
FUNCTIONAL ANALYSIS FOR PHYSICISTS: EXERCISE1
PROBLEMS2

JAN BLECHTA∗ AND JOSEF MÁLEK∗3

Week 1.4

Problem 1.1. Let A ∈ Rn×n be given. The following assertions are equivalent:5
(i) A is non-singular (the equation Ax = b has one and only one solution for6

each b ∈ Rn);7
(ii) the mapping x 7→ Ax is injective (the equation Ax = b has at most one8

solution for each b ∈ Rn);9
(iii) the mapping x 7→ Ax is surjective (the equation Ax = b has at least one10

solution for each b ∈ Rn).11
In the following exercise we shall demonstrate that in the infinite-dimensional case12
(ii) and (iii) are not any more equivalent.13

Consider mapping T : C([0, 1])→ C([0, 1]) given by prescription14

T : f(x) 7→ f(x2), x ∈ [0, 1].15

(i) Verify that this is a correct definition and that the mapping T is linear.16
(ii) Show that T − Id is not injective.17
(iii) Show that T + Id is injective.18
(iv) Show that T + Id is not surjective.19

Solution.20
(ii) As T is linear, it is sufficient to show that there is a non-trivial solution of21

the homogeneous equation (T − Id)f = 0. This is indeed the case, as any22
constant function, e.g., f ≡ 1, is a solution.23

(iii) Analogously, to show injectivity of T + Id, we have to show that the only24
solution of the homogenous equation (T + Id)f = 0 is the zero function.25
Using the equation repeatedly, we obtain26

f(x) = −f(x2) = f(x4) = −f(x8) = f(x16) = · · · .27

The first equality in particular implies that f(0) = f(1) = 0. By induction,28
for a fixed a ∈ (0, 1), we have, for any n ∈ N, that29

f(a) = (−1)nf(a2n

)→ 0 as n→∞,30

with the limit due to continuity of f . This shows that f(a) = 0. As a was31
arbitrary from (0, 1), we conclude that f ≡ 0.32

(iv) To show that T + Id is not surjective, we need to show that there exists33
g ∈ C([0, 1]) such that the equation (T + Id)f = g does not have a solution34
f ∈ C([0, 1]). Assume there is a solution. We have35

f(x2) = g(x)− f(x), x ∈ [0, 1],36

which yields, with change of variable,37

f(x) = g(x1/2)− f(x1/2), x ∈ [0, 1],38

∗Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
(blechta@karlin.mff.cuni.cz, malek@karlin.mff.cuni.cz).

1

mailto:blechta@karlin.mff.cuni.cz
mailto:malek@karlin.mff.cuni.cz


2 J. BLECHTA, J. MÁLEK

and, after recursive application of the equation,39

f(x) = g(x1/2)− g(x1/4) + f(x1/4), x ∈ [0, 1],40

...41

f(x) =

n∑
j=1

(−1)j−1g(x2−j

) + (−1)nf(x2−n

), x ∈ [0, 1].(1.1)42

Set a := 1/2 and suppose that g : [0, 1] → R is a piecewise affine function43
interpolating the values44

g(0) := 0,45

g(a2−j

) :=
(−1)j−1

j
for j ∈ N,46

g(1) := 0.47

It is left as a homework to show that g ∈ C([0, 1]). Substituting this choice48
of g into (1.1) yields, for x := a,49

f(a) =

n∑
j=1

1

j
+ (−1)nf(a2−n

).50

The left-hand side is supposed to be a finite number by the required continuity51
of f , the first term on the right-hand side diverges as n → ∞, and the last52
term goes to zero, which is the desired contradiction.53

Problem 1.2.54
(i) For a p ≥ 1 consider the set of sequences55

`p :=
{
{xk}∞k=1 ⊂ R,

∑
k>0 |xk|p <∞

}
.56

What is the relation between `p and `q given 1 ≤ p < q <∞?57
(ii) Let Ω := (0, 1). For a given p ≥ 1 consider the set of p-integrable functions58

Lp(Ω) :=
{
u : Ω→ R measurable,

∫
Ω
|u|p <∞

}
.59

What is the relation between Lp(Ω) and Lq(Ω) given 1 ≤ p < q <∞?60
(iii) What is the relation between Lp(R) and Lq(R) given 1 ≤ p < q <∞?61

Solution.62
(i) Let {yk}∞k=1 be arbitrary such that

∑
k |yk|p = 1. Then |yk| ≤ 1 for all k ∈ N63

and hence64

(1.2)
∑
k∈N
|yk|q ≤

∑
k∈N
|yk|p = 1.65

Now for an arbitrary nonzero x ∈ `p, set y := x
(
∑
|xk|p)1/p

, which satisfies66 ∑
k |yk|p = 1, and hence (1.2) can be used for this y. After little rearrange-67

ment one gets (
∑
k |xk|q)1/q ≤ (

∑
k |xk|p)1/p, which proves the inclusion68

`p ⊂ `q.69
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(ii) Hölder’s inequality, for r ≥ 1,70 ∫
Ω

|fg| ≤
(∫

Ω

|f |r
)1/r(∫

Ω

|g|s
)1/s

,
1

r
+

1

s
= 1,71

gives for f := |u|p, g := 1, and r := q/p72 ∫
Ω

|u|p ≤
(∫

Ω

|u|q
)p/q
|Ω|1−p/q.73

After rearrangement,74 (∫
Ω

|u|p
)1/p

≤ |Ω|1/p−1/q
(∫

Ω

|u|q
)1/q

,75

which shows that Lq(Ω) ⊂ Lp(Ω) whenever |Ω| <∞.76
(iii) For Ω = R the above argument does not work and clearly there are functions77

from Lp(R) which are not in Lq(R) and vice versa. For u(x) := Ξ(0,1)x
−1/p+ε,78

where ΞM denotes the characteristic function of set M ⊂ R, it is Lp(R) 379
u 6∈ Lq(R) if ε > 0 is chosen sufficiently small. On the other hand, for80
v(x) := Ξ(1,∞)x

−1/q−ε with ε > 0 sufficiently small, it is Lp(R) 63 v ∈ Lq(R).81

Week 2.82

Problem 2.1. Decide which of the following are normed spaces. If so, determine83
whether they are Banach.84

