
for all ϕ ∈W 2,q(Ω) with ∇ϕ ∈W1,q

n . (3.44)

As a consequence of the C1,1 smoothness of the domain, one can employ Lemma A.11 to
conclude that (3.44) is equivalent with the problem: find p ∈ Lq′(Ω) such that

∫︁
Ω p = 0 and(︁

p, q) =
⟨︁
F ,∇A−1q

⟩︁
for all q ∈ Lq(Ω) with

∫︂
Ω
q = 0 (3.45)

where A−1 is the solution operator for the Neumann-Poisson problem (A.2). The problem (3.45)
has a unique solution by virtue of Lemma A.11. Thus we have constructed p with proper-
ties (3.40). To verify (3.41), consider a test function φ ∈W1,q

n . With the Helmholtz decompo-
sition (see Corollary A.12 in Appendix) φ = ∇ϕ + φ0 with ∇ϕ ∈ W1,q

n and φ0 ∈ W1,q
n,div we

can immediately obtain, using (3.43) and (3.44), that⟨︁
F ,φ

⟩︁
=
⟨︁
F ,∇ϕ

⟩︁
+
⟨︁
F ,φ0

⟩︁
=
(︁
p,−∆ϕ

)︁
= −

(︁
p, divφ

)︁
.

This proves (3.41). The proof of Theorem 3.2 is thus complete.

3.3 Analysis of unsteady flows
In this section, we investigate unsteady internal flows, i.e., flows governed by (3.1). Again,
we treat separately two cases: the no-slip boundary condition and the boundary conditions
allowing slip.

3.3.1 No-slip case

We first provide an existence result for the no-slip case, i.e., we investigate the system (3.1a)–
(3.1d), (3.1f), and vτ = 0 on (0, T )× ∂Ω as a special case of (3.1e).

Theorem 3.3. Let T ∈ (0,∞), Ω ⊂ R3 be a domain and Q := (0, T ) × Ω. Let r > 6
5 ,

b ∈ Lr′(︁0, T ; (W1,r
0 )∗)︁ and v0 ∈ L2

n,div. Let further G ⊂ R3×3
sym × R3×3

sym be a maximal monotone
r-graph of the form (3.10) fulfilling (G1)–(G4). Then there exists a pair (v,SSS):

v ∈ L∞(0, T ; L2
n,div) ∩ Lr(0, T ; W1,r

0,div), (3.46a)

SSS ∈ Lr
′
(Q)3×3

sym (3.46b)

satisfying

lim
t→0+

∫︂
Ω
|v(t, ·)− v0|2 = 0, (3.46c)∫︂

Q

SSS :DDDw =
∫︂ T

0
⟨b,w⟩+

∫︂
Q

v ⊗ v :DDDw +
∫︂
Q

v · ∂w
∂t

+
∫︂

Ω
v0 ·w(0, ·)

for all w ∈ C∞
0
(︁
[0, T ); W1,q

0,div
)︁
, q = max

{︁
r, 5r

5r−6
}︁
,

(3.46d)

SSS = 2ν∗ (|DDDv| − δ∗)+ S(|DDDv|) DDDv
|DDDv| almost everywhere in Q. (3.46e)
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Moreover, the energy inequality holds:∫︂
Ω

|v(t, ·)|2

2 +
∫︂ t

0

∫︂
Ω
SSS :DDDv ≤

∫︂
Ω

|v0|2

2 +
∫︂ t

0
⟨b,v⟩

for almost all t ∈ (0, T ) and for t = T ;
(3.47)

if r ≥ 11
5 , (3.47) becomes equality.

In addition, if Ω is a C0,1 domain with sufficiently small Lipschitz constant (smallness
depending only on r) or Ω is any C1 domain, then there are P 1 ∈ L∞(0, T ;L6(Ω)), P 1(t, ·)
harmonic in Ω for almost every t ∈ (0, T ) and p2 ∈ Lq′(Q) with q = max

{︁
r, 5r

5r−6
}︁

such that

∫︂
Q

SSS :DDDω =
∫︂ T

0

⟨︁
b,ω

⟩︁
+
∫︂
Q

v ⊗ v :DDDω +
∫︂
Q

v · ∂ω
∂t

+
∫︂

Ω
v0 · ω(0, ·)

−
∫︂
Q

P 1 div ∂ω
∂t

+
∫︂
Q

p2 divω
for all ω ∈ C∞

0
(︁
[0, T ); W1,q

0
)︁
,

q = max
{︁
r, 5r

5r−6
}︁
.

(3.48)

Functions P 1 and p2 can be chosen such that
∫︁

Ω P
1(t, ·) =

∫︁
Ω p

2(t, ·) = 0 for almost every
t ∈ (0, T ). If, in addition, Ω is a C1,1 domain then it holds ∇P 1 ∈ L∞(0, T ;L2(Ω)) ∩ L 5r

3 (Q).

Remark 3.4. (1) We could define the weak solution to the problem considered differently. We
could say that v is a weak solution to the problem if v fulfills (3.46a), (3.46c) and

∫︂
Q

2ν∗ (|DDDv| − δ∗)+ S(|DDDv|) DDDv
|DDDv| :DDDw =

∫︂ T

0
⟨b,w⟩+

∫︂
Q

v ⊗ v :DDDw

+
∫︂
Q

v · ∂w
∂t

+
∫︂

Ω
v0 ·w(0, ·)

for all w ∈ C∞
0
(︁
[0, T ); W1,q

0,div
)︁
, q = max

{︁
r, 5r

5r−6
}︁
.

(2) It holds v ∈ C
(︁
0, T ;L2(Ω)3)︁ if r ≥ 11

5 and v ∈ C
(︁
0, T ;L2

weak(Ω)3)︁ if r ∈ ( 6
5 ,

11
5 ).

Proof of Theorem 3.3. We shall distinguish two cases (that can be also identified via behavior
of the total dissipation of energy with respect to scaling invariance of the governing equations,
see [58]): the subcritical/critical case r ≥ 11

5 and the supercritical case r ∈
(︁ 6

5 ,
11
5
)︁
. The problem

can be analyzed in an arbitrary spatial dimension d; then the supercritical case corresponds
to r ∈

(︁ 2d
d+2 , 1 + 2d

d+2
)︁

and the subcritical/critical case to r ≥ 1 + 2d
d+2 . Note that the case

r = 2 (including the Euler/Navier-Stokes fluid) belongs to the supercritical case in any spatial
dimension d > 2.
The case r ≥ 11

5 . Step 1. Galerkin approximations. We first construct a finite-
dimensional approximation to the problem by the Galerkin method. To proceed, we consider
an auxiliary eigenvalue problem to find λ ∈ R and ω ∈W3,2

0,div ↪→W 1,∞(Ω)3 satisfying

((ω,φ)) = λ(ω,φ) for all φ ∈W3,2
0,div, (3.49)

where (·, ·) is a scalar product in L2(Ω)3 and ((·, ·)) is a scalar product in W3,2
0,div, i.e., ((ω,φ)) :=

(∇3ω,∇3φ) + (ω,φ). It is known, see for example [56, Appendix A.4], that there exist eigen-
values {λm}∞

m=1 and corresponding eigenfunctions {ωm}∞
m=1 for the eigenvalue problem (3.49)

such that 0 < λ1 ≤ λ2 ≤ . . ., λm → ∞ as m → ∞, (ωm,ωn) = δmn,
(︂(︂

ωm
√
λm
, ωn

√
λn

)︂)︂
= δmn.

Furthermore, the mappings PN : W3,2
0,div → HN := span{ω1,ω2, . . . ,ωN} defined by PNv :=∑︁N

i=1(v,ωi)ωi are continuous orthonormal projectors in L2(Ω)3, W3,2
0,div and

(︁
W3,2

0,div
)︁∗, in

particular

∥PN∥L(L2(Ω)3) ≤ 1, ∥PN∥
L
(︁

W3,2
0,div

)︁ ≤ 1, ∥PN∥
L
(︁(︁

W3,2
0,div

)︁∗)︁ ≤ 1. (3.50)



30 CHAPTER I. CLASSIFICATION OF INCOMPRESSIBLE FLUIDS

Galerkin approximations vN (t) ∈ HN of the form vN (t, x) =
∑︁N
j=1 c

N
j (t)ωj(x) are intro-

duced in such a way that the coefficients cN = (cN1 , cN2 , . . . , cNN ) fulfill(︂dvN

dt ,ωj
)︂
−
(︁
vN ⊗ vN ,∇ωj

)︁
+
(︁
SSS(DDDvN ),DDDωj

)︁
=
(︁
PNb,ωj

)︁
j = 1, 2, . . . , N,

vN (0, ·) = PNv0, (3.51)

where

SSS(DDD) := 2ν∗ (|DDD| − δ∗)+ S(|DDD|) DDD
|DDD| .

Since the mappings z ↦→ z ⊗ z and z ↦→ SSS(DDDz) are continuous, the Carathéodory theory for
systems of ordinary differential equations implies local existence of a solution cN solving (3.51).
Global existence then follows from the fact that

sup
t∈(0,T )

|cN (t)|RN <∞.

This piece of information is a simple consequence of the orthogonality of the basis {ωj}∞
j=1 and

a priori estimates that will follow, see (3.54) below.
Step 2. Uniform estimates and their consequences. Multiplying (3.51) by cNj (t), taking
the sum over j = 1, 2, . . . , N , using the fact (z ⊗ z,∇z) = 0 for z with div z = 0, z · n = 0 on
∂Ω, we obtain

1
2

d
dt∥v

N∥2
2 + (SSS(DDDvN ),DDDvN ) = (PNb,vN ). (3.52)

Since G is an r-graph fulfilling (G4), we conclude that for all t ∈ (0, T ]

∥vN (t)∥2
2 + α

∫︂ t

0

(︂
∥SSSN∥r

′

r′ + ∥DDDvN∥rr
)︂
≤ C

(︂
β, ∥v0∥2

2, ∥b∥(Lr(0,T ;W1,r
0,div))∗

)︂
. (3.53)

Using the orthogonality of {ωj}Nj=1 in L2(Ω)3, this, in particular, implies that

sup
t∈(0,T )

|cN (t)|RN <∞ (3.54)

so that the proof of global-in-time existence of cN : [0, T ]→ RN is complete.
Furthermor, Korn’s inequality, see (3.2), the interpolation inequality

∥u∥qq ≤ ∥u∥
(1−λ)q
2 ∥u∥λq3r

3−r

with λq = 3r(q − 2)
5r − 6 ,

and the embedding W1,r
0 ↪→ L

3r
3−r (Ω)3 together with (3.53) imply∫︂ T

0
∥vN∥

5r
3

5r
3
≤ C

(︂
β, ∥v0∥2

2, ∥b∥(Lr(0,T ;W1,r
0,div))∗

)︂
.

Finally, since for all φ ∈ Ls(0, T ; W3,2
0,div)∫︂ T

0

(︃
dvN

dt
,φ

)︃
=
∫︂ T

0

(︃
dvN

dt
,PPPNφ

)︃
,

it follows from (3.51), (3.53), the fact that 2r′ = 2r
r−1 ≤

5r
3 ⇔ r ≥ 11

5 , and (3.50), that⃦⃦⃦⃦
dvN

dt

⃦⃦⃦⃦(︂
L

r
(︁

0,T ;W3,2
0,div

)︁)︂∗ := sup
φ∈Lr

(︁
0,T ;W3,2

0,div

)︁
∥φ∥

Lr

(︁
0,T ;W3,2

0,div

)︁≤1

⃓⃓⃓⃓
⃓
∫︂ T

0

(︃
dvN

dt ,φ

)︃⃓⃓⃓⃓
⃓

≤ C

⎛⎝β, ∥v0∥2
2, ∥b∥(︂

L
r
(︁

W1,r
0,div

)︁)︂∗

⎞⎠ .
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Consequently, there are (not relabeled) subsequences so that

vN
∗
⇀ v ∗ -weakly in L∞(0, T ;L2(Ω)3),

DDDvN ⇀ DDDv weakly in Lr(0, T ;Lr(Ω)3×3
sym),

∇vN ⇀ ∇v weakly in Lr(0, T ;Lr(Ω)3×3),

SSSN ⇀ SSS weakly in Lr
′
(0, T ;Lr

′
(Ω)3×3

sym),
∂tv

N ⇀ ∂tv weakly in
(︁
Lr(0, T ; W3,2

0,div)
)︁∗
,

vN → v strongly in Lq(0, T ;Lq(Ω)3) for all q ∈
[︁
1, 5r

3
)︁
, (3.55)

where the last limit (3.55) follows from the Aubin-Lions compactness lemma applied to
W3,2

0,div ↪→W1,r
0,div ↪→↪→ Lrn,div ↪→

(︁
W3,2

0,div
)︁∗.

Finally, letting N → ∞ in (3.51) for j ∈ N arbitrary but fixed, one concludes that (v,SSS)
satisfy ∫︂ T

0

(︃⟨︃
∂v

∂t
,ω

⟩︃
− (v ⊗ v,∇ω) + (SSS,DDDω)

)︃
ϕ(t)dt = ⟨b,ωϕ⟩

valid for all ϕ ∈ C∞
0 (−∞,∞) and ω ∈ W3,2

0,div. Since the space W3,2
0,div is dense in W1,r

0,div as
r ≥ 11

5 , and functions of the form ϕ(t)ω(x) are dense in Lr(0, T ; W1,r
0,div), and finally

⃓⃓⃓⃓
⃓
∫︂ T

0
(v ⊗ v,∇ψ)

⃓⃓⃓⃓
⃓ ≤

(︄∫︂ T

0
∥v∥2r′

2r′

)︄ 1
r′
(︄∫︂ T

0
∥∇ψ∥rr

)︄

≤ C

(︄∫︂ T

0
∥v∥

5r
3

5r
3

)︄ 1
r′
(︄∫︂ T

0
∥∇ψ∥rr

)︄
< +∞,

we deduce that (v,SSS) satisfies

∫︂ T

0
⟨∂tv,ω⟩+

∫︂
Q

SSS :DDDω = ⟨b,ω⟩+
∫︂
Q

(v ⊗ v,DDDω)

for all ω ∈ Lr(0, T ; W1,r
0,div). (3.56)

This implies that ∂tv ∈ Lr
′(︁0, T ; (W1,r

0,div)∗)︁. Inserting ω := v into (3.56), we obtain the energy
equality (3.47). It remains to show (3.46e).
Step 3. Attainment of the constitutive equation. To prove (3.46e), we wish to use the
graph convergence lemma (see Lemma A.6 in Appendix). To apply this lemma, we need to
show that

lim sup
N→∞

∫︂
Q

SSSN :DDDvN ≤
∫︂
Q

SSS :DDDv.

However (3.55) implies, in particular, that

vN (t)→ v(t) in L2(Ω)3 for almost all t ∈ (0, T ].

Integrating (3.52) from 0 to such t’s, and letting N →∞, one concludes

1
2∥v(t)∥2

2 + lim sup
N→∞

∫︂ t

0

∫︂
Ω
SSSN :DDDvN = ⟨b,v⟩+ 1

2∥v0∥2
2.

By comparing this identity with (3.47) (which is an equality as r ≥ 11
5 ), we conclude

lim sup
N→∞

∫︂
Q

SSSN :DDDvN =
∫︂
Q

SSS :DDDv.
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The graph convergence lemma (Lemma A.6) then implies that SSS and DDDv fulfill (3.46e). The
proof for r ≥ 11

5 is thus complete.
The case r ∈

(︁ 6
5 ,

11
5
)︁
. Step 1. Approximations and their validity. For ϵ > 0, we look for

(vϵ,SSSϵ) such that

vϵ ∈ L∞(︁0, T ; L2
n,div

)︁
∩ L 11

5
(︁
0, T ; W1, 11

5
0,div

)︁
, (3.57a)

∂tv
ϵ ∈ L 11

5
(︁
0, T ; (W1, 11

5
0,div)∗)︁, (3.57b)

SSSϵ ∈ Lr
′
(Q)3×3

sym (3.57c)

satisfy ∫︂
Q

SSSϵ :DDDφ+ ϵ

∫︂
Q

|DDDvϵ| 15 DDDvϵ :DDDφ

= ⟨b,φ⟩+
∫︂
Q

(vϵ ⊗ vϵ) :DDDφ+
∫︂
Q

vϵ · ∂φ
∂t

+
∫︂

Ω
v0 ·φ(0, ·)

for all φ ∈ L 11
5
(︁
0, T ; W1, 11

5
0,div

)︁
with φ(T, ·) = 0

(3.58)

and

SSSϵ = 2ν∗ (|DDDvϵ| − δ∗)+ S(|DDDvϵ|) DDDvϵ

|DDDvϵ| almost everywhere in Q. (3.59)

The existence of (vϵ,SSSϵ) fulfilling (3.57)–(3.59) for arbitrary but fixed ϵ > 0 can be proved
in the same way as the existence of a weak solution to the problem for the case r ≥ 11

5 . In
addition, by taking φ := vϵ, we have

1
2∥v

ϵ(t)∥2
2 − 1

2∥v0∥2
2 + ϵ

∫︂ t

0
∥DDDvϵ∥

11
5

11
5

+
∫︂ t

0

∫︂
Ω
SSSϵ :DDDvϵ =

⟨︁
b,vϵχ(0,t)×Ω

⟩︁
(3.60)

for almost all t ∈ (0, T ) (and for t = T ) where DDDvϵ and SSSϵ satisfy (3.59).
Step 2. Estimates uniform with respect to ϵ and their consequences. Since SSS :DDD ≥
α
(︁
|DDD|r + |SSS|r′)︁− β for all (SSS,DDD) fulfilling (3.59), i.e., (SSS,DDD) ∈ G, the energy identity (3.60)

implies that

{vϵ; ϵ > 0} is bounded in L∞(︁0, T ;L2(Ω)3)︁, (3.61a)
{vϵ; ϵ > 0} is bounded in Lr

(︁
0, T ; W1,r

0,div
)︁
, (3.61b)

{DDDvϵ; ϵ > 0} is bounded in Lr
(︁
0, T ;Lr(Ω)3×3

sym
)︁
, (3.61c)

{ϵ 5
11DDDvϵ; ϵ > 0} is bounded in L

11
5
(︁
0, T ;L 11

5 (Ω)3)︁, (3.61d)

{SSSϵ; ϵ > 0} is bounded in Lr
′(︁

0, T ;Lr
′
(Ω)3×3

sym
)︁
. (3.61e)

Using the fact that ∫︂ T

0
⟨∂tvϵ,φ⟩ = −

∫︂
Q

vϵ · ∂tφ−
∫︂

Ω
v0 ·φ(0, ·)

for all φ ∈ L 11
5 (0, T ; W1, 11

5
0,div) with φ(T, ·) = 0 we conclude from (3.58) and (3.61) that

{∂tvϵ; ϵ > 0} is bounded in
(︂
L

5r
5r−6

(︁
0, T ; W1, 5r

5r−6
0 (Ω)

)︁)︂∗
.

These estimates together with Korn’s inequality (3.2) and the Aubin-Lions lemma lead to the
existence of v and SSS such that for suitable sequences (vm,SSSm) := (vϵm ,SSSϵm) and m → ∞ the
following convergences hold:

vm
∗
⇀ v ∗-weakly in L∞(︁0, T ;L2(Ω)3)︁,

vm ⇀ v weakly in Lr
(︁
0, T ; W1,r

0,div
)︁
,

DDDvm ⇀ DDDv weakly in Lr
(︁
0, T ;Lr(Ω)3×3

sym
)︁
, (3.62)

SSSm ⇀ SSS weakly in Lr
′(︁

0, T ;Lr
′
(Ω)3×3

sym
)︁
, (3.63)

vm → v strongly in Lq
(︁
0, T ;Lq(Ω)3)︁ for all q ∈

[︁
1, 5r

3
)︁
.
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Also (3.61d) implies that

ϵm

∫︂
Q

|DDDvm| 15 DDDvm :DDDφ ≤ ϵ
5

11
m

(︃
ϵm

∫︂
Q

|DDDvm| 11
5

)︃ 6
11

∥DDDφ∥ 11
5 ,Q

m→∞−−−−→ 0. (3.64)

Let us consider (3.58) with φ ∈ Lq(0, T ; W1,q
0,div), q = 5r

5r−6 , φ(T, ·) = 0 and let m→∞. Then
we easily arrive to (3.46d).
Step 3. Attainment of the constitutive equation (3.46e). In order to apply the graph
convergence lemma (Lemma A.6) we need to proceed in a more subtle way as w := v is not
an admissible test function in (3.46d). For um := vm − v, the following identity holds

−
∫︂
Q

(vm − v) · ∂tw +
∫︂
Q

(SSSm − SSS) :DDDw + ϵm

∫︂
Q

|DDDvm| 15 DDDvm :DDDω

=
∫︂
Q

(vm ⊗ vm − v ⊗ v) :DDDw

for all w ∈ C∞([0, T ]; C∞
0,div)

(3.65)

and

um
∗
⇀ 0 ∗ -weakly in L∞(0, T ; L2

n,div),
um ⇀ 0 weakly in Lr(0, T ; W1,r

0,div),
um → 0 strongly in Lq(0, T ;Lq(Ω)3) for all q ∈

[︁
1, 5r

3
)︁
.

We also observe that besides (3.64)

(SSSm − SSS) =: HHHm1 ⇀ OOO weakly in Lr
′
(Q),(︄

ϵm|DDDvm|
1
5 DDDvm+

+ (v ⊗ v − vm ⊗ vm)

)︄
=: HHHm2 → OOO strongly in Lσ(Q) for some σ ∈

(︁
1, 5r

6
)︁

and we rewrite (3.65) as ∫︂
Q

um · ∂tw =
∫︂
Q

HHHm1 :DDDw +
∫︂
Q

HHHm2 :DDDw.

Let Q0 ⊂ Q be any parabolic cylinder. Take ζ ∈ C∞
0 ( 1

6Q0) such that

χ 1
8Q0 ≤ ζ ≤ χ 1

6Q0 .

Then applying the Lipschitz truncation (Lemma A.5) we conclude, using the above conver-
gences, that

lim sup
m→∞

⃓⃓⃓⃓
⃓
∫︂

1
8Q0\Om,k

(SSSm − SSS) : (DDDvm −DDDv)

⃓⃓⃓⃓
⃓ ≤ C2−k.

This, together with the property (h) of the truncation lemma (Lemma A.5) and Hölder’s in-
equality, implies that

lim sup
m→∞

∫︂
1
8Q0

⃓⃓
(SSSm − SSS) : (DDDvm −DDDv)

⃓⃓ 1
2 ≤ C2−k.

Set gm :=
⃓⃓
(SSSm − SSS) : (DDDvm −DDDv)

⃓⃓
. Clearly gm ≥ 0 and gm → 0 almost everywhere in 1

8Q0.
But as Q0 is arbitrary, we conclude that

gm → 0 almost everywhere in Q. (3.66)

Since {gm}∞
m=1 is bounded in L1(Q) and has pointwise limit (3.66), Corollary A.3, a conse-

quence of the biting lemma (Lemma A.2), ensures the existence of a subsequence {gmj}∞
j=1 and

a sequence of sets {Ek}∞
k=1 with Q ⊃ E1 ⊃ E2 ⊃ . . ., |Ek| → 0 such that for all k ∈ N

gmj → 0 strongly in L1(Q \ Ek).
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From the definition of gmj we conclude that

lim sup
j→0

∫︂
Q\Ek

(SSSmj − SSS) : (DDDvmj −DDDv) = 0,

which implies with the help of (3.62) and (3.63) that for all k ∈ N

lim sup
j→0

∫︂
Q\Ek

SSSmj :DDDvmj =
∫︂
Q\Ek

SSS :DDDv.

Since |Ek| → 0, we can conclude from the graph convergence lemma (Lemma A.6) that

(SSS,DDDv) ∈ G almost everywhere in Q

so that (3.46e) holds.
The energy inequality and the initial condition. Since (SSS,DDDv) ∈ G and G is monotone, we
first observe that gm = (SSSm −SSS) : (DDDvm −DDDv) ≥ 0. It thus follows from (3.66), Fatou’s lemma
applied to the functions {gm}∞

m=1, that are non-negative, and from the weak convergences
(3.62) and (3.63) that ∫︂

Q

SSS :DDDv ≤ lim inf
n→∞

∫︂
Q

SSSm :DDDvm.

It is then easy to conclude the energy inequality (3.47) from (3.60).
Attainment of the initial condition (3.46c), which is proved with the help of the energy

inequality (3.47), is standard and we omit it; see [58, sections B.3.8–10]. Thus the first part of
the theorem is proved.
On the pressure. Let us consider for fixed t ∈ (0, T ) the functionals⟨︁

F 1(t),φ
⟩︁

:=
∫︂

Ω

(︁
v(t, ·)− v0

)︁
·φ,⟨︁

F 2(t),φ
⟩︁

:=
∫︂

Ω

∫︁ t
0
(︁
SSS− v ⊗ v

)︁
:DDDφ−

⟨︂∫︁ t
0 b,φ

⟩︂ (3.67)

for φ ∈ W1,q
0 with q := max

{︁
r, 5r

5r−6
}︁

. Clearly F 1(t),F 2(t) ∈
(︁
W1,q

0
)︁∗ for almost every

t ∈ (0, T ). Testing (3.46d) by wj ∈ C∞
0
(︁
[0, T ); C∞

0,div
)︁

such that wj → w and

w(s, x) =
{︃
φ(x) s ∈ [0, t),
0 s ∈ [t, T )

with arbitrary φ ∈ C∞
0,div and comparing with (3.67) we obtain⟨︂(︁

F 1 + F 2)︁(t),φ⟩︂ = 0 for all φ ∈ C∞
0,div and a.e. t ∈ (0, T ). (3.68)

Now consider the Stokes problems

−∆U1 +∇P 1 = F 1, divU1 = 0 in Q, U1 = 0 on (0, T )× ∂Ω, (3.69a)
−∆U2 +∇P 2 = F 2, divU2 = 0 in Q, U2 = 0 on (0, T )× ∂Ω. (3.69b)

By virtue of the assumptions on the domain, we conclude from (A.4) of Lemma A.13 that

∥∇U1(t)∥6 + ∥P 1(t)∥6 ≤ C∥v(t)− v0∥−1,6 ≤ C∥v(t)− v0∥2,

∥∇U2(t)∥q′ + ∥P 2(t)∥q′ ≤ C∥F 2(t)∥−1,q′

≤ C
∫︂ t

0
∥SSS− v ⊗ v∥q′ + C

∫︂ t

0
∥b∥−1,q′ ,

which leads to P 1 ∈ L∞(0, T ;L6) and p2 := ∂tP
2 ∈ Lq

′(Q). Testing (3.69a) with ∇ϕ for
ϕ ∈ C∞

0 (Ω) we get

(∇U1(t),∇2ϕ)⏞ ⏟⏟ ⏞
(div U1(t),∆ϕ)=0

−(P 1(t),∆ϕ) = (v(t)− v0,∇ϕ) = −(div(v(t)− v0), ϕ) = 0
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so that (P 1(t),∆ϕ) = 0 for all ϕ ∈ C∞
0 (Ω) and Weyl’s lemma (cf. [81, Lemma 2], [33, Chapter

10]) yields that P 1(t) is harmonic.
Testing (3.69) by φ ∈W1,q

0,div we obtain, by using (3.68),

(∇(U1(t) +U2(t)),∇φ) = 0 for all φ ∈W1,q
0,div and a.e. t ∈ (0, T ),

which shows together with U1(t)+U2(t) ∈W1,q′

0,div that U1 +U2 = 0. Now we are in a position
to sum up (3.69), test by ∂tw with w ∈ C∞

0 ([0, T ); C∞
0,div), integrate over Q, and use the facts

shown above and P 2(0) = 0 to obtain (3.48).
Furthermore, when Ω is a C1,1 domain, (A.5) from Lemma A.13 yields

∥∇2U1(t)∥2 + ∥∇P 1(t)∥2 ≤ C∥v(t)− v0∥2,

∥∇2U1(t)∥ 5r
3

+ ∥∇P 1(t)∥ 5r
3
≤ C∥v(t)− v0∥ 5r

3

so that ess supt∈(0,T ) ∥∇P 1(t)∥2 ≤ C ess supt∈(0,T ) ∥v(t) − v0∥2 and
∫︁ T

0 ∥∇P
1∥

5r
3

5r
3
≤
∫︁ T

0 ∥v −

v0∥
5r
3

5r
3
≤ C and the proof is complete.

3.3.2 Slip case

Here we consider the boundary condition

v · n = 0 and s = 0 on (0, T )× ∂Ω (3.70)

or the boundary condition

v · n = 0 and (s,vτ ) ∈ B on (0, T )× ∂Ω (3.71)

where B fulfills (B1)–(B4). The following result holds.

Theorem 3.5. Let T ∈ (0,∞), Ω ⊂ R3 be a C0,1 domain, and Q := (0, T ) × Ω. Let r > 6
5 ,

b ∈ Lr′(︁0, T ; (W1,r
n )∗)︁, and v0 ∈ L2

n,div. Let G ⊂ R3×3
sym ×R3×3

sym be a maximal monotone r-graph
of the form (3.10) fulfilling (G1)–(G4).

(i) (Boundary condition (3.71)) Let B ⊂ R3 × R3 be a maximal monotone 2-graph fulfilling
(B1)–(B4). Then there exists a triplet (v,SSS, s) satisfying

v ∈ L∞(0, T ; L2
n,div) ∩ Lr(0, T ; W1,r

n,div), (3.72a)

SSS ∈ Lr
′
(Q)3×3

sym, (3.72b)

s ∈ L2(︁(0, T )× ∂Ω
)︁3
, (3.72c)

and

lim
t→0+

∫︂
Ω
|v(t, ·)− v0|2 = 0, (3.72d)∫︂

Q

SSS :DDDw +
∫︂

(0,T )×∂Ω

s ·w =
∫︂ T

0
⟨b,w⟩+

∫︂
Q

v ⊗ v :DDDw +
∫︂
Q

v · ∂w
∂t

+
∫︂

Ω
v0 ·w(0, ·)

for all w ∈ C∞
0
(︁
[0, T ); W1,q

n,div
)︁
,

q = max
{︁
r, 5r

5r−6
}︁

(3.72e)

SSS = 2ν∗ (|DDDv| − δ∗)+ S(|DDDv|) DDDv
|DDDv| almost everywhere in Q, (3.72f)

(s,wτ ) ∈ B almost everywhere in (0, T )× ∂Ω. (3.73)

(ii) (Boundary condition (3.70)) There exists a couple (v,SSS) satisfying (3.72a), (3.72b),
(3.72d), (3.72f), and (3.72e) with s = 0.
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Moreover, the following energy inequality holds:∫︂
Ω

|v(t, ·)|2

2 +
∫︂ t

0

∫︂
Ω
SSS :DDDv +

∫︂ t

0

∫︂
∂Ω
s · v ≤

∫︂
Ω

|v0|2

2 +
∫︂ t

0
⟨b,v⟩

for almost all t ∈ (0, T ) and for t = T ;
(3.74)

if r ≥ 11
5 , then (3.74) becomes an equality.

In addition, if Ω is a C1,1 domain, then there is p ∈ Lq′(Q) with q = max
{︁
r, 5r

5r−6
}︁

such
that

∫︁
Ω p(t, ·) = 0 for almost every t ∈ (0, T ) and∫︂

Q

SSS :DDDω +
∫︂

(0,T )×∂Ω

s ·w =
∫︂ T

0

⟨︁
b,ω

⟩︁
+
∫︂
Q

v ⊗ v :DDDω +
∫︂
Q

v · ∂ω
∂t

+
∫︂

Ω
v0 · ω(0, ·)

+
∫︂
Q

p divω for all ω ∈ C∞
0
(︁
[0, T ); W1,q

n

)︁
.

Remark 3.6. (1) In the case of the boundary condition (3.70) we could define the weak solution
to the problem considered differently. We could say that v is a weak solution to the problem
if v fulfills (3.72a), (3.72d), and

∫︂
Q

2ν∗ (|DDDv| − δ∗)+ S(|DDDv|) DDDv
|DDDv| :DDDw =

∫︂ T

0
⟨b,w⟩+

∫︂
Q

v ⊗ v :DDDw

+
∫︂
Q

v · ∂w
∂t

+
∫︂

Ω
v0 ·w(0, ·)

for all w ∈ C∞
0
(︁
[0, T ); W1,q

n,div
)︁
, q = max

{︁
r, 5r

5r−6
}︁
.

(2) It holds v ∈ C
(︁
0, T ;L2(Ω)3)︁ if r ≥ 11

5 and v ∈ C
(︁
0, T ;L2

weak(Ω)3)︁ if r ∈ ( 6
5 ,

11
5 ).

Proof of Theorem 3.5. We focus only on the details in which the proof differs from the proof of
Theorem 3.3. Note however that a remarkable difference concerns the pressure: for the no-slip
boundary condition the pressure is not integrable up to the boundary; here, for C1,1 domains,
we establish the existence of the pressure belonging to Ls(Q) for some s > 1. This concerns
in particular the no-slip/Navier-slip boundary condition which “approximates” well the no-slip
boundary condition and in addition its mathematical theory admits integrable pressure.

Regarding the case r ≥ 11
5 , the main departures from the problem with the no-slip boundary

condition is due to the choice of function spaces and due to the formulation of the eigenvalue
problem that generates the basis for Galerkin approximations. Here, we look for λ ∈ R and
ω ∈W3,2

n,div ↪→W 1,∞(Ω)3 satisfying

((ω,φ)) = λ(ω,φ) for all φ ∈W3,2
n,div,

where (·, ·) is again the scalar product in L2(Ω)3 and ((·, ·)) is a scalar product in W3,2
n,div defined

through ((ω,φ)) := (∇3ω,∇3φ)+(ω,φ)+(ωτ ,φτ )∂Ω. The properties of the eigenfunctions are
the same as in (3.49) and consequently, for the free-slip boundary condition (3.70) there is no
other change in the proof.

If the other slipping conditions are considered, then we regularize the boundary conditions as
in the time independent case. Independent of the approximation parameter, we, in addition to
standard uniform estimates, know that {sn}∞

n=1 and {vnτ }∞
n=1 are bounded in L2(0, T ;L2(∂Ω)3).

Furthermore, as W 1,r(Ω) compactly embeds into W 1
r ,q(∂Ω) for all q < r, we conclude that

vNτ → vτ strongly in Lr
(︁
0, T ;L1(∂Ω)3)︁.

Then (up to a subsequence which we do not relabel)

vNτ → vτ a.e. on (0, T )× ∂Ω
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and by Egorov’s theorem, for any δ > 0,

vNτ → vτ strongly in L∞(Uδ)

where Uδ ⊂ (0, T )× ∂Ω is such that |(0, T )× ∂Ω \ Uδ| < δ. The last convergence implies that

lim sup
N→∞

∫︂
Uδ

sN · vNτ =
∫︂

Uδ

s · vτ .

Consequently, by Lemma A.6, (s,vτ ) ∈ B a.e. on Uδ. This is true for all r > 1 and gives (3.73).
If r ∈ ( 6

5 ,
9
5 ), the proof of (SSS,DDDv) ∈ G is carried out as in the no-slip case, as the proof is

based on local analysis in the interior of Ω.
Finally, we reconstruct the pressure. We set p = p1 + p2 where p1 ∈ L

5r
6 (Q) solves

(p1,−∆z) = (v ⊗ v,∇2z) for all z ∈W 2, 5r
5r−6 with ∇z ∈W1, 5r

5r−6
n ,∫︂

Ω
p1(t) = 0 for a.e. t ∈ (0, T )

and p2 ∈ Lr
′(Q) solves

(p2,−∆z) = ⟨b,∇z⟩ − (SSS,DDD∇z)− (s,∇z)∂Ω for all z ∈W 2, 5r
5r−6 , ∇z ∈W1, 5r

5r−6
n ,∫︂

Ω
p2(t) = 0 for a.e. t ∈ (0, T ).

Note that this is a well-posed definition because of the C1,1 regularity of the domain Ω and
Lemma A.11. Now consider a test function φ ∈ Lq(0, T ; W1,q

n ) and its Helmholtz decomposition
using Corollary A.12:

φ = ∇ϕ+φ0 with ∇ϕ ∈ Lq(0, T ; W1,q
n ), φ0 ∈ Lq(0, T ; W1,q

n,div).

Then we have⟨︂∂v
∂t
,φ
⟩︂
− (p, divφ)

=
⟨︂∂v
∂t
,∇ϕ+φ0

⟩︂
− (p,div(∇ϕ+φ0)) =

⟨︂∂v
∂t
,φ0

⟩︂
+ (p1 + p2,−∆ϕ)

= (v ⊗ v,DDDφ0)− (SSS,DDDφ0)− ⟨s,φ0⟩∂Ω + ⟨b,φ0⟩+ (v ⊗ v,∇2ϕ)
+ ⟨b,∇ϕ⟩ − (SSS,DDD∇ϕ)− ⟨s,∇ϕ⟩∂Ω

= (v ⊗ v,DDDφ)− (SSS,DDDφ)− ⟨s,φτ ⟩∂Ω + ⟨b,φ⟩

for a.a. t ∈ (0, T ). Thus the theorem is proven.

4 Concluding remarks
We have classified incompressible fluids that span the gamut from Euler fluids – Navier-Stokes
fluid – power-law fluids – generalized power-law fluids – stress power-law fluids – to fluids that
only undergo rigid motions, that can change their constitutive character due to an activation
criterion based on the value of the norm of the symmetric part of the velocity gradient or
the shear stress. In the process we came across constitutive relations that have hitherto been
unrecognized but could possibly be useful. In the course of our investigation we have delineated
how an Euler fluid is different from a fluid that behaves like an Euler fluid prior activation and
behaves like a viscous fluid when the activation criterion takes place. The latter fluid would
lead to governing equations that imbed the boundary layer equations as a special case, the
philosophy behind the development of the boundary layer equations and the equations governing
the activated fluid being totally different. We have touched upon one important aspect in this
study, namely the tremendously different properties that are exhibited by the Euler fluids and
the activated Euler fluids. It is known that while the Euler fluid exhibits pathological features
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(such as existence of a nontrivial solution to internal flows with zero initial data and vanishing
external body forces), we have shown that the new class of activated Euler fluids admits a weak
solution that might be even unique in its dependence of what kind of response occurs after
activation.

A classification similar to that presented here for incompressible fluids can be carried out
within the context of compressible fluids, where however the framework is more complicated as
there are two type of viscosities (bulk and shear) and corresponding fluidities. This issues will
be addressed in a subsequent study.

Appendix A Auxiliary convergence tools
In this section, we state, without proofs, several characterizations of weak compactness in L1.
Then, following [13], we summarize several properties of refined (divergence-free) Lipschitz ap-
proximations of (divergence-free) Sobolev and Bochner-Sobolev functions. Next, we present
a convergence lemma (proved recently in [21]) regarding stability of maximal monotone consti-
tutive equations (maximal monotone r-graphs) with respect to weakly converging sequences.
Finally, we close this section by the Nečas theorem and Sobolev regularity results for the
Neumann-Poisson problem and the Stokes system.

In the following lemma, several assertions characterizing weak compactness in L1, namely
the Dunford-Pettis criterion (ii), uniform integrability (iii), and the de la Vallé-Poussin criterion
(iv), are provided. The exact statement is taken from [29, p. 21, Theorem 10].

Lemma A.1 (Characterization of weak compactness in L1). Let Q ⊂ RM be a bounded mea-
surable set and V ⊂ L1(Q). Then the following conditions are equivalent:

(i) any sequence {vn}∞
n=1 ⊂ V contains a subsequence weakly converging in L1(Q);

(ii) for any ϵ > 0 there exists K > 0 such that for all v ∈ V∫︂
{|v|≥K}

|v(y)|dy ≤ ϵ;

(iii) for any ϵ > 0 there exists δ > 0 such that for all v ∈ V and for any measurable set M ⊂ Q
such that |M | < δ ∫︂

M

|v(y)|dy < ϵ;

(iv) there exists a nonnegative function Φ ∈ C([0,∞)) fulfilling

lim
z→∞

Φ(z)
z

=∞,

such that
sup
v∈V

∫︂
Q

Φ(|v(y)|)dy <∞.

Since L1 is not reflexive, weak precompactness does not follow from boundedness. Instead
bounded sequences in L1 can exhibit local concentrations weakly converging only in the space
of measures. The next lemma ensures that these concentrations are located on arbitrarily small
sets and when removed (by “biting”), bounded sets are L1-weak precompact on the complement
(”unbitten” part). See original reference [15] and also [8] for a simple proof and other references.

Lemma A.2 (Biting lemma). Let Q ⊂ RM be bounded and measurable. Let {vn}∞
n=1 be

a sequence bounded in L1(Q). Then there exist a subsequence {vnj
}∞
j=1 ⊂ {vn}∞

n=1, a function
v ∈ L1(Q), and a sequence of measurable sets {Ek}∞

k=1, Q ⊃ E1 ⊃ E2 ⊃ . . ., |Ek| → 0 such
that for all k ∈ N

vnj
⇀ v weakly in L1(Q \ Ek) as j →∞.

