
FUNCTIONAL ANALYSIS FOR PHYSICISTS: EXERCISE1
PROBLEMS2

JAN BLECHTA∗ AND JOSEF MÁLEK∗3

Week 1.4

Problem 1.1. Let A ∈ Rn×n be given. The following assertions are equivalent:5
(i) A is non-singular (the equation Ax = b has one and only one solution for6

each b ∈ Rn);7
(ii) the mapping x 7→ Ax is injective (the equation Ax = b has at most one8

solution for each b ∈ Rn);9
(iii) the mapping x 7→ Ax is surjective (the equation Ax = b has at least one10

solution for each b ∈ Rn).11
In the following exercise we shall demonstrate that in the infinite-dimensional case12
(ii) and (iii) are not any more equivalent.13

Consider mapping T : C([0, 1]) → C([0, 1]) given by prescription14

T : f(x) 7→ f(x2), x ∈ [0, 1].15

(i) Verify that this is a correct definition and that the mapping T is linear.16
(ii) Show that T − Id is not injective.17
(iii) Show that T + Id is injective.18
(iv) Show that T + Id is not surjective.19

Solution.20
(ii) As T is linear, it is sufficient to show that there is a non-trivial solution of21

the homogeneous equation (T − Id)f = 0. This is indeed the case, as any22
constant function, e.g., f ≡ 1, is a solution.23

(iii) Analogously, to show injectivity of T + Id, we have to show that the only24
solution of the homogenous equation (T + Id)f = 0 is the zero function.25
Using the equation repeatedly, we obtain26

f(x) = −f(x2) = f(x4) = −f(x8) = f(x16) = · · · .27

The first equality in particular implies that f(0) = f(1) = 0. By induction,28
for a fixed a ∈ (0, 1), we have, for any n ∈ N, that29

f(a) = (−1)nf(a2
n

) → 0 as n → ∞,30

with the limit due to continuity of f . This shows that f(a) = 0. As a was31
arbitrary from (0, 1), we conclude that f ≡ 0.32

(iv) To show that T + Id is not surjective, we need to show that there exists33
g ∈ C([0, 1]) such that the equation (T + Id)f = g does not have a solution34
f ∈ C([0, 1]). Assume there is a solution. We have35

f(x2) = g(x)− f(x), x ∈ [0, 1],36

which yields, with change of variable,37

f(x) = g(x1/2)− f(x1/2), x ∈ [0, 1],38

∗Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
(blechta@karlin.mff.cuni.cz, malek@karlin.mff.cuni.cz).

1

mailto:blechta@karlin.mff.cuni.cz
mailto:malek@karlin.mff.cuni.cz


2 J. BLECHTA, J. MÁLEK

and, after recursive application of the equation,39

f(x) = g(x1/2)− g(x1/4) + f(x1/4), x ∈ [0, 1],40

...41

f(x) =

n∑
j=1

(−1)j−1g(x2−j

) + (−1)nf(x2−n

), x ∈ [0, 1].(1.1)42

Set a := 1/2 and suppose that g : [0, 1] → R is a piecewise affine function43
interpolating the values44

g(0) := 0,45

g(a2
−j

) :=
(−1)j−1

j
for j ∈ N,46

g(1) := 0.47

It is left as a homework to show that g ∈ C([0, 1]). Substituting this choice48
of g into (1.1) yields, for x := a,49

f(a) =

n∑
j=1

1

j
+ (−1)nf(a2

−n

).50

The left-hand side is supposed to be a finite number by the required continuity51
of f , the first term on the right-hand side diverges as n → ∞, and the last52
term goes to zero, which is the desired contradiction.53

Problem 1.2.54
(i) For a p ≥ 1 consider the set of sequences55

ℓp :=
{
{xk}∞k=1 ⊂ R,

∑
k>0 |xk|p < ∞

}
.56

What is the relation between ℓp and ℓq given 1 ≤ p < q < ∞?57
(ii) Let Ω := (0, 1). For a given p ≥ 1 consider the set of p-integrable functions58

Lp(Ω) :=
{
u : Ω → R measurable,

∫
Ω
|u|p < ∞

}
.59

What is the relation between Lp(Ω) and Lq(Ω) given 1 ≤ p < q < ∞?60
(iii) What is the relation between Lp(R) and Lq(R) given 1 ≤ p < q < ∞?61

Solution.62
(i) Let {yk}∞k=1 be arbitrary such that

∑
k |yk|p = 1. Then |yk| ≤ 1 for all k ∈ N63

and hence64

(1.2)
∑
k∈N

|yk|q ≤
∑
k∈N

|yk|p = 1.65

Now for an arbitrary nonzero x ∈ ℓp, set y := x
(
∑

|xk|p)1/p
, which satisfies66 ∑

k |yk|p = 1, and hence (1.2) can be used for this y. After little rearrange-67
ment one gets (