(i) (R3, ‖ · ‖1/2) for85

‖x‖1/2 =
( 3∑
j=1

|xj |1/2
)2

.86

(ii) (R, ‖ · ‖t) for87

‖x‖t =

{
3x if x ≥ 0,

−x otherwise.
88

(iii) The space of polynomials of degree at most 2 with89

‖p‖ := |p(1)|+ |p′(1)|+ 1
2 |p
′′(1)|90

(iv) The space of all polynomials with the maximum norm ‖p‖∞ = max
x∈[0,1]

|p(x)|.91

Solution. (iv) The normed space (P, ‖ · ‖∞) of all polynomials on [0, 1] is not92
complete. The sequence of polynomials

∑n
j=0 x

j/j!, n = 1, 2, . . . converges93
uniformly in [0, 1], i.e., in the ‖ · ‖∞ norm, to exp(x) /∈ P.94

Problem 2.2.95
(i) Show that every subspace of a normed space is also a normed space (under96

the same norm).97
(ii) Show that every closed subspace of a Banach space is also a Banach space98

(under the same norm).99
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Denote by `∞ the set of all bounded sequences of real or complex numbers, c the set of100
all convergent sequences of real or complex numbers, c0 the set of all null (convergent101
to zero) sequences, and c00 the set of all eventually zero sequences (sequences with102
finitely many nonzero elements). Consider the supremum norm ‖x‖∞ := supk>0 |xk|103
and show that104

(iii) (`∞, ‖ · ‖∞) is a Banach space,105
(iv) c is a closed subspace of (`∞, ‖ · ‖∞),106
(v) c0 is a closed subspace of (c, ‖ · ‖∞), and107
(vi) c00 is a subspace of (c0, ‖ · ‖∞) which is not closed.108

Solution.109
(iii) We leave the task to verify that (`∞, ‖ · ‖∞) is a normed space for the reader110

and proceed with completeness. Suppose that {xn}∞n=1 ⊂ `∞ is a Cauchy111
sequence, i.e., for every ε > 0 there is N ∈ N such that ‖xm − xn‖∞ < ε for112
all m, n > N , or equivalently, using the definition of ‖ · ‖∞,113

(2.1) |xnk − xmk | < ε for all m, n > N and all k ∈ N.114

In particular, for a fixed k ∈ N the number sequence {xnk}∞n=1 ⊂ R is Cauchy115
and hence convergent to xk := limn→∞ xnk . Taking the limit m→∞ in (2.1)116
yields that for every ε > 0 there exists N ∈ N such that117

(2.2) |xnk − xk| ≤ ε for all n > N and all k ∈ N,118

which can be rewritten as ‖xn − x‖∞ → 0 as n → ∞ where x := {xk}∞k=1.119
Let us finish by verifying that x ∈ `∞. Indeed, fixing ε > 0 arbitrarily, (2.2)120
implies that for some N ∈ N121 ∣∣|xk| − |xN+1

k |
∣∣ ≤ ε for all k ∈ N,122

and in turn |xk| ≤ |xN+1
k |+ ε for all k ∈ N. As xN+1 ∈ `∞ and ε is fixed, one123

immediatelly gets that x ∈ `∞.124
(iv) Let us show the closedeness. Suppose that {xn}∞n=1 ⊂ c is a convergent125

sequence (in the ‖ · ‖∞ norm), i.e., ‖xn − x‖∞ → 0 as n → ∞ and x ∈ `∞126
due to its completeness. We shall show that x ∈ c. Let us fix ε > 0 to an127
arbitrary value. By the uniform convergence xn → x, there exists Nε ∈ N128
such that129

|xnk − xk| <
ε

3
for all n ≥ Nε and all k ∈ N.130

The number sequence {xNε

k }∞k=1 is convergent by the hypothesis xNε ∈ c, i.e.,131
(for the above chosen ε > 0) there exists K ∈ N such that132

|xNε

k − x
Nε

` | <
ε

3
for all k, ` > K.133

Altogether, for arbitrary ε > 0 there exists K ∈ N such that134

|xk − x`| ≤ |xk − xNε

k |+ |x
Nε

k − x
Nε

` |+ |x
Nε

` − x`| <
ε
3 + ε

3 + ε
3 = ε135

for all k, ` > K. In the other words, the number sequence {xk}∞k=1 is Cauchy136
and hence x ∈ c.137
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(v) Let us show the closedeness. Suppose that {xn}∞n=1 ⊂ c0 is a convergent138
sequence (in the ‖ · ‖∞ norm), i.e., ‖xn − x‖∞ → 0 as n → ∞ and x ∈ c139
as (c, ‖ · ‖∞) is a Banach space by virtue of the previous task (iv). We shall140
show that x ∈ c0. Let us fix ε > 0 to an arbitrary value. By the uniform141
convergence xn → x, there exists Nε ∈ N such that142

|xnk − xk| <
ε

2
for all n ≥ Nε and all k ∈ N.143

The number sequence {xNε

k }∞k=1 is null (convergent to zero) by the hypothesis144
xNε ∈ c0, i.e., (for the above chosen ε > 0) there exists K ∈ N such that145

|xNε

k | <
ε

2
for all k > K.146

Altogether, for arbitrary ε > 0 there exists K ∈ N such that147

|xk| ≤ |xk − xNε

k |+ |x
Nε

k | <
ε
2 + ε

2 = ε148

for all k > K. In the other words, the number sequence {xk}∞k=1 is null and149
hence x ∈ c0.150

(vi) The sequence {(1, 1
2 ,

1
3 , . . . ,

1
n , 0, 0, 0, . . .)}

∞
n=1 ⊂ c00 converges in the supre-151

mum norm to (1, 1
2 ,

1
3 , . . .) ∈ c0, which is not an element of c00. Hence c00 is152

not closed in (c0, ‖ · ‖∞).153

Homework 1.154
(i) Show that, for a fixed p ∈ [1,∞), c00 is dense in the Banach space (`p, ‖ · ‖p),155

where156

‖x‖p =
( ∞∑
j=1

|xi|p
) 1

p

.157

(ii) Show that the closure of c00 in the supremum norm ‖ · ‖∞ coincides with c0.158

Homework 2. We say a subset V of a metric space is (sequentially) compact if159
every sequence in V has a convergent subsequence with the limit in V .160

Let X be a Banach space, a set A ⊂ X be closed, and a set B ⊂ X be compact.161
Show that the set A+B := {x+ y, x ∈ A, y ∈ B} is closed in X.162