In the following corollary of the preceding lemmas we establish strong convergence in L1 up
to arbitrarily small sets for a pointwise null sequence bounded in L1.
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Corollary A.3. Let the assumptions of Lemma A.2 be fulfilled. Furthermore, assume that

vn → 0 a.e. in Q as n→∞.

Then for the sequences {vnj}∞
j=1 and {Ek}∞

k=1 from Lemma A.2 and for every k ∈ N

vnj
→ 0 strongly in L1(Q \ Ek) as j →∞.

Proof. Let k ∈ N be fixed. The sequence {vnj}∞
j=1 provided by the biting lemma A.2 is weakly

compact in L1(Q \ Ek) and by the lemma A.1, (ii), {vnj}∞
j=1 is uniformly continuous with

respect to the Lebesgue measure on Q \Ek. By the Vitali convergence theorem, the assertions
follows.

Lipschitz approximations of solenoidal Bochner-Sobolev functions is another useful tool
needed in the analysis of isochoric flows. There are several variants: Acerbi and Fusco survey
the basic properties of Lipschitz approximations of Sobolev functions in [1]; further refinements
have been put into place, see [30, 25]. The extension to evolutionary problems goes back to [41,
42, 27]. Further extensions have been established in [17, 13].

We first state the version [13, Theorem 4.2], which is suitable for analysis of steady problems.

Lemma A.4 (Divergence-free Lipschitz truncation of Sobolev functions). Let B ⊂ R3 be
an arbitrary ball. Let r ∈ (1,∞). Let {um}∞

m=1 ⊂ W1,r
0,div(B) be weakly converging to zero in

W1,r
0,div(B).
Then there is a double sequence {λm,k}∞

m,k=1 ⊂ (0,∞) with

(a) 22k ≤ λm,k ≤ 22k+1−1,

a double sequence of functions {um,k}∞
m,k=1, a double sequence {Om,k}∞

m,k=1 of measurable
subsets of 2B, a constant C > 0, and k0 ∈ N such that for all k ≥ k0 it holds:

(b) um,k ∈W1,∞
0,div(2B) and um,k = um in 2B \ Om,k for all m ∈ N,

(c) ∥∇um,k∥L∞(2B) ≤ Cλm,k for all m ∈ N,

(d) um,k → 0 strongly in L∞(2B) as m→∞,

(e) ∇um,k ∗
⇀ 0 weakly-∗ in L∞(2B) as m→∞,

(f) (λm,k)r|Om,k| ≤ C2−k∥∇um∥rr for all m ∈ N.

Next we will formulate the assertion suitable for analysis of time-dependent problems; the
presented version is taken from [13].

Lemma A.5 (Divergence-free Lipschitz truncation of Bochner-Sobolev functions). Let Q0 =
I0 × B0 ⊂ R × R3 be a space-time cylinder. Let 1 < r < ∞ with r, r′ > σ > 1, 1

r + 1
r′ = 1.

Assume that there are sequences of functions {um}∞
m=1 and {HHHm}∞

m=1 such that

divum = 0 a.e. in Q0,

∂um

∂t
= − divHHHm in the sense of distributions

(︁
C∞

0,div(Q0)
)︁∗
,

um ⇀ 0 weakly in Lr(I0,W
1,r(B0)),

um → 0 strongly in Lσ(Q0),

and HHHm = HHHm1 +HHHm2 satisfies

HHHm1 ⇀OOO weakly in Lr
′
(Q0)),

HHHm2 →OOO strongly in Lσ(Q0).

Then there is a double sequence {λm,k}∞
m,k=1 ⊂ (0,∞) with

(a) 22k ≤ λm,k ≤ 22k+1 ,
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a double sequence of functions {um,k}∞
m,k=1 ⊂ L1(Q0)3, a double sequence {Om,k}∞

m,k=1 of
measurable subsets of Q0, C > 0, and k0 ∈ N such that for all k ≥ k0:

(b) um,k ∈ Ls( 1
4I0,W1,s

0,div( 1
6B0)) for all s ∈ (1,∞),

(c) suppum,k ⊂ 1
6Q0,

(d) um,k = um a.e. on 1
8Q0 \ Om,k,

(e) ∥∇um,k∥L∞( 1
4Q0) ≤ Cλm,k,

(f) um,k → 0 strongly in L∞( 1
4Q0)3 as m→∞,

(g) ∇um,k ⇀ 0 weakly in Ls( 1
4Q0)3 for all s ∈ (1,∞) as m→∞,

(h) lim supm→∞(λm,k)r|Om,k| ≤ C2−k,

(i) lim supm→∞
⃓⃓∫︁
Q0

HHHm :∇um,k dx dt
⃓⃓
≤ C lim supm→∞(λm,k)r|Om,k|.

Moreover, if in addition {um} is bounded in L∞(I0, L
6(B0)) then

(j) lim supm→∞
⃓⃓∫︁

1
8Q0\Om,k HHHm1 :∇um ξ dx dt

⃓⃓
≤ C 2− k

r , where ξ ∈ C∞
0
(︁
Q0
6
)︁

with χ 1
8Q0 ≤ ξ ≤

χ 1
6Q0 .

Another tool that we use is a simple lemma concerning the stability of the constitutive equa-
tions (represented as maximal monotone r-graphs) with respect to weakly converging sequences;
see [22] for a short proof.

Lemma A.6 (Graph convergence lemma). Let D ⊂ RM be an arbitrary measurable set and let
a graph G fulfill the assumptions (G2) and (G3) on page 18. Assume that, for some r ∈ (1,∞),

(SSSn,DDDn) ∈ G almost everywhere in D,

DDDn ⇀ DDD weakly in Lr(D)d×d,

SSSn ⇀ SSS weakly in L
r

r−1 (D)d×d,

lim sup
n→∞

∫︂
D

SSSn :DDDn ≤
∫︂
D

SSS :DDD.

Then

(SSS,DDD) ∈ G almost everywhere in D.

Next, we state a theorem due to Nečas [65]; the following version is from [6, Corollary 2.5 ii)].

Lemma A.7 (Nečas theorem). Let Ω ⊂ RM be a domain of class C0,1. Let r ∈ (1,∞). Then
there exists β > 0 such that

∥∇q∥(︁
W1,r

0

)︁∗ := sup
φ∈W1,r

0

(q,divφ)
∥∇φ∥r

≥ β∥q∥r′ for all q ∈ Lr
′
(Ω) with

∫︂
Ω
q = 0. (A.1)

Remark A.8. Lemma A.7 is closely related to the results known as the Lions lemma (coined
in [55]), the Babuška-Aziz inequality, or the Ladyzhenskaya-Babuška-Brezzi condition (see [7,
14]). If we set Lp0 :=

{︁
q ∈ Lp(Ω),

∫︁
Ω q = 0

}︁
, the statement of Lemma A.7 can also be rephrased

as the following:

(i) the gradient operator ∇ : Lr′

0 → (W1,r
0 )∗ is injective with closed range,

(ii) the divergence operator div : W1,r
0 → Lr0 is surjective and has a continuous right inverse,

i.e., there is a bounded linear operator B : Lr0 →W1,r
0 such that

divB is identity on Lr0.

The operator B is usually called the Bogovskiĭ operator due to the explicit construction by
Bogovskiĭ [10, 11]. We refer the reader to [6], where these relations are discussed in detail.
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Remark A.9. It is shown in [6, Proposition 2.10 ii)] that for the validity of the estimate of
Lemma A.7 it is sufficient to assume a priori that q ∈

(︁
C∞

0 (Ω)
)︁∗,
∫︁

Ω q = 0, and ∇q ∈
(︁
W1,r

0
)︁∗.

Then, provided that Ω is Lipschitz, q ∈ Lr′(Ω) and the estimate (A.1) holds.
Remark A.10. The Lipschitz condition on Ω in Lemma A.7 can be weakened, see for example
[26].

Now we mention few regularity results for the Neumann problem and the Stokes system.
Lemma A.11 (W 2,q-regularity of Neumann-Poisson problem). Let Ω be a domain of class
C1,1. Let 1 < q < ∞ be given. Then there exists C > 0 such that for every f ∈ Lq(Ω) with∫︁

Ω f = 0 there is a weak solution u ∈W 1,q(Ω) of the problem

−∆u = f in Ω, (A.2a)
∂u
∂n = 0 on ∂Ω, (A.2b)
∫
Ω
u = 0 (A.2c)

fulfilling u ∈W 2,q(Ω), ∇u ∈W1,q
n , and

∥∇2u∥q ≤ C∥f∥q.

Proof of Lemma A.11 is outlined in [5, Remark 3.2] and invokes [3, 37, 52]. As a consequence
of the lemma, we get the following result concerning the Helmholtz decomposition for functions
from W1,q

n .
Corollary A.12 (Helmholtz decomposition). Let Ω be a domain of class C1,1. Let 1 < q <∞
be given. Then there exists C > 0 such that the following holds. For every φ ∈ W1,q

n there
exists a couple (ϕ,φ0) fulfilling

ϕ ∈W 2,q(Ω), ∇ϕ ∈W1,q
n , φ0 ∈W1,q

n,div,

φ = ∇ϕ+φ0, ∥∇2ϕ∥q + ∥∇φ0∥q ≤ C∥∇φ∥q.

The following lemma contains certain regularity results for the Stokes system, see [32, The-
orem 2.1], [6, Proposition 4.3].
Lemma A.13 (Regularity of the Stokes system). Let Ω ⊂ RM be a domain and 1 < q <∞ be
given.

If Ω is of class C0,1 with sufficiently small Lipschitz constant L > 0 (i.e., L ≤ L0 with
L0 > 0 depending only on M and q) or Ω is of class C1 then there exists C0 > 0 (depending on
Ω, M , q) such that for every b ∈

(︁
W1,q′

0
)︁∗ there is a unique weak solution (v, p) ∈W1,q

0 ×Lq(Ω)
of the problem

−∆v +∇p = b in Ω, (A.3a)
div v = 0 in Ω, (A.3b)

v = 0 on ∂Ω (A.3c)

and the following estimate holds true

∥∇v∥q + ∥p∥q ≤ C0∥b∥(︁W1,q′
0

)︁∗ . (A.4)

Furthermore, if Ω is of class C1,1 then there exists C1 > 0 (depending on Ω, M , q) such that for
every b ∈ Lq(Ω)3 the unique weak solution (v, p) ∈W1,q

0 × Lq(Ω) of the problem (A.3) fulfills
additionally v ∈W2,q, p ∈W 1,q(Ω), and admits the estimate

∥∇2v∥q + ∥∇p∥q ≤ C1∥b∥q. (A.5)

Proof. The first part of the lemma is exactly the statement [32, Theorem 2.1]. This statement
guarantees existence of unique (v, p) ∈W1,q

0 ×Lq(Ω) and gives (A.4) under the aforementioned
conditions.

The second part, i.e., the inclusions v ∈ W2,q, p ∈ W 1,q(Ω) and the estimate (A.5) follow
from [6, Proposition 4.3]. Remark 4.4 therein warns that Proposition 4.3 ibid. is not an existence
result and that (A.5) holds only if a solution in the appropriate spaces exists. But we know
this is the case due to the first part, in virtue of [32].



42 CHAPTER I. CLASSIFICATION OF INCOMPRESSIBLE FLUIDS

Appendix B Examples of maximal monotone graphs
Let us consider a graph G ⊂ R3×3

sym × R3×3
sym characterized by the relationship

(SSS,DDD) ∈ G ⇔ SSS = (|DDD| − δ∗)+

|DDD|
S(|DDD|)DDD (B.1)

with

either S(d) = (1 + d2)
r−2

2 , (B.2a)
or S(d) = 1 + dr−2. (B.2b)

We will prove the following statement.

Lemma B.1. The graph G characterized by (B.1) and (B.2a) with some δ∗ ≥ 0 and r ∈ (1,∞)
is a maximal monotone r-graph fulfilling (G1)–(G4).

The graph G characterized by (B.1) and (B.2b) with some δ∗ ≥ 0 and r ∈ (1,∞) is a maximal
monotone q-graph fulfilling (G1)–(G4) with q = max{r, 2}.

Proof. (i). Clearly (OOO,OOO) ∈ G.
(ii). Let SSS = (|DDD|−δ∗)+

|DDD|
(︁
1 + |DDD|2

)︁ r−2
2 DDD and DDDs := DDD2 + s(DDD1−DDD2) for any DDD1,DDD2 ∈ R3×3

sym. Then

(SSS(DDD1)− SSS(DDD2)) : (DDD1 −DDD2)

= (DDD1 −DDD2) :
∫︂ 1

0

d
ds

[︄
(|DDDs| − δ∗)+

|DDDs|
(︁
1 + |DDDs|2

)︁ r−2
2 DDDs

]︄
ds

= |DDD1 −DDD2|2
∫︂ 1

0

(|DDDs| − δ∗)+

|DDDs|
(︁
1 + |DDDs|2

)︁ r−2
2 ds

+
∫︂ 1

0
(DDDs : (DDD1 −DDD2))2

{︄
H (|DDDs| − δ∗)

(︁
1 + |DDDs|2

)︁ r−2
2

|DDDs|2

+ (r − 2)(|DDDs| − δ∗)+

|DDDs|
(︁
1 + |DDDs|2

)︁ r−4
2 − (|DDDs| − δ∗)+

|DDDs|3
(︁
1 + |DDDs|2

)︁ r−2
2

}︄
.

Since H (|DDDs| − δ∗) − (|DDDs|−δ∗)+

|DDDs| = δ∗
|DDDs| if |DDDs| > δ∗ (otherwise it is zero), we observe that for

r ≥ 2

(SSS(DDD1)− SSS(DDD2)) : (DDD1 −DDD2) ≥ 0.

If r ∈ (1, 2), then the property (G2) follows as well from the fact

|DDD1 −DDD2|2
∫︂ 1

0

(|DDDs| − δ∗)+

|DDDs|
(︁
1 + |DDDs|2

)︁ r−2
2 ds

− (2− r)
∫︂ 1

0
(DDDs : (DDD1 −DDD2))2 (|DDDs| − δ∗)+

|DDDs|
(︁
1 + |DDDs|2

)︁ r−4
2 ds

≥ |DDD1 −DDD2|2
∫︂ 1

0

(|DDDs| − δ∗)+

|DDDs|
(︁
1 + |DDDs|2

)︁ r−4
2
(︁
1 + |DDDs|2 − (2− r)|DDDs|2

)︁
ds

≥ (r − 1)|DDD1 −DDD2|2
∫︂ 1

0

(|DDDs| − δ∗)+

|DDDs|
(︁
1 + |DDDs|2

)︁ r−2
2 ds ≥ 0.

This also implies the monotone property for the graph with S(d) = dr−2 and r > 1. Conse-
quently, the same is true for S(d) = 1 + dr−2.
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(iii). In order to show that the graph is a maximal monotone graph, we note that the assump-
tion: (SSS,DDD) ∈ R3×3

sym × R3×3
sym (︁

SSS− S̃SS,DDD− D̃DD
)︁
≥ 0 for all (S̃SS, D̃DD) ∈ G

implies, using (B.1) and (B.2), that(︄
SSS−

(︁
|D̃DD| − δ∗

)︁+

|D̃DD|
S(|D̃DD|)D̃DD

)︄
:
(︁
DDD− D̃DD

)︁
≥ 0 for all D̃DD ∈ R3×3

sym. (B.3)

Taking D̃DD = DDD± λAAA, AAA arbitrary, λ > 0, we conclude from (B.3) that

∓AAA :
(︄
SSS− (|DDD± λAAA| − δ∗)+

|DDD± λAAA|
S(|DDD± λAAA|)(DDD± λAAA)

)︄
≥ 0.

Letting λ→ 0+, we finally obtain (using continuity of the involved functions)(︄
SSS− (|DDD| − δ∗)+

|DDD|
S(|DDD|)DDD

)︄
:AAA = 0 for all AAA ∈ R3×3

sym.

Hence SSS and DDD fulfill the right-hand side of (B.1) and thus (SSS,DDD) ∈ G.
(iv). Assume that δ∗ > 0. For d ≥ 0 we have

min
{︂

1,
(︁

1+(2δ∗)2
)︁ r−2

2

(2δ∗)r−2

}︂
H(d− 2δ∗)dr−1 ≤ (1 + d2)

r−2
2 d ≤ (1 + d2)

r−1
2

≤ (1 + d)r−1 ≤
(︂

(2δ∗)−1 max{d, 2δ∗}+ max{d, 2δ∗}
)︂r−1

,

dq−1 ≤ (1 + dr−2)d = d+ dr−1

≤ (2δ∗)2−q(︁max{d, 2δ∗}
)︁q−1 + (2δ∗)r−q(︁max{d, 2δ∗}

)︁q−1

(B.4)

where q = max{r, 2}, H(t) = 1 for t > 0, H(t) = 0 otherwise. Let us define

q :=
{︃
r case (B.2a),
max{r, 2} case (B.2b).

Due to (B.4) we have, for the both cases in (B.2),

C1(δ∗, r)H(|DDD| − 2δ∗)|DDD|q−1 ≤ S(|DDD|)|DDD| ≤ C2(δ∗, r)
(︁
max{|DDD|, 2δ∗}

)︁q−1 (B.5)

with certain C1(δ∗, r), C2(δ∗, r) > 0 independent of DDD. Notice also that

1
2H(|DDD| − 2δ∗) ≤ (|DDD| − δ∗)+

|DDD|
≤ 1. (B.6)

Now define SSS = (|DDD|−δ∗)+

|DDD| S(|DDD|)DDD and observe that with the help of the right-wing inequalities
of (B.5) and (B.6) we obtain

|DDD|q + |SSS|q
′
≤ |DDD|q +

(︂
C2(δ∗, r)

(︁
max{|DDD|, 2δ∗}

)︁q−1
)︂q′

≤ C3(δ∗, r)
(︁
max{|DDD|, 2δ∗}

)︁q
with certain C3(δ∗, r) > 0 independent of DDD and SSS. Hence, with the help of the left-wing
inequalities of (B.5) and (B.6),

C3(δ∗, r)−1(︁|DDD|q + |SSS|q
′)︁
− (2δ∗)q ≤

(︁
max{|DDD|, 2δ∗}

)︁q − (2δ∗)q

≤ H(|DDD| − 2δ∗)|DDD|q ≤ 2C1(δ∗, r)−1 (|DDD| − δ∗)+

|DDD|
S(|DDD|)|DDD|2 = 2C1(δ∗, r)−1SSS :DDD

which is the last property (G4). We leave the case δ∗ = 0 as an exercise.
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Chapter II

Localization of the W−1,q norm
for local a posteriori efficiency1

1 Introduction
The weak solution of the Dirichlet problem associated with the Laplace equation is a function
u characterized by

u− uD ∈W 1,2
0 (Ω), (1.1a)

(∇u,∇v) = (f, v) ∀v ∈W 1,2
0 (Ω). (1.1b)

Here Ω ⊂ Rd, d ≥ 1, f ∈ L2(Ω), and uD ∈ W 1,2(Ω). A typical numerical approximation of u
gives uh such that uh − uD ∈ V 0

h ⊂W
1,2
0 (Ω); we assume for simplicity that uD lies in the same

discrete space Vh ⊂W 1,2
0 (Ω) as uh, so that there is no Dirichlet datum interpolation error.

The intrinsic distance of uh to u is the W 1,2
0 (Ω)-norm error given by ∥∇(u − uh)∥. This

distance is localizable in the sense that it is equal to a Hilbertian sum of the W 1,2(Ω)-seminorm
errors ∥∇(u− uh)∥K over elements K of a partition Th of Ω, i.e.,

∥∇(u− uh)∥ =
{︄ ∑︂
K∈Th

∥∇(u− uh)∥2
K

}︄ 1
2

. (1.2)

It is this problem-given intrinsic distance that is the most suitable for a posteriori error control.
Under appropriate conditions, namely when the orthogonality (f, ψa) − (∇uh,∇ψa) = 0 is
fulfilled for the “hat” functions ψa associated with the interior vertices a of the partition Th,
there exist a posteriori estimators ηK(uh), fully and locally computable from uh, such that

∥∇(u− uh)∥ ≤
{︄ ∑︂
K∈Th

ηK(uh)2

}︄ 1
2

(1.3)

and such that

ηK(uh) ≤ C
{︄ ∑︂
K′∈TK

∥∇(u− uh)∥2
K′

}︄ 1
2

, (1.4)

where C is a generic constant and TK is some local neighborhood of the element K, see
Carstensen and Funken [23], Braess et al. [15], Veeser and Verfürth [50], Ern and Vohralík [34],
or Verfürth [53] and the references therein. Property (1.4) is called local efficiency and is
clearly only possible thanks to (1.2), the local structure of the W 1,2

0 (Ω)-norm distance. A dif-
ferent equivalence result where locality plays a central role is that of Veeser [49], see also [3],

1This chapter is a pre-copyedited, author-produced version of an article accepted for publication in IMA
Journal of Numerical Analysis following peer review. The version of record [Jan Blechta, Josef Málek, and
Martin Vohralík. Localization of the W −1,q norm for local a posteriori efficiency. IMA J. Numer. Anal., 2019.
Oxford University Press.] is available online at https://doi.org/10.1093/imanum/drz002.
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who recently proved that the local- and global-best approximation errors in the W 1,2
0 (Ω)-norm

are equivalent.
Many problems are nonlinear; the basic model that represents one example of a general

class of nonlinear models considered here is the Dirichlet problem associated with the p-Laplace
equation, where, in place of (1.1), one looks for function u such that

u− uD ∈W 1,p
0 (Ω),

(σ(∇u),∇v) = (f, v) ∀v ∈W 1,p
0 (Ω),

σ(g) = |g|p−2g g ∈ Rd

for some p ∈ (1,∞), uD ∈ W 1,p(Ω), and f ∈ Lq(Ω) with 1
p + 1

q = 1. Let uh ∈ Vh ⊂ W 1,p(Ω)
fulfilling uh − uD ∈ V 0

h ⊂ W 1,p
0 (Ω) be a numerical approximation of the exact solution u and

let R(uh) be the residual of uh given by

⟨R(uh), v⟩W−1,q(Ω),W 1,p
0 (Ω) := (f, v)− (σ(∇uh),∇v) v ∈W 1,p

0 (Ω); (1.5)

R(uh) belongs to W−1,q(Ω) :=
(︁
W 1,p

0 (Ω)
)︁′, the set of bounded linear functionals on W 1,p

0 (Ω),
see Example 3.2 below for more details. In the present paper, we take for the intrinsic distance
of uh to u the dual norm of the residual R(uh)

∥R(uh)∥W−1,q(Ω) := sup
v∈W 1,p

0 (Ω); ∥∇v∥p=1
⟨R(uh), v⟩W−1,q(Ω),W 1,p

0 (Ω); (1.6)

of course ∥R(uh)∥W−1,2(Ω) = ∥∇(u−uh)∥ when p = 2 and σ(g) = g. Note, however, that other
distances might be called intrinsic. Considering for simplicity uD = 0 and defining the energy
by

E(v) := 1
p
∥∇v∥pp − (f, v) =

∫︂
Ω

(︃
1
p
|∇v|p − fv

)︃
dx v ∈W 1,p

0 (Ω), (1.7)

the energy difference E(uh) − E(u) is often considered as the intrinsic distance, see, e.g., Re-
pin [46, Section 8.4.1], and is actually proportional to the squared quasi-norm error (that again
can be used as an intrinsic distance) introduced by Barrett and Liu in [6, 7], see Diening and
Kreuzer [29, Lemma 16] or Belenki et al. [10, Lemma 3.2], cf. also Remark 3.5 below.

Sticking to (1.6), the analog of (1.3) can then be obtained: there are a posteriori estimators
ηK(uh), fully and locally computable from uh, such that

∥R(uh)∥W−1,q(Ω) ≤

{︄ ∑︂
K∈Th

ηK(uh)q
}︄ 1

q

, (1.8)

see, e.g., Verfürth [52, 53], Veeser and Verfürth [50], El Alaoui et al. [31], Ern and Vohralík [33],
or Kreuzer and Süli [40]. This can typically be proved under the orthogonality condition

⟨R(uh), ψa⟩W−1,q(Ω),W 1,p
0 (Ω) = 0 ∀a ∈ V int

h , (1.9)

where V int
h stands for interior vertices of the mesh Th and ψa are test functions forming a

partition of unity over all vertices a ∈ Vh. However, the analog of the local efficiency (1.4)
for p ̸= 2 does not seem to be obvious. The foremost reason is that the intrinsic dual error
measure (1.6) does not seem to be localizable in the sense that

∥R(uh)∥W−1,q(Ω) ̸=
{︄ ∑︂
K∈Th

∥R(uh)∥qW−1,q(K)

}︄ 1
q

,

in contrast to (1.2).
For certain estimators from (1.8) with piecewise polynomial uh, global efficiency in the form{︄ ∑︂

K∈Th

ηK(uh)q
}︄ 1

q

≤ C∥R(uh)∥W−1,q(Ω)
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has been shown previously, cf. [53, 31, 33, 40] and the references therein. Carrying on the
results and the proofs in [52, 53], it is, in fact, possible to show that

ηK(uh) ≤ C
{︄ ∑︂

a∈VK

∥R(uh)∥qW−1,q(ωa)

}︄ 1
q

, (1.10)

where VK stands for the vertices of the element K ∈ Th and ωa is a patch of mesh elements
around the vertex a, see for example [33, Theorem 5.3], [31, proof of Lemma 4.3], [40, proof
of Theorem 21] for general p ∈ (1,∞), or [28, equation (3.10)] for the Hilbertian setting p =
2. Note, however, that all these results are connected with a certain class of PDE problems
considered in these studies as well as with a certain appropriately constructed error estimator.
To conclude, we observe the following points:

1. Inequality (1.8) together with (1.10) imply

∥R(uh)∥W−1,q(Ω) ≤ C1

{︄∑︂
a∈Vh

∥R(uh)∥qW−1,q(ωa)

}︄ 1
q

. (1.11a)

For p = q = 2, this has probably been first shown in Babuška and Miller [5, Theo-
rem 2.1.1].

2. It can also be shown that{︄∑︂
a∈Vh

∥R(uh)∥qW−1,q(ωa)

}︄ 1
q

≤ C2∥R(uh)∥W−1,q(Ω). (1.11b)

See in particular [5, Theorem 2.1.1], Cohen et al. [28, equation (3.23)], Ciarlet and
Vohralík [27, Theorem 3.3], and the revised version of Ern and Guermond [32] for p =
q = 2.

3. Thus, for the error measure ∥R(uh)∥W−1,q(Ω), the a posteriori estimators ηK(uh) lead to
an a posteriori analysis framework where one has localization of the error measure (1.11),
global reliability (1.8), and local efficiency (1.10). This is thus a fully consistent and
analogous situation to (1.2), (1.3), and (1.4) of the W 1,2

0 (Ω) setting.

The main purpose of the present paper is to give a minimalist and direct proof of the two
inequalities (1.11) for general exponent p, including also the limiting cases p = 1 and p =∞, and
without considering any particular partial differential equation or a posteriori error estimators.
In particular, Theorem 3.7 shows that, under the orthogonality condition (1.9), dual norms
of all functionals in W−1,q(Ω) are localizable in the sense that (1.11) holds, with C1 and C2
only depending on the regularity of the partition Th; in particular the constants are robust
with respect to exponent p ∈ [1,∞]. The orthogonality condition (1.9) is only necessary for
robustness of C1 with respect to the mesh size h; the constant C2 depends merely on maximal
overlap of the partition ∪a∈Vh

ωa. The result of Theorem 3.7 applies to, but is not limited to,
dual norms of residuals of (nonlinear) partial differential equations of the form (1.5). Besides
implying local a posteriori error efficiency, the localization of a seemingly only global distance
of the form (1.11) may have important consequences in the adaptive approximation theory or
for equivalence of local-best and global-best approximations as in [49]. We discuss localization
of the W 1,p

0 (Ω)-norm error in Remark 3.4 and the localization of the global lifting of R(uh) into
W 1,p

0 (Ω) in Remark 3.6. Remark 3.10 further shows that (1.11b) can be strengthened to hold
patch by patch ωa, with a global lifting of R(uh) on the right-hand side. All these results are
presented in Section 3, after we set up the notation and gather the preliminaries in Section 2.

Localization concepts that take form similar to (1.11) also appear in the theory of function
spaces, cf. Triebel [48], where they are of independent interest. Consider the Whitney covering
of the domain Ω, which we here denote as {ωa}a∈N, and a subordinate partition of unity∑︁

a∈N ψa = 1 with 0 ≤ ψa ≤ 1, ψa smooth, compactly supported in ωa, and all derivatives
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controlled by distance to boundary: ∥∇Mψa∥∞,ωa ≤ CM dist(ωa, ∂Ω)−M for all M ∈ N. For E-
thick domains Ω (which includes bounded Lipschitz domains), there holds the so-called refined
localization property

∥v∥W−1,q(Ω) ≈

{︄∑︂
a∈N
∥ψav∥qW−1,q(ωa)

}︄ 1
q

∀v ∈W−1,q(Ω), (1.12)

i.e., the term on the right-hand side is an equivalent quasi-norm. For precise definitions and
statements, see [48, Theorem 3.28]. This result holds for spaces of F-scale comprising Lizorkin–
Triebel and classical Sobolev spaces, including negative differentiability and specially the case
W−1,q(Ω), which is incidentally of interest here and which we only indicate in (1.12). Note that
there is no sequence of partitions here (the partition {ωa}a∈N is fixed, arbitrarily fine close to
the boundary ∂Ω). In contrast, the aim of this study is robustness of the constants C1 and
C2 in (1.11) with respect to all possible partitions Th (subject only to regularity), including
arbitrary refinement in the interior of the domain Ω.

Finally, we are also interested in the situations where the orthogonality condition (1.9) is not
satisfied. In practical applications, this is typically connected with inexact algebraic/nonlinear
solvers. Our Theorems 4.1 and 4.3 give two-sided bounds on ∥R(uh)∥W−1,q(Ω) in this setting
and Corollary 4.8 proves therefrom that the h- and p-robust localization result of Theorem 3.7
can be recovered provided that the loss of orthogonality is small with respect to the leading
term. In Remark 4.2, we comment that (1.11) holds even without orthogonality condition (1.9),
but with C1 deteriorating with mesh refinement (for decreasing h). This is intuitively consistent
with the result (1.12), where the fixed partition is coarse in the interior of Ω and arbitrarily fine
only close to the boundary ∂Ω. We collect these results in Section 4, including Theorem 4.10
that presents an extension to vectorial setting. Its typical practical applications stem from fluid
mechanics or elasticity; the results established here indeed represent one of the key tools used
in [14] for deriving a complete theory of a posteriori error estimation for implicit constitutive
relations in the generalized Stokes setting, capturing the most common nonlinear fluid models
in a unified way. To conclude, Section 5 illustrates our theoretical findings on several numerical
experiments.

2 Setting
We describe the setting and notation in this section, detailing the partition of unity that will
be central in our developments. We then state cut-off estimates based on Poincaré–Friedrichs
inequalities necessary later.

2.1 Notation, assumptions, and a partition of unity
We suppose that Ω ⊂ Rd, d ≥ 1, is a domain (open, bounded, and connected set) with a
Lipschitz-continuous boundary and diameter hΩ. Let 1 ≤ p ≤ ∞ with 1

p + 1
q = 1. We will work

with standard Sobolev spaces W 1,p(Ω) of functions with Lp(Ω)-integrable weak derivatives, see,
e.g., Evans [35], Brenner and Scott [16], and the references therein. The space W 1,p

0 (Ω) then
stands for functions that are zero in the sense of traces on ∂Ω. Similar notation is used on
subdomains of Ω.

For measurable subset ω ⊂ Ω and functions u ∈ Lq(ω), v ∈ Lp(ω), (u, v)ω stands for∫︁
ω
u(x)v(x) dx and similarly (u,v)ω :=

∫︁
ω
u(x)·v(x) dx for u ∈ [Lq(ω)]d and v ∈ [Lp(ω)]d;

we simply write (u, v) instead of (u, v)Ω when ω = Ω and similarly in the vectorial case. We
follow the convention ∥v∥p,ω :=

(︁∫︁
ω
|v(x)|p dx

)︁ 1
p for 1 ≤ p < ∞, ∥v∥∞,ω := ess supx∈ω |v(x)|,

∥v∥p,ω :=
(︁∫︁
ω
|v(x)|p dx

)︁ 1
p for 1 ≤ p < ∞, and ∥v∥∞,ω := ess supx∈ω |v(x)|, where |v| =(︁∑︁d

i=1 |vi|2
)︁ 1

2 is the Euclidean norm in Rd. Note that, when p ̸= 2, ∥∇v∥p,ω is different from
(but equivalent to) |v|1,p,ω =

(︁∑︁d
i=1∥∂xi

v∥pp,ω
)︁ 1

p if 1 ≤ p <∞, |v|1,∞,ω = maxi=1,...,d∥∂xi
v∥∞,ω

for v ∈W 1,p(ω); we will often use below the equivalence of lp(Rm) norms |v|p :=
(︁∑︁m

i=1 |vi|p
)︁ 1

p
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if 1 ≤ p <∞, |v|∞ := maxi=1,...,m |vi|

|v|p ≤ |v|q ≤ m
1
q − 1

p |v|p ∀v ∈ Rm, 1 ≤ q ≤ p ≤ ∞. (2.1)

We also denote by |·|2 the spectral matrix norm, given by |A|2 := maxv∈Rm; |v|2=1|Av|2 for a
matrix A ∈ Rm×m.

We suppose that there exists a partition of unity∑︂
a∈Vh

ψa = 1 a.e. in Ω (2.2)

by functions ψa ∈ W 1,∞(Ω) with a local support denoted by ωa. More precisely, ωa are
open subdomains of the domain Ω of nonzero d-dimensional measure, diameter hωa , with a
Lipschitz-continuous boundary, and satisfying ∪a∈Vh

ωa = Ω; ωa is called a patch. The index a
denotes a point in ωa called a vertex, termed interior if a ∈ Ω and termed boundary if a ∈ ∂Ω;
the corresponding index sets are Vh = V int

h ∪ Vext
h , V int

h ∩ Vext
h = ∅. For a ∈ Vext

h , ∂ωa ∩ ∂Ω
is supposed to have a nonzero (d − 1)-dimensional measure. We identify ψa with ψa|ωa and
suppose that ψa takes values between 0 and 1 on ωa, ∥ψa∥∞,ωa ≤ 1; ψa is zero in the sense of
traces on the whole boundary ∂ωa for a ∈ V int

h and on ∂ωa \ ∂Ω for a ∈ Vext
h .

The partition of the domain Ω by the patches ωa needs to be overlapping, i.e., the intersec-
tion of several different patches has a nonzero d-dimensional measure. We collect the closures
of the minimal intersections into a nonoverlapping partition Th of Ω with closed elements de-
noted by K, with diameter hK . We suppose that each point in Ω lies in at most Nov patches.
Equivalently, each K ∈ Th corresponds to the closure of intersection of at most Nov patches,
and we collect their vertices a in the set VK . Vice-versa, the elements K ∈ Ta cover ωa. There
in particular holds{︄

1
Nov

∑︂
a∈Vh

∥v∥pp,ωa

}︄ 1
p

≤ ∥v∥p ∀v ∈ Lp(Ω), 1 ≤ p <∞, (2.3a)

max
a∈Vh

∥v∥∞,ωa = ∥v∥∞ ∀v ∈ L∞(Ω). (2.3b)

We shall frequently use the patchwise Sobolev spaces given by

W 1,p
∗ (ωa) :=

⎧⎨⎩ {v ∈W 1,p(ωa); (v, 1)ωa = 0} if a ∈ V int
h ,

{v ∈W 1,p(ωa); v = 0 on ∂ωa ∩ ∂Ω} if a ∈ Vext
h ,

(2.4)

having zero mean value over ωa in the first case and vanishing trace on the boundary of Ω in
the second case. The Poincaré–Friedrichs inequality then states that

∥v∥p,ωa ≤ CPF,p,ωahωa∥∇v∥p,ωa ∀v ∈W 1,p
∗ (ωa), (2.5)

where, recall, hωa stands for the diameter of the patch ωa. In particular, for 1 < p < ∞, a ∈
V int
h , and ωa convex, CPF,p,ωa = 2

(︁
p
2
)︁ 1

p , see Chua and Wheeden [26]; for p = 1, CPF,1,ωa = 1
2 in

this setting, see Acosta and Durán [1] or [26], and for p =∞, CPF,∞,ωa = 1 is straightforward.
This implies that 1

2 ≤ CPF,p,ωa ≤ CPF,2e,ωa = 2 e 1
2e ≈ 2.404 for all 1 ≤ p ≤ ∞ and a convex

interior patch. The values for a ∈ V int
h and nonconvex patches ωa are identified in, e.g.,

Veeser and Verfürth [51, Theorems 3.1 and 3.2] for 1 ≤ p < ∞; whenever ωa is star-shaped,
CPF,∞,ωa = 2. Finally, CPF,p,ωa = 1 for a ∈ Vext

h when ∂ωa ∩ ∂Ω can be reached in a constant
direction from any point inside ωa; bounds in the general case can be obtained for instance as
in [50, Lemma 5.1]. We describe the regularity of the partition by the number

Ccont,PF := max
a∈Vh

{1 + CPF,p,ωahωa∥∇ψa∥∞,ωa}, (2.6)

which we suppose to be uniformly bounded on families of the considered partitions indexed by
the parameter h := maxa∈Vh

hωa .
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2.2 Examples of partitions of unity
We now give three examples of possible partitions of unity ψa and subdomains ωa.

Example 2.1 (Simplicial or parallelepipedal meshes from the finite element context). A proto-
typal example we have in mind is the case where Ω is a polytope, ∪K∈Th

K = Ω, each element K
is a closed d-dimensional simplex (triangle in d = 2, tetrahedron in d = 3) or a d-dimensional
parallelepiped (quadrilateral in d = 2, hexahedron in d = 3), and the intersection of two differ-
ent elements K is either empty or their d′-dimensional common face, 0 ≤ d′ ≤ d − 1. Then
Nov = d+1 for simplices and Nov = 2d for parallelepipeds, ωa is the patch of all elements shar-
ing the given vertex a ∈ Vh, and (2.3a) takes form of equality. In particular, for the seminorm
on W 1,p(Ω),

1
Nov

∑︂
a∈Vh

∥∇v∥pp,ωa
= ∥∇v∥pp ∀v ∈W 1,p(Ω), 1 ≤ p <∞, (2.7a)

max
a∈Vh

∥∇v∥∞,ωa = ∥∇v∥∞ ∀v ∈W 1,∞(Ω). (2.7b)

We then take ψa as the continuous, piecewise (d-)affine “hat” function of finite element analysis,
taking value 1 at the vertex a ∈ Vh and 0 in all other vertices from Vh. Denoting by κTh

the mesh shape-regularity parameter given by the maximal ratio of the diameter of K to the
diameter of the largest ball inscribed into K over all K ∈ Th, it follows from Veeser and
Verfürth [51, Theorems 3.1 and 3.2], Carstensen and Funken [23], or Braess et al. [15] that
both CPF,p,ωa of (2.5) and Ccont,PF of (2.6) only depend on κTh

. Note further that in the context
of approximation of the solution of a partial differential equation by the finite element method,
with the residual R described in Remark 3.2 below, the crucial orthogonality condition (3.20)
amounts to requesting the presence of the hat functions ψa, a ∈ V int

h , in the finite element basis.

Example 2.2 (B-splines supports from the isogeometric analysis context). Let the space di-
mension d = 1, let Ω be an interval, and let Th be a mesh of Ω consisting of intervals K of
size hK , ∪K∈Th

K = Ω. B-splines are non-negative piecewise (with respect to Th) polynomi-
als of degree k and class Cl, k ≥ 1, 0 ≤ l ≤ k − 1, with smallest possible support and given
scaling; typically l = k − 1, i.e., one requests continuity of the derivatives up to order k − 1.
Denoting them ψa, the subdomains ωa can simply be taken as the supports of the B-splines
ψa. Then the vertices a that form the set Vh lie inside ωa if the value of ψa on the boundary
of the domain Ω is zero, and are the corresponding endpoints of Ω otherwise. Crucially, the
partition of unity (2.2) holds for B-splines. For k = 1 and l = 0 (piecewise affine functions
with C0 continuity), this setting coincides with the finite element context of Remark 2.1. In
general, however, the subdomains ωa are larger here, leading to increased overlap between ωa

and higher value of the overlap parameter Nov, in dependence on the continuity parameter l. In
the context of the partial differential equation residual R of Remark 3.2 below, the orthogonality
condition (3.20) amounts to the use of the B-splines/isogeometric analysis approximation, see
Bazilevs et al. [8] or Buffa and Giannelli [18] and the references therein. Extension to higher
space dimensions d > 1 is straightforward by tensor products for Ω being a rectangular paral-
lelepiped; general domains can be treated via non-uniform rational basis splines (NURBS) and
transformation from the parametric space into the physical space.