∑
k |xk|q)1/q ≤ (

∑
k |xk|p)1/p, which proves the inclusion68

ℓp ⊂ ℓq.69
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(ii) Hölder’s inequality, for r ≥ 1,70 ∫
Ω

|fg| ≤
(∫

Ω

|f |r
)1/r(∫

Ω

|g|s
)1/s

,
1

r
+

1

s
= 1,71

gives for f := |u|p, g := 1, and r := q/p72 ∫
Ω

|u|p ≤
(∫

Ω

|u|q
)p/q

|Ω|1−p/q.73

After rearrangement,74 (∫
Ω

|u|p
)1/p

≤ |Ω|1/p−1/q
(∫

Ω

|u|q
)1/q

,75

which shows that Lq(Ω) ⊂ Lp(Ω) whenever |Ω| < ∞.76
(iii) For Ω = R the above argument does not work and clearly there are functions77

from Lp(R) which are not in Lq(R) and vice versa. For u(x) := Ξ(0,1)x
−1/p+ε,78

where ΞM denotes the characteristic function of set M ⊂ R, it is Lp(R) ∋79
u ̸∈ Lq(R) if ε > 0 is chosen sufficiently small. On the other hand, for80
v(x) := Ξ(1,∞)x

−1/q−ε with ε > 0 sufficiently small, it is Lp(R) ̸∋ v ∈ Lq(R).81

Week 2.82

Problem 2.1. Decide which of the following are normed spaces. If so, determine83
whether they are Banach.84

(i) (R3, ∥ · ∥1/2) for85

∥x∥1/2 =
( 3∑
j=1

|xj |1/2
)2

.86

(ii) (R, ∥ · ∥t) for87

∥x∥t =

{
3x if x ≥ 0,

−x otherwise.
88

(iii) The space of polynomials of degree at most 2 with89

∥p∥ := |p(1)|+ |p′(1)|+ 1
2 |p

′′(1)|90

(iv) The space of all polynomials with the maximum norm ∥p∥∞ = max
x∈[0,1]

|p(x)|.91

Solution. (iv) The normed space (P, ∥ · ∥∞) of all polynomials on [0, 1] is not92
complete. The sequence of polynomials

∑n
j=0 x

j/j!, n = 1, 2, . . . converges93
uniformly in [0, 1], i.e., in the ∥ · ∥∞ norm, to exp(x) /∈ P.94

Problem 2.2.95
(i) Show that every subspace of a normed space is also a normed space (under96

the same norm).97
(ii) Show that every closed subspace of a Banach space is also a Banach space98

(under the same norm).99
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Denote by ℓ∞ the set of all bounded sequences of real or complex numbers, c the set of100
all convergent sequences of real or complex numbers, c0 the set of all null (convergent101
to zero) sequences, and c00 the set of all eventually zero sequences (sequences with102
finitely many nonzero elements). Consider the supremum norm ∥x∥∞ := supk>0 |xk|103
and show that104

(iii) (ℓ∞, ∥ · ∥∞) is a Banach space,105
(iv) c is a closed subspace of (ℓ∞, ∥ · ∥∞),106
(v) c0 is a closed subspace of (c, ∥ · ∥∞), and107
(vi) c00 is a subspace of (c0, ∥ · ∥∞) which is not closed.108

Solution.109
(iii) We leave the task to verify that (ℓ∞, ∥ · ∥∞) is a normed space for the reader110

and proceed with completeness. Suppose that {xn}∞n=1 ⊂ ℓ∞ is a Cauchy111
sequence, i.e., for every ε > 0 there is N ∈ N such that ∥xm − xn∥∞ < ε for112
all m, n > N , or equivalently, using the definition of ∥ · ∥∞,113

(2.1) |xn
k − xm

k | < ε for all m, n > N and all k ∈ N.114

In particular, for a fixed k ∈ N the number sequence {xn
k}∞n=1 ⊂ R is Cauchy115

and hence convergent to xk := limn→∞ xn
k . Taking the limit m → ∞ in (2.1)116

yields that for every ε > 0 there exists N ∈ N such that117

(2.2) |xn
k − xk| ≤ ε for all n > N and all k ∈ N,118

which can be rewritten as ∥xn − x∥∞ → 0 as n → ∞ where x := {xk}∞k=1.119
Let us finish by verifying that x ∈ ℓ∞. Indeed, fixing ϵ > 0 arbitrarily, (2.2)120
implies that for some N ∈ N121 ∣∣|xk| − |xN+1

k |
∣∣ ≤ ε for all k ∈ N,122

and in turn |xk| ≤ |xN+1
k |+ ε for all k ∈ N. As xN+1 ∈ ℓ∞ and ε is fixed, one123

immediatelly gets that x ∈ ℓ∞.124
(iv) Let us show the closedeness. Suppose that {xn}∞n=1 ⊂ c is a convergent125

sequence (in the ∥ · ∥∞ norm), i.e., ∥xn − x∥∞ → 0 as n → ∞ and x ∈ ℓ∞126
due to its completeness. We shall show that x ∈ c. Let us fix ε > 0 to an127
arbitrary value. By the uniform convergence xn → x, there exists Nε ∈ N128
such that129