Homework 3. Let163

fn(x) :=

{
1
n if x ∈ (0, n),

0 otherwise.
164

For every p ∈ [1,∞], determine whether {fn} has a limit in (Lp(R), ‖ · ‖p),165

‖f‖p =
(∫

R
|f(x)|p dx

) 1
p

, p ∈ [1,∞),166

‖f‖∞ = ess supR |f(x)|.167

Homework 4. Consider X, the set of continuous functions u : [0,∞) → R such168
that169

‖u‖e := sup
x∈[0,∞)

ex|u(x)|170

is finite. Show that (X, ‖·‖e) is a normed space and determine whether it is complete.171
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Week 3.172

Problem 3.1.173
(i) Consider (C([0, 1]), ‖ · ‖∞), the vector space of continuous functions on [0, 1]174

equipped with the maximum norm ‖u‖∞ := maxx∈[0,1] |u(x)|. Think through175
that this is a normed space. Show that it is complete.176

(ii) Show that (C([0, 1]), ‖ · ‖1), ‖u‖1 :=
∫ 1

0
|u(x)|dx is a normed space which is177

not complete. As a counterexample consider the sequence178

fn(x) :=


0, x ≤ 1

2 −
1
n ,

n
2 (x− 1

2 ) + 1
2 ,

1
2 −

1
n ≤ x ≤

1
2 + 1

n ,

1, 1
2 + 1

n ≤ x.
179

(iii) Arzelà–Ascoli theorem. Let a sequence of continuous functions {fn}∞n=1180
⊂ C([0, 1]) be given.181

If {fn}∞n=1 is uniformly bounded, i.e., there exists M > 0 such that182

‖fn‖∞ ≤M,183

and uniformly equicontinuous, i.e., for every ε > 0 there exists δ > 0 such184
that for all x, y ∈ [0, 1] with |x− y| < δ it holds185

sup
n∈N
|fn(x)− fn(y)| ≤ ε,186

then there exists a subsequence {fnk
}∞k=1 that converges uniformly on [0, 1].187

The converse is true as well in the following sense: If every subsequence188
of {fn}∞n=1 admits a uniformly convergent subsequence then {fn}∞n=1 is uni-189
formly bounded and uniformly equicontinuous.190

Use the theorem to judge whether {fn}∞n=1 from (ii) is uniformly convergent.191

Solution. (i) We leave this up to the reader. The ε/3 trick from Prob-192
lem 2.2 (iv) can be used.193

194

Problem 3.2.195
(i) Let A ∈ Rm×n be a given matrix. Consider the mapping TA : Rm → Rn : x 7→196

Ax. Verify that TA is a linear bounded operator w.r.t. the Euclidean norm on197
Rm and Rn. Does the operator norm ‖TA‖ coincide with some matrix norm198
of A? Is the norm attained for some x ∈ Rm?199

(ii) (Diagonal operator on `p). Let an arbitrary sequence {λk}∞k=1 ⊂ R and200
p ∈ [1,∞] be given. Consider the operator T : `p → `p given by201

T (x1, x2, x3, . . .) = (λ1x1, λ2x2, λ3x3, . . .).202
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Equip `p with its usual norm ‖x‖p :=
(∑∞

k=1 |x|p
)1/p. Compute the norm of203

T : (`p, ‖ · ‖p)→ (`p, ‖ · ‖p). When is the operator bounded?204
(iii) For real functions on [0, 1], consider the differentiation mapping f 7→ f ′. This205

is clearly a linear operator. Consider the sequence {fn}∞n=1, fn(x) = sin(nx).206
Compute ‖fn‖∞ and ‖f ′n‖∞. Is the operator (C1([0, 1]), ‖·‖∞)→ (C([0, 1]), ‖·207
‖∞) : f 7→ f ′ bounded?208

(iv) (Shift operator on Lp). Let a ∈ R and p ∈ [1,∞] be given. Consider the209
mapping Ta given for a f ∈ Lp(R) by prescription210

(Taf)(x) = f(x− a) for a.e. x ∈ R.211

Clearly Ta is a linear operator and ‖Taf‖p = ‖f‖p. Hence, Ta : Lp(R) →212
Lp(R) is bounded with ‖Ta‖ = 1. Observe that Ta is a bijection.213

(v) (Shift operators on `p). For any 1 ≤ p ≤ ∞, define the right shift SR : `p →214
`p and the left shift SL : `p → `p by215

SR(x1, x2, x3, . . .) := (0, x1, x2, . . .),216

SL(x1, x2, x3, . . .) := (x2, x3, x4, . . .).217

Verify that these are bounded linear operators, compute their norms, and218
check whether they are injective or surjective.219

(vi) (Multiplication operator). Let Ω ⊂ R be open and let g ∈ L∞(Ω) be220
given. Consider the multiplication operator, which, for an f ∈ Lp(Ω), 1 ≤221
p ≤ ∞, is given by222

(Mgf)(x) = f(x) g(x) for a.e. x ∈ R.223

Compute the norm of Mg : Lp(Ω)→ Lp(Ω).224
(vii) Consider the indefinite integral operator, for f ∈ C([a, b]), a < b, given by225

Tf(x) =

∫ x

a

f(s) ds for all x ∈ [a, b].226

Show that T : (C([a, b]), ‖·‖∞)→ (C([a, b]), ‖·‖∞) is bounded and that ‖T‖ =227
b− a.228
Do you know how can be the range of T : L1((a, b))→ C([a, b]) described?229

Week 4.230

Problem 4.1. On the Banach space (C([0, 1]), ‖ · ‖∞) consider the following op-231
erators and decide whether they are linear and bounded:232

(i) Tf(x) = f(cos2(x)),233
(ii) Tf(x) = cos2(f(x)),234
(iii) Tf(x) = f(0)f ′(x),235
(iv) Tf(x) = (x− 1)xf(0) +

∫ x
0
f(s) ds,236

(v) Tf(x) = y(x), where y is the solution of the initial value problem y′ + y = f237
in (0, 1), y(0) = 0.238

Solution.239
(i) T is clearly linear and also bounded. Indeed, for arbitrary x ∈ [0, 1], it is240

|f(cos2 x)| ≤ max
t∈[0,1]

|f(t)| = ‖f‖∞.241
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Hence ‖Tf‖∞ = maxx∈[0,1] |f(cos2 x)| ≤ ‖f‖∞, which shows that ‖T‖ ≤ 1.242
Choosing f ≡ 1 shows that ‖T‖ = 1.243