Example 2.3 (Meshfree methods). In general, the approach developed here can be applied to
any setting that is based on the idea of basis functions having local (small, compact) support and
forming the partition of unity (2.2). The partition of unity method, see Babuška and Melenk [43,
4], and in general meshfree methods, see [37] and the references therein, can serve as examples.

2.3 Poincaré–Friedrichs cut-off estimates
The forthcoming result, following the lines of Carstensen and Funken [23, Theorem 3.1] or
Braess et al. [15, Section 3], with W 1,p(ωa)-Poincaré–Friedrichs inequalities of Chua and Whee-
den [26] and Veeser and Verfürth [51], will form the basic building block for our considerations:

Lemma 2.4 (Cut-off estimate). For the constant Ccont,PF from (2.6), there holds, for all
a ∈ Vh,

∥∇(ψav)∥p,ωa ≤ Ccont,PF∥∇v∥p,ωa ∀v ∈W 1,p
∗ (ωa), 1 ≤ p ≤ ∞.
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Proof. Let a ∈ Vh. We have, employing the triangle inequality, ∥ψa∥∞,ωa = 1, and (2.5),
∥∇(ψav)∥p,ωa = ∥∇ψav + ψa∇v∥p,ωa

≤ ∥∇ψa∥∞,ωa∥v∥p,ωa + ∥ψa∥∞,ωa∥∇v∥p,ωa

≤ (1 + CPF,p,ωahωa∥∇ψa∥∞,ωa)∥∇v∥p,ωa ,

and the assertion follows from the definition (2.6).

2.4 An overlapping-patches estimate
We finally provide an auxiliary coloring-type estimate for a sum of functions from W 1,p

0 (ωa)
that will be used later.
Lemma 2.5 (An overlapping-patches estimate). Let 1 ≤ p ≤ ∞. Assume there is a collection
of functions {va}a∈Vh

with va ∈ W 1,p
0 (ωa), extended by zero to W 1,p

0 (Ω). Then
∑︁

a∈Vh
va ∈

W 1,p
0 (Ω) and ⃦⃦⃦⃦

⃦∇ 1
Nov

∑︂
a∈Vh

va

⃦⃦⃦⃦
⃦
p

≤

{︄
1
Nov

∑︂
a∈Vh

∥∇va∥pp,ωa

}︄ 1
p

if 1 ≤ p <∞, (2.8a)⃦⃦⃦⃦
⃦∇ 1

Nov

∑︂
a∈Vh

va

⃦⃦⃦⃦
⃦

∞

≤ max
a∈Vh

∥∇va∥∞,ωa if p =∞. (2.8b)

Proof. Let 1 ≤ p < ∞. Fix K ∈ Th and denote the number of vertices in K by |VK |. The
triangle and Hölder inequalities give, a.e. in K,⃓⃓⃓⃓

⃓ ∑︂
a∈VK

∇va

⃓⃓⃓⃓
⃓ ≤ ∑︂

a∈VK

|∇va| ≤

{︄ ∑︂
a∈VK

|∇va|p
}︄ 1

p

|VK |
1
q .

By assumption it holds |VK | ≤ Nov for every K ∈ Th, so that, since p
q = p− 1,⃓⃓⃓⃓

⃓∇ 1
Nov

∑︂
a∈VK

va

⃓⃓⃓⃓
⃓
p

≤ 1
Nov

∑︂
a∈VK

|∇va|p. (2.9)

Integrating both sides of (2.9) over K, summing over all K ∈ Th, and taking 1
p -th power of the

result gives (2.8a). Estimate (2.8b) is trivial.

3 Localization of dual functional norms
In this section we state and prove our main localization result; we also present some of its
consequences. We first fix some notations and introduce the overall context in more detail.

3.1 Context
For given p ∈ [1,∞], denote

V := W 1,p
0 (Ω) (3.1)

and consider a bounded linear functional R ∈ V ′. We denote the action of R on v ∈ V by
⟨R, v⟩V ′,V and define

∥R∥V ′ := sup
v∈V ; ∥∇v∥p=1

⟨R, v⟩V ′,V . (3.2)

Similarly, for vertex a ∈ Vh and the corresponding patch subdomain ωa, set
V a := W 1,p

0 (ωa)
and define the restriction of the functional R to V a, still denoted by R, via

⟨R, v⟩(V a)′,V a := ⟨R, v⟩V ′,V v ∈ V a, (3.3)
where v ∈ V a is extended by zero outside of the patch ωa to v ∈ V . Let

∥R∥(V a)′ := sup
v∈V a; ∥∇v∥p,ωa =1

⟨R, v⟩(V a)′,V a . (3.4)
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3.2 Examples of functionals R

To fix ideas, we give two examples fitting in the context of Section 3.1.

Example 3.1 (R being divergence of an integrable function). Let ξ ∈ [Lq(Ω)]d. A simple
example of R ∈ V ′ is

⟨R, v⟩V ′,V := (ξ,∇v) v ∈ V. (3.5)

In this case, immediately, for any a ∈ Vh,

⟨R, v⟩(V a)′,V a = (ξ,∇v)ωa v ∈ V a.

Moreover, using definitions (3.2) and (3.4), we easily obtain via the Hölder inequality the bounds

∥R∥V ′ ≤ ∥ξ∥q, (3.6a)
∥R∥(V a)′ ≤ ∥ξ∥q,ωa ∀a ∈ Vh. (3.6b)

Example 3.2 (R given by a residual of a partial differential equation). Let 1 ≤ p ≤ ∞,
1
p + 1

q = 1, uD ∈W 1,p(Ω), f ∈ Lq(Ω), and let (u,σ) be a weak solution2 to the problem

−divσ = f in Ω, (3.9a)
u = uD on ∂Ω, (3.9b)

h(σ,∇u) = 0 in Ω. (3.9c)

Here σ ∈ [Lq(Ω)]d, u ∈ W 1,p(Ω) such that u − uD ∈ W 1,p
0 (Ω), and a nonlinear function

h : Rd × Rd → Rd is such that it holds, with some α, β > 0,

s·d ≥ α
(︁
|s|q + |d|p

)︁
− β whenever s,d ∈ Rd and h(s,d) = 0. (3.10)

2Assuming 1 < p < ∞, weak solution to problem (3.9) can be defined as: to find u : Ω → R and σ : Ω → Rd

such that

u − uD ∈ V, (3.7a)

σ ∈ [Lq(Ω)]d, (3.7b)
(σ, ∇v) = (f, v) ∀v ∈ V, (3.7c)
h(σ, ∇u) = 0 almost everywhere in Ω. (3.7d)

This problem has at least one solution if, for example, the function h fulfills, with some α, β > 0, the following
conditions:

1. h(0, 0) = 0;

2. if s1, s2,d1,d2 ∈ Rd and h(s1,d1) = h(s2,d2) = 0 then(︁
s1 − s2

)︁
·
(︁
d1 − d2

)︁
≥ 0; (3.8)

3. if the couple (s,d) ∈ Rd × Rd fulfills(︁
s− s̃

)︁
·
(︁
d− d̃

)︁
≥ 0 for all s̃, d̃ ∈ Rd with h(s̃, d̃) = 0,

then (s,d) also fulfills h(s,d) = 0;

4. if h(s,d) = 0 then (3.10) holds;

see [36] and also [19, 21, 20] for fluid mechanics context. If, in addition, inequality (3.8) is strict whenever
s1 ̸= s2 and d1 ̸= d2, then such a solution is unique.

For a novel theory of weak solutions in the non-reflexive case p = ∞ and within the context of solid mechanics,
we refer the interested reader to [9].
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Typical examples of function h are

h(s,d) = s−
(︁
1 + |d|2

)︁ p−2
2 d,

h(s,d) = s−
(︁
1 + |d|

)︁p−2
d,

h(s,d) = d−
(︁
1 + |s|2

)︁ q−2
2 s,

h(s,d) = d−
(︁
1 + |s|

)︁q−2
s,

h(s,d) = d− (|s| − σ∗)+

|s|
(︁
1 + |s|2

)︁ q−2
2 s,

h(s,d) = d− (|s| − σ∗)+

|s|
(︁
1 + |d|2

)︁− p−2
2 s,

h(s,d) = s− (|d| − δ∗)+

|d|
(︁
1 + |d|2

)︁ p−2
2 d,

h(s,d) = s− |d|p−2d,

h(s,d) = d− |s|q−2s,

regularized p-Laplace

generalized p-Laplace

activated p-Laplace

classical p-Laplace

where (t)+ = max(t, 0) and σ∗, δ∗ ≥ 0 are given real parameters. Note that the last two examples
give identical response since

s = |d|p−2d ⇐⇒ d = |s|q−2s.

Consequently

s·d =
(︃

1
p

+ 1
q

)︃
s·d = |s|

q

q
+ |d|

p

p

which not only verifies, but also motivates the assumption (3.10) above. To verify that the other
models fulfill (3.10), we refer to [20, Lemma 1.1] and [13, Lemma B.1]. Finally, the responses
given by

h(s,d) = s− d(︁
1 + |d|a

)︁ 1
a

,

h(s,d) = d− s(︁
1 + |s|b

)︁ 1
b

,

flux limiting p-Laplace

gradient limiting p-Laplace

with some a, b ∈ (0,∞) give automatically σ ∈ [L∞(Ω)]d, ∇u ∈ [L1(Ω)]d, respectively σ ∈
[L1(Ω)]d, ∇u ∈ [L∞(Ω)]d and concern the limit cases p = 1, p = ∞. We refer to [13], where
such models are summarized in the context of fluid mechanics, and [22, 41] for examples from
solid mechanics. This general setting with implicit function h is, for example, interesting to
employ mixed finite element methods. In fluid mechanics context, this has been studied in [38,
14].

The above rather complex example still fits perfectly into our setting. Indeed, let σh ∈
[Lq(Ω)]d be an arbitrary approximation to σ. Then we can define a linear functional R on the
space V as

⟨R, v⟩V ′,V := (f, v)− (σh,∇v) v ∈ V.

Note that the Hölder inequality and the Poincaré–Friedrichs inequality (2.5), used in the entire
domain Ω on the space V , imply that

|⟨R, v⟩| ≤ (∥f∥qCPF,p,ΩhΩ + ∥σh∥q)∥∇v∥p.

Consequently, R is indeed bounded, R ∈ V ′. To complement, let also uh ∈W 1,p(Ω), uh−uD ∈
V , be an arbitrary approximation to u. Then one in general also wishes to measure a deviation
from equality (3.9c) when σh together with uh are plugged therein in place of σ and u. There
are various ways to evaluate this error; compare, e.g., [40, 14].
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For the rest of this example, we limit ourselves to the following specific but important subcase:
1 < p <∞ and the implicit function h admits an explicit continuous representation s = σ(d);3

more precisely we assume that all solutions (s,d) ∈ Rd × Rd of h(s,d) = 0 are given by
s = σ(d) with continuous σ : Rd → Rd. Then the weak formulation of problem (3.9) simplifies
to: find u ∈W 1,p(Ω) such that

u− uD ∈ V, (3.11a)
(σ(∇u),∇v) = (f, v) ∀v ∈ V (3.11b)

and admits at least one weak solution under classical assumptions.4 This gives rise to the
standard notion of the residual R of an arbitrary function uh ∈W 1,p(Ω) such that uh−uD ∈ V ,
defined via

⟨R, v⟩V ′,V := (f, v)− (σ(∇uh),∇v) v ∈ V. (3.12)
The Hölder inequality and (2.5) again imply that R ∈ V ′, since

|⟨R, v⟩| ≤ (∥f∥qCPF,p,ΩhΩ + ∥σ(∇uh)∥q)∥∇v∥p.

Here, actually, R = 0 if and only if uh solves (3.11b). Then ∥R∥V ′ is the intrinsic distance of
uh to u, the dual norm of the residual. Remark that this problem can also be cast in the form
of Example 3.1, taking ξ := σ(∇u)− σ(∇uh), with any u ∈W 1,p(Ω) solving (3.11).

3.3 Motivation
We now give four remarks motivating our main question whether ∥R∥V ′ , a priori just a number
defined for any R ∈ V ′, expressing its size over the entire computational domain Ω, can be
bounded from above and from below by the sizes ∥R∥(V a)′ of R localized over the patches ωa.

Remark 3.3 (Localization of the Lq(Ω)-norm error in the fluxes). Consider R given by (3.12)
from Example 3.2 in the finite element context of Remark 2.1. We immediately obtain from
(3.6a) and (3.6b)

∥R∥V ′ ≤ ∥σ(∇u)− σ(∇uh)∥q, (3.13a)
∥R∥(V a)′ ≤ ∥σ(∇u)− σ(∇uh)∥q,ωa ∀a ∈ Vh, (3.13b)

and observe that the flux error norm on the right-hand side of (3.13a) localizes, as in (2.7),
into the right-hand sides of (3.13b) by the formula

∥σ(∇u)− σ(∇uh)∥q =
{︄

1
Nov

∑︂
a∈Vh

∥σ(∇u)− σ(∇uh)∥qq,ωa

}︄ 1
q

. (3.14)

Note that, unfortunately, it is unclear when (3.14) is, up to a constant, bounded back by ∥R∥V ′ ,
so that these considerations do not give an answer to the question of localization of ∥R∥V ′ .

Remark 3.4 (W 1,p
0 (Ω)-norm error localization). Remark that similarly to (1.2), there always

holds, for 1 ≤ p <∞,

∥∇v∥p =
{︄ ∑︂
K∈Th

∥∇v∥pp,K

}︄ 1
p

, v ∈ V.

3If h(s,d) = 0 does not admit explicit solution s = σ(d), which happens for some examples given above, one
can approximate up to (in certain sense) arbitrary precision, by explicit relation s = σϵ(d), and later pass in
the limit ϵ → 0+. This is an approach of many studies, ranging from PDE analysis to a priori convergence of
finite element schemes; see, e.g., [36, 19, 20, 30, 40].

4This holds, for example, if
1. σ : Rd → Rd is continuous,
2. σ(0) = 0,
3. (σ(d1) − σ(d2))·(d1 − d2) ≥ 0 for all d1, d2 ∈ Rd,
4. C1|d|p ≤ σ(d)·d, for all d ∈ Rd,
5. |σ(d)| ≤ C2(1 + |d|)p−1 for all d ∈ Rd.

See, e.g. [42].
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In particular, in the context of Example 3.2, on meshes from Remark 2.1, for 1 < p <∞,

∥∇(u− uh)∥p =
{︄ ∑︂
K∈Th

∥∇(u− uh)∥pp,K

}︄ 1
p

. (3.15)

The W 1,p
0 (Ω)-norm ∥∇·∥p is always localizable, but it seems difficult/suboptimal to derive a

posteriori error estimates of the form (1.8), (1.10) for ∥∇(u − uh)∥p in place of ∥R∥V ′ , see,
e.g., the discussions in Belenki et al. [10] and [33].

Remark 3.5 (Energy difference/quasi-norm error localization). As mentioned in the introduc-
tion, still in the context (3.11) of Example 3.2, there are other possible substitutes used in both
a priori and a posteriori error analysis. Besides W 1,p

0 (Ω)-norm error ∥∇(u−uh)∥p, the energy
difference E(uh) − E(u), where the energy is defined by (1.7), is used mostly for the problem
involving the p-Laplace or its nondegenerate/nonsingular modifications. Following Kreuzer [29,
Lemma 16] or Belenki et al. [10, Lemma 3.2], there holds

E(uh)− E(u) ≈ ∥∇(u− uh)∥2
(p) ≈ ∥F (∇u)− F (∇uh)∥2, (3.16)

where ∥·∥(p) is the quasi-norm of Barrett and Liu [6, 7] and F (v) := |v|
p−2

2 v. Here ∥F (∇u)−
F (∇uh)∥2 =

∑︁
K∈Th

∥F (∇u) − F (∇uh)∥2
K localizes immediately. However, unfortunately, the

constants hidden in (3.16) depend on the Lebesgue exponent p.

Remark 3.6 (Localization of the p-Laplacian lifting of R). Let 1 < p <∞. Let r ∈ V be the
analogue of the Riesz representation of the functional R by the p-Laplacian solve on Ω, i.e.,
r ∈ V is such that

(|∇r|p−2∇r,∇v) = ⟨R, v⟩V ′,V ∀v ∈ V. (3.17)

Then, we readily obtain

∥∇r∥pp = (|∇r|p−2∇r,∇r) = ⟨R, r⟩V ′,V = ∥R∥qV ′ . (3.18)

Consequently, on meshes Th from Remark 2.1,

∥∇r∥p =
{︄ ∑︂
K∈Th

∥∇r∥pp,K
}︄ 1

p

(3.19)

suggests itself as a way to measure the error with localization and a posteriori estimate of the
form (1.8). Also an equivalent of (1.10),

ηK(uh) ≤ C
{︄ ∑︂
K′∈TK

∥∇r∥pK′

}︄ 1
q

,

would hold. The trouble here is that (3.17) is a nonlocal problem, obtained itself by a global
solve. Remark also that the definition of the lifting r by (3.17) is dictated by the choice of the
space V in (3.1) together with its norm ∥∇·∥p.5

3.4 Main result
Recall that 1 ≤ p ≤ ∞, 1

p + 1
q = 1, V = W 1,p

0 (Ω), the partition ∪a∈Vh
ωa covers the domain

Ω with maximal overlap Nov, the patches ωa are indexed by the vertices a where a ∈ V int
h

lies inside Ω and a ∈ Vext
h on the boundary of Ω, and that the constant Ccont,PF from (2.6) is

supposed uniformly bounded for different partitions.
Our localization result is:

5 Consider an alternative choice of the space, V := {v ∈ W 1,p(Ω); (v, 1) = 0} with the norm ∥∇v∥p. We
have ∥R∥V ′ := supv∈V ;∥∇v∥p=1⟨R, v⟩V ′,V , as in (3.2). For R ∈ V ′, one can define a lifting r ∈ V as a solution
of the Neumann p-Laplace problem − div(|∇r|p−2∇r) = R in Ω; |∇r|p−2∇r·n = 0 on ∂Ω; (r, 1) = 0. The weak
formulation (3.17), the W 1,p(Ω)-norm equality (3.18), and the localization (3.19) hold with the appropriate
replacement of V .
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Theorem 3.7 (Localization of dual norms of functionals with ψa-orthogonality). Let R ∈ V ′

be arbitrary. Let
⟨R, ψa⟩V ′,V = 0 ∀a ∈ V int

h . (3.20)

Then, when 1 < p ≤ ∞,

∥R∥V ′ ≤ NovCcont,PF

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

, (3.21a)

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

≤ ∥R∥V ′ , (3.21b)

and, when p = 1,

∥R∥V ′ ≤ NovCcont,PF max
a∈Vh

∥R∥(V a)′ , (3.22a)

max
a∈Vh

∥R∥(V a)′ ≤ ∥R∥V ′ . (3.22b)

Condition (3.20) is actually only needed in (3.21a) and (3.22a).

Proof. We first show (3.21a) and (3.22a). Let v ∈ V with ∥∇v∥p = 1 be fixed. The partition of
unity (2.2), the linearity of R, definition (3.3), and the orthogonality requirement (3.20) give

⟨R, v⟩V ′,V =
∑︂

a∈Vh

⟨R, ψav⟩V ′,V =
∑︂

a∈Vh

⟨R, ψav⟩(V a)′,V a

=
∑︂

a∈Vint
h

⟨R, ψa(v −Π0,ωav)⟩(V a)′,V a +
∑︂

a∈Vext
h

⟨R, ψav⟩(V a)′,V a ,
(3.23)

where Π0,ωav is the mean value of the test function v on the patch ωa. There holds (v −
Π0,ωav)|ωa ∈W

1,p
∗ (ωa), where W 1,p

∗ (ωa) is defined by (2.4), and (ψa(v −Π0,ωav))|ωa ∈ V a for
a ∈ V int

h . Thus, using (3.4) and Lemma 2.4 yields, for a ∈ V int
h ,

⟨R, ψa(v −Π0,ωav)⟩(V a)′,V a ≤ ∥R∥(V a)′∥∇(ψa(v −Π0,ωav))∥p,ωa

≤ Ccont,PF∥R∥(V a)′∥∇(v −Π0,ωav)∥p,ωa

= Ccont,PF∥R∥(V a)′∥∇v∥p,ωa .

For a ∈ Vext
h , there holds v|ωa ∈W

1,p
∗ (ωa) and (ψav)|ωa ∈ V a. Hence, similarly, we obtain

⟨R, ψav⟩(V a)′,V a ≤ Ccont,PF∥R∥(V a)′∥∇v∥p,ωa .

Thus, the Hölder inequality gives, for 1 < p <∞,

⟨R, v⟩V ′,V ≤ NovCcont,PF

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q
{︄

1
Nov

∑︂
a∈Vh

∥∇v∥pp,ωa

}︄ 1
p

.

Combining (2.3) used for ∇v with (3.2) now implies the result if 1 < p <∞. Cases p = 1 and
p =∞ are obvious modifications.

We now pass to (3.21b) and (3.22b). First assume that 1 < p ≤ ∞. From (3.4) we deduce
that for any a ∈ Vh

∥R∥q(V a)′ = sup
v∈V a; ∥∇v∥p,ωa =∥R∥q−1

(V a)′

⟨R, v⟩(V a)′,V a .

For a fixed a ∈ Vh, we can characterize the supremum by a sequence {raj }∞
j=1 ⊂ V a with

∥∇raj ∥p,ωa = ∥R∥q−1
(V a)′ (with convention 00 = 1) (3.24)
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and
∥R∥q(V a)′ = lim

j→∞
⟨R, raj ⟩(V a)′,V a . (3.25)

After summing over a ∈ Vh, dividing by Nov, and using (3.3) together with the linearity of R,
we can estimate

1
Nov

∑︂
a∈Vh

∥R∥q(V a)′ = lim
j→∞

⟨︄
R, 1

Nov

∑︂
a∈Vh

raj
⟩︄
V ′,V

≤ lim
j→∞
∥R∥V ′

⃦⃦⃦⃦
⃦ 1
Nov
∇
∑︂

a∈Vh

raj
⃦⃦⃦⃦
⃦
p

.

Using Lemma 2.5 and (3.24) we get

1
Nov

∑︂
a∈Vh

∥R∥q(V a)′ ≤

⎧⎨⎩ ∥R∥V ′

{︂
1
Nov

∑︁
a∈Vh

∥R∥q(V a)′

}︂ 1
p 1 < p <∞,

∥R∥V ′ p =∞,

which proves (3.21b). The case (3.22b) follows easily by (3.2)–(3.4).

3.5 Remarks
We collect here a couple of remarks associated with Theorem 3.7.

Remark 3.8 (Expressing local norms using p-Laplace local liftings). Let 1 < p < ∞. In this
case V a is reflexive, so for the sequence {raj }∞

j=1 from the proof of Theorem 3.7, there is a sub-
sequence which converges weakly to some ra ∈ V a with ∥∇ra∥p,ωa ≤ lim infj→∞∥∇raj ∥p,ωa =
∥R∥q−1

(V a)′ thanks to weak lower semicontinuity of norm and (3.24). On the other hand, from
(3.25) and the weak convergence, we conclude that

∥R∥q(V a)′ = ⟨R, ra⟩(V a)′,V a , (3.26)

which implies that ∥R∥q−1
(V a)′ ≤ ∥∇ra∥p,ωa . Hence, altogether we have that

∥R∥q(V a)′ = ∥∇ra∥pp,ωa
. (3.27)

Moreover, as V a (or, equivalently, ∥∇·∥pp,ωa
) is a strictly convex (in fact uniformly convex)

space, when 1 < p <∞, ra ∈ V a with properties (3.26), (3.27) is unique. For proof assume that
R ≠ 0 on V a (the case R = 0 on V a is trivial) and that there is sa ̸= αra and sa satisfies (3.26)
and (3.27) with sa in place of ra. Define za := ra+sa

∥∇(ra+sa)∥p,ωa
∈ V a with ∥∇za∥p,ωa = 1 and

observe using (3.26), (3.27) and the strict convexity ∥∇(ra + sa)∥p,ωa < ∥∇ra∥p,ωa +∥∇sa∥p,ωa

that ⟨R,za⟩(V a)′,V a > ∥R∥(V a)′ , which is a contradiction with (3.4).
It is easy to check that the unique solution ra ∈ V a of (3.26), (3.27) is in fact the solution

of p-Laplacian solve on the patch ωa:

(|∇ra|p−2∇ra,∇v)ωa = ⟨R, v⟩(V a)′,V a ∀v ∈ V a. (3.28)

Note that the above reasoning about the existence and uniqueness of representation (3.28),
which in its generality referred only to reflexivity and strict convexity of V a, applies also to
global representation of R on V , as defined by (3.17); see also footnote 5 on page 59.

Remark 3.9 (Localization based on weighted Poincaré–Friedrichs inequalities). Poincaré–
Friedrichs inequalities can be derived for the weighted Lp(Ω)-norm of v on ωa, ∥ψ

1
p
a v∥p,ωa in

place of ∥v∥p,ωa in (2.5), see Chua and Wheeden [26] and Veeser and Verfürth [51]. Then, in
the spirit of Carstensen and Funken [23] and Veeser and Verfürth [50], weighted equivalents
of Lemma 2.4 and Theorem 3.7 could be given. This might reduce the size of the constants
in (3.21)–(3.22), originating from overlapping of the supports of the test functions ψa, at the
price of making the formulas a little more involved.

We finally show that inequality (3.21b) can be split into local contributions when passing
from dual norms of the functional R to its liftings.
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Remark 3.10 (Splitting (3.21b) into local contributions using lifted norms). Let 1 < p < ∞
and let R ∈ V ′ and a ∈ Vh be given. Define the global lifting r ∈ V of the functional R
by (3.17) and the local lifting ra ∈ V a by (3.28). Then it holds

∥R∥(V a)′ = ∥∇ra∥p−1
p,ωa
≤ ∥∇r∥p−1

p,ωa
. (3.29)

Indeed, the equality has been shown in equation (3.27) and the inequality follows using defini-
tion (3.4), definition of the global lifting (3.17), and the Hölder inequality

∥R∥(V a)′ = sup
v∈V a; ∥∇v∥p,ωa =1

⟨R, v⟩V ′,V = sup
v∈V a; ∥∇v∥p,ωa =1

(|∇r|p−2∇r,∇v)ωa ≤ ∥∇r∥p−1
p,ωa

.

Note that summing (3.29) in q-th power over all vertices Vh and using (2.3a) and (3.18) one
gets (3.21b) as a trivial consequence.

4 Extensions
This section collects various extensions of the main result of Theorem 3.7.

4.1 Localization without the orthogonality condition
We begin by a simple generalization of Theorem 3.7 to the case without orthogonality (3.20)
to the partition of unity functions ψa.

Theorem 4.1 (Simple localization of dual norms of functionals without ψa-orthogonality). Let
R ∈ V ′ be arbitrary and define

ra := hΩCPF,p,Ω

|ωa|
1
p

|⟨R, ψa⟩(V a)′,V a |. (4.1)

Then, when 1 < p ≤ ∞,

∥R∥V ′ ≤ NovCcont,PF

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

+Nov

⎧⎨⎩ 1
Nov

∑︂
a∈Vint

h

(ra)q
⎫⎬⎭

1
q

,

(4.2a){︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

≤ ∥R∥V ′ , (4.2b)

and, when p = 1,

∥R∥V ′ ≤ NovCcont,PF max
a∈Vh

∥R∥(V a)′ +Nov max
a∈Vint

h

ra, (4.3a)

max
a∈Vh

∥R∥(V a)′ ≤ ∥R∥V ′ . (4.3b)

Proof. Estimates (4.2b) and (4.3b) have been proven in Theorem 3.7. Estimates (4.2a) and
(4.3a) are proven along the lines of Theorem 3.7, counting for the additional nonzero term∑︂

a∈Vint
h

(Π0,ωav)⟨R, ψa⟩(V a)′,V a (4.4)

in (3.23). For each a ∈ V int
h , the Hölder inequality gives

|ωa|
1
p (Π0,ωav) = |ωa|

1
p (v, 1)ωa |ωa|−1 ≤ |ωa|

1
p ∥v∥p,ωa |ωa|

1
q |ωa|−1 = ∥v∥p,ωa .
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Thus, the Hölder inequality, the Poincaré–Friedrichs inequality (2.5) used in the entire domain
Ω on the space V , and (2.3) lead to, for 1 < p <∞,∑︂

a∈Vint
h

(Π0,ωav)⟨R, ψa⟩(V a)′,V a =
∑︂

a∈Vint
h

|ωa|−
1
p ⟨R, ψa⟩(V a)′,V a |ωa|

1
p (Π0,ωav)

≤ Nov

⎧⎨⎩ 1
Nov

∑︂
a∈Vint

h

(|ωa|−
1
p |⟨R, ψa⟩(V a)′,V a |)q

⎫⎬⎭
1
q
⎧⎨⎩ 1
Nov

∑︂
a∈Vint

h

∥v∥pp,ωa

⎫⎬⎭
1
p

≤ Nov

⎧⎨⎩ 1
Nov

∑︂
a∈Vint

h

(ra)q
⎫⎬⎭

1
q

∥∇v∥p,

and (3.2) gives the assertion. Cases p = 1 and p =∞ are proved with obvious modifications.

This result implies the following remark:

Remark 4.2 (h-unstable localization of dual norms of functionals). Observe that in (4.2a)
and (4.3a), we can apply |⟨R, ψa⟩(V a)′,V a | ≤ ∥R∥(V a)′∥∇ψa∥p and the Hölder inequality in
order to arrive at

∥R∥V ′ ≤ NovCh

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

, 1 < p ≤ ∞, (4.5)

∥R∥V ′ ≤ NovCh max
a∈Vh

∥R∥(V a)′ , p = 1, (4.6)

with
Ch :=

(︂
Ccont,PF + hΩCPF,p,Ω max

a∈Vint
h

∥∇ψa∥∞,ωa

)︂
. (4.7)

Whereas hΩ and CPF,p,Ω do not depend on the partition and Ccont,PF is uniformly bounded for
regular partitions, there typically holds maxa∈Vint

h
∥∇ψa∥∞,ωa ≈ h−1, so that Ch explodes for

small patches ωa, a ∈ Vh. We note that one can actually estimate a little more sharply with
Ch = 1 + hΩCPF,p,Ω maxa∈Vh

∥∇ψa∥∞,ωa .

Estimates (4.2a) and (4.3a) of Theorem 4.1 take a simple form but, unfortunately, as Ex-
ample 4.6 below shows, the second term in (4.2a) may severely overestimate ∥R∥V ′ . Corre-
spondingly, (4.5) and (4.6) of Remark 4.2 blow up with mesh refinement due to presence of
maxa∈Vint

h
∥∇ψa∥∞,ωa in (4.7). We discuss in Example 4.6 that it is related to l2-norm estimates

of the algebraic residual vector from numerical linear algebra; in both cases, the local contribu-
tions are first taken in absolute value in (4.1) and then the size of the resulting algebraic vector
is measured in the second term in (4.2a). The following estimate, obtained while employing
the ideas of [39, Section 7.3] and [44], removes this deficiency, while first summing the local
contributions and then constructing a discrete Hq(div,Ω)-lifting.

Theorem 4.3 (Improved localization of dual norms of functionals without ψa-orthogonality).
Let R ∈ V ′ be arbitrary and define rh ∈ P0(Th) to be the piecewise constant function with
respect to the partition Th given by

rh|K :=
∑︂

a∈Vint
h

∩VK

1
|ωa|
⟨R, ψa⟩(V a)′,V a ∀K ∈ Th. (4.8)

Let σh,alg ∈Hq(div,Ω) := {v ∈ [Lq(Ω)]d; div v ∈ Lq(Ω)} be arbitrary but such that

divσh,alg = rh. (4.9)
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Then, when 1 < p ≤ ∞,

∥R∥V ′ ≤ NovCcont,PF

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

+ ∥σh,alg∥q, (4.10a)

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

≤ ∥R∥V ′ , (4.10b)

and, when p = 1,

∥R∥V ′ ≤ NovCcont,PF max
a∈Vh

∥R∥(V a)′ + ∥σh,alg∥∞, (4.11a)

max
a∈Vh

∥R∥(V a)′ ≤ ∥R∥V ′ . (4.11b)

Proof. The proof consists in finding an alternative, sharper bound on the term (4.4) above. Let
v ∈ V with ∥∇v∥p = 1 be fixed. Note that, for each interior vertex a ∈ V int

h ,

(Π0,ωav)⟨R, ψa⟩(V a)′,V a = 1
|ωa|

(⟨R, ψa⟩(V a)′,V a , v)ωa .

Hence, considering 1
|ωa| ⟨R, ψa⟩(V a)′,V a as constant on ωa and zero elsewhere and using defini-

tion (4.8),∑︂
a∈Vint

h

(Π0,ωav)⟨R, ψa⟩(V a)′,V a =
∑︂

a∈Vint
h

(︃
1
|ωa|
⟨R, ψa⟩(V a)′,V a , v

)︃
= (rh, v)

= (divσh,alg, v) = −(σh,alg,∇v) ≤ ∥σh,alg∥q∥∇v∥p = ∥σh,alg∥q,

where we have also applied the requirement (4.9), the Green theorem, and the Hölder inequality.
Actually, generalizing [39, Theorem 5.5] to the present setting, it follows that, at least for
1 < p <∞,

sup
v∈V ; ∥∇v∥p=1

∑︂
a∈Vint

h

(Π0,ωav)⟨R, ψa⟩(V a)′,V a = min
σh,alg∈Hq(div,Ω); div σh,alg=rh

∥σh,alg∥q,

so that this estimate is as sharp as possible.

Example 4.4 (Construction of σh,alg). Several practical constructions of σh,alg in finite-
dimensional subspaces of Hq(div,Ω) in the context of simplicial or parallelepipedal meshes of
Remark 2.1 are possible, employing the lowest-order Raviart–Thomas–Nédélec (RTN0) space,
cf. [17] and the references therein. A construction with a cost linear in terms of the number
of mesh elements of Th has been proposed in [39, Section 7.3]. It consists in a (sequential)
sweep through all mesh elements in a proper order. Numerically often much sharper construc-
tion has been proposed in [44, Definition 6.3]. It needs a hierarchy of meshes of whose Th is
a refinement, in the multigrid spirit, and consists in an exact solve on the coarsest mesh and
a (parallel) sweep through all mesh vertices on all mesh levels. This latter construction can be
shown to be an optimal estimate (giving both upper and lower (up to a constant) bounds)(work
in progress). Note that although references [39, 44] consider the Hilbertian setting p = 2, there
is no structural loss in passing to p ̸= 2, see [31, 33] and the references therein.

Remark 4.5 (Localization of ∥σh,alg∥q). Note that from (2.3), one has ∥σh,alg∥qq ≤∑︁
a∈Vh

∥σh,alg∥qq,ωa
≤ Nov∥σh,alg∥qq. In the context of Remark 2.1, actually

∥σh,alg∥q =
{︂

1
Nov

∑︁
a∈Vh

∥σh,alg∥qq,ωa

}︂ 1
q . Thus, the second terms on the right-hand sides

of (4.10a) and (4.11a) are fully localizable.

Example 4.6 (Link of estimate of Theorem 4.1 to the l2-norm of the algebraic residual vector
when p = 2 and their deficiency6). Consider p = 2, d = 1, Ω = (0, 1), and the following

6We would like to thank the anonymous referee for suggesting this illustrative example.
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u
uh
uH

a0 = 0 a1 = h a2 = 2h a3 = 3h a4 = 4h = 1
0

0.25

0 h 1− h 1
−h

0

h

1

rh
σh,alg

Figure 1: Example 4.6. Setting and exact solution u, approximation uh on the mesh Th, and
approximation uH on the twice coarser mesh TH (left); rh from (4.8) and optimal σh,alg from
RTN0 (right).

situation: −∆u = −u′′ = 2 in Ω and u = 0 on ∂Ω, so that the solution of this PDE is
u(x) = x(1 − x). In the context of (3.11) of Example 3.2, let V = W 1,2

0 (Ω), and, for any
uH ∈W 1,2

0 (Ω), let R ∈ V ′ be defined by

⟨R, v⟩V ′,V := (2, v)− (∇uH ,∇v) =
∫︂ 1

0
(2v − u′

Hv
′) dx, v ∈ V, (4.12)

leading to

∥R∥V ′ = ∥∇(u− uH)∥2 =
{︃∫︂ 1

0
[(u− uH)′]2 dx

}︃ 1
2

.

Let us consider an even integer N > 0, define h := 1/N , and introduce a mesh Th of Ω
given by the vertices ai := ih, i = 0, . . . , N , forming the set Vh and the elements (intervals)
Ki := [ai,ai+1], i = 0, . . . , N−1. We also consider the twice coarser mesh TH given similarly by
the points a2i = 2ih, i = 0, . . . , N/2. Let now uH be piecewise affine with respect to TH , C0(Ω)-
continuous, taking the values of the exact solution u in the vertices ai = 2ih, i = 0, . . . , N/2,
see Figure 1, left. This uH is the finite element solution on the mesh TH , or, equivalently, the
Lagrange interpolate of u on the mesh TH (with mesh size 2h). Consequently,

∥R∥V ′ = ∥∇(u− uH)∥2 = O(2h) = O(h), (4.13)

where g(h) = O(h) when there exist two positive constants c, C independent of h such that
ch ≤ g(h) ≤ Ch for all h > 0. The residual R generated by the function uH by (4.12), though,
does not satisfy the orthogonality condition (3.20) on Th. A simple calculation gives

⟨R, ψa⟩V ′,V = (2, ψa)ωa − (∇uH ,∇ψa)ωa

=
{︃
|ωa| = 2h a = a2i+1 ∈ V int

h odd, i = 0, . . . , N/2− 1,
−|ωa| = −2h a = a2i ∈ V int

h even, i = 1, . . . , N/2− 1. (4.14)

Consequently, as hΩ = 1 and CPF,2,Ω = 1/π, ra given by (4.1) take the values ra = (2h) 1
2 /π.

Thus, since Nov = 2 and q = 2,

Nov

⎧⎨⎩ 1
Nov

∑︂
a∈Vint

h

(ra)q
⎫⎬⎭

1
q

= 2 1
2

⎧⎨⎩ ∑︂
a∈Vint

h

(ra)2

⎫⎬⎭
1
2

= 2h 1
2

π
(N − 1) 1

2 = O(1). (4.15)

Thus by comparison with (4.13), the second term on the right-hand side of (4.2a) critically
overestimates ∥R∥V ′ . The same holds for estimate (4.5) with (4.7). Indeed, Ch = Ccont,PF +
O(h−1) and consequently (4.2b) and (4.13) give that the right-hand side of (4.5) behaves as
O(h) +O(1).

Let now uh be piecewise affine with respect to the mesh Th, C0(Ω)-continuous, taking the
values of the exact solution u in the points ai = ih, i = 0, . . . , N . The function uh is the
finite element solution on the mesh Th, or the Lagrange interpolate of u on the mesh Th, see



66 CHAPTER II. LOCALIZATION OF THE W−1,q NORM

Figure 1, left. (If the residual R would be defined from uh and not by (4.12), it would satisfy
the orthogonality condition (3.20)). The triangle inequality gives

∥R∥V ′ = ∥∇(u− uH)∥2 ≤ ∥∇(u− uh)∥2 + ∥∇(uh − uH)∥2. (4.16)

Immediately, ∥∇(u− uh)∥2 = O(h) and also ∥∇(uh − uH)∥2 = O(h), so there is no structural
loss in this inequality. Viewing uH as an approximate solution to uh, uH =

∑︁N−1
i=1 uH(ai)ψai

,
UH ∈ RN−1, (UH)i = uH(ai), i = 1, . . . , N−1, where only uH is supposed to be known explicitly
but not uh, we now consider the most commonly used estimate on the “algebraic” error

∥∇(uh − uH)∥2
2 =

(︁
A−1
h Rh

)︁
·Rh ≤

⃓⃓
A−1
h

⃓⃓
2|Rh|22,

cf. [45, Section 3.1] and the references therein; here

Ah := 1
h

⎛⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . . . . . . . .
. . . . . . . . .

−1 2

⎞⎟⎟⎟⎟⎟⎟⎠ , Fh :=

⎛⎜⎜⎜⎜⎜⎜⎝

2h
2h
...
...

2h

⎞⎟⎟⎟⎟⎟⎟⎠
are respectively the finite element matrix and the right-hand side vector and

Rh := Fh − AhUH =

⎛⎜⎜⎜⎜⎜⎝
2h
−2h
2h
...