|xn
k − xk| <

ε

3
for all n ≥ Nε and all k ∈ N.130

The number sequence {xNε

k }∞k=1 is convergent by the hypothesis xNε ∈ c, i.e.,131
(for the above chosen ε > 0) there exists K ∈ N such that132

|xNε

k − xNε

ℓ | < ε

3
for all k, ℓ > K.133

Altogether, for arbitrary ε > 0 there exists K ∈ N such that134

|xk − xℓ| ≤ |xk − xNε

k |+ |xNε

k − xNε

ℓ |+ |xNε

ℓ − xℓ| < ε
3 + ε

3 + ε
3 = ε135

for all k, ℓ > K. In the other words, the number sequence {xk}∞k=1 is Cauchy136
and hence x ∈ c.137
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(v) Let us show the closedeness. Suppose that {xn}∞n=1 ⊂ c0 is a convergent138
sequence (in the ∥ · ∥∞ norm), i.e., ∥xn − x∥∞ → 0 as n → ∞ and x ∈ c139
as (c, ∥ · ∥∞) is a Banach space by virtue of the previous task (iv). We shall140
show that x ∈ c0. Let us fix ε > 0 to an arbitrary value. By the uniform141
convergence xn → x, there exists Nε ∈ N such that142

|xn
k − xk| <

ε

2
for all n ≥ Nε and all k ∈ N.143

The number sequence {xNε

k }∞k=1 is null (convergent to zero) by the hypothesis144
xNε ∈ c0, i.e., (for the above chosen ε > 0) there exists K ∈ N such that145

|xNε

k | < ε

2
for all k > K.146

Altogether, for arbitrary ε > 0 there exists K ∈ N such that147

|xk| ≤ |xk − xNε

k |+ |xNε

k | < ε
2 + ε

2 = ε148

for all k > K. In the other words, the number sequence {xk}∞k=1 is null and149
hence x ∈ c0.150

(vi) The sequence {(1, 1
2 ,

1
3 , . . . ,

1
n , 0, 0, 0, . . .)}

∞
n=1 ⊂ c00 converges in the supre-151

mum norm to (1, 1
2 ,

1
3 , . . .) ∈ c0, which is not an element of c00. Hence c00 is152

not closed in (c0, ∥ · ∥∞).153

Homework 1.154
(i) Show that, for a fixed p ∈ [1,∞), c00 is dense in the Banach space (ℓp, ∥ · ∥p),155

where156

∥x∥p =
( ∞∑
j=1

|xi|p
) 1

p

.157

(ii) Show that the closure of c00 in the supremum norm ∥ · ∥∞ coincides with c0.158

Homework 2. We say a subset V of a metric space is (sequentially) compact if159
every sequence in V has a convergent subsequence with the limit in V .160

Let X be a Banach space, a set A ⊂ X be closed, and a set B ⊂ X be compact.161
Show that the set A+B := {x+ y, x ∈ A, y ∈ B} is closed in X.162

Homework 3. Let163

fn(x) :=

{
1
n if x ∈ (0, n),

0 otherwise.
164

For every p ∈ [1,∞], determine whether {fn} has a limit in (Lp(R), ∥ · ∥p),165

∥f∥p =
(∫

R
|f(x)|p dx

) 1
p

, p ∈ [1,∞),166

∥f∥∞ = ess supR |f(x)|.167

Homework 4. For each n ∈ N, let the sequence {xn
k}∞k=1 ⊂ R be given by168

xn
k =

k + 1

k2 + 2
+

n+ 1

n2k
, k ∈ N.169
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(i) Determine whether xn, n ∈ N, belong to c0, ℓ1, ℓ2, ℓ3, and ℓ∞.170
(ii) Determine whether the sequence {xn}∞n=1 converges in Banach spaces (c0, ∥ ·171

∥∞) and (ℓ∞, ∥ · ∥∞). If yes, establish the limit.172

Week 3.173

Problem 3.1.174
(i) Consider (C([0, 1]), ∥ · ∥∞), the vector space of continuous functions on [0, 1]175

equipped with the maximum norm ∥u∥∞ := maxx∈[0,1] |u(x)|. Think through176
that this is a normed space. Show that it is complete.177

(ii) Show that (C([0, 1]), ∥ · ∥1), ∥u∥1 :=
∫ 1

0
|u(x)|dx is a normed space which is178

not complete. As a counterexample consider the sequence179

fn(x) :=


0, x ≤ 1

2 − 1
n ,

n
2 (x− 1

2 ) +
1
2 ,

1
2 − 1

n ≤ x ≤ 1
2 + 1

n ,

1, 1
2 + 1

n ≤ x.