(ii) T is clearly non-linear.244
(iii) T is clearly non-linear.245
(iv) T is linear and, for arbitrary x ∈ [0, 1],246

247

|Tf(x)| ≤ |f(0)| |x− 1| |x|+
∣∣∣∫ x

0

f(s) ds
∣∣∣ ≤ 1

4 |f(0)|+
∫ 1

0

|f(s)|ds248

≤ 1
4‖f‖∞ + ‖f‖∞.249

Hence ‖T‖ ≤ 5
4 and T is bounded.250

(v) For f1, f2 ∈ C([0, 1]), consider y1, y2 ∈ C([0, 1]) such that251

y′1 + y1 = f1 in (0, 1), y1(0) = 0,252

y′2 + y2 = f2 in (0, 1), y2(0) = 0.253

Due to the linearity of the equations, we have254

(y1 + y2)′ + (y1 + y2) = (f1 + f2) in (0, 1), (y1 + y2)(0) = 0,255

which shows that T (f1 + f2) = Tf1 + Tf2. Proceeding similarly for homo-256
geneity, we get that T is linear.257
It is readily verified that T has the explicit representation258

Tf(x) =

∫ x

0

exp(t− x) f(t) dt.259

Hence, for any x ∈ [0, 1],260

|Tf(x)| ≤
∫ x

0

exp(t− x) |f(t)|dt ≤
∫ x

0

|f(t)|dt ≤ ‖f‖∞.261

Hence, T is bounded with ‖T‖ ≤ 1.262

Problem 4.2 (inequality used in [1, proof of Lemma 2.24]). Let f : [0,∞) → R263
be concave such that f(0) ≥ 0. Show that then f(a+ b) ≤ f(a) + f(b) for all a, b ≥ 0.264

Solution. By hypotheses, we have, with t ∈ [0,∞) and 0 ≤ λ ≤ 1, that265

f(λt) = f
(
λt+ (1− λ)0

)
≥ λf(t) + (1− λ)f(0) ≥ λf(t).266

Hence,267

f(a) + f(b) = f
( a

a+ b
(a+ b)

)
+ f

( b

a+ b
(a+ b)

)
≥ a

a+ b
f(a+ b) +

b

a+ b
f(a+ b) = f(a+ b).

268

269

Example 4.3 (examples of Fréchet spaces [1, Examples 2.25, 2.26]).270

Week 5.271

Example 5.1 (Schwartz space of rapidly decreasing functions [2]). The Schwartz272
space (the space of rapidly decreasing functions)273

S(Rn) :=
{
u ∈ C∞(Rn), ‖xβ∂αu‖∞ <∞ for all multiindices α, β

}
274
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is a Fréchet space (without proof) when equipped with the sequence of seminorms275
{pj}∞j=0,276

pj(u) :=
∑

|α|,|β|≤j

‖xβ∂αu‖∞,277

or, for example, {qj}∞j=0,278

qj(u) := max
|α|≤j

‖(1 + |x|2)j∂αu‖∞.279

These two generate the same topology. Significance of the space is that (i) Fourier280
transform F : S(Rn) → S(Rn) is one-to-one, (ii) Fourier transform F : S(Rn)′ →281
S(Rn)′ on tempered distributions S(Rn)′ is naturally defined (by moving F to test282
functions), and (iii) as S(Rn) is dense in L2(Rn), F can be extended to F̂ : L2(Rn)→283
L2(Rn), which is unitary. For details see [2].284

Problem 5.2 (Minkowski functional). Let X be a real normed space and B ⊂ X285
be a non-empty convex open set containing the origin. Let the functional p : X →286
[0,∞) be defined by287

p(x) := inf{λ > 0, x ∈ λB}, for every x ∈ X.288

Show that289
(i) there exists M > 0 such that p(x) ≤M‖x‖ for all x ∈ X;290
(ii) B = {x ∈ X, p(x) < 1};291
(iii) p is sublinear, i.e.,292

p(αx) = αp(x) for all x ∈ X and α ≥ 0 and293

p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.294

Solution.295
(i) By the hypothesis, there exists a ball Br := {x ∈ X, ‖x‖ < r} with certain r >296

0 such that Br ⊂ B. Hence297

p(x) = inf{λ > 0, xλ ∈ B} ≤ inf{λ > 0, xλ ∈ Br} =
‖x‖
r
.298

(ii) To show “⊂”, suppose that x ∈ B. As B is open, (1 + δ)x ∈ B for some δ > 0299
small enough. In the other words, xλ ∈ B for λ = 1

1+δ , and hence300

p(x) = inf{λ > 0, xλ ∈ B} ≤ inf
{ 1

1 + δ

}
=

1

1 + δ
< 1.301

For the opposite inclusion, suppose that p(x) < 1. By the definition of p,302
there exists 0 < β < 1 such that x/β ∈ B. As B is convex and contains the303
origin, we have304

x = β
x

β
+ (1− β) 0 ∈ B.305

(iii) We leave the task to verify positive homogeneity, p(αx) = αp(x), for all x ∈ X306
and α ≥ 0, up to the reader, so it remains to prove the triangle inequality.307
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Suppose that x, y ∈ X and fix ε > 0. Then for x
p(x)+ε , we have308

p

(
x

p(x) + ε

)
=

p(x)

p(x) + ε
< 1,309

where the equality follows from the positive homogeneity, and hence, by virtue310
of (ii), x

p(x)+ε ∈ B. Similarly, y
p(y)+ε ∈ B. By the convexity of B, it follows311

that, with arbitrary 0 < µ < 1,312

µ
x

p(x) + ε
+ (1− µ)

y

p(y) + ε
∈ B.313

Chossing µ := p(x)+ε
p(x)+p(y)+2ε and using (ii) and the absolute homogeneity yields314

1 > p

(
x+ y

p(x) + p(y) + 2ε

)
=

p(x+ y)

p(x) + p(y) + 2ε
.315

As ε was arbitrary, it is p(x+ y) ≤ p(x) + p(y).316

Homework 5 (Hahn–Banach separation theorem, weak topology). For a func-317
tion f : X → R, its epigraph is defined as318

epi f := {(x, y) ∈ X × R, y ≥ f(x)}.319

Lemma 5.1. Suppose that f : X → R is convex. Then epi f is convex.320

If X is a normed space, the product X×R is a normed space with, e.g., ‖(x, y)‖X×R :=321
‖x‖X + |y|. Recall we say that a function f : X → R is (norm) lower semicontinuous322
if xn → x (in norm) implies lim inf

n→∞
f(xn) ≥ f(x).323

Lemma 5.2. Suppose that X is a normed space and f : X → R is (norm) lower324
semicontinuous. Then epi f is (norm) closed.325