2h

⎞⎟⎟⎟⎟⎟⎠
is the algebraic residual vector; note that (Rh)i = ⟨R, ψai

⟩V ′,V = (−1)i+12h, i = 1, . . . , N − 1,
using (4.14). Now, cf. [39, Section 7.1] or [45, Section 5.2] and the references therein for
similar developments,

|Rh|2 =
{︄
N−1∑︂
i=1
|(Rh)i|2

}︄ 1
2

= 2h(N − 1) 1
2 = O(h 1

2 )

and ⃓⃓
A−1
h

⃓⃓
2 = λmax(A−1

h ) = 1
λmin(Ah) = O(h−1),

where the characterization of the smallest eigenvalue λmin(Ah) = O(h) of the matrix Ah in one
space dimension is standard, see, e.g., [32, Example 9.15]. Altogether,

∥∇(uh − uH)∥2 ≤
⃓⃓
A−1
h

⃓⃓ 1
2
2 |Rh|2 = O(1). (4.17)

We conclude that the simple estimate of Theorem 4.1 has in this case the same quality as the
commonly used l2-norm estimate of the algebraic residual vector from numerical linear algebra,
and that both are greatly imprecise.

Example 4.7 (Optimality of estimate of Theorem 4.3). We now investigate, for the same set-
ting as in Example 4.6, the quality of the upper bound (4.10a) of Theorem 4.3. Following (4.14),
the quantities 1

|ωa| ⟨R, ψa⟩(V a)′,V a in (4.8) take here the value 1 for odd vertices and −1 for even
vertices. Thus, the elementwise constant function rh actually vanishes in all the elements ex-
cept for K1 and KN , where it takes the value 1, see Figure 1, right. Then, it is easy to check
that the best-available σh,alg from RTN0 such that divσh,alg = rh is the function vanishing on
all the elements except for K1 and KN , depicted in Figure 1, right. This leads to

∥σh,alg∥2 = O(h 3
2 ),

The construction of σh,alg from [39, Section 7.3] then still leads to ∥σh,alg∥2 = O(h 3
2 ), whereas

that from [44, Definition 6.3] yields ∥σh,alg∥2 = O(h). Consequently, in both practical con-
structions of Example 4.4, the second term on the right-hand side of (4.10a) does not spoil the
quality of the estimate, in contrast to (4.2a) with (4.15) and (4.16) with (4.17).
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Having identified the additional terms in inequalities (4.2a) and (4.10a), one typically con-

trols adaptively their size of with respect to the principal contribution
{︂

1
Nov

∑︁
a∈Vh

∥R∥q(V a)′

}︂ 1
q

(and similarly for maxa∈Vh
∥R∥(V a)′ if p = 1), see, e.g., [39, equation (6.1)] or [33, equa-

tion (3.10)]. The following corollary shows that localization of ∥R∥V ′ can be restored in this
way. It, however, follows from Examples 4.6 and 4.7 that it may be excessively costly to satisfy
the balance condition (4.18) in the case of Theorem 4.1, in contrast to the case of Theorem 4.3.

Corollary 4.8 (Localization of dual norms of functionals with controlled loss of orthogonality).
Let R ∈ V ′ be arbitrary, and consider either the context of Theorem 4.1 with

rres :=

⎧⎨⎩ 1
Nov

∑︂
a∈Vint

h

(ra)q
⎫⎬⎭

1
q

if 1 < p ≤ ∞, rres := max
a∈Vint

h

ra if p = 1,

or the context of Theorem 4.3 with

rres := 1
Nov
∥σh,alg∥q.

Assume moreover that

rres ≤ γresCcont,PF

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

, 1 < p ≤ ∞, (4.18a)

rres ≤ γresCcont,PF max
a∈Vh

∥R∥(V a)′ , p = 1 (4.18b)

for some parameter γres ≥ 0. Then, when 1 < p ≤ ∞,

∥R∥V ′ ≤ (1 + γres)NovCcont,PF

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

,

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

≤ ∥R∥V ′ ,

and, when p = 1,

∥R∥V ′ ≤ (1 + γres)NovCcont,PF max
a∈Vh

∥R∥(V a)′ ,

max
a∈Vh

∥R∥(V a)′ ≤ ∥R∥V ′ .

4.2 Localization in vectorial setting
We now finally present a vectorial variant of Theorem 3.7, with typical applications in Stokes-
type fluid flows, cf. [14]. We only make a concise presentation, as the extension from the scalar
case is rather straightforward.

Let ∇v for v ∈ [W 1,p(ω)]d be the matrix with lines given by ∇vi, 1 ≤ i ≤ d; in accordance
with the notation of Section 2.1, ∥∇v∥p,ω := (

∫︁
ω

(
∑︁d
i=1
∑︁d
j=1 |∂xj

vi(x)|2)
p
2 dx)

1
p . For vectors

u,v ∈ Rd, u⊗ v defines a tensor T ∈ Rd×d such that Ti,j := uivj . Then the vectorial variant
of Lemma 2.4 is:

Lemma 4.9 (Cut-off estimate in vectorial setting). There exists a constant Ccont,PF,d > 0,
only depending on the space dimension d and on the constant Ccont,PF from (2.6), such that for
all a ∈ Vh, there holds

∥∇(ψav)∥p,ωa ≤ Ccont,PF,d∥∇v∥p,ωa ∀v ∈ [W 1,p
∗ (ωa)]d.
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Proof. Assume first 1 ≤ p < ∞. Using the scalar Poincaré–Friedrichs inequality (2.5) and the
norm equivalence (2.1),

∥v∥p,ωa =

⎛⎝∫︂
ωa

(︄
d∑︂
i=1
|vi(x)|2

)︄ p
2

dx

⎞⎠
1
p

≤ Cp,d

(︄
d∑︂
i=1

∫︂
ωa

|vi(x)|p dx
)︄ 1

p

≤ Cp,dCPF,p,ωahωa

(︄
d∑︂
i=1
∥∇vi∥pp,ωa

)︄ 1
p

≤ Cp,dCp,dCPF,p,ωahωa∥∇v∥p,ωa

∀v ∈ [W 1,p
∗ (ωa)]d,

where
Cp,d :=

{︂ 1 if p ≤ 2,
d

1
2 − 1

p if p ≥ 2

and
Cp,d :=

{︂
d

1
p − 1

2 if p ≤ 2,
1 if p ≥ 2.

Denote Cp,d := Cp,dCp,d = d|
1
2 − 1

p | and notice that 1 ≤ Cp,d ≤
√
d. Then, we readily arrive at

∥∇(ψav)∥p,ωa = ∥v ⊗∇ψa + ψa∇v∥p,ωa

≤ ∥∇ψa∥∞,ωa∥v∥p,ωa + ∥ψa∥∞,ωa∥∇v∥p,ωa

≤ (1 + Cp,dCPF,p,ωahωa∥∇ψa∥∞,ωa)∥∇v∥p,ωa ,

and the assertion follows with Ccont,PF,d := maxa∈Vh
{1 + Cp,dCPF,p,ωahωa∥∇ψa∥∞,ωa}. Case

p =∞ is an obvious modification.

Denote

V := [W 1,p
0 (Ω)]d,

R ∈ V ′,

∥R∥V ′ := sup
v∈V ; ∥∇v∥p=1

⟨R,v⟩V ′,V .

For a vertex a ∈ Vh, let the local setting be

V a := [W 1,p
0 (ωa)]d,

⟨R,v⟩(V a)′,V a := ⟨R,v⟩V ′,V v ∈ V a,

∥R∥(V a)′ := sup
v∈V a; ∥∇v∥p,ωa =1

⟨R,v⟩(V a)′,V a .

Define ψa,m, 1 ≤ m ≤ d, as the vectorial variant of the partition of unity functions ψa such
that (ψa,m)m = ψa and (ψa,m)n = 0 for 1 ≤ n ≤ d, n ̸= m. The following is a generalization
of Theorem 3.7 to vectorial setting:

Theorem 4.10 (Localization of dual norms of functionals in vectorial case). Let R ∈ V ′ be
arbitrary and let

⟨R,ψa,m⟩V ′,V = 0 ∀1 ≤ m ≤ d, ∀a ∈ V int
h .

Then, when 1 < p ≤ ∞,

∥R∥V ′ ≤ NovCcont,PF,d

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

,

{︄
1
Nov

∑︂
a∈Vh

∥R∥q(V a)′

}︄ 1
q

≤ ∥R∥V ′ ,
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and, when p = 1,

∥R∥V ′ ≤ NovCcont,PF,d max
a∈Vh

∥R∥(V a)′ ,

max
a∈Vh

∥R∥(V a)′ ≤ ∥R∥V ′ .

The orthogonality condition is actually again only needed in the first inequalities.

Proof. Along the lines of proof of Theorem 3.7, using Lemma 4.9 instead of Lemma 2.4.

Extension of Remark 3.10, Theorems 4.1 and 4.3, and of Corollary 4.8 to vectorial case is
straightforward.

5 Numerical illustration
We now numerically demonstrate the validity of Theorem 3.7 in the setting 1 < p < ∞. The
experiments were implemented using dolfin-tape [11] package built on top of the FEniCS
Project [2]. The complete supporting code for reproducing the experiments can be obtained
at [12].

Let Vh := P1(Th) ∩W 1,p(Ω) be the space of continuous, piecewise first-order polynomials
with respect to a matching triangular mesh Th of the domain Ω ⊂ R2, see Remark 2.1. Let
V 0
h := Vh ∩W 1,p

0 (Ω) be its zero-trace subspace and let uh be a finite element approximation to
the p-Laplace problem (3.11) of Example 3.2, i.e.,

uh − uD
h ∈ V 0

h , (5.1a)
(|∇uh|p−2∇uh,∇vh) = (fh, vh) ∀vh ∈ V 0

h , (5.1b)

where uD
h ∈ Vh is a P1-nodal interpolant of uD ∈ W 1,p(Ω) ∩ C0(Ω) (approximation error

of uD by uD
h is neglected) and (fh, ·) approximates (f, ·) by a six-node quadrature rule with

fourth-order precision from [47, p. 184, Table 4.1]. We consider R ∈ V ′, the residual of
uh with respect to equation (3.11b) (with σ(∇u) = |∇u|p−2∇u) given by (3.12). Taking
vh = ψa in (5.1b) immediately gives the orthogonality property (3.20) for all interior vertices a ∈
V int
h . Computationally, regularization and linearization of the degenerate p-Laplace operator

is employed to approximately solve (5.1). The arising errors are secured to be small by error-
distinguishing a posteriori estimation techniques of [33], thus ensuring sufficiently approximate
fulfillment of the Galerkin orthogonality (3.20).

The evaluation of the norms ∥R∥V ′ and ∥R∥(V a)′ in (3.21)–(3.22) is equivalent to solving
respectively for the global lifting r on Ω defined by (3.17) and for the local liftings ra on every
patch ωa defined by (3.28). Again, only approximations rh ∈ V and rah ∈ V a are available,
where the evaluation error Eh ∈ V ′ is given by

⟨Eh, v⟩V ′,V := (|∇rh|p−2∇rh,∇v)− ⟨R, v⟩V ′,V v ∈ V.

Since, simultaneously,

∥R∥V ′ ≤ ∥Eh∥V ′ + ∥∇rh∥p−1
p ,

∥∇rh∥p−1
p ≤ ∥R∥V ′ + ∥Eh∥V ′ ,

we obtain ⃓⃓
∥∇rh∥p−1

p − ∥R∥V ′
⃓⃓

∥∇rh∥p−1
p

≤ ∥Eh∥V ′

∥∇rh∥p−1
p

.

Consequently, using a posteriori techniques from [33], the approximation

∥R∥V ′ ≈ ∥∇rh∥p−1
p

is guaranteed to hold with a given relative accuracy that we set to 10−2. Similarly, we secure
the relative accuracy of the approximation

∥R∥(V a)′ ≈ ∥∇rah∥p−1
p,ωa
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to 10−2. For clarity of notation, we drop the subscript h in what follows.
In order to plot local distributions, we find it natural to define two non-negative functions

from P1(Th)

ϵqglob :=
∑︂

a∈Vh

∥∇r∥pp,ωa

ψa

|ωa|
, (5.2a)

ϵqloc :=
∑︂

a∈Vh

∥∇ra∥pp,ωa

ψa

|ωa|
. (5.2b)

The employed normalization gives on simplicial meshes |ωa|−1(ψa, 1)ωa = N−1
ov (with Nov =

d+ 1) and together with (2.7a) ensures that

∥ϵglob∥qq = ∥∇r∥pp
(3.18)= ∥R∥qV ′ ,

∥ϵloc∥qq = 1
Nov

∑︂
a∈Vh

∥∇ra∥pp,ωa

(3.27)= 1
Nov

∑︂
a∈Vh

∥R∥q(V a)′ .

Consequently, Theorem 3.7 can be rephrased as

∥ϵglob∥q ≤ NovCcont,PF∥ϵloc∥q,
∥ϵloc∥q ≤ ∥ϵglob∥q.

Moreover, the second inequality above can be split into local contributions using Remark 3.10,
so that

ϵloc ≤ ϵglob. (5.3)

Let us also introduce the effectivity index of an inequality (ineq)

Eff(ineq) := rhs of (ineq)
lhs of (ineq) ≥ 1.

For testing, we choose

• Chaillou–Suri [25, 33], Ω = (0, 1)2, p ∈ {1.5, 10}, uD(x) = q−1(0.5q − |x − (0.5, 0.5)|q),
f = −∆pu

D = 2,

• Carstensen–Klose [24, Example 3], Ω = (−1, 1)2 \ [0, 1] × [−1, 0], p = 4, uD(r, θ) =
r

7
8 sin( 7

8θ), f = −∆pu
D.

As we have the exact solution u = uD in our hands, we can also check the distribution of the flux
error (3.14) and of the W 1,p

0 (Ω)-norm error (3.15). Therefore, as above, we define non-negative
functions from P1(Th)

ϵqflux :=
∑︂

a∈Vh

∥σ(∇u)− σ(∇uh)∥qq,ωa

ψa

|ωa|
, (5.4)

ϵpen :=
∑︂

a∈Vh

∥∇(u− uh)∥pp,ωa

ψa

|ωa|
(5.5)

having properties

∥ϵflux∥q = ∥σ(∇u)− σ(∇uh)∥q,
∥ϵen∥p = ∥∇(u− uh)∥p.

Estimates (3.13) translate to

∥ϵglob∥q ≤ ∥ϵflux∥q, (5.6a)
ϵloc ≤ ϵflux. (5.6b)

The results of numerical experiments are shown in Table 1 and Figures 2–5. Effectivity in-
dices in Table 1 show that the reverse bound (3.21b) is quite tight but the forward bound (3.21a)
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Table 1: Computed quantities of localization inequalities (3.21), (5.7), and of esti-
mate (3.13a) for the chosen model problems. Recall that ∥ϵglob∥q = ∥R∥V ′ , ∥ϵloc∥q ={︁∑︁

a∈Vh

1
Nov
∥R∥q(V a)′

}︁ 1
q , and ∥ϵflux∥q = ∥σ(∇u)− σ(∇uh)∥q.
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suffers by a larger, though still reasonable and predictable, overestimation. This overestimation
decreases a little when improving (3.21a) to

∥R∥V ′ ≤ Nov

{︄
1
Nov

∑︂
a∈Vh

(︁
Ccont,PF,ωa∥R∥(V a)′

)︁q}︄ 1
q

, (5.7)

where Ccont,PF,ωa
:= 1 + CPF,p,ωahωa∥∇ψa∥∞,ωa is the continuity constant of each patch; this

improvement is much more significant for the case with singularity (Carstensen–Klose), see
Table 1; we conjecture that the improvement would lose its significance if the residuals R were
obtained on a sequence of adaptively refined meshes.

Figures 2, 3, 4, and 5 nicely demonstrate the local inequalities (3.29) and (3.13b) as expressed
by (5.3) and (5.6b), respectively. The figures also show that there is no hope of locally comparing
theW 1,p

0 (Ω)-norm error ∥∇(u−uh)∥pp (expressed here by ϵpen of (5.5)) and the lifted residual error
∥∇r∥pp (expressed here by ϵqglob of (5.2a)). The colorbars systematically present the minimal
and maximal values, taken at the vertices a ∈ Vh. In the plots, there is one color per triangle,
corresponding to the mean value over its vertices.

In conclusion, the main result, Theorem 3.7, as well as Remark 3.10, are well supported by
the performed numerical experiments.
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Figure 2: Distribution of ∥ϵglob∥qq = ∥R∥qV ′ (top left), ∥ϵloc∥qq =
∑︁

a∈Vh

1
N ∥R∥

q
(V a)′ (top right),

∥ϵflux∥qq = ∥σ(∇u) − σ(∇uh)∥qq (bottom left), and ∥ϵen∥pp = ∥∇(u − uh)∥pp (bottom right) for
the case Chaillou–Suri, p = 1.5, #cells=1600
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Figure 3: Distribution of ∥ϵglob∥qq = ∥R∥qV ′ (top left), ∥ϵloc∥qq =
∑︁

a∈Vh

1
N ∥R∥

q
(V a)′ (top right),

∥ϵflux∥qq = ∥σ(∇u) − σ(∇uh)∥qq (bottom left), and ∥ϵen∥pp = ∥∇(u − uh)∥pp (bottom right) for
the case Chaillou–Suri, p = 10, #cells=1600
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Figure 5: Local ratios of error distributions ϵqglob, ϵqloc, and ϵqflux as functions
∑︁

a∈Vh
αa

ψa

|ωa| from
P1(Th) with respectively αa = ∥∇r∥pp,ωa

/∥∇ra∥pp,ωa
, αa = ∥σ(∇u)− σ(∇uh)∥qq,ωa

/∥∇ra∥pp,ωa
,

and ∥σ(∇u) − σ(∇uh)∥qq,ωa
/∥∇r∥pp,ωa

for cases Chaillou–Suri, p = 1.5, #cells=1600 (left),
Chaillou–Suri, p = 10, #cells=1600 (middle), Carstensen–Klose, p = 4, #cells=428 (right).
The top and middle row express effectivity of inequalities (5.3) and (5.6b) respectively, hence
the quantities are bounded from below by one; the bottom quantity is not known to be bounded
from below by one and did not turn out to be bounded in the experiments.
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Chapter III

Analysis of PCD preconditioner
for Navier-Stokes equations

It is a tool that does suck up dust to make
what you walk on in a home tidy.

Berchenko-Kogan [4]

1 Introduction
In this chapter we are concerned with a boundary-value problem for steady flows of Navier-
Stokes fluid. Given a domain Ω ⊂ R3, an inflow boundary Γin ⊂ ∂Ω, an outflow boundary
Γout ⊂ ∂Ω, a body volumetric force f , and an inflow velocity vD, the problem is to find velocity
v and pressure p such that

v · ∇v−∆v−∇p = f in Ω, (1.1a)
div v = 0 in Ω, (1.1b)

v = vD on Γin, (1.1c)
v = 0 on ∂Ω\ (Γin ∪ Γout) , (1.1d)

∂v
∂n − pn = 0 on Γout, (1.1e)

where n is the unit outer normal to ∂Ω.
Note that despite the importance of problem (1.1) in science and engineering, this is a dif-

ficult problem from the standpoint of mathematical analysis. The classical theory of weak
solutions for incompressible flows by Leray, Hopf, Schauder, Ladyzhenskaya, Lions, Solonnikov,
and others (see [37] and references therein) is not directly applicable to this problem because
the do-nothing boundary condition (1.1e) prevents validity of a priori estimates. Roughly said,
it is difficult, if not impossible, to a priori guarantee the outflow boundary Γout to carry away
a sufficient amount of kinetic energy (which is brought from the inflow Γin or created by the
volumetric force f). A number of remedies, mostly based on certain modifications of (1.1e),
have been proposed; see, e.g., [54, 7], also [38]. We ignore this issue as it is not important
for the subsequent exposition. However, it should be remembered that it is hard to a priori
guarantee the sign of v · n on Γout for a solution of (1.1), if it exists, as well as for a sequence
of numerical approximations. On the other hand, the direction of the Dirichlet datum on Γin
is in many applications inwards so that v · n = vD · n ≤ 0 on Γin, both for a solution of (1.1),
if it exists, and properly constructed numerical approximations.

We consider a linearization of system (1.1), namely Oseen linearization which is equivalent
to the Picard iteration. The linear boundary-value problem to be solved during one nonlinear
iteration is then to find a velocity v and a pressure p for a fixed wind b, a parameter α ∈ [0, 1],
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and the other previously fixed data, such that

(1− α)b · ∇v + α div (v⊗ b)−∆v−∇p = f in Ω, (1.2a)
div v = 0 in Ω, (1.2b)

v = vD on Γin, (1.2c)
v = 0 on ∂Ω\ (Γin ∪ Γout) , (1.2d)

∂v
∂n − pn = 0 on Γout. (1.2e)

In the subsequent analysis, we may need to assume either that

b · n ≤ 0 on Γin, (1.3)

or

b · n ≥ 0 on Γout, (1.4)

depending on the particular choice of preconditioner. We keep in mind, in the spirit of the
preceding paragraph, that (1.3) is, for many numerical schemes, much less restrictive than (1.4).
The effort to obtain a priori estimates for (1.1) brings another lesson: testing by the solution
makes the convective term disappear (up to the aforementioned issue of uncontrollable energy
flux through the outflow boundary Γout) thanks to the property (1.1b) ensuring conservative
energy transport; mimicking energy estimates for the linearized problem (1.2) may require the
assumption that div b is in a certain sense small, so that the linearized kinetic energy transport
is close to conservative. First observe that if div b vanished pointwise, the problem (1.2) would
be equivalent for all α ∈ [0, 1]. The special distinct cases are α = 0 (convective form), α = 1

2
(skew-symmetric form), and α = 1 (conservative form).1 With the skew-symmetric form the
smallness of div b is not needed to obtain a priori estimates because testing by a solution makes
the whole convective term disappear.

We would like to point out that a Newton linearization of (1.1) is not in principle excluded;
more precisely, the following analysis of the preconditioner does not rely on a particular lin-
earization; (1.2) is considered a model problem which under mild assumptions admits energy
estimates. In fact, additional terms, should they appear in (1.2) from a derivative of (1.1),
easily render the convective term linearization too far from the skew-symmetry unless b is close
to a solution.

For the sake of construction of the preconditioner we write problem (1.2) in the block form

Q

(︃
v
p

)︃
=
(︃

f
0

)︃
(1.5)

with operator Q (acting from a Cartesian product of a suitable velocity space and pressure
space to its dual) given by

Q =
(︃
−∆ + (1− α)b · ∇+ α div (• ⊗ b) ∇

−div 0

)︃
. (1.6)

A good approximation to Q is an upper triangular approximation of its Schur complement
factorization

P∓ :=
(︃
−∆ + (1− α)b · ∇+ α div (• ⊗ b) ∇

0 ∓S

)︃
, (1.7)

where the pressure Schur complement S is

S = −div (−∆ + (1− α)b · ∇+ α div (• ⊗ b))−1∇. (1.8)
1The skew-symmetric form is preferred for convergence analysis of velocity-pressure numerical schemes as

testing by a solution makes the skew-symmetric term disappear (even when the discrete velocity is not divergence-
free) in order to recover energy inequality, see, e.g., [60, 16]. The conservative form is of special interest for
non-Newtonian fluids in W 1,r spaces with small r but it seems to only work with pointwise divergence-free
velocity approximations, see [16, section 3.2].
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The preconditioned operator then reads

QP−1
∓ =

(︃
I 0

−div (−∆ + (1− α)b · ∇+ α div (• ⊗ b))−1 ±I

)︃
. (1.9)

The GMRES method applied to QP−1
± converges in at most two iterations because the minimal

polynomial of QP−1
± is p(t) = (t− 1)(t∓ 1), which is the argument due to Murphy, Golub, and

Wathen [49]. But the Schur complement S is non-local for any local discretization, e.g., FEM,
of (1.5), and hence its inversion is not computationally feasible. A possible remedy is to further
approximate S by formally swapping the order of operators in (1.8). This results in a pair of
possible approximations to the inverse of the Schur complement S−1:

S−1 ≈ (−∆ + (1− α)b · ∇+ α div (b•)) (−∆)−1 =: X−1 (1.10)

and

S−1 ≈ (−∆)−1 (−∆ + (1− α)b · ∇+ α div (b•)) =: Y −1. (1.11)

This idea first appeared in studies [33, 57, 34]. It was originally motivated by constructing
an approximation to the Green’s function of the Schur complement solution operator S−1

by approximating the Green’s function of the Laplace operator by the Poisson fundamental
solution. This corresponds to the fact that, provided the wind b is constant, the commutation
leading to (1.10) or (1.11) is exact unless a boundary is present, i.e., the commutation holds if
periodic boundary conditions are assumed or Ω = R3. In this case, X−1 = Y −1 = S−1. In the
case of the boundary-value problem (1.2) the commutation is not exact and applicability of the
approach strongly depends on the boundary conditions used to define the particular operators
in (1.10) or (1.11). This is by far not an obvious problem with the exception of enclosed flows,
i.e., Γin = Γout = ∅, where it is more or less obvious that natural boundary conditions are
appropriate.

This approach has been named the pressure convection-diffusion (PCD) preconditioner due
to the presence of the convection-diffusion operator (−∆ + (1− α)b · ∇+ α div (b•)) in (1.10).
The variant (1.11) has been considered later [23, 22]. It has been immediately noticed that
PCD can be viewed as an extension of the “Stokes” preconditioner S−1 ≈ I. Indeed, when
b = 0, both PCD variants take the form X−1 = Y −1 = I, which is a good preconditioner for
the Schur complement of the Stokes problem and also for small data (low Reynolds number, or
high viscosity) Navier-Stokes problem. See [19, p. 1300] for a comprehensive list of references;
of particular note is the field-of-value analysis by Klawonn and Starke [35], who show that the
preconditioned operator QP−1

− , with the approximation S ≈ I in (1.7), has a numerical range
bounded away from zero and infinity uniformly in discretization. Nevertheless, the dependence
on data size (Reynolds number) is severe and this preconditioner quickly becomes ineffective
with increasing data. Thus the compact perturbation proportional to b in (1.10), (1.11) can
be viewed to be balancing the compact perturbation in S growing with b. This is actually
an important philosophical point of the analysis provided in this work. Rather then trying
to evaluate deviation from the commutation, i.e., the smallness of SX−1 − I or SY −1 − I,
which would be zero if the commutation was exact, we are concerned with the smallness of
SX−1 − S∞, SY −1 − S∞, respectively, where S∞ = −div (−∆)−1∇ is the Stokes Schur
complement. This is motivated by the following. While SX−1 − I, SY −1 − I vanish in the
no-boundary situation (and constant wind b), they are certainly non-zero as long as a boundary
is present. On the other hand SX−1 − S∞, SY −1 − S∞ vanish whenever b = 0 even in the
presence of the boundary. Hence the smallness of SX−1 − S∞, SY −1 − S∞ expresses the
ability of the preconditioner to compensate for the departure from the Stokes case b = 0 and
corresponds to the expected deterioration of the preconditioner with increasing b. We remark
that any published a priori estimates for SX−1, SY −1 were using the worst-case estimate
∥SX−1∥ ≤ ∥S∥∥X−1∥, and similarly with Y −1. Any such estimate is worse than an analogous
estimate for the Stokes preconditioner S−1 ≈ I, when the preconditioned Schur complement is
just S, and such estimate is thus not able to explain the success of the PCD correction X−1−I,
Y −1 − I, which compensates for the perturbation S − S∞. The important observation thus
is that the improvement of PCD over the Stokes preconditioner has never been quantitatively
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explained. To this point, we observe that SX−1−S∞ is compact and can be written as a formal
commutator of certain three differential operators; see (2.54). This makes it possibly amenable
to Fourier analysis, which we were not fully successful with but which we sketch in Section 2.7.
We stress once more that the synergistic effect of the compact perturbations S − S∞ and
X−1− I, which are both proportional to b, still remains to be fully explained. The same holds
mutatis mutandis for SY −1 − S∞; see (2.76).

In Section 2 we develop a theory for the PCD preconditioner in the setting of infinite-
dimensional function spaces.2 The setting allows us to treat both variants of the PCD precon-
ditioner and we obtain artificial boundary conditions needed for both versions as a consequence
of the effort to obtain a priori estimates and invertibility of the preconditioner. A distinctive
feature of our analysis is that we do not require restrictive conditions on the wind b such as
uniform bounds on ∥b∥∞ and ∥div b∥3, or even the assumption div b = 0, which appear more
or less explicitly in existing studies. Specifically, we only require the aforementioned correct
direction of the wind on the part of the boundary, i.e., the sign of b · n, the smallness of div b
in a certain sense, and a uniform bound in a native energy space ∥b∥1,2. The lack of a need for
extra regularity of wind is balanced in our study by an assumption of the W 1,3+ϵ-regularity for
the Dirichlet-Neumann Laplacian problem. It turns out that existing literature provides such
estimates under very reasonable conditions which are typically met in practice; see (2.2). The
section continues with an analysis of the GMRES method; specifically we relate the conver-
gence of the GMRES method applied to the preconditioned system to the convergence of the
GMRES method applied to the preconditioned Schur complement. That allows us to simplify
the analysis by considering only SX−1, SY −1. Important structural observations about the
preconditioned Schur complement are made and a certain worse-case estimate for the conver-
gence rate is obtained. We make progress towards the goal of explaining the approximation
quality of the PCD operator to the Schur complement. We sketch a simplified analysis of the
synergistic effect of the PCD correction in the preconditioner and the convection perturbation
in the Schur complement at the end of the section.

Section 3 provides a precise methodology for the construction of a discrete PCD operator,
first in a general setting, and subsequently applied to some important specific discretizations.
We obtain several novel variants of PCD, but also one which has been previously described
by a verbal description, which is, in our opinion, prone to possible misinterpretation. The
constructed operators are, under appropriate conditions, guaranteed to be invertible and inherit
in certain cases the a priori bounds of Section 2. We make progress towards establishing
approximation and convergence properties of the PCD preconditioner by transfering some of
the results of Section 2 derived for infinite-dimensional operators to the derived discrete cases.
For that there are missing pieces which might be quite technical and difficult to obtain, e.g.,
validity of the aforementioned W 1,3+ϵ-regularity (2.2) in the discrete case. We close the section
by commenting on already published works on PCD and comparing with our results.

Appendix A collects some results of functional analysis which we need in Section 2 and in
Appendix B. Appendix B contains new results concerning convergence of the GMRES method
under compact perturbations, which were obtained as a byproduct of this research and are used
in Section 2.

2 Analysis of PCD in infinite-dimensional spaces

2.1 Preliminaries
Let Ω ⊂ Rd, d = 2, 3, be a bounded Lipschitz domain and Γ, D subdomains of ∂Ω of positive
measure. Let n denote the outer unit normal of ∂Ω. We will fix the definition of Γ and D later.
We denote the Lebesgue norm ∥u∥p :=

(︁∫︁
Ω |u|

p
)︁ 1

p for any measurable function u and similarly
∥u∥p :=

(︁∫︁
Ω |u|

p
)︁ 1

p . We define the usual Sobolev space W1,p consisting of all measurable

2This approach is often called operator preconditioning but one could call that just analysis. For examples
of applications of the approach see the survey monograph by Málek and Strakoš [45] and the references therein.
The advantage of the approach is that the analysis does not rely on any assumptions about discretization and
its properties, which are often very technical. That allows to establish desirable properties of the preconditioner
in the PDE context and eventually transfer the properties to its discretized version.
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vector-valued functions u : Ω → Rd having finite norm ∥u∥1,p :=
(︂∫︁

Ω
(︁
|u|2 + |∇u|2

)︁ p
2
)︂ 1

p , and
define the usual Sobolev space W 1,p

Γ consisting of measurable scalar functions u : Ω → R with
zero trace on Γ having finite norm ∥∇u∥p :=

(︁∫︁
Ω |∇u|

p
)︁ 1

p , and similarly the vector-valued
space W1,2

D of functions vanishing on D with the norm ∥∇u∥2. We define the Sobolov-Poincaré
embedding constant

CP(p,Ω,Γ) := sup
r∈W 1,p

Γ

∥r∥p∗

∥∇r∥p

where p∗ = 3p
3−p when 1 ≤ p < 3 and p∗ =∞ when p > 3.

Now we can fix the definition of the Laplacian solve in the PCD operator (1.10) or (1.11).
We denote by AΓ : W 1,2

Γ → (W 1,2
Γ )# a Laplace operator restricted to W 1,2

Γ , i.e., ⟨AΓr, q⟩ :=∫︁
Ω∇r · ∇q for any r, q ∈ W 1,2

Γ . By the standard theory A−1
Γ ∈ L((W 1,2

Γ )#,W 1,2
Γ ) and it is

a solution operator for the mixed Poisson problem

−∆r = s in Ω, (2.1a)
r = 0 on Γ, (2.1b)

∂r

∂n = 0 on ∂Ω\Γ, (2.1c)

i.e., we write r = A−1
Γ s.

We will also use a further regularity assumption on A−1
Γ . If the Lipschitz domain Ω is

additionally a creased Lipschitz domain then there exists ϵ(Ω,Γ) > 0 and C(Ω,Γ) > 0 such
that

∥∇r∥3+ϵ(Ω,Γ) ≤ C(Ω,Γ)∥s∥(︃
W

1,
3+ϵ(Ω,Γ)
2+ϵ(Ω,Γ)

Γ

)︃# (2.2)

whenever r = A−1
Γ s, see [47, Theorem 8.2, Corollary 8.3]. Roughly said, a creased Lipschitz

domain is a Lipschitz domain with interior angle less than π at the intersection of the Dirichlet
boundary Γ and the Neumann boundary ∂Ω\Γ, thus avoiding the critical Zaremba singularity.
See [47, section 2, Definition 2.3] for a precise definition.

Summarizing the last two paragraphs, we have that A−1
Γ ∈ L

(︂
L2,W 1,2

Γ

)︂
and A−1

Γ is
even compact in this topology thanks to the Rellich-Kondrachov embedding. Furthermore,
when Ω is a creased Lipschitz domain, then A−1

Γ is compact in L
(︂
L2,W 1,3

Γ

)︂
and also in

L
(︂
L2,W

1,3+ϵ(Ω,Γ)
Γ

)︂
for some ϵ(Ω,Γ) > 0. Let us point out that the norm of A−1

Γ in all these
topologies depends solely on Ω and Γ.

Next we fix the definition of the convection operator Kα,w,Γ. For parameter α ∈ [0, 1] and
wind w ∈W1,2 we define Kα,w,Γ by duality

⟨Kα,w,Γr, q⟩ =
∫︂

Ω
w · ∇r q + α div w r q

whenever r, q ∈W 1,2
Γ or r ∈ L2, q ∈W 1,3+ϵ

Γ ,

{︃
ϵ ≥ 0 if α = 0,
ϵ > 0 if α ∈ (0, 1]. (2.3)

This definition includes the standard convective term when α = 0, the skew-symmetric form
of the convective term when α = 1

2 , and the conservative form when α = 1. Obviously
Kα,w,Γ ∈ L(W 1,2

Γ , (W 1,2
Γ )#) thanks to the Sobolev embedding W 1,2 ↪→ L6 and also Kα,w,Γ ∈

L(W 1,3+ϵ
Γ , L2) with any ϵ from (2.3).

Now we are in the position to characterize the injectivity of the convection-diffusion operator
Fα,w,Γ := AΓ +Kα,w,Γ, which is also bounded in L(W 1,2

Γ , (W 1,2
Γ )#) for any w ∈W1,2.

Lemma 2.1 (Ellipticity of Fα,w,Γ). Let w ∈W1,2 and w · n ≥ 0 on ∂Ω\Γ. Then it holds that

inf
r∈W 1,2

Γ

⟨Fα,w,Γr, r⟩
∥∇r∥2

2
≥ 1−

⃓⃓
α− 1

2
⃓⃓
CP(2,Ω,Γ)2∥ div w∥ 3

2
. (2.4)
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Proof. Fix r ∈ W 1,2
Γ and estimate using integration by parts (noticing r = 0 on Γ), the non-

negativity of w · n on ∂Ω\Γ, Hölder’s inequality, and the Sobolev-Poincaré inequality ∥r∥6 ≤
CP(2,Ω,Γ)∥∇r∥2:

⟨Fα,w,Γr, r⟩ = ∥∇r∥2
2 +

∫︂
Ω

w · ∇r
2

2 + 2α
∫︂

Ω
div wr2

2

= ∥∇r∥2
2 + (2α− 1)

∫︂
Ω

div wr2

2 +
∫︂
∂Ω\Γ

w · nr
2

2

≥ ∥∇r∥2
2 −
|2α− 1|

2 ∥div w∥ 3
2
∥r∥2

6

≥
(︂

1−
⃓⃓
α− 1

2
⃓⃓
CP(2,Ω,Γ)2∥ div w∥ 3

2

)︂
∥∇r∥2

2

which is the desired estimate.

Finally we can define the linear operator

X−1
α,w,Γ := Fα,w,ΓA

−1
Γ = I +Kα,w,ΓA

−1
Γ . (2.5)

By the considerations above, the operator X−1
α,w,Γ is bounded in L((W 1,2

Γ )#) := L((W 1,2
Γ )#,

(W 1,2
Γ )#) whenever Ω ⊂ R3 is a Lipschitz domain, Γ ⊂ ∂Ω is open, α ∈ [0, 1], and w ∈W1,2.

Note that this abstract setting will allow us to analyze both PCD versions (1.10) and (1.11) by
considering either X−1

α,w,Γ or Y −1
α,w,Γ := X−#

1−α,−w,Γ, the adjoint of X−1
1−α,−w,Γ. We will discuss

the construction of the Y -variant and the choice of Γ for both versions in detail in Section 2.6.
We will now assume general conditions we expect from the velocity convection-diffusion

operator, which will be needed for subsequent analysis. Its example appeared informally in the
upper-leftmost block of the operator in system (1.6). Let us assume that we are looking for
a Picard velocity update in function space W1,2

D := (W 1,2
D )3 and for pressure in L2. Here D

is an open subdomain of ∂Ω of positive measure, representing the boundary conditions (1.2c),
(1.2d). Indeed, since the Oseen system (1.2) is linear, we can subtract a previous Picard iterate
assumed to fulfill boundary conditions (1.2c), (1.2d) and look for an update δv, which fulfills
δv = 0 on D.

We assume that there is an operator F ∈ L(W1,2
D , (W1,2

D )#) such that

F := inf
v∈W1,2

D

⟨Fv,v⟩
∥∇v∥2

2
> 0. (2.6)

By virtue of the Lax-Milgram theorem this implies F−1 ∈ L((W1,2
D )#,W1,2

D ) and
∥F−1∥L((W1,2

D )#,W1,2
D ) ≤ F−1.

If the operator F has similar structural properties as Fα,w,Γ then estimate (2.6) can be
assured in a similar fashion as in Lemma 2.1. On the other hand if F comes from the Newton
linearization of the term v ↦→ (1−α)v·∇v+α div(v⊗v)−∆v, then the ellipticity condition (2.6)
might not hold unless b is close to a solution. In any case we will assume that (2.6) holds.
Furthermore, we will assume that the convection part of F is compact in L(W1,2

D , (W1,2
D )#),

i.e., with definition of the velocity Laplacian A ∈ L(W1,2
D , (W1,2

D )#) by

⟨Aϕ,ψ⟩ =
∫︂

Ω
∇ϕ :∇ψ for all ϕ,ψ ∈W1,2

D ,

we assume that K := F − A is compact in L(W1,2
D , (W1,2

D )#). This is true for both Picard
and Newton linearization. But one can think of a more general situation, e.g., F featuring the
SUPG stabilization, etc.; in such a case one has to verify the assumption on a case-by-case
basis.

Now we can define the pressure Schur complement as a mapping given by S := −div F−1∇,
where div ∈ L(W1,2

D , L2) as usual and ∇ = − div# ∈ L(L2, (W1,2
D )#). More precisely, S : L2 →

L2 is defined by S : q ↦→ divϕ such that ϕ ∈W1,2
D and

⟨Fϕ,ψ⟩ =
∫︂

Ω
q divψ for all ψ ∈W1,2

D ;
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the definition clearly makes sense due to the ellipticity assumption (2.6) and ensures that
S ∈ L(L2). The inf-sup constant of the divergence, or the Babuška-Brezzi constant, β(Ω,D) is
defined as the largest constant fulfilling

β(Ω,D) ∥q∥2 ≤ sup
v∈W1,2

D

∫︁
Ω q div v
∥∇v∥2

= ∥∇q∥(W1,2
D )# for all q ∈ L2. (2.7)

It is well known, provided that Ω is a Lipschitz domain and D = ∂Ω, that there exists β(Ω, ∂Ω) >
0 such that (2.7) holds for all q ∈ L2 with

∫︁
Ω q = 0; see Lemma I.A.7. We will show that β(Ω,D)

in (2.7) is also positive in the case |∂Ω \ D| > 0, now with any q ∈ L2, with arbitrary value
of
∫︁

Ω q.