180

(iii) Arzelà–Ascoli theorem. Let a sequence of continuous functions {fn}∞n=1181
⊂ C([0, 1]) be given.182

If {fn}∞n=1 is uniformly bounded, i.e., there exists M > 0 such that183

∥fn∥∞ ≤ M,184

and uniformly equicontinuous, i.e., for every ε > 0 there exists δ > 0 such185
that for all x, y ∈ [0, 1] with |x− y| < δ it holds186

sup
n∈N

|fn(x)− fn(y)| ≤ ε,187

then there exists a subsequence {fnk
}∞k=1 that converges uniformly on [0, 1].188

The converse is true as well in the following sense: If every subsequence189
of {fn}∞n=1 admits a uniformly convergent subsequence then {fn}∞n=1 is uni-190
formly bounded and uniformly equicontinuous.191

Use the theorem to judge whether {fn}∞n=1 from (ii) is uniformly convergent.192

Solution.193
(i) This is the uniform limit theorem. Its proof uses the ε/3 strategy as in194

Problem 2.2 (iv).195
(ii) The pointwise limit196

f(x) :=

{
0, x < 1

2 ,

1, x > 1
2 ,

197

does not belong to C([0, 1]), but a straightforward computation shows that198
∥fn − f∥1 → 0 as n → ∞.199

(iii) Clearly it is ∥fn∥ ≤ 1 for all n ∈ N, so the sequence is uniformly bounded.200
On the other hand, the modulus of continuity blows up with n → ∞: For201
arbitrary ε > 0, it is202

|fn(x)− fn(y)| ≤ ε if |x− y| < 2ε

n
.203

https://en.wikipedia.org/wiki/Uniform_limit_theorem
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So δ > 0 cannot be chosen independent of n ∈ N, and the uniform equicon-204
tinuity is violated. Hence, according to the theorem, it cannot be that205
∥fn − f∥∞ → 0. (The reader should think through that selecting a sub-206
sequence and/or assuming a different limit instead of f is of no help here.)207

208

Problem 3.2.209
(i) Let A ∈ Rn×m be a given matrix. Consider the mapping TA : Rm → Rn : x 7→210

Ax. Verify that TA is a linear bounded operator w.r.t. the Euclidean norm on211
Rm and Rn. Does the operator norm ∥TA∥ coincide with some matrix norm212
of A? Is the norm attained for some x ∈ Rm?213

(ii) (Diagonal operator on ℓp). Let an arbitrary sequence {λk}∞k=1 ⊂ R and214
p ∈ [1,∞] be given. Consider the operator T : ℓp → ℓp given by215

T (x1, x2, x3, . . .) = (λ1x1, λ2x2, λ3x3, . . .).216

Equip ℓp with its usual norm ∥x∥p :=
(∑∞

k=1 |x|p
)1/p. Compute the norm of217

T : (ℓp, ∥ · ∥p) → (ℓp, ∥ · ∥p). When is the operator bounded?218
(iii) For real functions on [0, 1], consider the differentiation mapping f 7→ f ′. This219

is clearly a linear operator. Consider the sequence {fn}∞n=1, fn(x) = sin(nx).220
Compute ∥fn∥∞ and ∥f ′

n∥∞. Is the operator (C1([0, 1]), ∥·∥∞) → (C([0, 1]), ∥·221
∥∞) : f 7→ f ′ bounded?222

(iv) (Shift operator on Lp). Let a ∈ R and p ∈ [1,∞] be given. Consider the223
mapping Ta given for a f ∈ Lp(R) by prescription224

(Taf)(x) = f(x− a) for a.e. x ∈ R.225

Clearly Ta is a linear operator and ∥Taf∥p = ∥f∥p. Hence, Ta : L
p(R) →226

Lp(R) is bounded with ∥Ta∥ = 1. Observe that Ta is a bijection.227
(v) (Shift operators on ℓp). For any 1 ≤ p ≤ ∞, define the right shift SR : ℓp →228

ℓp and the left shift SL : ℓp → ℓp by229

SR(x1, x2, x3, . . .) := (0, x1, x2, . . .),230

SL(x1, x2, x3, . . .) := (x2, x3, x4, . . .).231

Verify that these are bounded linear operators, compute their norms, and232
check whether they are injective or surjective.233

(vi) (Multiplication operator). Let Ω ⊂ R be open and let g ∈ L∞(Ω) be234
given. Consider the multiplication operator, which, for an f ∈ Lp(Ω), 1 ≤235
p ≤ ∞, is given by236

(Mgf)(x) = f(x) g(x) for a.e. x ∈ R.237

Compute the norm of Mg : L
p(Ω) → Lp(Ω).238



8 J. BLECHTA, J. MÁLEK

(vii) Consider the indefinite integral operator, for f ∈ C([a, b]), a < b, given by239

Tf(x) =

∫ x

a

f(s) ds for all x ∈ [a, b].240

Show that T : (C([a, b]), ∥·∥∞) → (C([a, b]), ∥·∥∞) is bounded and that ∥T∥ =241
b− a.242
Do you know how can be the range of T : L1((a, b)) → C([a, b]) described?243

Solution.244
(i) We have245

∥TA∥ = sup
∥x∥2≤1

∥TA(x)∥2 = sup
∥x∥2≤1

∥Ax∥2 = ∥A∥2,246

the spectral norm of A. The norm is attained by any dominant right sin-247
gular vector: If A =

∑
i σiuiv

⊤
i with σ1 ≥ σ2 ≥ · · · ≥ 0 and {ui}i, {vi}i248

orthonormal systems, then ∥Av1∥ = ∥σ1v1∥ = σ1 = ∥A∥2.249
(ii) Suppose that p < ∞. We estimate250