We say that a subset M ⊂ X of a normed space X is (sequentially) weakly closed326
if every weakly convergent sequence {xn}n≥1 ⊂ M satisfies xn ⇀ x ∈ M . We can327
immediately see that a weakly closed set is closed. Indeed, suppose that {xn} ⊂ M328
conveges in norm to x ∈ X. Then {xn} converges weakly to the same x. As M is329
weakly closed, it is necessarily x ∈M . The converse holds true for convex sets:330

Lemma 5.3. A subset of a real normed space that is closed and convex is weakly331
closed.332

We say that f : X → R is weakly lower semicontinuous if the weak convergence xn ⇀ x333
implies lim inf

n→∞
f(xn) ≥ f(x).334

Theorem 5.4. Let f be a functional on a real normed space which is lower semi-335
continuous and convex. Then f is weakly lower semicontinuous.336

Corollary 5.5. Let V be a normed space (either real or complex). Then the337
norm ‖ · ‖ : V → R : x 7→ ‖x‖ is weakly lower semicontinuous, i.e.,338

lim inf
n→∞

‖xn‖ ≥ ‖x‖ whenever xn ⇀ x.339

Prove the lemmas, the theorem, and the corollary. Lemma 5.3 can be proved by340
contradiction, invoking the Hahn–Banach (strict) separation theorem. (Recall that341
any singleton set is compact). The lemmas can all be proved independently. Argue342
carefully for proof of the corollary in the complex case.343
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Week 6.344

Problem 6.1 (complex Hahn–Banach theorem).345
(i) Let V be a vector space over C. Show that V is a vector space over R.346
(ii) Let f : V → C be a linear functional on the complex vector space V . Define347

f1, f2 : V → R by348
f1(x) := Re f(x),349

f2(x) := Im f(x).350

Show that f1 and f2 are linear functionals on V over R, but they are not, in351
general, linear functionals on V over C.352

(iii) Show that f2(x) = −f1(ix), and hence f(x) = f1(x)− if1(ix).353
(iv) Let X be a complex vector space, p : X → R be a seminorm, and let V ⊂ X354

be a subspace of X. Suppose that f : V → C is linear such that |f(x)| ≤ p(x)355
on V . Apply the real version of Hahn–Banach theorem to construct a linear356
F1 : X → R, an extension of f1 : V → R, such that |F1| ≤ p on X.357

(v) From F1 construct a linear F : X → C, an extension of f : V → C, and show358
that |F | ≤ p on X.359

Solution.360
(ii) For arbitrary x, y ∈ V , we have f1(x+y) = Re f(x+y) = Re f(x)+Re f(y) =361

f1(x)+f1(y). As of homogeneity, we have f1(λx) = Re f(λx) = Re(λf(x)) for362
any λ ∈ C. If λ is real, then the last expression equals λf1(x), which shows363
that f1 is linear on V over R. On the other hand, homogeneity f1(λx) =364
λf1(x) is clearly violated if, for example, λ = i and f1(x) 6= 0. Indeed, the365
left-hand side is real and the right-hand side is imaginary.366

(iii) Indeed, for any x ∈ V , we have f1(ix) = Re f(ix) = Re(if(x)) = −f2(x).367
(iv) Linear functional f1 : V → R is dominated by p on V . Indeed, |f1(x)| =368

|Re f(x)| ≤ |f(x)| ≤ p(x). By the real Hahn–Banach theorem, there exists369
F1 : X → R, a linear functional on X over R, such that F1 = f1 on V and370
F1 ≤ p on X. As p is a seminorm (recall that a sublinear function which is371
additionally absolute homogeneous is a seminorm), it is −F1(x) = F1(−x) ≤372
p(−x) = p(x), which shows, together with F1(x) ≤ p(x), that |F1| ≤ p on X.373

(v) For an arbitrary x ∈ X, let F (x) := F1(x) − iF1(ix). It is readily verified,374
directly from the definition, that F is a linear functional on X over C. It is375
also an extension of f . Indeed, for x ∈ V , it is F (x) = F1(x) − iF1(ix) =376
f1(x) − if1(ix) = f(x). It remains to verify that |F | is dominated by p.377
Let x ∈ X be arbitrary and fixed. There exists t ∈ R such that |F (x)| =378
eitF (x) = F (eitx) = F1(eitx)− iF1(ieitx). The left-hand side is real and F1379
is real-valued so it must be |F (x)| = F1(eitx) ≤ p(eitx) = |eit|p(x) = p(x).380

Thus we have proved the complex version of the Hahn–Banach theorem:381

Corollary. Let X be a complex vector space and V ⊂ X be its subspace. Let382
f : V → C be linear, p : X → R be a seminorm, and |f | ≤ p on V . Then there exists383
a linear F : X → C such that F = f on V and |F | ≤ p on X.384

Problem 6.2 (Mazur’s lemma). Let X be a real vector space and M ⊂ X be an385
arbitrary set. We define the convex hull of M as386

convM := {x ∈ X, x is a finite convex combination of elements of M}387

=

{
x ∈ X, there exists m ∈ N, positive numbers λ1, . . . , λm with∑m
j=1 λj = 1, and vectors x1, . . . , xm ∈M such that x =

∑m
j=1 λjxj

}
.388
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(i) Show that M ⊂ convM and that convM is convex.389
(ii) Use Lemma 5.3 to prove the following result:390

Theorem (Mazur’s lemma). Let X be a real normed space and suppose that391
{xj}∞j=1 ⊂ X converges weakly to some x ∈ X. Then x ∈ conv{xj}∞j=1.392