Lemma 2.2. Let Ω ⊂ Rd be a bounded Lipschitz domain and D be an open subset of ∂Ω such
that |∂Ω \D| > 0. Then there exists β(Ω,D) > 0 such that (2.7) holds.

Proof. The strategy of the proof is to extend f ∈ L2(Ω) by f ′ ∈ L2(Ω′) with certain Ω′ such
that

∫︁
Ω′ f

′ = 0, which allows us to use the classical Bogovskiĭ operator for the no-slip boundary
condition.

Extend Ω by a bounded Lipchitz domain Ω′ ⊂ Rd such that Ω′ ⊃ Ω and ∂Ω ∩ ∂Ω′ = D.
Hence Ω′ \ Ω has positive measure. We will show that there exists C(Ω,Ω′) > 0 such that for
every f ∈ L2(Ω) there exists f ′ ∈ L2(Ω′) such that f ′ = f in Ω,

∫︁
Ω′ f

′ = 0, and

∥f ′∥2,Ω′ ≤ C(Ω,Ω′)∥f∥2,Ω. (2.8)

Fix f ∈ L2, set f ′ = f in Ω, and set f ′ to be a constant equal to −
∫︁

Ω f/|Ω
′ \ Ω| in Ω′ \ Ω.

Hence f ′ ∈ L2(Ω′) and
∫︁

Ω′ f
′ = 0. It remains to show (2.8). Then we have

∥f ′∥2
2,Ω′\Ω =

∫︂
Ω′\Ω

|
∫︁

Ω f |
2

|Ω′ \ Ω|2 ≤
|Ω|
|Ω′ \ Ω| ∥f∥

2
2,Ω,

so that (2.8) holds with C(Ω,Ω′) ≤
√︂

1 + |Ω|
|Ω′\Ω| <∞.

Consider the Bogovskiĭ operator on the extended domain B′ : L2(Ω′)/R→W1,2
∂Ω′(Ω′), which

fulfills

divB′g = g in Ω′, ∥∇B′g∥2,Ω′ ≤ CB′∥g∥2,Ω′

for all g ∈ L2(Ω′) with
∫︂

Ω′
g = 0.

(2.9)

Such B′ indeed exists; see Remark I.A.8. Now for f ∈ L2(Ω) consider the extension f ′ ∈ L2(Ω′)
from the previous paragraph and define B : L2(Ω) → W1,2

D (Ω) by Bf = (B′f ′)
Ω

. Using (2.8)
and (2.9) immediately yields

divBg = g in Ω, ∥∇Bg∥2,Ω ≤ C(Ω,Ω′)CB′∥g∥2,Ω

for all g ∈ L2(Ω).
(2.10)

Hence for any q ∈ L2(Ω) we have, by (2.10),

sup
v∈W1,2

D

∫︁
Ω q div v
∥∇v∥2,Ω

≥
∫︁

Ω q divBq
∥∇Bq∥2,Ω

≥
∥q∥2

2,Ω

∥∇Bq∥2,Ω
≥ ∥q∥2,Ω

C(Ω,Ω′)CB′
,

which confirms that β(Ω,D) in (2.7) is positive and the proof is finished.

Denote the norm of div : W1,2
D → L2 as

Σ(Ω,D) := sup
v∈W1,2

D

∥ div v∥2

∥∇v∥2
. (2.11)

Elementary computation shows that Σ(Ω,D) ≤
√
d where d is a spatial dimension, i.e., for

Ω ⊂ Rd. On the other hand Σ(Ω,D) = 1 whenever D = ∂Ω; this follows from integration by
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parts and density of smooth functions compactly-supported in Ω ∪ (∂Ω \ Γ); see [59, equations
(7), (8)]. In the sequel we are mostly concerned with the situation when Ω ⊂ R3 is a bounded
Lipschitz domain, D is an open subset of ∂Ω such that |D| > 0 and |∂Ω \ D| > 0.3 In this
case Lemma 2.2 yields β(Ω,D) > 0 and ∥∇ · ∥2 is a norm on W1,2

D so that ∥div ∥L(W1,2
D ,L2) =

Σ(Ω,D) ≤
√

3. We can continue with a priori estimates for the Schur complement.

Lemma 2.3. Let the conditions of Lemma 2.2 be fulfilled. Furthermore assume that F ∈
L(W1,2

D , (W1,2
D )#) satisfies estimate (2.6). Then S = −divF−1

α,w,Γ∇ fulfills

∥S∥L(L2) ≤ Σ(Ω,D)2∥F−1∥L((W1,2
D )#,W1,2

D ) ≤ Σ(Ω,D)2F−1, (2.12)

S := inf
q∈L2

∫︁
Ω Sq q

∥q∥2
2
≥ β(Ω,D)2 F
∥F∥2

L(W1,2
D ,(W1,2

D )#)
, (2.13)

∥S−1∥L(L2) ≤ S−1 ≤
∥F∥2

L(W1,2
D ,(W1,2

D )#)

β(Ω,D)2 F . (2.14)

Proof. The first inequality of (2.12) comes from the definition considering that
∥∇∥L(L2,(W1,2

D )#) = ∥ div ∥L(W1,2
D ,L2) = Σ(Ω,D).

The second inequality of (2.12) is the standard Lax-Milgram theory, see (2.6) above. By
the same argument, (2.14) is a consequence of (2.13).

The ellipticity estimate (2.13) is proved with the aid of (2.7) by the following chain of
inequalities

inf
q∈L2

∫︁
Ω Sq q

∥q∥2
2

= inf
q∈L2

⟨︁
F−1∇q,∇q

⟩︁
∥q∥2

2
≥ β(Ω,D)2 inf

q∈L2

⟨︁
F−1∇q,∇q

⟩︁
∥∇q∥2

(W1,2
D )#

= β(Ω,D)2 inf
z∈∇L2

⟨︁
F−1z, z

⟩︁
∥z∥2

(W1,2
D )#

≥ β(Ω,D)2 inf
z∈(W1,2

D )#

⟨︁
F−1z, z

⟩︁
∥z∥2

(W1,2
D )#

= β(Ω,D)2 inf
v∈W1,2

D

⟨Fv,v⟩
∥Fv∥2

(W1,2
D )#

≥ β(Ω,D)2

∥F∥2
L(W1,2

D ,(W1,2
D )#)

inf
v∈W1,2

D

⟨Fv,v⟩
∥∇v∥2

2
.

Analogously we define the Stokes Schur complement S∞ = −div A−1∇, for which Lemma 2.3
simplifies to the following.

Lemma 2.4. Let the conditions of Lemma 2.2 be fulfilled. Then

∥S∞∥L(L2) = Σ(Ω,D)2, ∥(S∞)−1∥−1
L(L2) = inf

q∈L2

∫︁
Ω S

∞q q

∥q∥2
2

= β(Ω,D)2. (2.15)

We leave the proof as an exercise.
Study of the Stokes Schur complement S∞, also called the Cosserat operator, dates back

to work by brothers Cosserat and Cosserat [10]; see also the survey [36]. The recent work by
Costabel et al. [12] provides a summary of existing results and certain new developments in the
theory of essential spectrum of S∞ for the case D = ∂Ω. We are not aware of a corresponding
result for general D.4 Nevertheless the moral is that σess(S∞) on corner domains contains
non-trivial intervals.

3The case D = ∅ is not interesting for applications. The case D = ∂Ω requires changing the pressure space
L2 into L2/R ∼= {q ∈ L2,

∫︁
Ω q = 0} in (2.7) in order to get β(Ω, ∂Ω) > 0, but most of the following results stay

true mutatis mutandis.
4Costabel et al. [12] show for Ω planar polygonal domain and D = ∂Ω that every corner of opening ω

contributes to the essential spectrum of S∞ by the interval [ 1
2 − | sin ω|

2ω
, 1

2 + | sin ω|
2ω

]. Moreover, 1 is an eigenvalue
of infinite multiplicity. To see this take q = − div ∇ϕ with any ϕ smooth and compactly supported in Ω.
Hence ∇ϕ is in W1,2

D , the domain of A = − div ∇
W1,2

D
, and

S∞q = div A−1∇ div ∇ϕ = div A−1 div ∇∇ϕ = − div ∇ϕ = q. (2.16)

This is the complete description of σess(S∞) in this case. It is not known whether β(Ω, D) = inf σess(S∞).
Surprisingly, the exact value of β(Ω, D) is not known even for the unit square domain. The study also provides
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2.2 A priori estimates and invertibility of the PCD operator
By (2.5) we defined X−1

α,w,Γ ∈ L((W 1,2
Γ )#). But the first immediate question is whether this

operator (continuously) maps L2 functions to L2 functions. In the following lemmas we give
various possible conditions for ensuring this.

Lemma 2.5 (L2-bound with W 1,3+ϵ Laplacian regularity). Let Ω ⊂ R3 be a Lipschitz domain,
Γ ⊂ ∂Ω open, α ∈ [0, 1], and w ∈ W1,2. Furthermore, let there exist ϵ ≥ 0 when α = 0,
ϵ > 0 when α ∈ (0, 1] such that A−1

Γ maps L2 continuously into W 1,3+ϵ
Γ . Then X−1

α,w,Γ maps L2

continuously into L2.
Moreover

∥X−1
α,w,Γ∥L(L2) ≤ 1 + ∥w∥6 ∥A−1

Γ ∥L(L2,W 1,3
Γ )

+ α ∥ div w∥2 CP(3 + ϵ,Ω,Γ) ∥A−1
Γ ∥L(L2,W 1,3+ϵ

Γ ).
(2.17)

Corollary 2.6 (L2-bound with Ω creased Lipschitz domain). Let Ω ⊂ R3 with Dirichlet bound-
ary Γ and Neumann boundary ∂Ω\Γ is a creased Lipschitz domain, α ∈ [0, 1], and w ∈W1,2.
Then X−1

α,w,Γ maps L2 continuously into L2.
Furthermore there exists C(Ω,Γ) > 0 such that

∥X−1
α,w,Γ∥L(L2) ≤ 1 + C(Ω,Γ) (∥w∥6 + α∥ div w∥2) . (2.18)

Lemma 2.7 (L2-bound with ∥w∥∞ and ∥ div w∥3 bound). Let Ω ⊂ R3 be a Lipschitz domain,
Γ ⊂ ∂Ω is open, α ∈ [0, 1], and w ∈ L∞ with div w ∈ L3. Then X−1

α,w,Γ maps L2 continuously
into L2.

Moreover

∥X−1
α,w,Γ∥L(L2) ≤ 1 + ∥w∥∞ ∥A−1

Γ ∥L(L2,W 1,2
Γ )

+ α ∥ div w∥3 CP(2,Ω,Γ) ∥A−1
Γ ∥L(L2,W 1,2

Γ )

≤ 1 + |Ω| 13 CP(2,Ω,Γ) (∥w∥∞ + CP(2,Ω,Γ)α ∥ div w∥3) .

(2.19)

Proof of lemmas and corollary. The assertions in the lemmas follow using Hölder’s inequality
and the Poincaré-Sobolev inequalities. The last inequality in (2.19) holds due to

∥A−1
Γ ∥L(L2,W 1,2

Γ ) ≤ |Ω|
1
3 CP(2,Ω,Γ)∥A−1

Γ ∥L((W 1,2
Γ )#,W 1,2

Γ ) = |Ω| 13 CP(2,Ω,Γ).

The corollary is then a consequence of W 1,3+ϵ-theory for creased Lipschitz domains, see (2.2),
respectively.

Employing the W 1,3+ϵ-estimate, valid on creased Lipschitz domains, to assure boundedness of
X−1
α,w,Γ in L(L2) uniformly in ∥w∥1,2, as presented in Corollary 2.6, seems to be new. It is

interesting that this choice of function spaces and Lebesgue exponents works just sharply in
spatial dimension 3.

In the following we characterize when X−1
α,w,Γ is injective as a mapping in L((W 1,2

Γ )#).
Notice that boundedness in L(L2) is not needed in particular.

Lemma 2.8 (Injectivity of X−1
α,w,Γ). Let Ω ⊂ R3 be a Lipschitz domain, Γ ⊂ ∂Ω be open,

α ∈ [0, 1], and w ∈W1,2 with w · n ≥ 0 on ∂Ω\Γ. Furthermore assume that⃓⃓
α− 1

2
⃓⃓
∥ div w∥ 3

2
<

1
CP(2,Ω,Γ)2 . (2.20)

Then X−1
α,w,Γ is injective on (W 1,2

Γ )#.
some description of σess(S∞) for three-dimensional corner domains. A description of σess(S∞) for general D is
missing, but it seems plausible that corners belonging to the interior of D will, at least qualitatively, contribute
in the same way, as the related eigenfunctions are highly localized. On the other hand, the situation around
∂Ω \ D might be quite different.



90 CHAPTER III. PCD PRECONDITIONER

Proof. A−1
Γ is injective on (W 1,2

Γ )# and Fα,w,Γ is injective on A−1
Γ ((W 1,2

Γ )#) = W 1,2
Γ under the

assumptions by Lemma 2.1.

Now we can establish invertibility of X−1
α,w,Γ in L(L2).

Theorem 2.9. Assume X−1
α,w,Γ is in L(L2) (as for example assured by one of Lemma 2.5,

Corollary 2.6, or Lemma 2.7). Furthermore let us assume that the conditions of Lemma 2.8,
in particular (2.20), are met. Then X−1

α,w,Γ maps L2 onto itself. Hence the inverse operator
Xα,w,Γ exists and is continuous in L(L2).

Proof. X−1
α,w,Γ − I = Kα,w,ΓA

−1
Γ is compact in L(L2); see (2.5). Hence from its injectivity the

operator X−1
α,w,Γ is surjective by the Fredholm alternative, and hence invertible. Moreover, by

the bounded inverse theorem (Theorem A.1), its inverse is also bounded.

We conclude that Theorem 2.9 ensures that Xα,w,Γ exists, mapping L2 continuously onto
itself. But it does not give us a bound on the norm ∥Xα,w,Γ∥L(L2) in terms of the data, in
particular in certain norms of w and div w. Our goal will now be to get dependence only on
the norm of w in the natural energy space W1,2 and eventually on the smallness of div w but
definitely avoiding a dependence on ∥w∥∞ and ∥ div w∥3 (or even the assumption div w = 0)
which has appeared in most of the literature. But first we start with the case with the restrictive
∥w∥∞ + α∥ div w∥3 dependence for comparison with published results. Then we deal with
situations in which w is small in some sense allowing for especially simple treatment. We finish
this section by providing bounds which depend solely on ∥w∥6 and α∥ div w∥2.

Wind controlled in L∞ and wind divergence in L3 (restrictive case)

In the preceding section we gave sufficient conditions for the existence of Xα,w,Γ continuous on
L2. Assume now this is the case. Then we can write

Xα,w,Γ = I −Kα,w,ΓF
−1
α,w,Γ (2.21)

which is simply confirmed by checking (2.5). Assuming further that A−1
Γ ∈ L(L2,W 1,q

Γ ) (note
that q = 3 + ϵ, 3, 2 were important cases in Lemma 2.5, 2.7, and Corollary 2.6) and using the
formula

F−1
α,w,Γ = A−1

Γ Xα,w,Γ, (2.22)

we conclude that F−1
α,w,Γ maps L2 into W 1,q

Γ .
It is not obvious that the bounds hold in the case q = 3 + ϵ, 3. On the other hand for q = 2,

the Laplacian solve A−1
Γ is bounded by the standard theory and the convection-diffusion solve

F−1
α,w,Γ is bounded by the ellipticity estimate of Lemma 2.1. This is counter-balanced by the

need for a more severe bound on Kα,w,Γ resulting in strong requirements on the wind w. Now
we formulate this precisely in the following theorem.

Theorem 2.10. Suppose the assumptions of Theorem 2.9 are satisfied. Then the following
bound holds:

∥Xα,w,Γ∥L(L2) ≤ 1 + CP(2,Ω,Γ) |Ω| 13 (∥w∥∞ + αCP(2,Ω,Γ) ∥ div w∥3)

×
(︂

1−
⃓⃓
α− 1

2
⃓⃓
CP(2,Ω,Γ)2 ∥ div w∥ 3

2

)︂−1
.

(2.23)

Proof. By the assumptions, Xα,w,Γ ∈ L(L2) and formula (2.21) holds. We can express the
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norm ∥F−1
α,w,Γ∥L((W 1,2

Γ )#,W 1,2
Γ ) as

∥F−1
α,w,Γ∥

−1
L((W 1,2

Γ )#,W 1,2
Γ ) =

[︄
sup

f∈(W 1,2
Γ )#

∥∇F−1
α,w,Γf∥2

∥f∥(W 1,2
Γ )#

]︄−1

= inf
f∈(W 1,2

Γ )#

∥f∥(W 1,2
Γ )#

∥∇F−1
α,w,Γf∥2

= inf
r∈W 1,2

Γ

∥Fα,w,Γr∥(W 1,2
Γ )#

∥∇r∥2

= inf
r∈W 1,2

Γ

sup
s∈W 1,2

Γ

⟨Fα,w,Γr, s⟩
∥∇r∥2∥∇s∥2

≥ inf
r∈W 1,2

Γ

⟨Fα,w,Γr, r⟩
∥∇r∥2

2

≥ 1−
⃓⃓
α− 1

2
⃓⃓
CP(2,Ω,Γ)2∥ div w∥ 3

2
,

(2.24)

where the third equality holds due to the surjectivity of Fα,w,Γ ∈ L(W 1,2
Γ , (W 1,2

Γ )#) by the
standard Lax-Milgram theory. The last inequality follows from Lemma 2.1. Combining the
embedding

∥r∥2 ≤ |Ω|
1
3 ∥r∥6 ≤ CP(2,Ω,Γ)|Ω| 13 ∥∇r∥2 for all r ∈W 1,2

Γ

with (2.24), we get

∥F−1
α,w,Γ∥L(L2,W 1,2

Γ ) ≤ CP(2,Ω,Γ) |Ω| 13
(︂

1−
⃓⃓
α− 1

2
⃓⃓
CP(2,Ω,Γ)2∥ div w∥ 3

2

)︂−1
. (2.25)

For the convective term we have the estimate

∥Kα,w,Γ∥L(W 1,2
Γ ,L2) ≤ ∥w∥∞ + αCP(2,Ω,Γ) ∥ div w∥3. (2.26)

Noticing the formula (2.21) and using estimates (2.25) and (2.26) we obtain the desired estimate.

Small wind

Another circumstance in which the bounds on ∥Xα,w,Γ∥L(L2) can be derived is the situation
of small data. By the formula (2.5) it is obvious that for w small enough, X−1

α,w,Γ is invert-
ible, Xα,w,Γ can be expressed by a Neumann series, and norm ∥Xα,w,Γ∥L(L2) is bounded by
a geometric series (of numbers). This will be formulated precisely in the following lemma.

Lemma 2.11 (Small data). Assume X−1
α,w,Γ is in L(L2) (as for example assured by one of

Lemma 2.5, Corollary 2.6, or Lemma 2.7).
If

∥Kα,w,ΓA
−1
Γ ∥L(L2) < 1, (2.27)

then Xα,w,Γ ∈ L(L2) exists, is given by formula

Xα,w,Γ =
∞∑︂
k=0

(︁
−Kα,w,ΓA

−1
Γ
)︁k
, (2.28)

and

∥Xα,w,Γ∥L(L2) ≤
(︁
1− ∥Kα,w,ΓA

−1
Γ ∥L(L2)

)︁−1
. (2.29)

If in particular, any of the bounds (2.17), (2.18), or (2.19) hold with a right-hand side smaller
than 2, then (2.27) is fulfilled, and if we denote the respective right-hand side by rhs it holds

∥Xα,w,Γ∥L(L2) ≤ (1− (rhs− 1))−1
. (2.30)

Now we can express the smallness condition (2.27) in terms of ∥w∥6 and ∥ div w∥2 norms as in
Lemma 2.5.
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Corollary 2.12. Assume the conditions of Lemma 2.5 are met. Further assume that

∥w∥6 ∥A−1
Γ ∥L(L2,W 1,3

Γ ) + α ∥div w∥2 CP(3 + ϵ,Ω,Γ) ∥A−1
Γ ∥L(L2,W 1,3+ϵ

Γ ) < 1. (2.31)

Then Xα,w,Γ ∈ L(L2) exists, is given by formula (2.28), and

∥Xα,w,Γ∥L(L2) ≤
(︃

1− ∥w∥6 ∥A−1
Γ ∥L(L2,W 1,3

Γ )

− α ∥ div w∥2 CP(3 + ϵ,Ω,Γ) ∥A−1
Γ ∥L(L2,W 1,3+ϵ

Γ )

)︃−1
.

(2.32)

In particular, under the conditions of Corollary 2.6, if

∥w∥6 + α∥ div w∥2 < C(Ω,Γ)−1 (2.33)

with C(Ω,Γ) from Corollary 2.6, then Xα,w,Γ ∈ L(L2) exists, is given by formula (2.28), and

∥Xα,w,Γ∥L(L2) ≤
(︃

1− C(Ω,Γ) (∥w∥6 + α∥ div w∥2)
)︃−1

. (2.34)

Now we briefly mention a stronger mode of smallness which allows one to obtain field-of-
values bounds for the composition SX−1

α,w,Γ.

Observation 2.13 (Very small data). Let F ∈ L(W1,2
D , (W1,2

D )#) satisfy estimate (2.6). As-
sume X−1

α,w,Γ is in L(L2) (as for example assured by one of Lemma 2.5, Corollary 2.6, or
Lemma 2.7).

If

∥Kα,w,ΓA
−1
Γ ∥L(L2) <

S

∥S∥L(L2)
, (2.35)

then Xα,w,Γ ∈ L(L2) exists and is given by formula (2.28), estimate (2.29) holds, and

inf
x∈L2

⟨︂
SX−1

α,w,Γ x, x
⟩︂

∥x∥2
2

≥ S − ∥S∥L(L2)∥Kα,w,ΓA
−1
Γ ∥L(L2) > 0. (2.36)

Proof. This easily follows from Lemma 2.3.

Wind controlled in L6 and its divergence in L2 (the case with no restriction)

Now we focus on the case with less restrictive conditions on wind w. We want to avoid a depen-
dence on norms ∥w∥∞ and ∥ div w∥3 appearing in (2.23). Under the conditions of Lemma 2.5
(or Corollary 2.6) and Theorem 2.9 we know by formula (2.22) that F−1

α,w,Γ ∈ L(L2,W 1,3+ϵ
Γ )

and Xα,w,Γ ∈ L(L2) but we do not know yet how the operator norm ∥Xα,w,Γ∥L(L2) depends on
w.

Lemma 2.14 (W 1,3-estimate for convection-diffusion solution). Let α ∈ [0, 1] and ϵ ∈ [0, 3√
5 )

be fixed. Let Ω be a bounded Lipschitz domain such that A−1
Γ ∈ L((W 1, 3+ϵ

2+ϵ

Γ )#,W 1,3+ϵ
Γ ). Let

w ∈W1,2 be such that F−1
α,w,Γ ∈ L(L2,W 1,2

Γ ). Denote

CA−1
Γ

(3 + ϵ) := ∥A−1
Γ ∥

L((W
1,

3+ϵ
2+ϵ

Γ )#,W 1,3+ϵ
Γ )

CF−1
α,w,Γ

:= ∥F−1
α,w,Γ∥L(L2,W 1,2

Γ ).

It holds that

∥F−1
α,w,Γ∥L(L2,W 1,3

Γ ) ≤ CA−1
Γ

(3)CP( 3
2 ,Ω,Γ)

×
[︂
|Ω| 16 + (∥w∥6 + CP(2,Ω,Γ)α ∥ div w∥2)CF−1

α,w,Γ

]︂
.

(2.37)
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If in addition ϵ ∈ (0, 3√
5 ), then

∥F−1
α,w,Γ∥L(L2,W 1,3+ϵ

Γ ) ≤
(1+ϵ)(1+ ϵ

3 )
(1+

√
5

3 )(1−
√

5
3 )

CA−1
Γ

(3 + ϵ)CP( 3+ϵ
2+ϵ ,Ω,Γ) |Ω|

1
6

3−ϵ
3+ϵ

+ (1+ ϵ
3 )2

(1+
√

5
3 )(1−

√
5

3 )

[︂
CA−1

Γ
(3 + ϵ)CP( 3+ϵ

2+ϵ ,Ω,Γ) ∥w∥6

]︂ 1+ϵ
1+ ϵ

3 CF−1
α,w,Γ

+ (1+ϵ)(1− ϵ
3 )

(1+
√

5
3 )(1−

√
5

3 )
CP(2,Ω,Γ)CP(3 + ϵ,Ω,Γ)

2
3 ϵ

1− ϵ
3

×
[︂
CA−1

Γ
(3 + ϵ)CP( 3+ϵ

2+ϵ ,Ω,Γ)α ∥ div w∥2

]︂ 1+ ϵ
3

1− ϵ
3 CF−1

α,w,Γ
.

(2.38)

Proof. Fix f ∈ L2. By the assumptions there exists u ∈ W 1,2 such that f = Fα,w,Γu =
AΓu + Kα,w,Γu and ∥∇u∥2 ≤ CF−1

α,w,Γ
∥f∥2. We can therefore write u = A−1

Γ (f −Kα,w,Γu) =
A−1

Γ f −A−1
Γ (w · ∇u)−A−1

Γ (uα div w). The first term can be estimated by

∥∇A−1
Γ f∥3+ϵ ≤ |Ω|

1
6

3−ϵ
3+ϵ CP( 3+ϵ

2+ϵ ,Ω,Γ)CA−1
Γ

(3 + ϵ). (2.39)

The second term can be estimated by

∥∇A−1
Γ (w · ∇u)∥3+ϵ ≤ CA−1

Γ
(3 + ϵ) ∥w∥6 CP( 3+ϵ

2+ϵ ,Ω,Γ) ∥∇u∥1−µ
2 ∥∇u∥µ3+ϵ, (2.40)

where we used the interpolation ∥∇u∥( 1−µ
2 + µ

3+ϵ )−1 ≤ ∥∇u∥1−µ
2 ∥∇u∥µ3+ϵ and Hölder’s inequality

assuming 1−µ
2 + µ

3+ϵ + 1
6 + 1

(3+ϵ)′∗ = 1. This requirement gives µ = 2
3

ϵ
1+ϵ and shows that the

estimate works whenever ϵ ≥ 0. The third term can be estimated by

∥∇A−1
Γ (uα div w)∥3+ϵ ≤ CA−1

Γ
(3 + ϵ)α ∥ div w∥2 CP( 3+ϵ

2+ϵ ,Ω,Γ)

× (CP(2,Ω,Γ)∥∇u∥2)1−λ (CP(3 + ϵ,Ω,Γ)∥∇u∥3+ϵ)λ
(2.41)

with the interpolation ∥u∥ 6
1−λ
≤ ∥u∥1−λ

6 ∥u∥λ∞ and Hölder’s inequality assuming 1−λ
6 + 1

2 +
1

(3+ϵ)′∗ = 1. This condition gives λ = 2
3

ϵ
1+ ϵ

3
, which is in the range (0, 1) for ϵ ∈ (0, 3) and

is λ = 0 when ϵ = 0. Hence the term ∥u∥∞ does not appear in the case ϵ = 0, when the
embedding to L∞ does not hold. Collecting (2.39), (2.40), and (2.41) gives

∥∇u∥3+ϵ ≤ C0 + C1∥∇u∥1−µ
2 ∥∇u∥µ3+ϵ + C2∥∇u∥1−λ

2 ∥∇u∥λ3+ϵ (2.42)

with C0, C1, and C2 given by the quantities from (2.39), (2.40), and (2.41). Using Young’s
inequality and subtracting gives

(1− µ− λ) ∥∇u∥3+ϵ ≤ C0 +
[︃
(1− µ)C

1
1−µ

1 + (1− λ)C
1

1−λ

2

]︃
∥∇u∥2, (2.43)

which is the desired estimate if 1−µ−λ > 0 which happens if ϵ < 3√
5 . This proves (2.38). The

estimate (2.37) is a special case for ϵ = 0.

Theorem 2.15. Let Ω be a bounded Lipschitz domain, Γ ⊂ ∂Ω be an open domain, and
α ∈ [0, 1]. Assume that A−1

Γ ∈ L((W 1, 3+ϵ
2+ϵ

Γ )#,W 1,3+ϵ
Γ ) for some ϵ ∈ (0, 3√

5 ) if α = 0 or for some
ϵ ∈ [0, 3√

5 ) if α ∈ (0, 1]. Let w ∈W1,2 be such that w ·n ≥ 0 on ∂Ω\Γ. Also assume that div w
is sufficiently small in the sense of (2.20).

Then there exist positive constants C0(Ω,Γ), C1(Ω,Γ), C2(Ω,Γ), C3(Ω,Γ), C4(Ω,Γ),
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C5(Ω,Γ), 1 < Λ0(Ω,Γ) < 1 +
√

5−1
2 , 1 < Λ1(Ω,Γ) < 2 +

√
5−1
2 such that

∥Xα,w,Γ∥L(L2) ≤ 1 + C0(Ω,Γ) ∥w∥6 + C1(Ω,Γ)α ∥ div w∥2

+
[︁
C2(Ω,Γ) ∥w∥2

6 + C3(Ω,Γ)α ∥ div w∥2 ∥w∥6

+ C4(Ω,Γ)α ∥ div w∥2 ∥w∥Λ0(Ω,Γ)
6

+ C5(Ω,Γ) (α ∥ div w∥2)1+Λ1(Ω,Γ)
]︂

×
(︂

1−
⃓⃓
α− 1

2
⃓⃓
CP(2,Ω,Γ)2 ∥ div w∥ 3

2

)︂−1
.

(2.44)

Proof. Using the formula (2.21) we can estimate

∥Xα,w,Γ∥L(L2) ≤ 1+∥w∥6 ∥F−1
α,w,Γ∥L(L2,W 1,3

Γ )

+α ∥ div w∥2 CP(3 + ϵ,Ω,Γ) ∥F−1
α,w,Γ∥L(L2,W 1,3+ϵ

Γ ).
(2.45)

By Lemma 2.1, the Sobolev-Poincaré embedding, and Hölder’s inequality, it holds that

∥F−1
α,w,Γ∥L(L2,W 1,2

Γ ) ≤ |Ω|
1
3 CP(2,Ω,Γ)

(︂
1−

⃓⃓
α− 1

2
⃓⃓
CP(2,Ω,Γ)2 ∥ div w∥ 3

2

)︂−1
. (2.46)

Combining estimates from Lemma 2.14 with (2.45) and (2.46) gives the desired estimate. Con-
stants Λ0(Ω,Γ) := 1+ϵ

1+ ϵ
3

and Λ1(Ω,Γ) := 1+ ϵ
3

1− ϵ
3

are bounded from above by 1+
√

5−1
2 and 2+

√
5−1
2 ,

respectively, due to the requirement ϵ < 3√
5 .

When α = 0, estimates (2.45) and (2.37) show that ϵ = 0 is sufficient.

Summary of obtained a priori bounds

Above we have obtained bounds on ∥X−1
α,w,Γ∥L(L2) and ∥Xα,w,Γ∥L(L2) under different possible

circumstances. Using Theorem A.5, these bounds immediately imply bounds on the spectrum
of X−1

α,w,Γ, and in combination with Lemma 2.3, also imply bounds on the spectrum of SX−1
α,w,Γ.

More precisely, using appropriate statements from this section, we have

σ(SX−1
α,w,Γ) ⊂ {λ ∈ C : 1

C1
≤ |λ| ≤ C2} (2.47)

with certain C1, C2 > 0 depending continuously on

C1 = C1

(︂
Ω,D,Γ, α,w,

(︁
1− |α− 1

2 |CP(2,Ω,Γ)2 ∥ div w∥ 3
2

)︁−1
,F−1∥F∥2

L(W1,2
D ,(W1,2

D )#)

)︂
,

C2 = C2
(︁
Ω,D,Γ, α,w,F−1)︁.

(2.48)
The dependence on (α,w) is either through ∥w∥∞ + α∥ div w∥3 or ∥w∥6 + α∥ div w∥2 if Ω
is a creased Lipschitz domain; see the preceding statements in this section. Note that the
latter is controlled by ∥w∥2 + ∥∇w∥2, the norm of w in the natural energy space W1,2. The
dependence on

(︁
1 − |α − 1

2 |CP(2,Ω,Γ)2 ∥ div w∥ 3
2

)︁−1 expresses the fact that 1
C1
→ 0+ as

|α − 1
2 |CP(2,Ω,Γ)2 ∥ div w∥ 3

2
→ 1−; see Theorem 2.15 or 2.10. Hence either the smallness of

∥ div w∥ 3
2

or the skew-symmetric convective term α = 1
2 is needed.

Although this section did not provide useful quantitative bounds, which would, besides other
things, explain qualities of the preconditioner and its superiority to the “Stokes preconditioner”
S−1 ≈ I, it is nevertheless a prerequisite for any subsequent analysis to have uniform bounds
in reasonable norms of the data. For example, for creased Lipschitz domains we know that
the norms of the preconditioned Schur complement (and in turn its spectrum) are bounded
uniformly in data size ∥w∥W1,2 .

Notice that we have not yet consider any mesh discretization and we have worked in the re-
spective function spaces. Hence one might hope (and prove) that the uniform bounds eventually
transfer to discretized operators, for example by finite element methods, and will stay uniform
with mesh refinements under certain conditions, for example, quasi-uniform refinement or even
adaptive schemes.2 We will provide some uniform bounds in the discrete case in Theorem 3.3,
Remark 3.4, and Remark 3.5.
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We note that Deuring [15] obtained spectral bounds for a discrete version of a certain
modification of SX−1

α,w,Γ with dependence on ∥w∥∞ + ∥div w∥3. Most other published spectral
estimates build on the result of Loghin [43] which requires div w = 0 and features bounds which
depend on ∥w∥∞. We will discuss these results in more detail in Section 3.5, p. 120.

2.3 GMRES iterations with the preconditioned saddle-point system
Let us consider the operator Q representing a linearized Navier-Stokes problem, for example
the Oseen system (1.2), given by

Q :=
(︃

F ∇
−div 0

)︃
. (2.49)

Remember that we assumed compactness of K = F −A in L(W1,2
D , (W1,2

D )#). Now consider
a right preconditioner which approximates the ideal preconditioner (1.7) and is given by

P̂∓ :=
(︃

F ∇
0 ∓Xα,w,Γ

)︃
, (2.50)

where we can choose one of the signs ∓. The two variants of the preconditioned operator read

QP̂−1
∓ =

(︃
I 0

−div F−1 ±SX−1
α,w,Γ

)︃
. (2.51)

Due to the preceding exposition we already know that under certain conditions this operator
is well defined, specifically it is bounded in L((W1,2

D )# × L2). In this section we will show
how convergence of the GMRES method (described in Appendix B) applied to the saddle-point
operator QP̂−1

∓ can be bounded by the behavior of GMRES iterations with SX−1
α,w,Γ.

As was already pointed out, for operator (1.9) a solution is found by GMRES after at
most two iterations, i.e., rk = 0 holds for all k ≥ 2, because for any polynomial p divisible by
(1 − t)(1 ∓ t) it holds that p(QP−1

∓ ) = 0. For the approximation QP̂−1
∓ given by (2.51) this

obviously does not hold. Assume a polynomial p of a finite degree with coefficients given by
p(t) =

∑︁
k akt

k. It is straightforward to check that

p(QP̂−1
∓ ) =

(︃
p(1)I 0∑︁

k ak
∑︁k−1
j=0 T

j(−div F−1) p(T )

)︃
, (2.52)

where T := ±SX−1
α,w,Γ. Now formally, we would like to use

∑︁k−1
j=0 T

j = (I − T k)(I − T )−1,
where I is the identity operator on L2, but this is not possible because it is not guaranteed that
I − T is invertible. If it were, then

∑︁
k ak

∑︁k−1
j=0 T

j = (p(1)I − p(T ))(I − T )−1, and it could be

conluded that, for any initial residual r0 =
(︃
rv

0
rp0

)︃
∈ (W1,2

D )# × L2,

min
p∈Pk

p(0)=1

⃦⃦
p(QP̂−1

∓ )r0
⃦⃦

(W1,2
D )#×L2

∥r0∥(W1,2
D )#×L2

≤ min
p∈Pk

p(0)=1
p(1)=0

⃦⃦
p(T )

(︁
(I − T )−1 div F−1rv

0 + rp0
)︁⃦⃦

2
∥r0∥(W1,2

D )#×L2

≤ C(Q, P̂∓) sup
z∈L2

min
p∈Pk

p(0)=1
p(1)=0

∥p(T )z∥2

∥z∥2
≤ C(Q, P̂∓)∥I − T∥L(L2) sup

z∈L2
min

p∈Pk−1
p(0)=1

∥p(T )z∥2

∥z∥2

(2.53)

with constant C(Q, P̂∓) depending on the operators but independent of k and r0. This shows
that the behavior of GMRES with operator QP̂−1

∓ and any initial residual r0 is controlled by the
behavior of the worst-case GMRES5 with opearator T with a lag of one iteration. Unfortunately,
as I −T is not guaranteed to be invertible, C(Q, P̂∓) can be infinite. We will provide a remedy
to this problem after we look into the spectral properties of T = ±SX−1

α,w,Γ.
5See [40, 61, 24] for details about worst-case GMRES.
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Now we look into the structure of the operator SX−1
α,w,Γ. We can write the Schur complement

S as a compact perturbation of the Stokes Schur complement S∞ := −div A−1∇. Let us recall
the assumption that the velocity convective term K = F−A is compact in L(W1,2

D , (W1,2
D )#).

Then indeed,

S − S∞ = −div(A + K)−1∇+ div A−1∇
= −div(A + K)−1(A + K−K)A−1∇+ div A−1∇
= div(A + K)−1KA−1∇

which is compact in L(L2). As a consequence we get

SX−1
α,w,Γ = S(I +Kα,w,ΓA

−1
Γ ) = S∞ + (S − S∞) + SKα,w,ΓA

−1
Γ

= S∞ + div(A + K)−1KA−1∇− div(A + K)−1∇Kα,w,ΓA
−1
Γ .

Hence

SX−1
α,w,Γ = S∞ − div(A + K)−1C (2.54a)
C = ∇Kα,w,ΓA

−1
Γ −KA−1∇ (2.54b)

with C compact in L(L2, (W1,2
D )#). As a consequence, using Theorem A.10, we get that

σess(SX−1
α,w,Γ) = σess(S∞). By (2.15) and Theorem A.7 we have

Num(S∞) = [β(Ω,D)2,Σ(Ω,D)2]. (2.55)

Thus, by virtue of Theorem A.10, the spectrum of SX−1
α,w,Γ consists of σess(S∞) ⊂ Num(S∞) =

[β(Ω,D)2,Σ(Ω,D)2] and at most countably many isolated eigenvalues with finite geometric and
algebraic multiplicities. In particular, for T = −SX−1

α,w,Γ, either 1 is not in the spectrum of T or
it is an isolated eigenvalue of finite geometric multiplicity. In any case, thanks to Theorem A.8
we can define, with γ1 ⊂ C a sufficiently tight Jordan loop around {1}, the spectral projection

P1 := − 1
2πi

∫︂
γ1

(T − zI)−1 dz, (2.56)

which is a bounded projection on L2 commuting with T ; for T1 defined as a restriction of T to
P1L

2 and T2 a restriction of T to (I−P1)L2 it holds that σ(T1) = {1} (if P1 is non-trivial) and
σ(T2) = σ(T ) \ {1}. As a consequence P1L

2 and (I − P1)L2 are invariant subspaces of T and
they directly sum to L2. Hence T = T1P1 + T2(I − P1) and

k−1∑︂
j=0

T j =
k−1∑︂
j=0

T j1P1 +
k−1∑︂
j=0

T j2 (I − P1)

=
k−1∑︂
j=0

T j1P1 + (I2 − T k2 )(I2 − T2)−1(I − P1)

where I2 is the identity operator on (I − P1)L2. We can continue with computing the term
in (2.52):

∑︂
k

ak

k−1∑︂
j=0

T j =
∑︂
k

ak

k−1∑︂
j=0

T j1P1 +
(︃∑︂

k

akI2 −
∑︂
k

akT
k
2

)︃
(I2 − T2)−1(I − P1)

=
(︃∑︂

k

ak

k∑︂
j=0

T j1 −
∑︂
k

akT
k
1

)︃
P1

+
(︃∑︂

k

akI2 −
∑︂
k

akT
k
2

)︃
(I2 − T2)−1(I − P1)

=
∑︂
k

ak

k∑︂
j=0

T j1P1 +
∑︂
k

akI2(I2 − T2)−1(I − P1) (2.57)

− p(T )(P1 + (I2 − T2)−1(I − P1)). (2.58)
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Now we can express T1 in Jordan canonical form as T1 = I1 +N where N is a direct sum of left
shifts and I1 is the identity operator on P1L

2. Using the binomial theorem we have, on P1L
2,

T j1 =
j∑︂
i=0

(︃
j

i

)︃
N i,

k∑︂
j=0

T j1 =
k∑︂
j=0

j∑︂
i=0

(︃
j

i

)︃
N i =

k∑︂
i=0

N i
k∑︂
j=i

(︃
j

i

)︃
=

k∑︂
i=0

(︃
k + 1
i+ 1

)︃
N i,

where we used the hockey-stick identity6 in the last equality. Denoting the length of the longest
Jordan chain in T1 by L <∞, we have NL = 0 and

∑︂
k

ak

k∑︂
j=0

T j1 =
∑︂
k

ak

k∑︂
i=0

(︃
k + 1
i+ 1

)︃
N i =

L−1∑︂
i=0

N i
∞∑︂
k=i

(︃
k + 1
i+ 1

)︃
ak. (2.59)

A requirement that all terms in (2.57) vanish can be equivalently expressed using (2.59) as∑︂
k

(︃
k + 1
i

)︃
ak = 0 for all i = 0, 1, . . . , L (2.60)

with conventions that
(︁
k+1
i

)︁
= 0 for k + 1 < i and L = 0 when P1 = 0. Under (2.60) the terms

in (2.57) vanish and we have

∑︂
k

ak

k−1∑︂
j=0

T j = −p(T )(P1 + (I2 − T2)−1(I − P1)). (2.61)

So now we can estimate the k-th GMRES residual using (2.52) and (2.61)

min
p∈Pk

p(0)=1

⃦⃦
p(QP̂−1

+ )r0
⃦⃦

(W1,2
D )#×L2

∥r0∥(W1,2
D )#×L2

≤ min
p∈Pk

p(0)=1
(2.60)

⃦⃦
p(T )

(︁
(P1 + (I2 − T2)−1(I − P1)) div F−1rv

0 + rp0
)︁⃦⃦

2
∥r0∥(W1,2

D )#×L2

≤ C(Q, P̂+) sup
z∈L2

min
p∈Pk

p(0)=1
(2.60)

∥p(T )z∥2

∥z∥2
.