∥Tx∥pp =

∞∑
i=1

|λixi|p ≤ sup
i∈N

|λi|p
∞∑
i=1

|xi|p = ∥λ∥p∞∥x∥pp,251

which implies that252

∥T∥ = sup
x ̸=0

∥Tx∥p
∥x∥p

≤ ∥λ∥∞.253

For254

xn = (0, . . . , 0, 1
↑

n-th position

, 0, . . .),255

it is256

∥xn∥p = 1 and ∥Txn∥p = |λn|.257

Hence258

∥T∥ = sup
x̸=0

∥Tx∥p
∥x∥p

≥ sup
n∈N

∥Txn∥p
∥xn∥p

= sup
n∈N

|λn| = ∥λ∥∞.259

Using both inequalities we conclude that ∥T∥ = ∥λ∥∞ and clearly T is260
bounded if and only if λ ∈ ℓ∞. We leave the modifications necessary to261
handle the case p = ∞ for the reader.262

(iii) It is263

∥fn∥∞ = 1 and ∥f ′
n∥∞ = n264

and hence265

∥ •′ ∥ = sup
∥f∥∞≤1

∥f ′∥∞ ≥ sup
n∈N

∥f ′
n∥∞ = sup

n∈N
n = ∞,266

that is the operator f 7→ f ′ is not bounded.267
(v) Assume first p < ∞. We have268

∥SRx∥pp =

∞∑
i=1

|xi|p = ∥x∥pp,269

∥SLx∥pp =

∞∑
i=2

|xi|p ≤ ∥x∥pp.270
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The inequality becomes an equality if x = (0, x2, x3, . . .). This together shows271
that ∥SR∥ = 1 and ∥SL∥ = 1. A minor modification shows the same for272
p = ∞.273
Given any p ∈ [1,∞], the equation274

SRx = (1, 0, 0, . . .)275

does not have a solution x ∈ ℓp and hence SR is not surjective. On the other
hand the equation276

SRx = 0277

only has a trivial solution x = 0 and hence SR is injective.278
Given arbitrary p ∈ [1,∞] and y = (y1, y2, . . .) ∈ ℓp, the equation279

SLx = y280

has a solution, for example, x = (0, y1, y2, y3, . . .) and hence SL is surjective.
On the other hand, the equation281

SLx = 0282

has a non-trivial solution x = (1, 0, 0, . . .) and hence SL is not injective.283

Week 4.284

Problem 4.1. On the Banach space (C([0, 1]), ∥ · ∥∞) consider the following op-285
erators and decide whether they are linear and bounded:286

(i) Tf(x) = f(cos2(x)),287
(ii) Tf(x) = cos2(f(x)),288
(iii) Tf(x) = f(0)f ′(x),289
(iv) Tf(x) = (x− 1)xf(0) +

∫ x

0
f(s) ds,290

(v) Tf(x) = y(x), where y is the solution of the initial value problem y′ + y = f291
in (0, 1), y(0) = 0.292

Solution.293
(i) T is clearly linear and also bounded. Indeed, for arbitrary x ∈ [0, 1], it is294

|f(cos2 x)| ≤ max
t∈[0,1]

|f(t)| = ∥f∥∞.295

Hence ∥Tf∥∞ = maxx∈[0,1] |f(cos2 x)| ≤ ∥f∥∞, which shows that ∥T∥ ≤ 1.296
Choosing f ≡ 1 shows that ∥T∥ = 1.297

(ii) T is clearly non-linear.298
(iii) T is clearly non-linear.299
(iv) T is linear and, for arbitrary x ∈ [0, 1],300

|Tf(x)| ≤ |f(0)| |x− 1| |x|+
∣∣∣∫ x

0

f(s) ds
∣∣∣ ≤ 1

4 |f(0)|+
∫ 1

0

|f(s)|ds301

≤ 1
4∥f∥∞ + ∥f∥∞.302

Hence ∥T∥ ≤ 5
4 and T is bounded.303
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(v) For f1, f2 ∈ C([0, 1]), consider y1, y2 ∈ C([0, 1]) such that304

y′1 + y1 = f1 in (0, 1), y1(0) = 0,305

y′2 + y2 = f2 in (0, 1), y2(0) = 0.306

Due to the linearity of the equations, we have307

(y1 + y2)
′ + (y1 + y2) = (f1 + f2) in (0, 1), (y1 + y2)(0) = 0,308

which shows that T (f1 + f2) = Tf1 + Tf2. Proceeding similarly for homo-309
geneity, we get that T is linear.310
It is readily verified that T has the explicit representation311

Tf(x) =

∫ x

0

exp(t− x) f(t) dt.312

Hence, for any x ∈ [0, 1],313

|Tf(x)| ≤
∫ x

0

exp(t− x) |f(t)|dt ≤
∫ x

0

|f(t)|dt ≤ ∥f∥∞.314

Hence, T is bounded with ∥T∥ ≤ 1.315

Problem 4.2 (inequality used in [1, proof of Lemma 2.24]). Let f : [0,∞) → R316
be concave such that f(0) ≥ 0. Show that then f(a+ b) ≤ f(a)+ f(b) for all a, b ≥ 0.317

Solution. By hypotheses, we have, with t ∈ [0,∞) and 0 ≤ λ ≤ 1, that318

f(λt) = f
(
λt+ (1− λ)0

)
≥ λf(t) + (1− λ)f(0) ≥ λf(t).319

Hence,320

f(a) + f(b) = f
( a

a+ b
(a+ b)

)
+ f

( b

a+ b
(a+ b)

)
≥ a

a+ b
f(a+ b) +

b

a+ b
f(a+ b) = f(a+ b).