(iii) Show that this statement is equivalently formulated as follows:393

Theorem (Mazur’s lemma). Let X be a real normed space and suppose that394
{xj}∞j=1 ⊂ X converges weakly to some x ∈ X. Then there exists a sequence395
of finite convex combinations of {xj}∞j=1 which converges strongly to x. Pre-396
cisely, there exists a sequence of integers {mj}∞j=1 and numbers 0 ≤ λji ≤ 1,397

j = 1, 2, . . ., i = 1, 2, . . . ,mj, with
∑mj

i=1 λji = 1 for every j ∈ N, such that398

mj∑
i=1

λjixi → x strongly as j →∞.399

Week 7.400

Problem 7.1 (on separability).401
(i) Show that every subset of a separable metric space is separable.402
(ii) Show that `p is separable for every 1 ≤ p <∞ and that `∞ is not separable.403
(iii) Let Ω ⊂ Rd be open. Show that Lp(Ω) is separable for every 1 ≤ p <∞ and404

that, provided Ω is not empty, L∞(Ω) is not separable.405

Problem 7.2 (Baire property). Let X be a topological space. Show that the406
following properties are equivalent.407

(i) Every countable union of closed sets with empty interior has empty interior.408
(ii) Every countable intesection of dense open sets is dense.409

We say that a set is a nowhere dense subset of X if its closure has empty interior. We410
say that a subset of X is a meager subset of X, meager in X, or of the first category411
in X if it is a countable union of nowhere dense subsets of X. A subset of X which is412
not meager in X is called a nonmeager subset of X, nonmeager in X, or of the second413
category in X. Then the Baire property (i), (ii) is equivalently expressed as follows.414

(iii) Every meager subset of X has empty interior.415
(iv) Every nonempty open subset of X is nonmeager in X.416

Homework 6.417
(i) Show that the unit ball in L2((0, 1)), i.e., the set {f ∈ L2((0, 1)), ‖f‖2 < 1},418

is a nowhere dense subset of L1((0, 1)).419
(ii) Building on (i), decide whether L2((0, 1)) is a meager or nonmeager subset420

of L1((0, 1)).421

Problem 7.3 (Everywhere-defined unbounded operator on a Banach space).422
Let X be an infinite dimensional vector space. We say that a set M = {vi}i∈I is423
linearly independent if for every finite index set J ⊂ I, the equation

∑
j∈J cjvj = 0424

implies that cj = 0 for all j ∈ J . We say that a set B ⊂ X is a Hamel basis of X425
if B is linearly independent and every element of X can be written as a finite linear426
combination of elements of B.427

(i) Let a linearly independent sequence {bi}∞i=0 ⊂ X be given. Show, using Zorn’s428
lemma, that there exists a Hamel basis B containing {bi}∞i=0 as its subset.429
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430
(ii) Let X be a Banach space. Recall that, by the Baire category theorem, {bi}∞i=0431

alone cannot be a Hamel basis of X. In the other words, the dimension of X432
is uncountably infinite.433

(iii) Now assume w.l.o.g. that ‖bi‖ = 1 for i = 1, 2, . . . and consider the function434
F : B → R given as F (bi) = i for i = 1, 2, . . . and F (b) = 0 for b ∈ B \{bi}∞i=1.435
Show that F is uniquely extended to a linear functional F : X → R. Show436
that F is unbounded.437

Homework 7.438
(i) Recall that for every vector space a Hamel basis exists by Zorn’s lemma;439

cf. Problem 7.3 (i). Use the Baire category theorem to show that for every440
infinite-dimensional Banach space its Hamel basis is uncountable.441

(ii) Consider P, the space of polynomials in one variable of arbitrary degree442
with real coefficients. Show the following statement: There does not exist443
a functional ‖ · ‖ : P → R such that (P, ‖ · ‖) is a Banach space.444

Homework 8. Let U be a Banach space and let T : U → `∞ be a linear operator445
defined on whole U , i.e., such that Tx ∈ `∞ for every x ∈ U . Consider its components446
Tj : U → R given by Tj(x) = (Tx)j for x ∈ U and j ∈ N. Prove that T is bounded if447
and only if Tj , j ∈ N, are all bounded.448

Homework 9.449
(i) Show that there exists a bounded linear functional F on `∞ such that F (x) =450

limk→∞ xk whenever x is a convergent sequence.451
(ii) Show that there exists a bounded linear functional F ∈ L∞(R)∗ such that452

F (f) = ess limx→0 f(x) whenever the limit exists.453
(iii) Show that (ii) fails when L∞(R) is replaced by L1(R). To do this, find454

a bounded sequence {fn}∞n=1 ⊂ L1(R) with F (fn)→∞ as n→∞.455

Week 8.456

Problem 8.1 (dual of Lp). Let Ω ⊂ Rd be open. Let p ∈ (1,∞) and 1/p+1/p′ =457
1. In the sequel we will use the notation Lp := Lp(Ω) and (Lp)∗ := (Lp(Ω))∗ for any458
1 < p <∞. Consider the mapping T : Lp

′ → (Lp)∗ given by459

〈Tu, f〉 =

∫
Ω

uf dx, f ∈ Lp.460

(i) Show that T is linear.461
(ii) Show that T is isometry; precisely ‖Tu‖(Lp)∗ = ‖u‖p′ for every u ∈ Lp

′
.462
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(iii) Show that T (Lp
′
), the range of T , is closed in (Lp)∗.463

(iv) Show that T (Lp
′
) is dense in (Lp)∗. Use reflexivity of Lp

′
and the following464

proposition.465

Lemma 8.1. Let V be a normed space and M ⊂ V be its subspace. Then466
M = V if and only if467

{F ∈ V ∗, F = 0 on M} = {F ∈ V ∗, F = 0 on V }.468

(v) Conclude that, for 1 < p < ∞, (Lp)∗ is isometrically isomorphic to Lp
′

469
(through T ).470

Proof of Lemma 8.1. Suppose that M is dense. If F = 0 on M and {xk} ⊂M is471
such that xk → x ∈ M = V , then 0 = F (xk) → F (x) by virtue of continuity of F .472
As x ∈ V was arbitrary, this shows that F = 0 on V .473

For the opposite implication, suppose that M is a proper subspace of V . We use474
the following proposition from the class:475

Theorem 8.2 (a consequence of the Hahn–Banach theorem). Let M be a closed476
proper subspace of a normed space V and let x ∈ V \M be given. Then there exists477
F ∈ V ∗ such that F = 0 on M , ‖F‖ = 1, and F (x) = dist(x,M) > 0.478

Thus, there exists a non-zero F that vanishes on M , and, in particular, on M .479