(2.62)

It is not clear to us whether the argument used to derive (2.62) works for QP̂−1
− ; T = SX−1

α,w,Γ
has 1 in its essential spectrum and it is an eigenvalue of infinite multiplicity. If it is an isolated
point of the spectrum, which is true at least for a Lipschitz Ω ⊂ R2 in the no-slip situation D =
∂Ω, see [12, Theorem 3.3], then the spectral projector (2.56) can be defined; the estimate (2.62)
is then valid provided L <∞, which we cannot verify.

Now we would like to estimate the minimum on the right-hand side of (2.62) by

min
p∈Pk−(L+1)
p(0)=1

∥p(T )z∥2

∥z∥2

as in (2.53). Consider certain polynomials with coefficients given by summands of (2.60);
specifically consider that for i = 1, 2, . . .∑︂

k

(︁
k+1
i

)︁
akt

k−i+1 =
∑︂
k

(︂(︁
k
i

)︁
+
(︁
k
i−1
)︁)︂
akt

k−i+1

=
∑︂
k

ak
(︁
k
i

)︁
tk−it+

∑︂
k

ak
(︁
k
i−1
)︁
tk−(i−1) = p(i)(t)

i! t+ p(i−1)(t)
(i−1)!

(2.63a)

6or the Christmas stocking identity, depending on reader’s geocultural preference
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and for i = 0 ∑︂
k

(︁
k+1
i

)︁
akt

k−i+1 = p(t)t. (2.63b)

Hence (2.60) is fulfilled whenever p(i)(1) = 0 for all i = 0, 1, . . . , L. This is clearly true when
p(t) = (1− t)L+1q(t) with any polynomial q. Moreover q(0) = 1 implies that p(0) = 1 and we
can estimate

min
p∈Pk

p(0)=1
(2.60)

∥p(T )z∥2 ≤ ∥I − T∥L+1
L(L2) min

p∈Pk−(L+1)
p(0)=1

∥p(T )z∥2.

We will put these estimates together in the following theorem.

Theorem 2.16. Assume that the conditions of Lemma 2.3, Lemma 2.4, and Theorem 2.9 are
met.

Operator −SX−1
α,w,Γ either does not have a neighborhood of 1 in its spectrum or 1 is an iso-

lated eigenvalue of finite algebraic multiplicity. Denote by L the length of the longest Jordan
chain in −SX−1

α,w,Γ associated with the eigenvalue 1, i.e., L is the smallest non-negative integer
such that (I + SX−1

α,w,Γ)LP1 = 0, where P1 is the spectral projector associated with operator
−SX−1

α,w,Γ and eigenvalue 1.
Then there exists C(Q, P̂+) > 0 such that the residuals generated by GMRES with operator

QP̂−1
+ and any initial residual r0 ∈ (W1,2

D )# × L2 and the worst-case GMRES with operator
SX−1

α,w,Γ are related by

min
p∈Pk

p(0)=1

⃦⃦
p(QP̂−1

+ )r0
⃦⃦

(W1,2
D )#×L2

∥r0∥(W1,2
D )#×L2

≤ C(Q, P̂+) sup
z∈L2

min
p∈Pk−(L+1)
p(0)=1

⃦⃦
p(SX−1

α,w,Γ)z
⃦⃦

2
∥z∥2

(2.64)

for all k ≥ L+ 1. The constant C(Q, P̂+) is finite and can be bounded by

C(Q, P̂+) = sup
(zv,zp)∈(W1,2

D )#×L2

∥(zv,zp)∥=1

⃦⃦⃦(︁
I + SX−1

α,w,Γ
)︁L(︂div F−1zv +

(︁
I + SX−1

α,w,Γ
)︁
zp
)︂⃦⃦⃦

2

≤
(︂
C∞

+ + Σ(Ω,D)F−1∥C∥L(L2,(W1,2
D )#

)︂L
×
(︂
C∞

+ + Σ(Ω,D)F−1(︁1 + ∥C∥L(L2,(W1,2
D )#)

)︁)︂
,

(2.65)

C∞
+ = Σ(Ω,D)2 + 1. (2.66)

Proof. The first part of the theorem, the existence of L < ∞, follows from the theorems in
Appendix A as discussed above. Now we show (2.64) with the specific definition of C(Q, P̂+).
Denote T = −SX−1

α,w,Γ; define T1, T2 as a restriction of T to P1L
2, (I − P1)L2, respectively;

denote by I1, I2 the identity operator on P1L
2, (I−P1)L2, respectively. Consider formula (2.52),

which is valid for any polynomial p. For p(t) =
∑︁
k akt

k subject to (2.60) we have, by (2.52)
and (2.61),

p(QP̂−1
+ ) =

(︃
0 0

p(T )P̄ div F−1 p(T )

)︃
(2.67)

with P̄ = P1 + (I2 − T2)−1(I − P1). Now consider, with polynomial q, p(t) = (1 − t)L+1q(t).
By (2.63) such p automatically fulfills (2.60). With such p, using the direct sums T = T1 + T2,
I = I1 + I2,

p(T )P̄ = q(T )(I1 + I2 − T1 − T2)L+1(P1 + (I2 − T2)−1(I − P1))
= q(T )((I1 − T1)L+1P1 + (I2 − T2)L(I − P1)),
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but due to the definition of L we have (I1 − T1)L = 0, and we get

p(T )P̄ = q(T )(I2 − T2)L(I − P1) = q(T )(I − T )L. (2.68)

Using (2.67) and (2.68) we obtain for any r0 =
(︃
rv

0
rp0

)︃
∈ (W1,2

D )# × L2

min
p∈Pk

p(0)=1

⃦⃦
p(QP̂−1

+ )r0
⃦⃦

(W1,2
D )#×L2

∥r0∥(W1,2
D )#×L2

≤ min
q∈Pk−(L+1)
q(0)=1

⃦⃦
q(T )(I − T )L

(︁
div F−1rv

0 + (I − T )rp0
)︁⃦⃦

2
∥r0∥(W1,2

D )#×L2

≤ sup
(zv,zp)∈(W1,2

D )#×L2

⃦⃦
(I − T )L

(︁
div F−1zv + (I − T )zp

)︁⃦⃦
2

∥(zv, zp)∥(W1,2
D )#×L2

× sup
(zv,zp)∈(W1,2

D )#×L2
min

q∈Pk−(L+1)
q(0)=1

⃦⃦
q(T )(I − T )L

(︁
div F−1zv + (I − T )zp

)︁⃦⃦
2⃦⃦

(I − T )L
(︁
div F−1zv + (I − T )zp

)︁⃦⃦
2

≤ C(Q, P̂+) sup
z∈L2

min
q∈Pk−(L+1)
q(0)=1

∥q(T )z∥2

∥z∥2

so that (2.64) and the equality in (2.65) are proved. Employing formula (2.54), we have

I − T = I + SX−1
α,w,Γ = I + S∞ − div F−1C,

∥I − T∥L(L2) ≤ ∥I + S∞∥L(L2) + Σ(Ω,D)∥F−1∥L((W1,2
D )#,W1,2

D )∥C∥L(L2,(W1,2
D )#)

≤ 1 + Σ(Ω,D)2 + Σ(Ω,D)F−1∥C∥L(L2,(W1,2
D )#)

which follows from (2.12) and (2.55). This proves the inequality in (2.65).

Remark. Theorem 2.16 does not apply directly to the other case P̂−, where T = SX−1
α,w,Γ,

because it is not known to the author whether T1− I1 is in this case nilpotent. Nevertheless this
variant, corresponding to the minus sign in (2.50), is often seen to perform better in practice.
It is interesting to notice that, when T1 − I1 is nilpotent, precisely (SX−1

α,w,Γ − I)LP1 = 0, then
the estimate analogous to (2.64) holds for P̂− with the constant

C(Q, P̂−) = sup
(zv,zp)∈(W1,2

D )#×L2

∥(zv,zp)∥=1

⃦⃦⃦(︁
I − SX−1

α,w,Γ
)︁L(︂div F−1zv +

(︁
I − SX−1

α,w,Γ
)︁
zp
)︂⃦⃦⃦

2

≤
(︂
C∞

− + Σ(Ω,D)F−1∥C∥L(L2,(W1,2
D )#

)︂L
×
(︂
C∞

− + Σ(Ω,D)F−1(︁1 + ∥C∥L(L2,(W1,2
D )#)

)︁)︂
,

C∞
− = max{Σ(Ω,D)2 − 1, 1− β(Ω,D)2},

which is better than (2.65) due to C∞
− < C∞

+ . This is an indication of better peformance of P̂−,
at least for small convection, assuming L is small.

2.4 Spectrum of the preconditioned Schur complement
In Section 2.2 we showed that the spectrum of SX−1

α,w,Γ is bounded away from zero and infinity
uniformly in a certain norm of the data. In the preceding section we further showed that the
spectrum of SX−1

α,w,Γ consists of σess(SX−1
α,w,Γ) = σess(S∞) ⊂ [β(Ω,D)2,Σ(Ω,D)2] and isolated

eigenvalues of finite geometric multiplicity. Now we employ results from operator perturbation
theory to conclude that the isolated eigenvalues accumulate at [β(Ω,D)2,Σ(Ω,D)2] at a certain
rate.
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Using Theorem (A.12), (2.55), and (2.54) we obtain∑︂
λ∈σp(SX−1

α,w,Γ)

dist
(︁
λ, [β(Ω,D)2,Σ(Ω,D)2]

)︁p
≤ ∥X−1

α,w,Γ − S
∞∥pSp(L2) = ∥div(A + K)−1C∥pSp(L2) (2.69)

if the right-hand side is finite for certain p > 1. Now we show that div(A + K)−1C is in
the p-Schatten class, see Definition A.11, for some p > 6. The first compact term in (2.54b)
features the compact embedding L2 ↪→ (W 1, 3+ϵ

2+ϵ

Γ )#. We will now assume structurally similar
compactness in K, namely assume that K is the Picard or Newton linearization of the non-linear
velocity convective term v ↦→ (1− α)v · ∇v + α div(v⊗ v). In such a situation K features the
compact embedding (L 3

2 )3 ↪→ (W1,2
D )#. By [62, Theorem 1.107], the approximation numbers

of these embeddings defined by (A.9) decay as

ak
(︁
L2 ↪→ (W 1, 3+ϵ

2+ϵ

Γ )#)︁ ∼ k− 1
6

1− ϵ
3

1+ ϵ
3 , (2.70a)

ak
(︁
(L 3

2 )3 ↪→ (W1,2
D )#)︁ ∼ k− 1

6 . (2.70b)

Considering definition (A.9) and Definition A.11, representation formula (2.54) and decay rates
(2.70) imply that SX−1

α,w,Γ − S∞ ∈ S6+ε̂(L2) with any ε̂ > 0 because any ϵ > 0 is sufficient to
obtain the bounds (2.17). This verifies that the right-hand side of the accumulation rate (2.69)
is finite. In the following theorem we give precise conditions for the validity of this estimate.

Theorem 2.17. Let the conditions of Corollary 2.6 be fulfilled. Furthermore let us assume that
the condition of Lemma 2.3, i.e., (2.6), holds. Furthermore assume that the linearized velocity
convection K = F−A is in S6(W1,2

D , (W1,2
D )#).

Then SX−1
α,w,Γ ∈ L(L2) and

σess(SX−1
α,w,Γ) ⊂ [β(Ω,D)2,Σ(Ω,D)2].

Furthermore, with any p > 6 it holds that⎛⎜⎝ ∑︂
λ∈σp(SX−1

α,w,Γ)

dist
(︁
λ, [β(Ω,D)2,Σ(Ω,D)2]

)︁p⎞⎟⎠
1
p

≤ Σ(Ω,D)F−1∥C∥Sp(L2,(W1,2
D )#) < +∞

where the eigenvalues are counted according to their algebraic multiplicity.
If, in addition, all conditions of Lemma 2.8 are met, then 0 is not in σ(SX−1

α,w,Γ).

Note that lower bounds on |λ| are eventually provided in Section 2.2, for example, in Theo-
rem 2.15, for the situation which is the least restrictive on data. Also note that the condition
K ∈ S6(W1,2

D , (W1,2
D )#) is automatically ensured for common linearizations of the velocity con-

vection as pointed out above; in more general situations, e.g., when using streamline-upwind
stabilization, etc., the condition has to be verified.

Proof. By Lemma 2.3 and Corrolary 2.6 we have S,X−1
α,w,Γ ∈ L(L2). Thanks to (2.12), for-

mula (2.54) is valid and SX−1
α,w,Γ is a compact perturbation of S∞. Hence for the essential

spectra σess(SX−1
α,w,Γ) = σess(S∞), where the latter is contained in [β(Ω,D)2,Σ(Ω,D)2] by

Lemma 2.3 and Theorem A.5.
Using formulas (2.54) and (2.55), Theorem A.12 and (2.12) give the first inequality. The

first term in (2.54b) is estimated as in (2.17) and by (2.2) and (2.70a) it is in Sp for a certain
p > 6. As ϵ > 0 can be arbitrarily small, any p > 6 is admissible. The second term in (2.54b)
is estimated similarly. This bounds C in Sp with any p > 6 and the proof is finished.

It is fair to remark that information about the spectrum alone is not sufficient to provide
descriptive information about convergence of the GMRES method as showed by Greenbaum,
Pták, and Strakoš [26]. Nevertheless we show in the next section that the inclusion C ∈ Sp,
p > 6, together with the self-adjointness of S∞ implies certain information about GMRES
convergence.
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2.5 GMRES iterations with the preconditioned Schur complement
In Section 2.3, Theorem 2.16 we showed that the convergence behavior of the preconditioned
saddle-point system is governed up to a certain lag by the behavior of GMRES on the precon-
ditioned Schur complement. In this section we employ a new result on GMRES convergence
for compactly-perturbed positive self-adjoint operators which we provide in Theorem B.4. But
first we make a few remarks on the presence/absence of superlinear convergence for the Stokes
operator.

For operators of the form T = I+C with compact C, the superlinear convergence of Krylov
subspace iterations has been shown in the literature, i.e., ∥rk∥/∥rk−1∥ → 0 with a suitable
norm. Moreover a certain rate is guaranteed when C is in some p-Schatten class; see [48]
for GMRES, and also [30] and references therein for results on Krylov subspace methods for
self-adjoint problems. On the other hand our problem has the structure T = SX−1

α,w,Γ =
S∞ + C with S∞ ∈ L(L2) self-adjoint and positive and a compact C ∈ S6+ϵ(L2). The Stokes
Schur complement on Lipschitz domains has fat components in its spectrum; see [12]. Hence
no superlinear convergence can be expected for the special case of Stokes; the intervals in
the essential spectrum of the Stokes Schur complement would contribute by the Chebyshev
polynomials to an eventual composite bound. Note that there appeared incorrect proofs of
superlinear convergence of a stabilized Stokes problem; [30, Example 3.9, p. 1320] uses the
incorrect assertion that the operator(︃

A−1∇ div
div A−1∇

)︃
: W1,2

∂Ω × L
2/R→W1,2

∂Ω × L
2/R

(with A = −∆
W1,2

∂Ω
in accordance with the previous notation) is compact in L(W1,2

∂Ω × L2/R).

We will present a convergence result for T = SX−1
α,w,Γ = S∞ + C which applies to the Stokes

problem as a special case by setting C := 0.
We now apply Theorem B.4 to the preconditioned Schur complement together with The-

orem 2.16 to conclude that GMRES convergence for the preconditioned system QP̂−1
+ is con-

tractive up to a delay which vanishes superlinearly with a certain rate.

Corollary 2.18. Assume that the conditions of Theorem 2.16 and Theorem 2.17 are met.
Then for any ε > 0 there exists Cε ≥ 0 depending on SX−1

α,w,Γ such that GMRES iterations
with operator QP̂−1

+ ∈ L((W1,2
D )#×L2) and initial residual r0 ∈ (W1,2

D )#×L2 produce residuals
rk ∈ (W1,2

D )# × L2 with the norm

∥rk∥(W1,2
D )#×L2 = min

p∈Pk

p(0)=1

∥p(QP̂−1
+ )r0∥(W1,2

D )#×L2

which fulfils (︄
1

C(Q, P̂+)

∥rk+L+1∥(W1,2
D )#×L2

∥r0∥(W1,2
D )#×L2

)︄ 1
k

≤
1− β(Ω,D)2

Σ(Ω,D)2

1 + β(Ω,D)2

Σ(Ω,D)2

+ Cεk
− 1

6+ε (2.71)

with integer L ≥ 0 and C(Q, P̂+) > 0 from Theorem 2.16; in particular L and C(Q, P̂+) are
independent of r0.

Note that (2.71) is not sharp for the Stokes case, where Cε = 0. In that case one could, if
having finer information about the spectrum, construct a composite bound covering separately
isolated eigenvalues and the essential spectrum. The latter can be treated in the symmetric
case by the Chebyshev polynomials which give a better linear bound. Nevertheless in the non-
self-adjoint case it is not possible to employ the real Chebyshev polynomials and the first term
in estimate (2.71) is analogous to the min-max polynomial on a disk, cf. [39].

2.6 PCD variants and boundary conditions
Equations (1.10) and (1.11) heuristically motivated the two variants of the preconditioner. Fur-
thermore, one might be also interested in simple preconditioning by S−1 ≈ X−1

α,0,Γ = Y −1
α,0,Γ = I;
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see [19, p. 1300] and references therein. So far our analysis did not cover the Y -variant and we
have not specifically discussed the boundary conditions.

Define the Y -variant of the PCD as an adjoint

Y −1
α,w,Γ := X−#

1−α,−w,Γ. (2.72)

The motivation for the sign of −w on the right-hand side will become obvious a bit later; 1−α
instead of α is only for aesthetic reasons which will also become evident. First consider that
all the results of Section 2.2, in particular surjectivity, injectivity, norm and spectral estimates
for X−1

α,w,Γ and Xα,w,Γ, are valid also for X−1
1−α,−w,Γ mutatis mutandis. In particular we know

by Theorem 2.9 that, under certain conditions, X−1
1−α,−w,Γ maps L2 onto itself, and in turn so

does Y −1
α,w,Γ = X−#

1−α,−w,Γ. Thus we can safely compute the adjoint

Y −1
α,w,Γ = (I +K1−α,−w,ΓA

−1
Γ )# = I +A−1

Γ KR
α,w,Γ (2.73)

where the operator KR
α,w,Γ = K#

1−α,−w,Γ is given, in accordance with (2.3), by

⟨︁
KR
α,w,Γr, q

⟩︁
= −

∫︂
Ω

(︁
w · ∇q r + (1− α) div w r q

)︁
whenever r, q ∈W 1,2

Γ or r ∈ L2, q ∈W 1,3+ϵ
Γ ,

{︃
ϵ ≥ 0 if α = 0,
ϵ > 0 if α ∈ (0, 1]. (2.74)

The operator (2.74) features a Robin boundary condition ∂r
∂n − w · n r = 0 on ∂Ω \ Γ in the

convection-diffusion solve of

r = Yα,w,Γϕ = (AΓ +KR
α,w,Γ)−1AΓϕ.

To see this, consider that when r is smooth enough, we can integrate by parts in (2.74) to arrive
at ⟨︁

KR
α,w,Γr, q

⟩︁
=
∫︂

Ω
w · ∇r q + α div w r q −

∫︂
∂Ω\Γ

w · n r q. (2.75)

But considering that the case r ∈ L2 in (2.74) is important for the definition of (2.73), we have
to retain the definition (2.74) rather than (2.75), which is only valid for smooth enough r.

Note also that all the spectral and GMRES convergence results provided in Sections 2.3–2.5
for SX−1

α,w,Γ are valid also for SY −1
α,w,Γ with obvious modifications. However, note that the

commutator formula (2.54) takes a different but structurally similar form

SY −1
α,w,Γ = S∞ − div(A + K)−1CY ,

CY = ∇A−1
Γ (KR

α,w,Γ)−KA−1∇.
(2.76)

All results which depend on properties of C in (2.54), e.g., (6+ε)-Schatten compactness, remain
true for CY .

All results in Sections 2.2–2.3 are also valid for the Stokes preconditioner S−1 ≈ X−1
α,0,Γ =

Y −1
α,0,Γ = I simply by setting w := 0 (keep in mind that the underlying problem still can have

non-trivial convection b). Note that the right-hand side of (2.64) in this case takes, up to the
constant C(Q, P̂∓), the form

min
p∈Pk−(L+1)
p(0)=1

∥p(S)∥L(L2). (2.77)

Thanks to (2.13), which is valid under the condition (2.6), the Schur complement S has its
numerical range contained in a half-plane not containing the origin; together with (2.12), these
are bounds on the numerical range in terms of F−1 and ∥F∥L(W1,2

D ,(W1,2
D )#). The approximation

problem (2.77) is tractable using field-of-value estimates; see [35]. It is an interesting point
that (2.77) can be estimated (although the estimate might not be tight) in the case of the
preconditioner S−1 ≈ X−1

α,0,Γ = Y −1
α,0,Γ = I, while in the PCD case X−1

α,w,Γ (or Y −1
α,w,Γ), the
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corresponding quantity (2.64) is not tractable using this technique. The price for this is that,
as is empirically known, S−1 ≈ X−1

α,0,Γ = Y −1
α,0,Γ = I turns out to be useless as a preconditioner

with increasing data size (Reynolds number) and hence any estimates of (2.77) are pointless.
We omit any further details for this case.

Now we summarize particular practical choices of the artificial boundary conditions required
naturally by the above analysis:

1. preconditioner (2.50) requires for injectivity by Lemma 2.8 that

Γ ⊃ {w · n < 0}; (2.78)

2. preconditioner

P̂∓ :=
(︃

F ∇
0 ∓X#

1−α,−w,Γ

)︃
(2.79)

requires for injectivity by Lemma 2.8 that

Γ ⊃ {w · n > 0}; (2.80)

we postpone comparison to previously published results to Section 3.5.

2.7 Best-approximation property of the PCD correction
So far we have not considered the synergistic effect of the two compact terms in (2.54b).
All aforementioned assertions used the triangle inequality, the worst case estimate, to treat
the terms separately. Note that this includes the derivation of ∥C∥S6+ε bounds and resulting
superlinearly-contractive convergence behavior as stated in Corollary 2.18. The advantage is
that the results are valid for the Stokes preconditioner X−1

α,0,Γ = I, which one obtains by setting
w := 0 to get Kα,w,Γ = 0. The question is why a particular choice of w := b is the best
in the sense that the first term in (2.54b) counterbalances with the second term – the term
stemming from the fact, that the underlying problem is the Oseen problem rather than the
Stokes problem.

In existing studies, a related question has been considered – is the commutator S −Xα,w,Γ
or S − Yα,w,Γ small? As of our knowledge the only known answer is that the commutator is
zero when ∇w = 0 and no boundary is present; see [22, section 9.2, equation (9.13)]. This
situation is equivalent to

S∞ = I, (2.81a)
C = 0 (2.81b)

in (2.54) which gives SX−1
α,w,Γ = I. This is derived by the same argument as the one used

to derive (2.16), which is an interior argument, with no boundary involved. On the other
hand it is known that corners of the domain cause the presence of fat essential spectrum in
S∞; for simplicity, with a planar polygonal domain and no-slip boudary conditions D = ∂Ω,
a corner of opening ω contributes to the essential spectrum of S∞ by [ 1

2 −
| sinω|

2ω , 1
2 + | sinω|

2ω ];
see [12, Theorem 3.3]. Thus validity of (2.81a) cannot be expected and it is clear that this
has nothing to do with the convection; this is a feature present even in the Stokes problem on
a corner domain. Hence we argue that rather than considering some smallness of S −Xα,w,Γ
or S − Yα,w,Γ, one should look into the synergy of the two terms in C because C is compact
so it does not influence the essential spectrum σess(S) = σess(S∞) and only creates discrete
eigenvalues. Without considering any synergy of the two terms in C we showed that C is (6+ε)-
Schatten; the ultimate goal would be to improve this rate of compactness and thus explain the
effectiveness of the preconditioner. Nevertheless we do not know whether this is true.

In what follows we provide Fourier analysis of C for a very simplified problem. It does not
give a definitive answer, but might give some insight. Consider Ω = (0, π)2 and the no-slip
problem on the whole boundary, i.e., D = ∂Ω, b = 0 on ∂Ω. Note that this is a special case
which we did not treat as it requires a modified pressure space L2/R. The appropriate choice of
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the Dirichlet boundary Γ in A−1
Γ is now Γ = ∅, but AΓ has to be defined on the space W 1,2/R

as it represents a pure Neumann problem. The eigenfunctions of AΓ = −div∇
W 1,2/R

,

{ujk}∞
j,k=1, ujk = cos(jx) cos(ky),

form an orthogonal basis in L2/R and W 1,2/R; see [44, Appendix A.4]. Analogously, the
eigensystem of A = −div∇

W1,2
D

,

{vjkeI}j,k=1,2,..., I=1,2, vjk = sin(jx) sin(ky),

forms an orthogonal basis of L2 and W1,2
D .

Let us choose α := 0 and w := b =
(︃
b1
b2

)︃
so that the first term of (2.54b) applied to ujk is

∇Kα,w,ΓA
−1
Γ ujk = ∇

(︁
b · ∇ ujk

j2 + k2

)︁
= 1
j2 + k2∇

(︁
−jb1 sin(jx) cos(ky)− kb2 cos(jx) sin(ky)

)︁
= 1
j2 + k2

(︃
−b1j

2ujk + b2jkvjk +∇b(. . .)
−b2k

2ujk + b1jkvjk +∇b(. . .)

)︃
(2.82)

where ∇b(. . .) stands for terms proportional to ∇b. To solve the problem

A(ũjke1) = ∂ujk
∂x

e1,

we expand ũjk = cjkmnvmn (summation implied) and test by vpq to obtain

cjkmn

∫︂
Ω
∇vmn · ∇vpq⏞ ⏟⏟ ⏞

(m2+n2) π2
4 δmpδnq

=
∫︂

Ω

∂ujk
∂x

vpq = −j
∫︂ π

0
sin(jx) sin(px)⏞ ⏟⏟ ⏞

π
2 δjp

∫︂ π

0
cos(ky) sin(qy)⏞ ⏟⏟ ⏞

(1−(−1)k−q) q

q2−k2

,

and hence

cjkmn = δmpδnqδjp
−2j

π(m2 + n2) (1− (−1)k−q) q

q2 − k2 .

Putting this together we have

A−1 ∂ujk
∂x

e1 = ũjke1 = cjkmnvmne1 = −2j
π

sin(jx)
∑︂
q∈Z

q−k odd

q

q2 − k2
sin(qy)
q2 + j2 e1

with an analogous formula for A−1 ∂ujk

∂y e2 with an appropriate change of indices. Hence we can
express

KA−1∇ujk := b · ∇A−1∇ujk

=

⎛⎜⎝ −b1
2j2

π cos(jx)
∑︂
q∈Z

q−k odd

q
q2−k2

sin(qy)
q2+j2 − b2

2j
π sin(jx)

∑︂
q∈Z

q−k odd

q2

q2−k2
cos(qy)
q2+j2

(c.p.)

⎞⎟⎠ (2.83)

where (c.p.) stands for the appropriate cyclic permutation of the indices and coordinates. On
the other hand using the formulas

cos(ky) = 2
π

∑︂
q∈Z

q−k odd

q

q2 − k2 sin(qy), sin(ky) = − 2
π

∑︂
q∈Z

q−k odd

k

q2 − k2 cos(qy)
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we can expand (2.82) as

∇Kα,w,ΓA
−1
Γ ujk

=

⎛⎜⎝ −b1
2j2

π cos(jx)
∑︂
q∈Z

q−k odd

q
q2−k2

sin(qy)
j2+k2 − b2

2j
π sin(jx)

∑︂
q∈Z

q−k odd

k2

q2−k2
cos(qy)
j2+k2

(c.p.)

⎞⎟⎠
+∇b(. . .). (2.84)

Using (2.84) and (2.83) we obtain

Cujk = ∇Kα,w,ΓA
−1
Γ ujk −KA−1∇ujk

=

⎛⎜⎝ −b1
2j2

π(j2+k2) cos(jx)
∑︂
q∈Z

q−k odd

q sin(qy)
q2+j2 − b2

2j2

π(j2+k2) sin(jx)
∑︂
q∈Z

q−k odd

j cos(qy)
q2+j2

(c.p.)

⎞⎟⎠
+∇b(. . .). (2.85)

Using the formulas

−
sinh(j(y − π

2 ))
sinh(j π2 ) = 2

π

∑︂
q∈Z
q even

q sin(qy)
q2 + j2 ,

cosh(j(y − π
2 ))

sinh(j π2 ) = 2
π

∑︂
q∈Z
q even

j cos(qy)
q2 + j2 ,

cosh(j(y − π
2 ))

cosh(j π2 ) = 2
π

∑︂
q∈Z
q odd

q sin(qy)
q2 + j2 , −

sinh(j(y − π
2 ))

cosh(j π2 ) = 2
π

∑︂
q∈Z
q odd

j cos(qy)
q2 + j2 ,

we can simplify (2.85) to

Cujk −∇b(. . .)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝ j2

j2+k2

(︁
b1 cos(jx) sinh(j(y−π

2 ))
sinh(j π2 )

+ b2 sin(jx) cosh(j(y−π
2 ))

sinh(j π2 )

)︁
(c.p.)

⎞⎠ k odd,⎛⎝ j2

j2+k2

(︁
−b1 cos(jx) cosh(j(y−π

2 ))
cosh(j π2 )

− b2 sin(jx) sinh(j(y−π
2 ))

cosh(j π2 )

)︁
(c.p.)

⎞⎠ k even.

(2.86)

It is not clear how to interpret this formula. Nevertheless, by comparing (2.83) and (2.85) we
can see that the role of the PCD correction (2.84) is to replace factors 1

k2−q2 and q2

k2−q2 by
1

j2+k2 and j2

j2+k2 , respectively. This possibly achieves the elimination of modes with high j, i.e.,
high frequencies in the y-direction, which thus ensures the recovery of high frequencies in lower
with fewer GMRES iterations. Correspondingly, the hyperbolic factors in (2.86) tend to zero:

cosinh(j(y − π
2 ))

cosinh(j π2 ) → 0 as j →∞ for all y ∈ (0, π)

where cosinh stands for any of sinh, cosh. Nevertheless, the limit is not uniform:

cosinh(j(y − π
2 ))

cosinh(j π2 ) → 1 as j →∞ for y ∈ {0, π}.

3 Discretization of the preconditioner
In this section we will propose a discrete realization of the PCD operator in a general setting.
This will allow us to introduce the PCD approximation for any L2-conforming pressure space.
In particular, the case of a pressure space using discontinuous elements previously required
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a special treatment because of the W 1,2-conformity needed for the PCD Laplacian solve and
discretization of the convection operator; see [22, pp. 368–370], which essentially proposes
a finite difference scheme for the pressure Laplacian and the pressure convection operator.

In Section 3.1 we propose a general framework which allows the use of a wide range of
standard discretization schemes regardless of differentiability-smoothness of the pressure space.
Then we apply the framework to three different situations: a W 1,2-conforming pressure space
(Section 3.2), a general L2-conforming pressure space (Section 3.3), and the piece-wise constant
pressure space (Section 3.4), which requires special treatment. As a byproduct we also recover
in Section 3.2 the approach for a W 1,2-conforming pressure space described by Elman, Silvester,
and Wathen [21, section 8.2.1] and we identify it with the approximation of the L2-inner product
on the pressure space by its diagonal. This approximation can be avoided for the price of one
extra mass matrix solve. In Section 3.5 we provide a comparison of our results with published
accounts on PCD.

Note that the framework, and in fact the whole chapter, is largely motivated by the desire
to shed some light on correct incorporation of boundary conditions into PCD, an issue which
has not been completely understood yet.

These boundary conditions are not well understood, and a poor choice can critically
affect performance. (Elman and Tuminaro [23, p. 257])

We believe that our study could move the problem closer towards correct understanding. We
summarize and compare our work to historical results in Section 3.5.

We stress and we are aware that the approaches we propose in this section need numerical
testing. A high-perfomance implementation of PCD by Blechta and Řehoř [6] based on the FEn-
iCS project [41, 1], PETSc [2, 3], and petsc4py [13], which has been supported by preliminary
results of this work and has been used to study problems in high-performance computing [56,
55], will be used to implement the PCD variants described below in the future.

We note that this study omits completely any issues related to floating point round-off error.
Furthermore, efficient and scalable approximations of the mass matrix, the Laplacian, and the
convection-diffusion solves are beyond the scope of this work. We refer the interested reader to
the monograph by Elman, Silvester, and Wathen [22, section 9.3.3].

From the implementation standpoint it is important to note that it is very common com-
putational practice to use ℓ2-inner products for GMRES. This is mostly due to the simplicity
of existing implementations and the goal of achieving maximal performance. Nevertheless, any
performance analysis for the right-preconditioned case uses the problem-dictated inner product
on (W1,2

D )# × (L2)#, which requires a Laplacian and mass matrix solve in each application. It
is seems to be hardly justifiable to replace it by the ℓ2-inner product, especially on adaptively-
refined meshes, although this has not been identified as a possible issue in the literature due
to limited test suites mostly working with uniformly and quasi-uniformly refined meshes. We
think that this is worth further research and remark that the inner product on (W1,2

D )# can
be mesh-independently localized due to results of Ciarlet and Vohralík [9] and Blechta, Málek,
and Vohralík [5], similarly to the classical approximation of the inner product on (L2)# by its
diagonal due to Wathen [63], and thus obtaining a cheap and accurate approximation of the
full problem-dictated inner product.

3.1 General considerations
Consider a finite-dimensional pressure space Qh and a finite-dimensional auxiliary space Wh

such that

Wh ⊂W 1,∞
Γ , Qh ⊂ L2, (3.1)

with bases {ϕj}N
Q

j=1 and {ψj}N
W

j=1 , respectively, so that

Qh = span{ϕj}N
Q

j=1, Wh = span{ψj}N
W

j=1 ,

and with the inner products

(q1, q2)Qh = ⟨MQq1, q2⟩(Qh)#×Qh q1, q2 ∈ Qh, (3.2a)
(w1, w2)Wh = ⟨MWw1, w2⟩(Wh)#×Wh w1, w2 ∈Wh, (3.2b)
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which we leave so far unspecified. By the Riesz representation theorem the operators MQ :
Qh → (Qh)#, MW : Wh → (Wh)# are isometries (in the norms induced by the respective
inner products). Furthermore assume that there is a linear transfer operator Π : Qh → Wh.
Now define Π† : Wh → Qh as the Hilbert adjoint of Π with respect to the inner products (3.2),
i.e.,

(Π†w, q)Qh = (Πq, w)Wh for all q ∈ Qh, w ∈Wh. (3.3)

Definition (3.3) can be rewritten using (3.2) as

Π† = (MQ)−1Π#MW , Π = (MW )−1Π†#MQ. (3.4)

In the following lemma we will characterize the invertibility of ΠΠ† : Wh →Wh.

Lemma 3.1. The following statements are equivalent:

(i) ΠΠ† is invertible,

(ii) Π is surjective,

(iii) Π† is injective.

A necessary condition for the validity of (i), (ii), and (iii) is

dimWh ≤ dimQh. (3.5)

Proof. Implications (i)⇒(ii) and (i)⇒(iii) are obvious.
Choose arbitrary z ∈ Wh such that ΠΠ†z = 0. Then, by setting w := z, q := Π†z in (3.3),

we obtain

0 = (ΠΠ†z, z)Wh = (Π†z,Π†z)Qh = ∥Π†z∥2
Qh ,

and hence

Π†z = 0. (3.6)

If (iii) holds, (3.6) implies z = 0, so that the kernel of ΠΠ† consists of {0} and implication
(iii)⇒(i) is proved. On the other hand, (3.3) and (3.6) imply that

0 = (Π†z, q)Qh = (Πq, z)Wh for all q ∈ Qh. (3.7)

Assuming (ii) holds, we can choose q in (3.7) such that Πq = z, so that 0 = (z, z)Wh . This
implies that the kernel of ΠΠ† is {0} and implication (ii)⇒(i) is proved.

For proof of the second part of the lemma, consider that by the rank-nullity theorem

0 ≤ dim{y ∈ Qh, Πy = 0} = dimQh − dim ΠQh.

Condition (ii) implies that ΠQh = Wh so that dim ΠQh = dimWh and (3.5) follows.

Now consider operators M : Qh → (Qh)#, A,K,KR : Wh → (Wh)# given, for parameters
w ∈W1,2 and α ∈ [0, 1], by

⟨Mp, q⟩ =
∫︂

Ω
p q p, q ∈ Qh, (3.8a)

⟨Au, v⟩ =
∫︂

Ω
∇u · ∇v u, v ∈Wh, (3.8b)

⟨Ku, v⟩ =
∫︂

Ω
w · ∇u v + α div wu v u, v ∈Wh, (3.8c)

⟨KRu, v⟩ =
∫︂

Ω
w · ∇u v + α div wu v −

∫︂
∂Ω\Γ

w · nu v u, v ∈Wh. (3.8d)
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All the integrals are indeed finite thanks to the requirements (3.1). Assuming that |Γ| > 0 and
Π is surjective, we can define the action of the two variants of the discrete PCD operator by

X−1 := M−1(I + Π#KA−1(ΠΠ†)−#Π†#), (3.9a)
Y −1 := (I + Π†(ΠΠ†)−1A−1KRΠ)M−1. (3.9b)

The following theorem shows that the definition is valid and that the operators are under certain
conditions invertible.

Theorem 3.2 (Invertibility of discrete PCD operator). Let Ω ⊂ R3 be a Lipschitz domain and
Γ ⊂ ∂Ω be open with |Γ| > 0. Let w ∈W1,2, α ∈ [0, 1]. Let spaces (3.1) be given. Assume that
there is a surjective linear operator Π : Qh → Wh and let Π† : Wh → Qh be given by (3.3).
Then the definition of X−1, Y −1 : (Qh)# → Qh through (3.8), (3.9) is valid.

Further assume that (2.20) holds. If w · n ≥ 0 on ∂Ω \ Γ then X−1 is invertible and its
inverse is given by

X =
(︁
I −Π#K(A+K)−1(ΠΠ†)−#Π†#)︁M. (3.10a)

If w · n ≤ 0 on ∂Ω \ Γ then Y −1 is invertible and its inverse is given by

Y = M
(︁
I −Π†(ΠΠ†)−1(A+KR)−1KRΠ

)︁
. (3.10b)

Proof. M−1 exists by the Riesz representation theorem. By the surjectivity of Π and Lemma
3.1, the operator ΠΠ† is invertible. Thanks to the Dirichlet boundary condition Wh ⊂ W 1,∞

Γ
with |Γ| > 0, the Laplace operator A is also invertible by the Riesz representation theorem.
Therefore the PCD operators (3.9) are well-defined.