321

322

Example 4.3 (examples of Fréchet spaces [1, Examples 2.25, 2.26]).323

Week 5.324

Example 5.1 (Schwartz space of rapidly decreasing functions [2]). The Schwartz325
space (the space of rapidly decreasing functions)326

S(Rn) :=
{
u ∈ C∞(Rn), ∥xβ∂αu∥∞ < ∞ for all multiindices α, β

}
327

is a Fréchet space (without proof) when equipped with the sequence of seminorms328
{pj}∞j=0,329

pj(u) :=
∑

|α|,|β|≤j

∥xβ∂αu∥∞,330

or, for example, {qj}∞j=0,331

qj(u) := max
|α|≤j

∥(1 + |x|2)j∂αu∥∞.332
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These two generate the same topology. Significance of the space is that (i) Fourier333
transform F : S(Rn) → S(Rn) is one-to-one, (ii) Fourier transform F : S(Rn)′ →334
S(Rn)′ on tempered distributions S(Rn)′ is naturally defined (by moving F to test335
functions), and (iii) as S(Rn) is dense in L2(Rn), F can be extended to F̂ : L2(Rn) →336
L2(Rn), which is unitary. For details see [2].337

Problem 5.2 (Minkowski functional). Let X be a real normed space and B ⊂ X338
be a non-empty convex open set containing the origin. Let the functional p : X →339
[0,∞) be defined by340

p(x) := inf{λ > 0, x ∈ λB}, for every x ∈ X.341

Show that342
(i) there exists M > 0 such that p(x) ≤ M∥x∥ for all x ∈ X;343
(ii) B = {x ∈ X, p(x) < 1};344
(iii) p is sublinear, i.e.,345

p(αx) = αp(x) for all x ∈ X and α ≥ 0 and346

p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.347

Solution.348
(i) By the hypothesis, there exists a ball Br := {x ∈ X, ∥x∥ < r} with certain r >349

0 such that Br ⊂ B. Hence350

p(x) = inf{λ > 0, x
λ ∈ B} ≤ inf{λ > 0, x

λ ∈ Br} =
∥x∥
r

.351

(ii) To show “⊂”, suppose that x ∈ B. As B is open, (1+ δ)x ∈ B for some δ > 0352
small enough. In the other words, x

λ ∈ B for λ = 1
1+δ , and hence353

p(x) = inf{λ > 0, x
λ ∈ B} ≤ inf

{ 1

1 + δ

}
=

1

1 + δ
< 1.354

For the opposite inclusion, suppose that p(x) < 1. By the definition of p,355
there exists 0 < β < 1 such that β ∈ {λ > 0, x/λ ∈ B}, and hence x/β ∈ B.356
As B is convex and contains the origin, we have357

x = β
x

β
+ (1− β) 0 ∈ B.358

(iii) We leave the task to verify positive homogeneity, p(αx) = αp(x), for all x ∈ X359
and α ≥ 0, up to the reader, so it remains to prove the triangle inequality.360
Suppose that x, y ∈ X and fix ε > 0. Then for x

p(x)+ε , we have361

p

(
x

p(x) + ε

)
=

p(x)

p(x) + ε
< 1,362

where the equality follows from the positive homogeneity, and hence, by virtue363
of (ii), x

p(x)+ε ∈ B. Similarly, y
p(y)+ε ∈ B. By the convexity of B, it follows364

that, with arbitrary 0 < µ < 1,365

µ
x

p(x) + ε
+ (1− µ)

y

p(y) + ε
∈ B.366
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Chossing µ := p(x)+ε
p(x)+p(y)+2ε and using (ii) and the positive homogeneity yields367

1 > p

(
x+ y

p(x) + p(y) + 2ε

)
=

p(x+ y)

p(x) + p(y) + 2ε
.368

As ε was arbitrary, it is p(x+ y) ≤ p(x) + p(y).369

Homework 5 (Hahn–Banach separation theorem, weak topology). For a func-370
tion f : X → R, its epigraph is defined as371

epi f := {(x, y) ∈ X × R, y ≥ f(x)}.372

Lemma 5.1. Let X be a convex subset of a real vector space and suppose that373
f : X → R is convex. Then epi f is convex.374