Solution.480
(ii) Given an arbitrary u ∈ Lp

′
, we obtain, using the definition of T and the481

Hölder inequality,482

‖Tu‖(Lp)∗ = sup
f∈Lp

〈Tu, f〉
‖f‖p

= sup
f∈Lp

∫
u f

‖f‖p
≤ ‖u‖p′ .483

On the other hand, the function fu := |u|p′−2u belongs to Lp, which is easily484

verfied by checking that (p′ − 1)p = p′, and it is ‖fu‖p = ‖u‖p
′−1
p′ . Hence485

‖Tu‖(Lp)∗ = sup
f∈Lp

∫
u f

‖f‖p
≥
∫
u fu
‖fu‖p

=
‖u‖p

′

p′

‖u‖p′−1
p′

= ‖u‖p′ .486

Altogether we have that ‖u‖p′ ≤ ‖Tu‖(Lp)∗ ≤ ‖u‖p′ , which shows that the487
inequality is actually an equality.488

(iv) Denote E := T (Lp
′
). To show that E = (Lp)∗, it is sufficient (and necessary)489

by Lemma 8.1 to show that: if an arbitrary h ∈ (Lp)∗∗ vanishes on E then490
h = 0. Suppose that h ∈ (Lp)∗∗ vanishes on E, i.e., 〈h, Tu〉(Lp)∗∗,(Lp)∗ = 0 for491

every u ∈ Lp′ . As Lp is reflexive for 1 < p <∞, there exists h ∈ Lp (denoted492
the same as h ∈ (Lp)∗∗) such that 〈h, F 〉(Lp)∗∗,(Lp)∗ = 〈F, h〉(Lp)∗,Lp for every493
F ∈ (Lp)∗. For F := Tu, we have 0 = 〈h, Tu〉(Lp)∗∗,(Lp)∗ = 〈Tu, h〉(Lp)∗,Lp =494 ∫

Ω
uh for every u ∈ Lp

′
. The choice u := |h|p−2h is an admissible test495

function from Lp
′
, which is easily verified by checking that (p − 1)p′ = p.496

Thus 0 =
∫

Ω
|h|p = ‖h‖pp, hence h ∈ Lp is the zero function, and, by the497

isometry of the canonical embedding, h ∈ (Lp)∗∗ is the zero functional.498
(v) Isometry of T immediatelly implies that T is injective. As E := T (Lp

′
), the499

range of T , is closed and dense, it is E = E = (Lp)∗. Hence T is surjective.500
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Problem 8.2 (compactness of integral operator). Let K : [a, b] × [a, b] → R be501
a continuous function. Show that the integral operator T : C([a, b]) → C([a, b]) given502
by503

(8.1) (Tf)(x) =

∫ b

a

K(x, y) f(y) dy504

is compact. Use the Arzelà–Ascoli theorem.505
For f ∈ C([−1, 1]) consider the following boundary value problem:506

−u′′ = f in (−1, 1), u(−1) = u(1) = 0.507

Show that the solution to this problem is unique and that it is represented by the508
formula509

u(x) =

∫ x

−1

(1 + y)(1− x)

2
f(y) dy +

∫ 1

x

(1− y)(1 + x)

2
f(y) dy.510

Show that the solution operator f 7→ u can be written in the form (8.1) with certainK511
and hence it is compact.512

Week 9.513

Solution of Homework 8. The right implication is the easy one. We will prove514
the left one. Suppose that Tj are all bounded and Tx ∈ `∞ for all x ∈ U . Let x ∈ U515
be arbitrary and fixed. Then516

∞ > ‖Tx‖∞ = sup
j∈N
|(Tx)j | = sup

j∈N
|Tjx|.517

As {Tj}j∈N are all bounded operators from U to R and {Tjx}j∈N is a bounded sequence518
in R for every x ∈ U , the uniform boundedness principle yields that {Tj}j∈N is519
a bounded sequence of operators. Hence520

∞ > sup
j∈N
‖Tj‖ = sup

j∈N
sup
‖x‖U=1

|Tjx| = sup
‖x‖U=1

sup
j∈N
|Tjx| = sup

‖x‖U=1

‖Tx‖∞ = ‖T‖.521

Problem 9.1. Let f ∈ C([0, 1]), q > 1, and n ∈ N be given. We consider the522
approximation problem of finding p∗ ∈ Pn, the space of polynomials of degree at523
most n, that would be the closest to f in the Lq(0, 1) norm. Denote524

M := inf
p∈Pn

‖f − p‖q.525

(i) Let q = 2. Use the projection theorem in Hilbert spaces to show that M =526
‖f − p∗‖2 for some p∗ ∈ Pn, that p∗ is uniquely given, and that the mapping527
f 7→ p∗ is linear.528

(ii) Let q > 1 be arbitrary. Show that there exists a unique p∗ ∈ Pn such that529
M = ‖f − p∗‖q and that the mapping f 7→ p∗ is nonlinear unless q = 2.530

Solution. (ii) We will present the direct method in the calculus of variations.531
Step 1 (show that M > −∞). Clearly it is M ≥ 0. One also gets that M <∞532

as for the zero polynomial one gets M ≤ ‖f‖q <∞.533
Step 2 (take a minimizing sequence). This is trivial, from the definition of534

infimum: M = limk→∞ ‖f − pk‖q for some sequence {pk}∞k=1 ⊂ Pn.535
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Step 3 (establish a limit). If we show that {pk}∞k=1 is bounded in Lq(0, 1),536
the Banach–Alaoglu theorem and reflexivity of Lq assure that there is537
a weakly convergent subsequence, i.e., pkj ⇀ p∗ weakly in Lq. So it re-538
mains to show the boundedness: ‖pk‖q ≤ ‖pk−f‖q+‖f‖q →M+‖f‖q <539
∞, i.e., the sequence ‖pk‖q is dominated by a convergent sequence.540

Step 4 (show inclusion of the limit in the trial space). Pn is a finite-dimensional541
subspace of Lq(0, 1), hence closed and in turn, by Lemma 5.3, weakly542
closed. So the weak convergence pkj ⇀ p∗ implies p∗ ∈ Pn.543

Step 5 (pass to the limit in the functional). Our functional is p 7→ F (p) := ‖f−544
p‖q. In this step one wants to show that F (p∗) = M . As F (pkj )→M by545
construction, this step amounts to showing that F (pkj )→ F (p∗). So far546
we have established that pkj is weakly convergent. It is left as an exercise547
to show that F : Lq(0, 1)→ R given above is continuous and convex. We548
can use Theorem 5.4 to deduce that F is weakly lower semicontinuous.549
Hence the weak convergence implies that lim infj→∞ F (pkj ) ≥ F (p∗). In550
the other words,551