Denote P := Π†(ΠΠ†)−1Π. Obviously P : Qh → Qh is a projector. Note that

I = (I − P ) + P = (I − P ) + Π†(ΠΠ†)−1A−1AΠ.

Plugging this into (3.9b) we get

Y −1M = (I − P ) + Π†(ΠΠ†)−1A−1(A+KR)Π. (3.11)

A projector on a finite-dimensional space is always continuous, and hence Qh = (I − P )Qh ⊕
PQh. The term (I −P ) in (3.11) is injective on (I −P )Qh. It remains to show that the second
term in (3.11) is injective on PQh, which would in turn yield that Y −1M : Qh → Qh is injective
and the proof would be finished. First consider that Π is injective on PQh. To see this, assume
that ΠPq = 0 for some q ∈ Qh. Hence 0 = Π†(ΠΠ†)−1ΠPq = P 2q = Pq which shows the
injectivity of Π

PQh
. Next we show that (A + KR) : Wh → (Wh)# is injective. Fix u ∈ Wh

and estimate using integration by parts (noticing that u = 0 on Γ and w · n ≤ 0 on ∂Ω \ Γ),
Hölder’s inequality, and the Sobolev-Poincaré inequality ∥u∥6 ≤ CP(2,Ω,Γ)∥∇u∥2:

⟨(A+KR)u, u⟩ = ∥∇u∥2
2 +

∫︂
Ω

w · ∇u
2

2 + 2α
∫︂

Ω
div w u2

2 − 2
∫︂
∂Ω\Γ

w · n u2

2

= ∥∇u∥2
2 + (2α− 1)

∫︂
Ω

div w u2

2 −
∫︂
∂Ω\Γ

w · n u2

2

≥ ∥∇u∥2
2 −
|2α− 1|

2 ∥ div w∥ 3
2
∥u∥2

6

≥
(︁
1− |α− 1

2 |CP(2,Ω,Γ)2∥ div w∥ 3
2

)︁
∥∇u∥2

2.

The parenthetical term in the last line is positive thanks to (2.20). Therefore A+KR is elliptic,
and hence injective. Factors A−1 and (ΠΠ†)−1 in (3.11) are injective by construction and Π†

is injective by the surjectivity of Π and Lemma 3.1. Altogether Π†(ΠΠ†)−1A−1(A + KR)Π is
injective on PQh and Y −1 is hence invertible. The formula (3.10b) is verified against (3.9b) by
direct computation of Y −1Y ; by virtue of the ellipticity of A+KR, the term (A+KR)−1 and
the formula (3.10b) are well-defined. Hence the proof for the Y −1 case is finished. The X−1

case is proved in the same way.
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The first reason for the employment of the auxiliary space Wh and the transfer operator
Π : Wh → Qh is that formulas (3.9) are given meaning also when the pressure space Qh is not
regular enough to define the differential operators in (3.8) directly on Qh, for example when Qh
is a discontinuous finite element space. An alternative to this would be to use a non-conforming
discretization for the differential operators in (3.8), possibly including a discontinuous Galerkin
method; cf. the finite difference construction in [22, pp. 368–370]. We do not consider this
possibility further in this study.

Another reason for the presence of the space Wh is that it incorporates the zero boundary
condition on Γ for the Laplacian solve A−1 and for the convection-diffusion operator A+K or
A+KR in order to obtain its ellipticity; see the proof of Theorem 3.2.

The significance of Theorem 3.2 is that it guarantees the very first requirement put on the
preconditioner – its invertibility. Indeed, a solution p of the underlying problem can be arbitrary
in the space Qh or L2, in the discrete or continuous case respectively, and hence it must be in
the range of the preconditioner for consistency.

The leading-order term M−1 in (3.9) is known to be an appropriate preconditioner for the
Stokes case w = 0; see [8, 51]. This motivates the construction (3.9) which ensures that the
leading term is recovered when w = 0 and that the boundary conditions from Wh do not pollute
the leading term.

Now we look at the significance of the wind direction assumption in Theorem 3.2. For
a typical non-linear iteration scheme (either Picard or Newton) it is natural to assume that
the wind has a correct direction on the inflow boundary, whereas it is difficult to guarantee
the sign of the wind on the outflow boundary; cf. the discussion in Section 1. Typically, one
would have (1.3) but not (1.4). Hence, using the Y −1-variant with Γ = Γout when (1.3) holds
guarantees that the assumption of Theorem 3.2 regarding the wind direction is met. On the
other hand, for the X−1-variant with the choice Γ = Γin the wind-direction assumption of the
Theorem would be met if (1.4) was satisfied which is difficult to guarantee. This might indicate
that the Y -variant is more robust, which might incidentally correspond to its preference in the
recent literature [23], [22, Remark 9.3]. Nevertheless our argument indicating robustness of
the Y -variant seems to be new. We would like to note that more general cases, e.g., a velocity
Dirichlet condition (1.2c) with vD ·n > 0 on (parts of) Γin, should be treated slightly differently.
Indeed, the subscript in is not very descriptive in this case as Γin is no longer exclusively an inflow
boundary. It is not difficult to realize that such a case can be treated using the Y -variant with
Γ = Γout ∪ {x ∈ Γin, vD(x) · n(x) > 0} in order to satisfy the wind-direction condition of the
theorem.

We will proceed by establishing L(L2)-bounds on discrete PCD operators X−1, Y −1, and
their inverses X, Y , analogously to the infinite-dimensional case in Section 2.2. We start with
the case of wind controlled in ∥w∥∞ +α∥ div w∥3 and later comment on a difficulty concerning
the case ∥w∥6 + α∥ div w∥2, which we leave as future work.

Theorem 3.3 (A priori bounds on discrete PCD). Let the conditions of the first part of The-
orem 3.2 be fulfilled. Furthermore, assume that the operators Π : Qh → Wh and (ΠΠ†)−1Π† :
Wh → Qh are bounded in L(L2), the wind w ∈ L∞, and, if α > 0, div w ∈ L3. Then the
following bounds hold true:

∥X−1∥
L
(︁

(L2)#,L2
)︁ ≤ 1 + ∥Π∥L(L2)∥Π†(ΠΠ†)−1∥L(L2)CP(2,Ω,Γ) |Ω| 13

×
(︂
∥w∥∞ + CP(2,Ω,Γ)α ∥ div w∥3

)︂
,

(3.12a)

∥Y −1∥
L
(︁

(L2)#,L2
)︁ ≤ 1 + ∥Π∥L(L2)∥Π†(ΠΠ†)−1∥L(L2)CP(2,Ω,Γ) |Ω| 13

×
(︂
∥w∥∞ + CP(2,Ω,Γ)α ∥ div w∥3

)︂
.

(3.12b)

Further assume that (2.20) holds. If w ·n ≥ 0 on ∂Ω \Γ then X−1 is invertible, the inverse
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is given by (3.10a), and

∥X∥
L
(︁
L2,(L2)#

)︁ ≤ 1 + ∥Π∥L(L2)∥Π†(ΠΠ†)−1∥L(L2)CP(2,Ω,Γ) |Ω| 13

×
(︂
∥w∥∞ + CP(2,Ω,Γ)α ∥div w∥3

)︂
×
(︂

1−
⃓⃓
α− 1

2
⃓⃓
CP(2,Ω,Γ)2 ∥ div w∥ 3

2

)︂−1
.

(3.13a)

If w · n ≤ 0 on ∂Ω \ Γ then Y −1 is invertible, the inverse is given by (3.10b), and

∥Y ∥
L
(︁
L2,(L2)#

)︁ ≤ 1 + ∥Π∥L(L2)∥Π†(ΠΠ†)−1∥L(L2)CP(2,Ω,Γ) |Ω| 13

×
(︂
∥w∥∞ + CP(2,Ω,Γ)α ∥div w∥3

)︂
×
(︂

1−
⃓⃓
α− 1

2
⃓⃓
CP(2,Ω,Γ)2 ∥ div w∥ 3

2

)︂−1
.

(3.13b)

Proof. Under the appropriate conditions of Theorem 3.2 formulas (3.9) and (3.10) make sense
and it remains to prove the estimates (3.12) and (3.13). Note that the definition (3.9a) can be
rewritten as (MX−1 − I) : (Qh)# → (Qh)# : f ↦→ g such that u ∈Wh is given by∫︂

Ω
∇u · ∇v = ⟨f,Π†(ΠΠ†)−1v⟩(Qh)#,Qh for all v ∈Wh (3.14)

and g ∈ (Qh)# is given by

⟨g, q⟩(Qh)#,Qh =
∫︂

Ω
(w · ∇u+ α div wu) Πq for all q ∈ Qh. (3.15)

Testing by u in (3.14) and by M−1g in (3.15), noticing that ⟨g,M−1g⟩(Qh)#,Qh = ∥g∥2
(L2)#

whenever g ∈ (Qh)#, using (3.8), Hölder’s inequality, and the Sobolev-Poincaré inequality
∥u∥6 ≤ CP(2,Ω,Γ)∥∇u∥2 yields the estimate (3.12a). Estimate (3.13a) then follows in a similar
way using formula (3.10a) and obtaining the ellipticity (2.4) for A + K in the same way as in
the proof of Lemma 2.1. Concerning the Y -case, estimates (3.12b), (3.13b) follow in the same
way.

Remark 3.4. We used the assumption (2.2) concerning the W 1,3+ϵ-regularity of the Laplacian
solve, which is fulfilled when Ω is a creased Lipschitz domain, to get a priori bounds (2.17)
and (2.44) on the infinite-dimensional PCD operator X−1

α,w,Γ and its inverse Xα,w,Γ, which are
uniform in ∥w∥6 +α∥ div w∥2 ≤ C∥w∥1,2, thus avoiding the dependence on ∥w∥∞ +α∥ div w∥3.
The same can be achieved in the discrete case if the W 1,3+ϵ-regularity carries over to the discrete
Laplacian; if the problem: for f ∈Wh find u ∈Wh such that∫︂

Ω
∇u · ∇v =

∫︂
Ω
f v for all v ∈Wh

admits the estimate

∥∇u∥3+ϵ ≤ C(Wh)∥f∥2, (3.16)

with some ϵ ≥ 0 if α = 0 and ϵ > 0 if α ∈ (0, 1], then one would get

∥X−1∥
L
(︁

(L2)#,L2
)︁ ≤ C(︂Ω, Γ, C(Wh), ∥Π∥L(L2), ∥Π†(ΠΠ†)−1∥L(L2), ∥w∥6, α∥ div w∥2

)︂
,

(3.17a)

∥Y −1∥
L
(︁

(L2)#,L2
)︁ ≤ C(︂Ω, Γ, C(Wh), ∥Π∥L(L2), ∥Π†(ΠΠ†)−1∥L(L2), ∥w∥6, α∥ div w∥2

)︂
,

(3.17b)
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and, if further (2.20) holds, then

∥X∥
L
(︁
L2,(L2)#

)︁ ≤ C(︂Ω, Γ, C(Wh), ∥Π∥L(L2), ∥Π†(ΠΠ†)−1∥L(L2), ∥w∥6, α∥ div w∥2,(︁
1− |α− 1

2 |CP(2,Ω,Γ)2 ∥ div w∥ 3
2

)︁−1
)︂ (3.18a)

if w · n ≥ 0 on ∂Ω \ Γ, and

∥Y ∥
L
(︁
L2,(L2)#

)︁ ≤ C(︂Ω, Γ, C(Wh), ∥Π∥L(L2), ∥Π†(ΠΠ†)−1∥L(L2), ∥w∥6, α∥ div w∥2,(︁
1− |α− 1

2 |CP(2,Ω,Γ)2 ∥ div w∥ 3
2

)︁−1
)︂ (3.18b)

if w·n ≤ 0 on ∂Ω\Γ. The proof of this follows along the same lines as the proofs of Theorem 3.3,
Lemma 2.5, and Theorem 2.15.

Due to assumption (3.1), which we have deliberately taken, the regularity estimate (3.16) is
always true for a fixed space Wh with some C(Wh) > 0. Of course, it would be desirable if
the constant was bounded uniformly with refinement, which would render estimates (3.17) and
(3.18) independent of mesh refinement as well. Nevertheless, it seems that a uniform estimate
(3.16) is problematic even for quasi-uniform refinement; the standard technique, which uses
an inverse estimate and convergence order h 3

2 +ϵ in the L2-norm, fails here because W
3
2 +ϵ,2-

regularity of the Laplacian does not hold even in the Dirichlet case; see [11].
Concerning the case of adaptive refinement, the refinement of pressure space Qh would have

to ensure validity of (3.16). Indeed, we will typically define Wh in terms of Qh in the subsequent
sections; we already know that Wh is related to Qh by (3.5).

In other words, unsuitable or insufficient refinent of the pressure space can spoil the validity
of the uniform estimates (3.17) and (3.18) and thus the performance of the preconditioner in the
worst case. On the other hand, the uniform estimates of Theorem 3.3, which depend on ∥w∥∞+
α div ∥ div ∥3, are valid for arbitrary refinement. For better understading, whether and/or when
the dependence on ∥w∥∞ + α div ∥ div ∥3 or ∥w∥6 + α div ∥ div ∥2 is acceptable/appropriate, it
is necessary to take into account the employed non-linear iteration scheme and its a priori
estimates; we remark here once more that the underlying non-linear problem (1.1) does not
admit a priori estimates in general cases, i.e., for large data, cf. the discussion in Section 1.
Nevertheless, this is beyond the scope of this work.
Remark 3.5. The bounds on the Schur complement in Lemma 2.3 are true in the discrete
case with β(Ω,D) replaced by the velocity-pressure discrete inf-sup constant, provided that the
velocity-pressure pair discrete space is inf-sup stable; we did not treat any stabilized case in this
study. This implies, together with the bounds (3.12) and (3.13), or (3.17) and (3.18), a spectral
bound on the discrete preconditioned Schur complement analogous to (2.47), with a modification
of (2.48) which additionally depends on the discrete inf-sup constant, the norms ∥Π∥L(L2) and
∥Π†(ΠΠ†)−1∥L(L2), and, in the case ∥w∥6 + α∥ div w∥2, the constant C(Wh) of the discrete
W 1,3+ϵ-estimate (3.16), all under the appropriate condition on the wind direction on ∂Ω \ Γ.

The result of Theorem 2.16, which relates GMRES convergence of the preconditioned saddle-
point system to GMRES convergence of the preconditioned Schur complement with the lag L,
stays true in the discrete case under technical conditions on the discretization which we do not
discuss. The lag L, i.e., the length of the Jordan chain, is finite in the infinite-dimensional case
and thus there is hope that it is uniformly bounded in the discrete case; nevertheless we did not
prove this. On the other hand, the results of Sections 2.4 and 2.5 are not obviously transferable
to the discrete case; indeed, the decay rates (2.70) might be difficult to establish in the discrete
case and would likely depend on appropriate approximation properties of the involved discrete
spaces and the transfer operator Π.

3.2 Case of continuous pressure discretizations
Now we consider the important case where Qh is smooth enough such that it contains a subspace
suitable for conforming discretizations of Laplacian and convection-diffusion; specifically, when
Qh ⊂W 1,∞

Γ , we can consider the choice of Wh given by

Wh = Qh ∩W 1,∞
Γ . (3.19)
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Then we can consider the transfer operator Π : Qh →Wh given by

(Πq, w)Wh = (q, w)Qh for all q ∈ Qh, w ∈Wh. (3.20)

Note that this definition is only valid thanks to the fact that the right-hand side of (3.20) makes
sense due to the inclusion Wh ⊂ Qh, which is a consequence of (3.19). As an important example
consider Qh being a continuous finite element space; specifically, assuming Ω is a polytopic
domain partitioned into simplicial conforming mesh Th, define, for integer k ≥ 1,

Pk(Th) := {p : Ω→ R, p
K

polynomial of total degree at most k for all K ∈ Th},

Qh := {q ∈W 1,∞, q ∈ Pk(Th)}.
(3.21)

Indeed, such Qh is the space of continuous, piece-wise polynomials of degree at most k and Wh

given by (3.19) is merely its subspace with zero boundary values on Γ.
Now we turn to the derivation of a specific form of X−1 and Y −1 for the case (3.19), (3.20).

Relations (3.3) and (3.20) imply that

(q,Π†w)Qh = (q, w)Qh for all q ∈ Qh, w ∈Wh

which means that Π† : Wh → Qh is merely the inclusion (identity) operator Wh ⊂ Qh. Hence,
in block form, with blocks corresponding to Wh and Qh/Wh,

Π† =
(︃
I
0

)︃
. (3.22)

Note that in the case (3.21) with the standard dual basis (also nodes or degrees of freedom),
the splitting Wh ⊕ Qh/Wh is identified with DOFs interior to Ω \ Γ and Γ-boundary DOFs.
Relations (3.22) and (3.4) imply

Π = (MW )−1 (︁MQ
11 MQ

12
)︁

(3.23)

with MQ
ij blocks corresponding to Wh and Qh/Wh in

MQ =
(︃
MQ

11 MQ
12

MQ
21 MQ

22

)︃
.

Taking the special choice

MW := MQ
11 (3.24)

yields

Π =
(︁
I (MQ

11)−1MQ
12
)︁
, (3.25a)

Π†(ΠΠ†)−1 =
(︃
I
0

)︃
. (3.25b)

Note that so far we have not fixed the inner product on Qh. We argue that it makes sense to
choose the L2-inner product, i.e.,

(q1, q2)Qh = ⟨MQq1, q2⟩(Qh)#×Qh =
∫︂

Ω
q1 q2 q1, q2 ∈ Qh. (3.26)

Indeed, it is easy to check that with this choice we have

∥P∥L(L2) ≤ 1, ∥Π∥L(L2) ≤ 1, ∥Π†∥L(L2) ≤ 1, (3.27)

so that Π fulfills the conditions of Theorem 3.2 and (3.27) yields estimates (3.12) and (3.13)
independent of mesh refinement. On the other hand, in the typical finite element settings (3.21)
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with {ϕj}N
Q

j=1 being the usual local basis functions of the space (3.21), one can use only the
diagonal part of the L2-inner product (3.26), i.e.,

(ϕi, ϕj)Qh = ⟨MQϕi, ϕj⟩(Qh)#×Qh =
{︃ ∫︁

Ω ϕi ϕj i = j
0 i ̸= j

i, j = 1, . . . , NQ. (3.28)

The advantage of this is that MQ
12 = 0; subtituting into (3.25) yields

Π =
(︁
I 0

)︁
, (3.29a)

Π†(ΠΠ†)−1 =
(︃
I
0

)︃
, (3.29b)

which is a particularly simple form of the transfer operators in (3.9). Under certain conditions,
(3.28) is equivalent to (3.26) uniformly with mesh refinement, which allows one to recover
L2-estimates (3.27) also for the diagonal inner product (3.28); specifically, Wathen [63] shows
that (3.26) and (3.28) are equivalent for Lagrange elements on simplices under any refinement
and points out that the equivalence is also true on quads/hexes under shape-regular refinement.

Summarizing, with the choice of inner products (3.24) we have

X−1 = M−1

(︄(︃
I 0
0 I

)︃
+
(︃

I

MQ
21(MQ

11)−1

)︃
KA−1 (︁I 0

)︁)︄
, (3.30a)

Y −1 =
(︄(︃

I 0
0 I

)︃
+
(︃
I
0

)︃
A−1KR (︁I (MQ

11)−1MQ
12
)︁)︄
M−1, (3.30b)

which is further equivalent to

X−1 = M−1

(︄(︃
I 0
0 I

)︃
+
(︃

I 0
MQ

21(MQ
11)−1 0

)︃(︃
K 0
0 0

)︃(︃
A 0
0 I

)︃−1(︃
I 0
0 0

)︃)︄
, (3.31a)

Y −1 =
(︄(︃

I 0
0 I

)︃
+
(︃
I 0
0 0

)︃(︃
A 0
0 I

)︃−1(︃
KR 0
0 0

)︃(︃
I (MQ

11)−1MQ
12

0 0

)︃)︄
M−1. (3.31b)

Note that with the choice of the diagonal inner product (3.28) the terms MQ
12 and MQ

21 in (3.30)
and (3.31) vanish. Also note that (3.31) can be equivalently rewritten without the projection
factors

(︂
I 0
0 0

)︂
but it might be better to keep them in the case that an approximation in(︂

A 0
0 I

)︂−1
leads to loss of the projection property.

Consider operator G : Qh → Qh given by

G =
(︃
I (MQ

11)−1MQ
12

0 I

)︃
.

This is a similarity transformation which diagonalizes P and I − P , i.e.,

G−1
(︃
I 0
0 0

)︃
G = P, GPG−1 =

(︃
I 0
0 0

)︃
,

G−1
(︃

0 0
0 I

)︃
G = I − P, G(I − P )G−1 =

(︃
0 0
0 I

)︃
.

It is straightforward to check that (3.31) is equivalent to

X−1 = M−1G#
(︃
A+K 0

0 I

)︃(︃
A 0
0 I

)︃−1
G−#, (3.32a)

Y −1 = G−1
(︃
A 0
0 I

)︃−1(︃
A+KR 0

0 I

)︃
GM−1. (3.32b)
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In the case of the diagonal inner product (3.28), where MQ
12 = 0, the formulas (3.32) immediately

reduce to

X−1
diagL2 = M−1

(︃
A+K 0

0 I

)︃(︃
A 0
0 I

)︃−1
, (3.33a)

Y −1
diagL2 =

(︃
A 0
0 I

)︃−1(︃
A+KR 0

0 I

)︃
M−1. (3.33b)

Note that it might be useful to expand(︃
A 0
0 I

)︃(︃
A 0
0 I

)︃−1
,

(︃
A 0
0 I

)︃−1(︃
A 0
0 I

)︃
in (3.33) to the explicit identity in the case that the solve is approximated and recovery of the
identity is not guaranteed, i.e., to prefer definition (3.31) with MQ

12 = MQ
21 = 0, so that the

leading order term is preserved even when
(︂
A 0
0 I

)︂−1
is eventually approximated.

Let us consider once more the case that MQ is the full L2-inner product (3.26). In that case
all of the formulas (3.30), (3.31), and (3.32) are valid. But consider that now MQ = M and

(︃
I (MQ

11)−1MQ
12

0 0

)︃
M−1 =

(︃
(MQ

11)−1 0
0 0

)︃(︃
MQ

11 MQ
12

MQ
21 MQ

22

)︃(︃
MQ

11 MQ
12

MQ
21 MQ

22

)︃−1

=
(︃
MQ

11 0
0 I

)︃−1(︃
I 0
0 0

)︃
which we can use to simplify (3.31) into

X−1
L2 = M−1 +

(︃
I 0
0 0

)︃(︃
MQ

11 0
0 I

)︃−1(︃
K 0
0 0

)︃(︃
A 0
0 I

)︃−1(︃
I 0
0 0

)︃
, (3.34a)

Y −1
L2 = M−1 +

(︃
I 0
0 0

)︃(︃
A 0
0 I

)︃−1(︃
KR 0
0 0

)︃(︃
MQ

11 0
0 I

)︃−1(︃
I 0
0 0

)︃
. (3.34b)

Again, some of the projection factors
(︂
I 0
0 0

)︂
could be removed but it is not clear if this is

beneficial, considering that the solves in (3.34) might be approximated and the identity recovery
in the Qh/Wh block might be lost, whereas keeping the projection factors is a very cheap
operation (zeroing Qh/Wh entries of the intermediate vectors). Notice that the extra cost of
using formulas (3.34), which use the full L2-inner product (3.26), compared to formulas (3.33),
which use the diagonal inner product (3.28), is essentially one extra solve, the L2-projection to
Wh:

(︂
MQ

11 0
0 I

)︂−1 (︂
I 0
0 0

)︂
.

Formulas (3.30) (or equivalently (3.31), (3.32), and the special case (3.34) for inner prod-
uct (3.26)) seem to be new and provide a very explicit description of how the boundary condi-
tions should be incorporated. Formula (3.33a) seems to have appeared in the literature in the
form of a verbal description; we will provide a detailed comparison with published results in
Section 3.5.

3.3 Case of higher-order discontinuous pressure discretizations
In this section we will sketch the construction of a discrete PCD preconditioner in the case that
the inclusion Qh ⊂W 1,∞

Γ does not hold but the definition (3.19) is still valid. We will see below
that this does not apply to the lowest-order discontinuous Lagrange pressures, which is the case
we will treat in the next section. To our knowledge, the discontinuous case has not received
much attention in the literature. The only study we are aware of, which treats the case of
discontinuous pressures is [22, pp. 368–370], which is essentially a finite difference construction.
We are not sure if the present functional approach can cover this construction. On the other
hand the material in the previous Section 3.2 seems to be a refinement of previously published
approaches, as will be described in Section 3.5.
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The case we consider in this section is when Wh can be again defined by (3.19). This
is clearly not possible when Qh consists of piecewise constant functions. In this case (3.19)
implies that Wh consists of functions constant in Ω and further Wh = {0} when |Γ| > 0. This
is certainly undesirable. Nevertheless when Qh consists of piecewise discontinuous higher-order
polynomials the definition (3.19) yields a non-trivial Wh. In this case most of the exposition in
Section 3.2 remains valid. But one must be more careful with its interpretation. Specifically,
the splitting Qh = Wh ⊕ Qh/Wh does not have a straightforward meaning. In the context of
Section 3.2 it was clearly a splitting into the degrees of freedom corresponding to the boundary Γ
and the remaining degrees of freedom. When Qh is discontinuous this is no longer the case and
the decomposition depends on the chosen inner product MQ. Because of the aforementioned
reasons, we refrain from going into details and merely comment that the formulas of Section 3.2
can be given meaning with some extra Riesz liftings (typically a mass matrix solve or its
approximation) implementing the inclusion Wh ⊂ Qh and the quotient Qh/Wh, cf. (3.22),
which would propagate further into the final formulas for X−1 and Y −1.

3.4 Case of piecewise constant pressure discretizations
This section is motivated by the case of piecewise constant pressures, which does not allow one
to define Wh as a subset of Qh, as explained above, and the construction of Section 3.2 does
not apply. But first we will proceed generally, with minimal assumptions.

Define Π : Qh →Wh by

(Πq, w)Wh =
∫︂

Ω
q w for all q ∈ Qh, w ∈Wh.

Using (3.2b) we can express

Π = (MW )−1L (3.35)

where L : Qh → (Wh)# is given by ⟨Lq,w⟩(Wh)#,Wh =
∫︁

Ω q w. From (3.35), (3.3), and (3.2)
we immediately get Π† = (MQ)−1L#. Assume that L is surjective. Then by virtue of (3.35)
and Lemma 3.1, the operator ΠΠ† is invertible, and hence

Π†(ΠΠ†)−1 = (MQ)−1L#(︁L(MQ)−1L#)︁−1
MW . (3.36)

After choosing the spaces Qh and Wh and the inner products MQ and MW , formulas (3.8),
(3.35), (3.36), and (3.9) fully define the preconditioners X−1 and Y −1, provided that the choice
of Qh and Wh renders Π given by (3.35) surjective.

Motivated by the desire to obtain X−1 and Y −1 bounded in L(L2), one would require MQ

to be the L2-inner product in Qh given by formula (3.26), or at least some equivalent inner
product, e.g., (3.28), which is equivalent under certain circumstances. A pitfall is the term
L(MQ)−1L# in (3.36), which could be dense and thus infeasible to be inverted. Nevertheless, if
Qh is a space of discontinuous, piecewise polynomials, then with an appropriate local basis, e.g.,
the classical discontinuous Lagrange basis, MQ is block-diagonal. In such case L(MQ)−1L# is
still sparse. Thus this construction makes sense for discontinuous pressures.

In the sequel we will consider the case of piecewise constant pressures. Assume Ω is polytopic,
partitioned into a simplicial conforming mesh Th, which comprises of cells K ∈ Th. We assume
that

Qh = {q ∈ L2, q
K

= const ∀K ∈ Th}, (3.37a)

Wh = {w ∈W 1,∞
Γ , w

K
∈ P1(K) ∀K ∈ Th}. (3.37b)

The first concern is whether the necessary condition (3.5) holds for this choice. To provide the
answer we first prove the following lemma.

Lemma 3.6. Let Ω ⊂ Rd be a bounded polytopic domain and Th be a conforming simplicial
triangulation of Ω. Then the number of vertices in Th is less than or equal to the number of
cells in Th plus d.
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Proof. Removing any cell connected by a facet to some other cell removes at most one vertex.
By virtue of the assumption that Ω is connected, the removal can be done on the boundary, so
that the triangulations stays connected after the removal. Such removals can be repeated until
one cell is left. The remaining cell has d+ 1 vertices.

The validity of condition (3.5) is now established as a simple consequence of the lemma.
Corollary 3.7. Let the conditions of Lemma 3.6 be fulfilled. Assume that Γ ⊂ ∂Ω satisfies
|Γ| > 0. Then the spaces Qh and Wh given by (3.37) satisfy condition (3.5).
On the other hand, very simple counterexamples show that the necessary condition (3.5) does
not hold for (3.37) with P1 replaced by P2. We gain further confidence in the choice (3.37), (3.35)
by showing that Π is surjective and thus by virtue of Lemma 3.1 (3.36) is well defined.
Theorem 3.8. Let Ω ⊂ Rd be a bounded polytopic domain and Th be a conforming simplicial
triangulation of Ω. Further let Γ ⊂ ∂Ω be such that |Γ| > 0. Then for Qh and Wh given
by (3.37), Π given by (3.35) is surjective, ΠΠ† is invertible, and thus (3.36) is well defined.
Proof. By virtue of Lemma 3.1, the surjectivity of Π and invertibility of ΠΠ† are equivalent to
the injectivity of Π#, which is in turn equivalent to the injectivity of L#.

Choose w ∈Wh such that L#w = 0. Hence

0 =
∫︂

Ω
ϕi w =

∫︂
Ki

w for all i = 1, 2, . . . , NQ. (3.38)

On any cell K adjacent to a facet intersecting Γ, w
K

is affine, vanishing on such facet, and,
by virtue of (3.38), has zero mean over K. Hence w

K
= 0. By virtue of the assumption that

Ω is connected, one can iterate this argument throughout the whole mesh in order to arrive at
w = 0. Hence L# is injective and the proof is finished.

Theorem 3.8 ensures, in particular, that Π is surjective and that Theorem 3.2, which guarantees
invertibility of X−1 or Y −1 under the appropriate conditions, can be invoked.

Finally, we provide explicit matrix entries of the operators (3.35) and (3.36) for the choice
of the spaces (3.37) and particular choices of MQ and MW . Consider the standard basis of Qh:
ϕi
Kj

= δij , i, j = 1, 2, . . . , NQ. Then MQ = M is diagonal with entries |Ki|, i = 1, 2, . . . , NQ.

Now consider a choice of the inner product on Wh:

(w1, w2)Wh = ⟨MWw1, w2⟩(Wh)#×Wh =
∫︂

Ω
w1 w2 w1, w2 ∈Wh. (3.39)

Hence we have

MW
ij =

∫︂
Ω
ψi ψj i, j = 1, 2, . . . , NW , (3.40a)

Lij =
∫︂

Ω
ψi ϕj i = 1, 2, . . . , NW , j = 1, 2, . . . , NQ, (3.40b)

which implies that

(︁
L(MQ)−1L#)︁

ij
=

NQ∑︂
k=1

∫︁
Ω ψi ϕk

∫︁
Ω ψj ϕk∫︁

Ω |ϕk|2
=

∑︂
K∈ωi∩ωj

∫︁
K
ψi
∫︁
K
ψj

|K|

= |ωi ∩ ωj |(d+ 1)2 i, j = 1, 2, . . . , NW ,

(3.40c)

(︁
(MQ)−1L#)︁

ij
=
∫︁

Ω ϕi ψj∫︁
Ω |ϕi|2

=
{︃ 1

d+1 if Ki ⊂ ωj ,
0 otherwise

{︄
i = 1, 2, . . . , NQ,

j = 1, 2, . . . , NW ,
(3.40d)

where ωj is the patch of the cells adjacent to vertex j. Formulas (3.35), (3.36), and (3.40) give
a precise definition of the transfer operators Π and Π†(ΠΠ†)−1 which appear in the definition
of X−1 and Y −1; see (3.9). Notice that the two extra solves are necessary due to the transfer
operators, namely a solve with (3.40a) and a solve with (3.40c). Note that the first solve can be
avoided by approximating MW by its diagonal. This is an inner product which is (uniformly
with mesh refinement) equivalent to (3.39); see Wathen [63]. Note also that it is desirable to use
the same choice (approximation) of MW in (3.35) and (3.36) for the validity of Theorem 3.2.
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3.5 Historical remarks
There has been a consensus for a long time that natural boundary conditions for the Laplacian
solve and convection-diffusion operator in the preconditioner are appropriate in the case of
enclosed flows, i.e., when D = ∂Ω. In our framework this corresponds to Γ = ∅ although we did
not treat this case as it requires special care since the pressure is determined up to a constant.
Nevertheless this is well understood and it would be possible to incorporate it into our analysis
for the price of a few more technical difficulties and if-thens.

On the other hand, it has been clear from the beginning that for inflow-outflow problems the
treatment of boundary conditions in the preconditioner must be different in order to preserve
good performance of the method. From today’s perspective it seems that many contradictory,
or at least vague, conclusions have been reached and published. Even the recent monograph by
Elman, Silvester, and Wathen [22], together with its supporting code IFISS [58], a gives rather
ambiguous account of the issue.

In this historical exposition we will focus only on the case of a continuous pressure space Qh,
in which we can define Wh by (3.19). Motivated by the enclosed flow case, which we omit, it
is natural to consider

X−1 = M−1F̂ Â−1, (3.41a)
Y −1 = Â−1F̂RM−1 (3.41b)

with some F, FR, A : Qh → (Qh)# and (3.8a). Note that the cases (3.41a) and (3.41b) were
not considered together until this study. In the enclosed flow case, it is well justisfied to choose

⟨Mp, q⟩ =
∫︂

Ω
p q p, q ∈ Qh, (3.42a)

⟨Âp, q⟩ =
∫︂

Ω
∇p · ∇q p, q ∈ Qh, (3.42b)

⟨K̂p, q⟩ =
∫︂

Ω
w · ∇p q + α div w p q p, q ∈ Qh, (3.42c)

⟨K̂Rp, q⟩ =
∫︂

Ω
w · ∇p q + α div w p q −

∫︂
∂Ω\Γ

w · n p q p, q ∈ Qh, (3.42d)

F̂ = Â+ K̂, F̂R = Â+ K̂R (3.42e)

up to the technicality of dealing with constants.7 Now, in the inflow-outflow case it has been
demonstrated above that Â, F̂ , and F̂R have to be somehow modified to account for the
boundary conditions in Wh. The necessity of this has been clear from the first studies of the
preconditioner in view of experience with preconditioner performance. The approach of most
studies consists of two steps:

1. assemble (3.42),

2. modify the action of (a subset of) M , Â, F̂ , and F̂R on the boundary (in a more or less
ad hoc way) before plugging them into (3.41).

One of the first accounts of this issue states:

In the case of a boundary segment with standard outflow boundary conditions, the
Schur complement S (and its preconditioner [X]) must be defined with Dirichlet
data for the pressure on that part of the boundary in order to ensure that the pre-
conditioning operator is elliptic over the pressure solution space. (Elman, Silvester,
and Wathen [20, p. 668])

7In the enclosed flow case, contrary to inflow-outflow problems, the pressure is determined up to a constant
and it is natural to look for a pressure in a space isomorphic to L2/R, for example {q ∈ L2,

∫︁
Ω q = 0}.

Constants can be factored out from Qh in the same or similar way. On the other hand it is convenient from
an implementation standpoint to keep the full Qh and use solvers which suitably handle the nontrivial kernel
in consistent systems; Elman, Silvester, and Wathen [22, section 9.3.5] describe this paradigm with the phrase
“singular systems are not a problem”. Hence, for the case of enclosed flows, Â−1 in (3.41) is to be understood
as the solution operator for Â : Qh/R → (Qh/R)#.
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This does not seem to provide a sufficiently specific method for defining X−1. Moreover it
is also very misleading, if not incorrect; the Schur complement, at least for inf-sup stable
conforming discretizations, is a bijection S : Qh → (Qh)# and it does not seem to feature the
aforementioned Dirichlet data. On the other hand, a later monograph by the same authors is
more specific:

[F]or the reduced problem [w · ∇u = f ] occurring in the limiting case of pure
convection, the solution is determined by specified Dirichlet boundary conditions
on the inflow boundary, where [w · n < 0]. This suggests using Dirichlet boundary
conditions along inflow boundaries to define [F̂ ]. This means that the rows and
columns of [F̂ ] corresponding to pressure nodes on an inflow boundary are treated
as though they are associated with Dirichlet boundary conditions. At nodes on
other (characteristic or outflow) components of ∂Ω, the entries of [F̂ ] are defined by
[do-nothing condition]. [Â] is defined in an analogous manner so that [F̂ ] an [Â] are
derived from consistent boundary conditions.

We note that this discussion only concerns the definition of the algebraic operators,
[F̂ ] and [Â]. That is, the only place where boundary conditions have any impact is on
the definition of the preconditioning operator. In particular, there are no boundary
conditions imposed on the discrete pressures, no values of Dirichlet conditions to
determine, and there is no right-hand side that is affected by these boundary node
modifications. (Elman, Silvester, and Wathen [21, pp. 348–349])

Perhaps “the rows and columns [. . . ] corresponding to pressure nodes on an inflow boundary
are treated as though they are associated with Dirichlet boundary conditions” was meant to
express that

Â =
(︃
A 0
0 I

)︃
, (3.43)

F̂ =
(︃
A+K 0

0 I

)︃
, F̂R =

(︃
A+KR 0

0 I

)︃
(3.44)

with (3.8b), (3.8c), and (3.8d), which leads exactly to formulas (3.33). Even more intersting is
the second paragraph of the above quote; one can guess that “no right-hand side [. . . ] is affected
by these boundary node modifications” means that (3.43) is devised to be used instead of

Â−1 :=
(︃
A 0
0 I

)︃−1(︃
I 0
0 0

)︃
. (3.45)

Indeed, (3.45) is a solution operator for the problem: for a given f ∈ (Qh)# find u ∈ Wh =
Qh ∩W 1,∞

Γ such that ∫︂
Ω
∇u · ∇v = ⟨f, v⟩ for all v ∈Wh. (3.46)

Notice once more that (3.45) really “implements” the boundary-value problem (3.46). It is cru-
cial to observe that using (3.44) and (3.45) renders both (3.41) singular, simply because (3.45)
is singular.8 This demonstrates how much potential confusion can occur due to the contradic-
tion between (3.43) and (3.45). Perhaps Olshanskii and Vassilevski [52, paragraph under (2.7)]
thought that the formula (3.45) should be used rather than (3.43). This is manifested in the
encountered singularity of the precondioner which they circumvent by enforcing the Dirichlet
boundary condition on a fictitious boundary slightly outside of Ω introduced along Γ:

8Indeed, the right-hand side of (3.45) is singular when taken as an operator (Qh)# → Qh, but the motivation
for calling it an inverse operator is that it can be viewed as a solution operator to (3.46) in the sense that

Â−1 = (Qh)# ↪→ (W h)# A−1
→ W h ↪→ Qh

with
(︁

I 0
0 0

)︁
representing the inclusion operator (Qh)# ↪→ (W h)#.
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[I]n the continuous counterpart of the preconditioner ([X−1
α,w,Γ = Fα,w,ΓA

−1
Γ ]) one

has to prescribe boundary conditions only for the Poisson problem solution operator
[A−1

Γ ], while in the discrete case some boundary conditions are involved in the
definition of both matrices [F̂ ] and [Â]. [. . . ] Furthermore, from the implementation
standpoint, Dirichlet boundary conditions for [F̂ ] may not be imposed on the nodes
at [Γ] since these nodes have to contribute to the set of pressure degrees of freedom.
For this reason one introduces outside Ω a fictitious one-cell layer attached to [Γ].
Dirichlet boundary conditions are assigned at layer nodes not belonging to [Γ].
(Olshanskii and Vassilevski [52, p. 2691])

Dirichlet boundary conditions may not be imposed on the boundary nodes, since
these nodes contribute to the set of pressure degrees of freedom. The Dirichlet
condition is imposed on fictitious boundary nodes of an h-extension of the original
mesh. Therefore, the actual boundary nodes are considered as interior in the ex-
tended mesh. This may be implemented in two ways. For a rectangular mesh we
simply copy matrix entries for interior nodes to matrix entries for actual boundary
nodes. However, for a general mesh one has to generate the fictitious mesh layer by
reflecting the close-to-boundary layer of cells with respect to the actual boundary.
(Olshanskii and Vassilevski [52, pp. 2700–2701])

Perhaps under the influence of Olshanskii and Vassilevski [52], the second edition of Elman,
Silvester, and Wathen [22] omits the verbal description which advocates (3.43) over (3.45) in
the first edition [21, pp. 348–349]. In fact no details concerning this issue appear in the sec-
ond edition while the reference implementation, the Matlab package IFISS, uses the technique
of Olshanskii and Vassilevski [52], which is obvious from the comments

file navier_flow/fpzsetup_q2p1.m:

% Dirichlet b.c. for Ap and Fp at outflow: add effect of ‘‘ghost points’’ to the
% right of the boundary back to the diagonal

file navier_flow/fpzsetup_q1.m:

% Dirichlet conditions for Ap and Fp at outflow boundary: mimic finite differences
[...]
% Augment diagonal with values from ‘‘ghost elements’’ outside outflow boundary

(IFISS package version 3.3 [58])

We want to point out that our description of the discrete PCD operator, at least in the case
of continuous pressures, see Section 3.2, leaves no space for confusion. All details concerning
the boundary conditions are explicitly described by the formulas of the preceding sections, in
contrast to verbal descriptions prevalent in previous studies. In fact our definitions of the PCD
operators, (3.9) in the general case, (3.30)–(3.34), or (3.35), (3.36) in certain specific cases, are
constructed such that the invertibility of the operators is ensured by Theorem 3.2. Precisely,
provided that (2.20) holds, X−1 is invertible if w · n ≥ 0 on ∂Ω \ Γ and Y −1 is invertible if
w · n ≤ 0 on ∂Ω \ Γ. This corresponds to the choice of Γ being the inflow boundary for the
X-variant as in [21, pp. 348–349], and [52, paragraph under (2.7)] and Γ chosen as the outflow
boudary for the Y -variant as in [22, second paragraph on p. 372]. Furthermore, a priori bounds
uniform in certain norms of the data are provided by Theorem 3.3 and Remark 3.4.