If X is a normed space, the product X×R is a normed space with, e.g., ∥(x, y)∥X×R :=375
∥x∥X + |y|. Recall we say that a function f : X → R is (norm) lower semicontinuous376
if xn → x (in norm) implies lim inf

n→∞
f(xn) ≥ f(x).377

Lemma 5.2. Suppose that X is a normed space and f : X → R is (norm) lower378
semicontinuous. Then epi f is (norm) closed.379

We say that a subset M ⊂ X of a normed space X is (sequentially) weakly closed380
if every weakly convergent sequence {xn}n≥1 ⊂ M satisfies xn ⇀ x ∈ M . We can381
immediately see that a weakly closed set is closed. Indeed, suppose that {xn} ⊂ M382
conveges in norm to x ∈ X. Then {xn} converges weakly to the same x. As M is383
weakly closed, it is necessarily x ∈ M . The converse holds true for convex sets:384

Lemma 5.3. A subset of a normed space that is closed and convex is weakly closed.385

We say that f : X → R is weakly lower semicontinuous if the weak convergence xn ⇀ x386
implies lim inf

n→∞
f(xn) ≥ f(x).387

Theorem 5.4. Let f be a real-valued functional on a normed space which is lower388
semicontinuous and convex. Suppose additionally that f is bounded from below. Then389
f is weakly lower semicontinuous.390

Corollary 5.5. Let V be a normed space. Then the norm ∥·∥ : V → R : x 7→ ∥x∥391
is weakly lower semicontinuous, i.e.,392

lim inf
n→∞

∥xn∥ ≥ ∥x∥ whenever xn ⇀ x.393

Prove the lemmas, the theorem, and the corollary. Lemma 5.3 can be proved by394
contradiction, invoking the Hahn–Banach (strict) separation theorem. (Recall that395
any singleton set is compact). The lemmas are all to be proved independently and396
shall all be used to prove the theorem. It is sufficient to carry out all the proofs for397
a normed space over reals only; the complex case will be treated later in the class.398

Week 6.399

Problem 6.1 (complex Hahn–Banach theorem).400
(i) Let V be a vector space over C. Show that V is a vector space over R.401
(ii) Let f : V → C be a linear functional on the complex vector space V . Define402

f1, f2 : V → R by403
f1(x) := Re f(x),404

f2(x) := Im f(x).405
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Show that f1 and f2 are linear functionals on V over R, but they are not, in406
general, linear functionals on V over C.407

(iii) Show that f2(x) = −f1(ix), and hence f(x) = f1(x)− if1(ix).408
(iv) Let X be a complex vector space, p : X → R be a seminorm, and let V ⊂ X409

be a subspace of X. Suppose that f : V → C is linear such that |f(x)| ≤ p(x)410
on V . Apply the real version of Hahn–Banach theorem to construct a linear411
F1 : X → R, an extension of f1 : V → R, such that |F1| ≤ p on X.412

(v) From F1 construct a linear F : X → C, an extension of f : V → C, and show413
that |F | ≤ p on X.414

Solution.415
(ii) For arbitrary x, y ∈ V , we have f1(x+y) = Re f(x+y) = Re f(x)+Re f(y) =416

f1(x)+f1(y). As of homogeneity, we have f1(λx) = Re f(λx) = Re(λf(x)) for417
any λ ∈ C. If λ is real, then the last expression equals λf1(x), which shows418
that f1 is linear on V over R. On the other hand, homogeneity f1(λx) =419
λf1(x) is clearly violated if, for example, λ = i and f1(x) ̸= 0. Indeed, the420
left-hand side is real and the right-hand side is imaginary.421

(iii) Indeed, for any x ∈ V , we have f1(ix) = Re f(ix) = Re(if(x)) = −f2(x).422
(iv) Linear functional f1 : V → R is dominated by p on V . Indeed, |f1(x)| =423

|Re f(x)| ≤ |f(x)| ≤ p(x). By the real Hahn–Banach theorem, there exists424
F1 : X → R, a linear functional on X over R, such that F1 = f1 on V and425
F1 ≤ p on X. As p is a seminorm (recall that a sublinear function which is426
additionally absolute homogeneous is a seminorm), it is −F1(x) = F1(−x) ≤427
p(−x) = p(x), which shows, together with F1(x) ≤ p(x), that |F1| ≤ p on X.428

(v) For an arbitrary x ∈ X, let F (x) := F1(x) − iF1(ix). It is readily verified,429
directly from the definition, that F is a linear functional on X over C. It is430
also an extension of f . Indeed, for x ∈ V , it is F (x) = F1(x) − iF1(ix) =431
f1(x) − if1(ix) = f(x). It remains to verify that |F | is dominated by p.432
Let x ∈ X be arbitrary and fixed. There exists t ∈ R such that |F (x)| =433
eitF (x) = F (eitx) = F1(e

itx)− iF1(ie
itx). The left-hand side is real and F1434

is real-valued so it must be |F (x)| = F1(e
itx) ≤ p(eitx) = |eit|p(x) = p(x).435

Thus we have proved the complex version of the Hahn–Banach theorem:436

Corollary. Let X be a complex vector space and V ⊂ X be its subspace. Let437
f : V → C be linear, p : X → R be a seminorm, and |f | ≤ p on V . Then there exists438
a linear F : X → C such that F = f on V and |F | ≤ p on X.439