M = lim
k→∞

‖f − pk‖q = lim inf
j→∞

‖f − pkj‖q ≥ ‖f − p∗‖q ≥M.552

Both the left-hand side and the right-hand side are M , so we conclude553
that M = ‖f − p∗‖q.554

Step 6 (uniqueness). Suppose that ‖f − p1‖q = ‖f − p2‖q = M for distinct p1,555
p2 ∈ Pn. Then, for arbitrary fixed λ ∈ (0, 1),556

557
‖f − λp1 − (1− λ)p2‖q = ‖λ(f − p1) + (1− λ)(f − p2)‖q558

< λ‖f − p1‖q + (1− λ)‖f − p2‖q = M,559

where the inequality follows from the strict convexity of g 7→ ‖g‖q (recall560
that q > 1), and this is a contradiction: ‖f − pλ‖ < infp∈Pn ‖f − p‖ for561
pλ := λp1 + (1− λ)p2 ∈ Pn.562

It remains to show nonlinearity of the projection f 7→ p∗ for q 6= 2.563

Week 10.564

Problem 10.1. On the Banach space C([0, 1]) consider the following operators565
and decide whether they are compact linear operators.566

(i) Tf(x) = f(cos2(x)),567
(ii) Tf(x) = cos2(f(x)),568
(iii) Tf(x) = f(0)f ′(x),569
(iv) Tf(x) = (x− 1)xf(0) +

∫ x
0
f(s) ds,570

(v) Tf(x) = y(x), where y is the solution of the initial value problem y′ + y = f571
in (0, 1), y(0) = 0.572

Homework 10. Let q > 1, f ∈ Lq(0, 1), and n ∈ N be given. Consider functional573
F : Pn → [0,∞) given by574

F (p) := 1
q‖f − p‖

q
q.575

(i) Compute the Gateaux derivative of F .576
(ii) Formulate the necessary condition for p∗ = argminp∈Pn

F (p).577
(iii) Show that the necessary condition is sufficient.578
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(iv) Show that the mapping P : Lq(0, 1) → Pn : f 7→ p∗ is a projection onto Pn,579
i.e., it is an idempotent mapping (P 2 = P ) and the range of P is Pn.580

(v) Show that P is nonlinear unless q = 2.581

Homework 11. Solve Problem 10.1 (i), (v).582

Homework 12. Let H := L2(0, π) and fn(x) := sin2 nx.583

(i) Given 0 ≤ a ≤ b ≤ π, compute
∫ π

0
fn(x)Ξ(a,b)(x) dx =

∫ b
a
fn, where Ξ(a,b) is584

the characteristic function of interval (a, b). Verify that the integral tends to585
b−a

2 as n→∞.586

(ii) Show that
∫ π

0
fn(x)ϕ(x) dx →

∫ π
0

1
2ϕ(x) dx for every step function ϕ : [0, π]587

→ R.588
(iii) Recall that for an arbitrary ϕ ∈ L2(0, π) and ε > 0, the exists a step function589

ϕε such that ‖ϕ− ϕε‖2 < ε. Consider the identity590

591 ∫ π

0

(
fn(x)− 1

2

)
ϕ(x) dx592

=

∫ π

0

(
fn(x)− 1

2

)(
ϕ(x)− ϕε(x)

)
dx−

∫ π

0

(
fn(x)− 1

2

)
ϕε(x) dx593

and the facts shown above to prove that fn ⇀ 1
2 weakly in L2(0, π).594

(iv) Show that fn does not have a strong limit (in L2(0, π)).595
(v) Consider linear operator T : L2(0, π)→ L2(0, π) given by Tf(x) =

∫ x
0
f(y) dy.596

This is a bounded linear operator. Indeed,597

598

‖Tf‖22 =

∫ π

0

∣∣∣∫ x

0

f(y) dy
∣∣∣2 dx599

≤
∫ π

0

(∫ x

0

|f(y)|dy
)2

dx ≤
∫ π

0

(∫ π

0

|f(y)|dy
)2

dx ≤ π2‖f‖22,600

where the last inequality follows from the Hölder inequality. Show that T is601
compact using Kolmogorov’s criterion.602

(vi) Compute Tfn and T 1
2 , show that ‖Tfn − T 1

2‖∞ → 0, and conclude that603
Tfn → T 1

2 strongly in L2(0, π).604

Homework 13. Let Y be the subset of `2 given by605

Y :=
{
x = {xi}∞i=1 ∈ `2, x2k−1 = x2k for all integers k ≥ 1

}
.606

(i) Show that Y is a closed subspace of `2.607
(ii) Identify the orthogonal complement of Y in `2.608
(iii) Identify the `2-orthogonal projection onto Y .609

Homework 14.610

Theorem 10.1 (Hahn–Banach theorem in Hilbert spaces). Let H be a Hilbert611
space, Y ⊂ H be a subspace, and f ∈ Y ∗ be an arbitrary linear bounded functional612
on Y . Then there exists a bounded linear functional F ∈ H∗ such that F = f on Y613
and ‖F‖ = ‖f‖. Besides, such F is unique.614

For the proof of this theorem, carry out the following steps. Notice that Zorn’s lemma615
(axiom of choice) has not been invoked, in contrast to the Hahn–Banach theorem in616
nonseparable Banach spaces.617
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(i) Show that there exists a unique continuous extension of f from Y to Y . If618
y ∈ Y , then there exists {yn} ⊂ Y such that yn → y in norm. Define619

f̂(y) := limn→∞ f(yn). Show that this is a correct definition (i.e, y 7→ f̂(y)620

is a function), that f̂ is linear, and that f̂ is bounded. Show that such f̂ is621
uniquely given.622

(ii) Now for an arbitrary x ∈ H, consider its decomposition x = Px+ (I − P )x,623
where P is the orthogonal projection onto Y , cf. the direct sum theorem. Set624
F (x) := f̂(Px) for all x ∈ H, verify that F is a linear extension of f , and625
compute the norm of F .626

(iii) It remains to show uniqueness of F with such properties. This is postponed627
to the exercise session or is considered a bonus task.628
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