A completely different approach is chosen by Deuring [15], who for inflow-outflow problems
substitutes the Dirichlet condition on Γ (2.1b) with the Robin condition

∂r

∂n = −κr on Γ

using the special choice κ = 1. The borderline case κ = 0, the Neumann condition, is known
to perform poorly for inflow-outflow problems. The limiting choice κ→∞, which corresponds
to the Dirichlet condition on Γ, has had the most attention in the literature but suffers from
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the problems described above in this section. Using κ < ∞ can be seen as an attempt to
circumvent these problems while it is indeed unclear why κ = 1 should be preferable choice. We
would like to point out that [15] is a very careful and precise study, although it relies heavily
on discretization properties like approximation properties (with quasi-uniform refinements),
inverse estimates, etc., thus making it less general than our functional analytic approach of
Section 2.

Next we would like to comment on eigenvalue bounds for the preconditioned Schur com-
plement which appeared in the literature. To our knowledge, this work is the first study
providing analysis in the function spaces, which is thus agnostic to discretizations. In the pub-
lished literature there appear spectral bounds for the discrete operator which are analogous to
(2.47), (2.48). In light of the aforementioned confusion regarding the boundary conditions, it
is hard to imagine that the published spectral analyses apply to the inflow-outflow case consid-
ering that even the definition of the PCD operator is unclear. But even if we ignore this issue
and focus on the enclosed flow case, Γ = ∅, Qh ⊂ {q ∈ L2,

∫︁
Ω q = 0}, a special case we do not

treat in this study, the validity of published eigenvalue bounds for (3.41a) or (3.41b) with (3.42)
(see [43, Corollary 9A], [18, Theorem 2.1], [42, p. 2046], [21, Theorem 8.5], [52, Theorem 3.2],
[22, Theorem 9.9]) is still questionable. All these results boil down to [43, Theorem 7] which
assumes the validity of W 2,2-estimates for the Laplacian and convection-diffusion, i.e., that
Â−1, F̂−1 ∈ L(L2,W 2,2) uniformly with mesh refinement. This cannot be justified on general
corner domains. Moreover, the bound is derived under the assumption div w = 0 and depends
on ∥w∥∞, which are both very restrictive assumptions; cf. Lemma 2.7, Lemma 2.5. Apart of
that, the result of Loghin [43] is very difficult to grasp because it works with and provides
estimates in ℓ2 matrix norms, which rely heavily on specific discretization properties (inverse
estimates, approximation properties) that typically hold under quasi-uniform refinements and
are difficult to transfer into general, possibly adaptive, refinements. We circumvent this by
starting our analysis purely in the functional setting of Section 2, also called the operator pre-
conditioning approach, and by working in problem-dictated norms rather than ℓ2; in Section 3.1
we transfer the results of the analysis to some discrete cases.

At this point we would like to note that some studies, e.g., [22, section 9.3.4], give the
impression that spectral bounds of the preconditioned Schur complement are useful for bounding
the GMRES convergence rate. Consider that for diagonalizable operator T = V −1 diag({λi}i)V
and polynomial p it holds that

∥p(T )∥ ≤ ∥V ∥ ∥V −1∥ max
t∈{λi}i

|p(t)|.

Furthermore, when T is normal then V is unitary so that ∥V ∥ = ∥V −1∥ = 1. Nevertheless
there does not seem to be any evidence of normality or diagonalizability of the preconditioned
Schur complement in general geometry. It is important to recall that spectrum does not give,
in general, any valid bound on the convergence of GMRES as noticed by Greenbaum, Pták,
and Strakoš [26].

Appendix A Spectrum of bounded linear operators
In this section we restate some classical textbook matter concerning spectra of bounded linear
operators as well as recent results describing the rate of accumulation of eigenvalues at essential
spectrum for certain classes of operators.

First we state Banach’s bounded inverse theorem, which is a corollary of the open mapping
theorem. For a proof see [17, Theorem II.2.2] or [64, Corollary on p. 77].

Theorem A.1 (Bounded inverse theorem). Let V be a Banach space and let T be a bounded
linear operator on V . If T is bijective then the inverse operator T−1 : V → V is bounded.

We continue with a characterization of invertibility of a bounded linear operator.

Lemma A.2 (Characterization of invertibility). Let V be a Banach space and T a bounded
linear operator on V . The inverse operator T−1 ∈ L(V ) exists if and only if the following
conditions are met:
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(i) T is bounded from below, i.e., there exists c > 0 such that

∥T x∥V ≥ c ∥x∥V for all x ∈ V, (A.1)

(ii) the range of T is dense, i.e.,

{T x : x ∈ V }
V

= V. (A.2)

Proof. First assume that conditions (i), (ii) hold. Condition (i) implies that T is injective and
the range of T is closed, which together with (ii) implies that T is surjective. Hence T−1 exists
and by (A.1) is bounded.

On the other hand if (i) does not hold, there exists {xk}∞
k=1 ⊂ V with ∥xk∥V = 1 and

Txk → 0. If T−1 existed and was bounded, then it would hold that xk = T−1Txk → 0, which
is a contradiction. Hence (i) is necessary. Condition (ii) is obviously necessary.

The spectrum σ(T ) of a bounded operator T on a Banach space is a subset of the complex
plane containing those λ such that T − λI is not continuously invertible, or equivalently by
Theorem A.1, T − λI is not invertible. By the characterization of Lemma A.2 the spectrum
can be broken down into two, not necessarily disjoint, parts:

1. the approximate point spectrum σap(T ) consisting of those λ ∈ C such that T − λI is
not bounded from below; this is equivalently characterized by the following: there exists
a sequence {xk} ⊂ V , ∥xk∥V = 1 such that

∥(T − λI)xk∥V → 0; (A.3)

if λ is an eigenvalue, i.e., there exists x ∈ V, ∥x∥V = 1 such that Tx− λx = 0, then one
can choose the sequence in (A.3) as xk := x; henceforth we define the point spectrum
σp(T ) ⊂ σap(T ) as the set of eigenvalues;

2. the compression spectrum σcp(T ) consisting of those λ ∈ C such that the closure of the
range of T − λI is a proper subset of V .

We proceed by bounding the approximate point spectrum by the operator norm.

Lemma A.3. Let V be a Banach space. Let the operator T ∈ L(V ) have an inverse T−1 ∈
L(V ). Then the approximate point spectrum of the operator T is contained in the set{︂

λ ∈ C : ∥T−1∥−1
L(V ) ≤ |λ| ≤ ∥T∥L(V )

}︂
. (A.4)

Proof. Let λ ∈ C be from the approximate point spectrum of T . Then by characterization (A.3)
there exists a unit sequence xk such that Txk−λxk goes to zero in V . By the triangle inequality,
considering that ∥xk∥V = 1,

0← ∥Txk − λxk∥V ≥ | ∥Txk∥V − |λ| | ,

hence ∥Txk∥V → |λ|. But ∥Txk∥V is bounded from above by ∥T∥L(V ) and hence is |λ|.
On the other hand, the sequence ∥xk − λT−1xk∥V goes to zero because ∥xk − λT−1xk∥V ≤

∥T−1∥L(V )∥Txk − λxk∥V → 0. Hence |λ|−1 ← ∥T−1xk∥V ≤ ∥T−1∥L(V ) and therefore |λ|−1 ≤
∥T−1∥L(V ).

Now we show inclusion of the compression spectrum in the point spectrum of the adjoint.

Lemma A.4. Let V be a Banach space and T a bounded linear operator on V . Let V # denote
the topological dual of V . Let T# : V # → V # be an adjoint of T defined by⟨︁

ϕ, Tx
⟩︁
V #,V

=
⟨︁
T#ϕ, x

⟩︁
V #,V

for all x ∈ V and ϕ ∈ V #. (A.5)

Then

∥T#∥L(V #) = ∥T∥L(V ) (A.6)

and σcp(T ) ⊂ σp(T#).
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Proof. The adjoint T# is bounded and its norm is

∥T∥L(V ) = sup
x∈V, ϕ∈V #

⟨︁
ϕ, Tx

⟩︁
V #,V

∥ϕ∥V # ∥x∥V
= sup
x∈V, ϕ∈V #

⟨︁
T#ϕ, x

⟩︁
V #,V

∥ϕ∥V # ∥x∥V
= ∥T#∥L(V #), (A.7)

which proves (A.6).
Let λ ∈ σcp(T ). Hence by definition (T − λI)V

V
is a proper subset of V . By the Hahn-

Banach theorem there exists non-zero ϕ ∈ V # vanishing on (T − λI)V
V

. Hence for all x ∈ V
it holds 0 = ⟨ϕ, (T − λI)x⟩V #,V = ⟨(T# − λI)ϕ, x⟩V #,V . So λ is an eigenvalue of T#.

Now we are in the position to bound the spectrum by the norm from above and by the
inverse norm from below.

Theorem A.5. Let V be a Banach space and T be a bounded linear operator on V . Then the
spectrum of T fulfills the inclusion

σ(T ) ⊂
{︂
λ ∈ C : ∥T−1∥−1

L(V ) ≤ |λ| ≤ ∥T∥L(V )

}︂
, (A.8)

with the convention ∥T−1∥−1
L(V ) = 0 whenever T is not invertible.

Proof. First assume that T is invertible. By Lemma A.3 we already have ∥T−1∥−1
L(V ) ≤ |λ| ≤

∥T∥L(V ) for λ ∈ σap(T ). By virtue of (A.6) the norms of T and T# are equal, as well as
the norms of T−1 and T−#, the adjoint of T−1 defined by (A.5). Now let λ ∈ σcp(T ). By
Lemma A.4 λ ∈ σp(T#) and also, by definition, λ ∈ σap(T#). Now we can apply Lemma A.3 to
T# to conclude, with the help of (A.7), that ∥T−1∥−1

L(V ) = ∥T−#∥−1
L(V #) ≤ |λ| ≤ ∥T

#∥L(V #) =
∥T∥L(V ). By Lemma A.2 we have that σap(T ) ∪ σcp(T ) = σ(T ). The case of T not invertible
is a simple modification.

Remark A.6. In fact there is an elementary proof of Theorem A.5, in contrast to the given
proof, which invokes the Hahn-Banach theorem through Lemma A.4, and the open mapping
theorem through Theorem A.1. Indeed, if |λ| > ∥T∥L(V ) then (I − T/λ)−1 can be expressed by
the Neumann series. Similarly, for |λ| < ∥T−1∥−1

L(V ) the Neumann series of (I − λT−1)−1 =
T (T − λI)−1 exists.

Now, for a linear operator T on a complex Hilbert space H with inner product (·, ·)H we
define the numerical range of the operator as a subset of the complex plane given by

Num(T ) =
{︁

(Tx, x)H , ∥x∥H = 1
}︁
.

The following statement is taken from Davies [14, Theorem 9.3.1].

Theorem A.7. Let H be a complex Hilbert space and T be a bounded linear operator on H.
Then Num(T ) is a convex set and

σ(T ) ⊂ Num(T ) ⊂
{︁
z ∈ C, |z| ≤ ∥T∥

}︁
where Num(T ) is the closure of Num(T ).

Proof. For the proof of the convexity of Num(T ), which is known as the Toeplitz-Hausdorff
theorem, see [14, Theorem 9.3.1], or [27].

The right-hand side inclusion is trivial. For the left-hand side inclusion, consider first λ ∈
σap(T ), i.e., there is a sequence {xk}∞

k=1 ⊂ H with ∥xk∥H = 1 and ∥(T − λI)xk∥H → 0. That
implies |(Txk, xk)H−λ| → 0, which means that λ ∈ Num(T ). On the other hand, if λ ∈ σcp(T ),
then by Lemma A.4 there is ϕ ∈ H# with ∥ϕ∥H# = 1 such that T#ϕ = λϕ. Equivalently, by the
Riesz representation theorem, there is x ∈ H with ∥x∥H = 1 and T †x = λx, where T † : H → H
is a Hilbert adjoint of T , which is given by

(Ty, z)H = (y, T †z)H for all y, z ∈ H.

That implies (Tx, x)H = (x, T †x)H = (x, λx)H = λ so that λ ∈ Num(T ) and the proof is
finished.
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The following theorem due to F. Riesz establishes the properties of the spectral projection.
The following version, which we state without proof, is due to Davies [14, Theorem 1.5.4,
Theorem 1.5.1].

Theorem A.8 (Spectral projection). Let V be a Banach space and T be a bounded linear
operator on V . Let γ ⊂ C be a closed Jordan curve, i.e., γ is an image of a continuous map
φ : [0, 1]→ C such that φ

[0,1)
is injective and φ(0) = φ(1). Suppose that γ encloses a compact

component S of σ(T ) and σ(T ) \ S is outside of γ. Then

PS := − 1
2πi

∫︂
γ

(T − zI)−1 dz

is a bounded projection on V , which commutes with T . It is independent of the choice of γ
subject to the aforementioned conditions. The restriction of T to PSV has spectrum S and the
restriction of T to (I − PS)V has spectrum σ(T ) \ S.

Now we proceed by presenting the spectral theory of the Fredholm operators, largely fol-
lowing Davies [14, section 4.3].

Definition A.9 (Fredholm operators, essential spectrum). Let V , W be Banach spaces.
A bounded linear operator T : V → W is said to be a Fredholm operator if its kernel and its
cokernel,

Ker(T ) = {x ∈ V, Tx = 0},
Coker(T ) := W/TV = {{y + z, z ∈ TV }, y ∈W},

are both finite-dimensional. The index of T is defined by

Ind(T ) := dim Ker(T )− dim Coker(T ).

The essential spectrum of T ∈ L(V ) is defined as

σess(T ) := {λ ∈ C, T − λI is not Fredholm}.

In the following theorem we collect some facts about essential spectra that can be found,
including proofs, in [14, Corollary 4.3.8, Theorem 4.3.18].

Theorem A.10. Let V be a Banach space and T be a bounded linear operator on V . Then for
any compact linear operator K on V it holds true that

σess(T ) = σess(T +K).

Denote the unbounded component of C \ σess(T ) by U. Then, for every λ ∈ U, T − λI is
a Fredholm operator and Ind(T −λI) = 0. Furthermore, σ(T )∩U consists of at most countably
many eigenvalues of finite algebraic and geometric multiplicities; accumulation points of σ(T )∩
U, if any, are located only on ∂σess.

This immediately implies the spectral theory of compact operators first developed by F. Riesz,
i.e., that if V is an infinite-dimensional Banach space and K ∈ L(V ) is compact, then σess(K) =
{0} and σ(K) \ {0} consists of at most countably many eigenvalues of finite multiplicity, which
can only accumulate at {0}.

In the rest of the section we present recent results which quantify the rate of accumulation
for a special class of operators, namely bounded linear operators A + K with A self-adjoint
and K compact but not necessarily self-adjoint. First we need a measure of compactness, so
we introduce approximation numbers of linear operators and the space of p-Schatten operators.
Approximation numbers of a bounded linear operator T : V1 → V2 between Banach spaces V1,
V2 are defined by

aj(T ) = inf
M∈L(V1,V2)
rank(M)<j

∥T −M∥L(V1,V2), j = 1, 2, . . . (A.9)
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The approximation numbers fulfill, see Pietsch [53, paragraph 2.2.1, p. 79, Theorem 2.3.3, p. 83],

∥T∥L(V1,V2) = a1(T ) ≥ a2(T ) ≥ . . . ≥ 0, (A.10a)
aj+k−1(S + T ) ≤ aj(S) + ak(T ), j, k = 1, 2, . . . , (A.10b)

aj(WTU) ≤ ∥W∥L(V2,V3)aj(T )∥U∥L(V0,V1), j = 1, 2, . . . (A.10c)

with any U ∈ L(V0, V1), S, T ∈ L(V1, V2), W ∈ L(V2, V3) on Banach spaces V0, . . . , V3.

Definition A.11 (p-Schatten class). A linear operator T : V1 → V2 is said to be of p-Schatten
class for some 1 ≤ p <∞, symbolically T ∈ Sp(V1, V2), if its p-Schatten norm

∥T∥Sp(V1,V2) =
(︁ ∞∑︂
j=1

aj(T )p
)︁ 1

p (A.11)

is finite.

Class Sp(V1, V2) is a subspace of compact operators from V1 to V2, a Banach space with respect
to norm (A.11), and an operator ideal; see [53]. Notation Sp can be used instead of Sp(V1, V2)
for brevity if the choice of spaces is clear.

We continue with two recent results which can be seen as a generalization of Kato’s result [32]
to perturbations which are not necessarily self-adjoint.

Theorem A.12 (Hansmann [28, Theorem 2.1]). Let A, B be bounded operators on a Hilbert
space H, let A be self-adjoint, and B −A ∈ Sp(H) for some p ≥ 1. Then∑︂

λ∈σp(B)

dist
(︁
λ,Num(A)

)︁p ≤ ∥B −A∥pSp(H),

where each eigenvalue is counted according to its algebraic multiplicity.

We present the proof from [28]:

Proof. Note that the Schatten norm (A.11) can be characterized, for p ≥ 1, by

∥K∥pSp(H) = sup
{fj}∞

j=1, {gj}∞
j=1

∞∑︂
j=1
|(Kfj , gj)|p, (A.12)

where the supremum is taken over all extended orthonormal sequences (sequences which are
either orthonormal or finite, extended by zeros) in H; see [53, Lemma 2.11.12, Proposition on
p. 127].

Another needed tool is Schur’s lemma, which roughly says that that the spectral projection
of a bounded linear operator corresponding to (some of) its isolated eigenvalues with finite
multiplicity is unitarily similar to a triangular operator in ℓ2. Precisely, for T ∈ L(H) there
exists a double sequence {tjk}∞

j,k=1 ⊂ C with tjk = 0 for j > k, tjj = λj and an extended
orthonormal sequence {fj}∞

j=1 ⊂ H such that

Tfj = tj1f1 + tj2f2 + · · ·+ tjjfj for all j = 1, 2, . . . , (A.13)

where {λj}∞
j=1 is a subset of eigenvalues of T which have finite algebraic multiplicity; see [25, Re-

mark 4.1]. After all, this result is easily deduced from Theorem A.8 and Schur’s decomposition
for matrices.

With λj , fj of (A.13) applied to T := B we have, using (A.12) with K := B −A,

∥B −A∥pSp(H) ≥
∞∑︂
j=1
|((B −A)fj , fj)|p =

∞∑︂
j=1
|λj − (Afj , fj)|p

≥
∞∑︂
j=1

dist(λj ,Num(A))p,
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where the sum is over all eigenvalues of B with finite algebraic multiplicity while repeating the
eigenvalues according to their algebraic multiplicity. By virtue of Theorem A.10, the eigenvalues
of infinite multiplicity are only located in Num(A) and hence the sum can be extended to all
eigenvalues of B and the proof is finished.

Theorem A.13 (Hansmann [29, Corollary 1]). Let A, B be bounded operators on a Hilbert
space H, let A be self-adjoint, and B −A ∈ Sp(H) for some p > 1. Then∑︂

λ∈σp(B)

dist
(︁
λ, σ(A)

)︁p ≤ Cp∥B −A∥pSp(H),

where each eigenvalue is counted according to its algebraic multiplicity. The constant Cp ≥ 2
depends only on p; in particular it is independent of H.

Notice that Theorem A.12 does not feature the multiplicative constant Cp ≥ 2 and its proof is
very simple. Observe that, in particular when p = 6, which is our application in Theorem 2.17,
the proof of Theorem A.13 in [29] uses C6 which is known to fulfill

7.05× 106 ≤ C6 ≤ 1.71× 107.

On the other hand, Theorem A.13 gives finer infomation about the accumulation around non-
convex σ(A).

Appendix B Stability of contractive GMRES convergence
under compact perturbations

The purpose of this section is to extend the result of Moret [48] to show that when operators
which are subject to contractive GMRES convergence9 are compactly perturbed, contractive
GMRES convergence with the same contraction factor is preserved up to a superlinearly quickly
vanishing delay. A measure of compactness determines the convergence rate of the delay.
Moret’s result [48], as a special case, considers only compact perturbations of the identity; in
this case the convergence rate for the perturbed operator is superlinear; see Remark B.5.

Consider a complex Banach space V and operator T ∈ L(V ). Let u0, b ∈ V such that b is in
the range of T . Denote r0 := b − Tu0. The GMRES (generalized minimal residual) algorithm
constructs a sequence {uk}∞

k=1 ⊂ V given by

uk = u0 + p̂k(T )r0, (B.1a)
p̂k = arg min

p̂∈Pk−1

∥r0 − T p̂(T )r0∥V , (B.1b)

where Pk is the space of polynomials of degree at most k with complex coefficients. It is easy
to see that if T is invertible and V is strictly convex, relations (B.1) in fact fully and uniquely
determine {uk}∞

k=1. It is convenient for notation to rewrite (B.1b) as

pk = arg min
p∈Pk, p(0)=1

∥p(T )r0∥V . (B.2)

The polynomials p̂k are then recovered by p̂k(t) = 1−pk(t)
t . Denoting rk := b− Tuk yields

∥rk∥V = min
pk∈Pk, pk(0)=1

∥pk(T )r0∥V ≤ ∥r0∥V min
pk∈Pk, pk(0)=1

∥pk(T )∥L(V ). (B.3)

The equality in (B.3) motivates the name of the method: rk are the residuals to be minimized.
9We say that operator T on a Banach space V is subject to contractive GMRES convergence with a contraction

factor M ∈ [0, 1) if for every initial residual r0 ∈ V there is a decrease in GMRES residual norm (B.3) by factor M
in every step, i.e.,

∥rk∥V

∥rk−1∥V
≤ M for all k ∈ N and every initial residual r0 ∈ V.
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In the remainder of this section we assume that V is a Hilbert space with an inner prod-
uct (·, ·), T is a bounded linear operator on V , and the symbol ∥ · ∥ stands for either the
norm on V induced by (·, ·) or the induced operator norm on L(V ). For k = 0, 1, 2, . . . define
a Krylov subspace Kk := span{r0, T r0, T

2r0, . . . , T
k−1r0} ⊂ V . Then the GMRES algorithm

characterized by (B.1) can be equivalently described as

uk = arg min
uk∈V ;uk−u0∈Kk

∥f − Tuk∥. (B.4)

Assume that t1, t2, . . . , tk is the orthonormal basis of Kk, k = 1, 2, . . ., and z1, z2, . . . , zk is the
orthornormal basis of TKk, k = 1, 2, . . .. This is well-defined if

Kk+1 ⊋ Kk for all k = 1, 2, . . . . (B.5)

It is well-known that in the converse case, when Km+1 = Km ⊋ Km−1 ⊋ . . . for certain m, the
solution has been reached, i.e., Tum = b, provided that T is invertible. To see this, observe
that TKm ⊂ Km+1 but at the same time dimTKm = dimKm = dimKm+1 by the invertibility
of T ; hence TKm = Km+1 ∋ r0, i.e., r0 = p̂(T )Tr0 with some p̂ ∈ Pm−1 which means that
rm = r0 − p̂(T )Tr0 = 0. All following convergence results will cover this situation as a special
case. Hence we can assume from now on, without loss of generality, that (B.5) holds.

Moret [48] proves the following auxiliary result.

Lemma B.1 (Moret [48, Lemma 6]). Let T be invertible. For every k ∈ N and λ ∈ C it holds

∥rk∥ = |(tk+1, zk)|∥rk−1∥ = |(tk+1, (I − λT−1)zk)|∥rk−1∥. (B.6)

Note that the second equality of (B.6) follows trivially by construction.

Lemma B.2 (Pietsch [53, Lemma 2.11.13, p. 125]). Let T be a bounded linear operator on
a Hilbert space H. Let a1(T ) ≥ a2(T ) ≥ a3(T ) ≥ . . . ≥ 0 denote the approximation num-
bers of T as defined by (A.9). Then for any pair of orthonormal families {f1, f2, . . . , fk},
{g1, g2, . . . , gk} ⊂ H it holds that

det
{︁

(Tfi, gj)
}︁k
i,j=1 ≤

k∏︂
j=1

ak(T ). (B.7)

Now we provide a modification of [48, equation (2.7)].

Lemma B.3. Let T be invertible and λ ∈ C be arbitrary. Denote the approximation numbers
of I − λT−1 by a1(I − λT−1) ≥ a2(I − λT−1) ≥ . . . ≥ 0. Then

∥rk∥
∥r0∥ ≤

k∏︂
j=1

aj(I − λT−1). (B.8)

Proof. From (B.6) we have

∥rk∥
∥r0∥ =

k∏︂
j=1
|(tj+1, (I − λT−1)zj)|.

The matrix {︁
|(ti+1, (I − λT−1)zj)|

}︁k
i,j=1

is upper triangular because by construction,

0 = (tj+2, zj) = (tj+3, zj) = . . . ,

0 = (tj+1, T
−1zj) = (tj+2, T

−1zj) = . . . .

This implies that
∏︁k
j=1 |(tj+1, (I−λT−1)zj)| = det

{︁
|(ti+1, (I−λT−1)zj)|

}︁k
i,j=1 which is bounded

by
∏︁k
j=1 aj(I − λT−1) due to (B.7).
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Now we are in the position to characterize GMRES convergence for a (non-self-adjoint)
compact perturbation of a self-adjoint operator.

Theorem B.4. Let T = B + C be an invertible linear operator on a Hilbert space. Let B be
self-adjoint and positive, with spectrum σ(B) ⊂ [a, b] ⊂ (0,∞), and let C be compact. Then
GMRES iterations with T and r0 produce residuals rk with the norm

∥rk∥ = min
p∈Pk

p(0)=1

∥p(T )r0∥

which fulfills

lim sup
k→∞

∥rk∥
∥rk−1∥ ≤

b−a
b+a . (B.9)

Furthermore, if C is of p-Schatten class for some p ≥ 1, then there exists c ≥ 0 independent of
r0 such that (︁∥rk∥

∥r0∥
)︁ 1

k ≤ b−a
b+a + ck− 1

p . (B.10)

The constant c fulfills the bound

c ≤ 2b
b+a∥T

−1∥∥C∥Sp
. (B.11)

Proof. Set λ := 2
a−1+b−1 . For the spectrum of I−λB−1 we then have σ(I−λB−1) ⊂ [− b−ab+a ,

b−a
b+a ].

Thanks to the assumptions we can express T−1 = B−1 −B−1CT−1. Hence by Lemma B.1,

∥rk∥
∥rk−1∥ ≤ |(tk+1, (I − λB−1)zk)|+ |(tk+1, λB

−1CT−1zk)|

≤ b−a
b+a + λ

a∥CT
−1zk∥.

The sequence {zk}∞
k=1 is an orthonormal system which is, by Bessel’s inequality, weakly null.

By the compactness of C, (B.9) follows.
Denote M := b−a

b+a ≥ ∥I − λB
−1∥. By (B.8), the AM-GM inequality, and the Minkowski

inequality we obtain

(︁∥rk∥
∥r0∥

)︁ 1
k ≤

k∏︂
j=1

aj(I − λT−1) 1
k ≤ 1

k

k∑︂
j=1

aj(I − λT−1) (B.12)

= M + 1
k

k∑︂
j=1

(︁
aj(I − λT−1)−M

)︁

≤M + k− 1
p

(︄
k∑︂
j=1

(︁
aj(I − λT−1)−M

)︁p)︄ 1
p

. (B.13)

By the properties of approximation numbers (A.10) and λ∥B−1∥ ≤ (1 +M) we get

aj(I − λT−1) = aj(I − λB−1 + λB−1CT−1)
≤ a1(I − λB−1) + aj(λB−1CT−1) ≤M + (1 +M)∥T−1∥aj(C).

Henceforth, with the aid of (A.11),

k∑︂
j=1

(︁
aj(I − λT−1)−M

)︁p ≤ (1 +M)p∥T−1∥p
k∑︂
j=1

aj(C)p

≤ (1 +M)p∥T−1∥p∥C∥pSp
,

which shows that the sum in (B.13) is bounded independently of k and the estimate (B.10)
with (B.11) follows.
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Remark B.5. Notice that the result of Moret [48] for B = λI, λ ̸= 0, follows as a special case of
Theorem B.4 by setting a = b = λ; (B.9) gives the q-superlinear convergence limk→∞

∥rk∥
∥rk−1∥ = 0

of [48, Theorem 1] and (B.10) gives the rate ∥rk∥
1
k = O(k− 1

p ) of [48, equation (1.1)].

Remark B.6. Theorem B.4 holds for non-self-adjoint B provided

M := ∥I − λB−1∥ < 1 for some λ ∈ C. (B.14)

Then (B.9)–(B.11) are replaced by

lim sup
k→∞

∥rk∥
∥rk−1∥ ≤M,

(︁∥rk∥
∥r0∥

)︁ 1
k ≤M + ck− 1

p , c ≤ (1 +M)∥T−1∥∥C∥Sp , (B.15)

respectively. We leave the obvious modification of the proof to the reader. If B is normal,
a sufficient and necessary condition for validity of (B.14) is

NumB−1 ⊂ BM |λ−1|(λ−1) for some λ ∈ C and M < 1,

where BR(z) is a closed ball of diameter R and center z in the complex plane. For a non-normal
operator B it holds, see Horn and Johnson [31, Problem 5.7.P20], that

∥I − λB−1∥ ≤ 2 sup
z∈Num(I−λB−1)

|z|,

and hence a sufficient condition for the validity of (B.14) for non-normal B is

NumB−1 ⊂ BM
2 |λ−1|(λ−1) for some λ ∈ C and M < 1.

Remark B.7. Nevanlinna [50, Theorem 1.2] shows in a setting similar to (B.14), when B
and C are not necessarily self-adjoint and C is additionally of 1-Schatten class, that for any
ϵ > 0 there exist Cϵ > 0 and k0 ∈ N such that(︁ ∥rk∥

Cϵ∥r0∥
)︁ 1

k ≤M + ϵ for all k ≥ k0

and Cϵ →∞ with ϵ→ 0+. It is not difficult to see that this result is covered by (B.15). Malinen
[46, Lemma 6.8] similarly deals with polynomial iterations of B+C with C of p-Schatten class,
p > 1, and provides only a result, which is valid only asymptotically, for large enough k. Both
of these results use methods of complex analysis to study iterations using monic polynomials
and subsequent normalization to p(0) = 1 gives only asymptotic behavior.

On the other hand, Nevanlinna [50, Theorem 4.2] provides a result valid for all k ∈ N:(︁ ∥rk∥
Cη∥r0∥

)︁ 1
k ≤ η

where η is determined in terms of the capacity of σ(B); the disadvantage of this estimate is that
the ck− 1

p term of (B.15) is forgotten at the cost of a potentially large constant Cη, which does
not pollute (B.15).

Remark B.8. Herzog and Sachs [30, Theorem 3.12] provide an estimate similar to (B.12) in
the context of MINRES for self-adjoint T such that T −λI is compact for some λ ̸= 0 (or, more
generally, p(T )T − I is compact for some polynomial p); specifically,

(︁∥rk∥
∥r0∥

)︁ 1
k ≤ 2c

k

k∑︂
j=1
|λj(C)|

where λj(C) are distinct eigenvalues of C ordered by decreasing magnitude. A notable prop-
erty is that the eigenvalues are not taken according to multiplicity, i.e., repeated eigenvalues
contribute just once, which seems to be only possible under normality of T .
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Now let us consider how to prevent the influence of isolated eigenvalues of B on the con-
traction factor b−a

b+a in Theorem B.4. Assume S ⊂ σp(T ) is a set of finitely many isolated
eigenvalues of finite multiplicity and define PS to be the spectral projection provided by Theo-
rem A.8. Then we can write T = B +C = B(I − PS) +BPS +C. The projector PS has finite
rank, and hence BPS + C is compact. The operator B(I − PS) might have a better spectral
bound than B so one could expect a better contraction factor in (B.9) and (B.10). But we
cannot apply Theorem (B.4) directly as B(I − PS) is singular unless S = ∅. The following
theorem gives a composite bound which removes the contribution of the isolated eigenvalues to
the contraction factor.

Theorem B.9. Let T = B + C be an invertible linear operator on a Hilbert space. Let B be
a bounded linear operator with spectrum σ(B) ⊂ S∪ [â, b̂] with 0 < â ≤ b̂ <∞ and S ⊂ σp(B) ⊂
C \ {0} consisting of only a finite number of isolated eigenvalues of finite multiplicity. Assume
that C is compact. Then GMRES iterations with T and r0 produce residuals rk with norms

∥rk∥ = min
p∈Pk

p(0)=1

∥p(T )r0∥,

which fulfill

lim sup
k→∞

∥rk∥
∥rk−1∥ ≤

b̂−â
b̂+â . (B.16)

Furthermore, if C is of p-Schatten class for some p ≥ 1, then there exists ĉ ≥ 0 independent of
r0 such that (︁∥rk∥

∥r0∥
)︁ 1

k ≤ b̂−â
b̂+â + ĉk− 1

p . (B.17)

Define PS as the spectral projection corresponding to S as defined by Theorem A.8. Set λ̂ :=
2

â−1+b̂−1 . Then the constant ĉ fulfills the bound

ĉ ≤ ∥λ̂B−1CT−1 + (I − λ̂B−1)PS∥Sp
<∞. (B.18)

Proof. Thanks to the assumptions we can express T−1 = B−1 − B−1CT−1. With λ̂ and PS
from the statement of the theorem we have

I − λ̂T−1 = (I − λ̂B−1)(I − PS) + λ̂B−1CT−1 + (I − λ̂B−1)PS . (B.19)

By virtue of Theorem A.8 we have σ((I − λ̂B−1)(I − PS)) ⊂ [− b̂−â
b̂+â ,

b̂−â
b̂+â ] and hence ∥(I −

λ̂B−1)(I − PS)∥ ≤ b̂−â
b̂+â =: M̂ . By the assumptions, C and PS are compact and hence by the

same arguments as in the proof of Theorem B.4 we obtain (B.16).
By the properties of approximation numbers (A.10) and using (B.19) we obtain

aj(I − λ̂T−1) ≤ ∥(I − λ̂B−1)(I − PS)∥⏞ ⏟⏟ ⏞
≤M̂

+aj(λ̂B−1CT−1 + (I − λ̂B−1)PS)

so that, with the aid of (A.11), we get

k∑︂
j=1

(︁
aj(I − λ̂T−1)− M̂

)︁p ≤ k∑︂
j=1

aj(λ̂B−1CT−1 + (I − λ̂B−1)PS)p

≤ ∥λ̂B−1CT−1 + (I − λ̂B−1)PS∥pSp
,

where the right-hand side of the last inequality is finite because C ∈ Sp and PS has finite rank.
Using (B.13), but with M̂ , λ̂ instead of M , λ, respectively, we obtain (B.17), (B.18) and the
proof is finished.
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Remark B.10. Analogously to Theorem B.9, which improves Theorem B.4 by removing the
contribution of a finite number of isolated eigenvalues to the contraction factor, for B which is
not self-adjoint one can improve the bound of Remark B.6 to

lim sup
k→∞

∥rk∥
∥rk−1∥ ≤ M̂,

(︁∥rk∥
∥r0∥

)︁ 1
k ≤ M̂ + ĉk− 1

p ,

ĉ ≤ ∥λ̂B−1CT−1 + (I − λ̂B−1)PS∥Sp
,

(B.20)

which is valid provided that, instead of (B.14), it holds

M̂ := ∥(I − λ̂B−1)(I − PS)∥ < 1 for some λ̂ ∈ C. (B.21)

The proof involves a minimal modification of the proof of Theorem B.9 and we leave it as an
exercise.

Remark B.11. It seems plausible that Theorem B.9 would hold for countable sets S provided
that S accumulates at [â, b̂]. Proving this might require a finer, or different, approach.
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Conclusion

In Section I.2 we provided a novel view on the classification of incompressible fluids. Table I.1
displays the range of considered constitutive relations. A new class of activated Euler fluids,
which includes the Euler/Navier-Stokes fluid (I.2.30) and the Euler/power-law fluid (I.2.31),
has been considered; see also Figure I.6. In Section I.2.7 activated boundary conditions, e.g.,
stick-slip, have been investigated. A characterization of simple shear flows of the Euler/Navier-
Stokes fluid is provided in Sections I.2.6 and I.2.7; see also Table I.3. In Section I.1 we discussed
a potential employment of the Euler/Navier-Stokes fluid and other activated Euler fluids for the
description of boundary layers. Section I.3 is devoted to large-data existence analysis of flows,
both steady and unsteady, of activated Euler fluids under (i) the no-slip boundary condition
and (ii) a variety of slip-like boundary conditions including activated ones.

The main result of Chapter II is Theorem II.3.7, which establishes localizability of norms
of functionals on dual Sobolev spaces W−1,q, 1 ≤ q ≤ ∞. This allows one to construct a pos-
teriori error estimators for PDE problems with residuals in W−1,q, such that the estimate is
reliable (II.1.8) and locally efficient (II.1.10). This result holds under the condition of Galerkin
orthogonality (II.3.20). Section II.4.1 investigates situations where the condition is violated.
A very simple generalization of the main result for such situations is provided in Theorem II.4.1
while Example II.4.6 links the approach, in a simplified setting, with ℓ2-estimates of the alge-
braic residual (which is a very common, but often too crude, practice) and demonstrates that
the approach of Theorem II.4.1 might be to crude to be efficient. Theorem II.4.3 together with
Example II.4.4 gives a remedy to this problem, which requires a more complicated approach
but allows one to recover the local efficiency. Section II.5 gives a numerical example which
supports the theoretically obtained results.

In Section III.2 we developed a theory for the PCD preconditioner in infinite-dimensional
function spaces. Section III.2.2 investigated conditions under which the PCD operator is guaran-
teed to be well-defined and invertible on appropriate spaces and provided uniform estimates for
its norms and spectrum. A novel aspect of the approach was the relaxation of the requirements
on regularity and divergence of the wind. A very important observation about the structure of
the preconditioned Schur complement appears in (III.2.54), i.e., that the preconditioned Schur
complement SX−1

α,w,Γ is a compact perturbation of the Stokes Schur complement S∞, which is
a positive self-adjoint operator. Furthermore, in Section III.2.4 it is shown that the perturba-
tion is of (6+ ϵ)-Schatten class and that this implies that the spectrum of SX−1

α,w,Γ accumulates
at the spectrum of S∞ with the rate 6 + ϵ. In Section III.2.5 we discuss the implications of
this for the convergence of the GMRES method. Section III.2.6 discusses the relation of the
two PCD variants and of the boundary conditions imposed in the definition of the PCD oper-
ators. Section III.3.1 provides a methodology for the construction of discrete PCD operators
for a broad class of pressure discretizations, including the inflow-outflow situation. The main
results are Theorems III.3.2 and III.3.3, which ensure invertibility of and a priori bounds on
the discrete PCD operators under appropriate conditions. The subsequent sections then derive
particular forms of the PCD operator for specific discretizations. In Section III.3.5 we elaborate
on some aspects of previously published accounts and compare these to our results.

Appendix III.B, which is of independent interest in the theory of Krylov subspace methods,
provides a new result regarding the convergence of the GMRES method. In particualar, it is
shown that compact pertubations of certain operators for which GMRES exhibits contractive
convergence are subject to asymptotically contractive convergence with the same contraction
factor. Furthermore, if the compact pertubation belongs to some p-Schatten class, the expo-
nent p gives the rate at which this asymptotic behavior is approached.
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