Problem 6.2 (Mazur’s lemma). Let X be a real vector space and M ⊂ X be an440
arbitrary set. We define the convex hull of M as441

convM := {x ∈ X, x is a finite convex combination of elements of M}442

=

{
x ∈ X, there exists m ∈ N, positive numbers λ1, . . . , λm with∑m

j=1 λj = 1, and vectors x1, . . . , xm ∈ M such that x =
∑m

j=1 λjxj

}
.443

(i) Show that M ⊂ convM and that convM is convex.444
(ii) Use Lemma 5.3 to prove the following result:445

Theorem (Mazur’s lemma). Let X be a real normed space and suppose that446
{xj}∞j=1 ⊂ X converges weakly to some x ∈ X. Then x ∈ conv{xj}∞j=1.447

(iii) Show that this statement is equivalently formulated as follows:448
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Theorem (Mazur’s lemma). Let X be a real normed space and suppose that449
{xj}∞j=1 ⊂ X converges weakly to some x ∈ X. Then there exists a sequence450
of finite convex combinations of {xj}∞j=1 which converges strongly to x. Pre-451
cisely, there exists a sequence of integers {mj}∞j=1 and numbers 0 ≤ λji ≤ 1,452

j = 1, 2, . . ., i = 1, 2, . . . ,mj, with
∑mj

i=1 λji = 1 for every j ∈ N, such that453

mj∑
i=1

λjixi → x strongly as j → ∞.454

Week 7.455

Problem 7.1 (on separability).456
(i) Show that every subset of a separable metric space is separable.457
(ii) Show that ℓp is separable for every 1 ≤ p < ∞ and that ℓ∞ is not separable.458
(iii) Let Ω ⊂ Rd be open. Show that Lp(Ω) is separable for every 1 ≤ p < ∞ and459

that, provided Ω is not empty, L∞(Ω) is not separable.460

Problem 7.2 (Baire property). Let X be a topological space. Show that the461
following properties are equivalent.462

(i) Every countable union of closed sets with empty interior has empty interior.463
(ii) Every countable intesection of dense open sets is dense.464

We say that a set is a nowhere dense subset of X if its closure has empty interior. We465
say that a subset of X is a meager subset of X, meager in X, or of the first category466
in X if it is a countable union of nowhere dense subsets of X. A subset of X which is467
not meager in X is called a nonmeager subset of X, nonmeager in X, or of the second468
category in X. Then the Baire property (i), (ii) is equivalently expressed as follows.469

(iii) Every meager subset of X has empty interior.470
(iv) Every nonempty open subset of X is nonmeager in X.471

Problem 7.3 (Everywhere-defined unbounded operator on a Banach space).472
Let X be an infinite dimensional vector space. We say that a set M = {vi}i∈I is473
linearly independent if for every finite index set J ⊂ I, the equation

∑
j∈J cjvj = 0474

implies that cj = 0 for all j ∈ J . We say that a set B ⊂ X is a Hamel basis of X475
if B is linearly independent and every element of X can be written as a finite linear476
combination of elements of B.477

(i) Let a linearly independent sequence {bi}∞i=0 ⊂ X be given. Show, using Zorn’s478
lemma, that there exists a Hamel basis B containing {bi}∞i=0 as its subset.479

480
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(ii) Let X be a Banach space. Recall that, by the Baire category theorem, {bi}∞i=0481
alone cannot be a Hamel basis of X. In the other words, the dimension of X482
is uncountably infinite.483

(iii) Now assume w.l.o.g. that ∥bi∥ = 1 for i = 1, 2, . . . and consider the function484
F : B → R given as F (bi) = i for i = 1, 2, . . . and F (b) = 0 for b ∈ B \{bi}∞i=1.485
Show that F is uniquely extended to a linear functional F : X → R. Show486
that F is unbounded.487

Homework 6.488
(i) Show that the unit ball in L2((0, 1)), i.e., the set {f ∈ L2((0, 1)), ∥f∥2 < 1},489

is a nowhere dense subset of L1((0, 1)).490
(ii) Building on (i), decide whether L2((0, 1)) is a meager or nonmeager subset491

of L1((0, 1)).492

Homework 7.493
(i) Recall that for every vector space a Hamel basis exists by Zorn’s lemma;494

cf. Problem 7.3 (i). Use the Baire category theorem to show that for every495
infinite-dimensional Banach space its Hamel basis is uncountable.496

(ii) Consider P, the space of polynomials in one variable of arbitrary degree497
with real coefficients. Show the following statement: There does not exist498
a functional ∥ · ∥ : P → R such that (P, ∥ · ∥) is a Banach space.499

Homework 8. Let U be a Banach space and let T : U → ℓ∞ be a linear operator500
defined on whole U , i.e., such that Tx ∈ ℓ∞ for every x ∈ U . Consider its components501
Tj : U → R given by Tj(x) = (Tx)j for x ∈ U and j ∈ N. Prove that T is bounded if502
and only if Tj , j ∈ N, are all bounded.503

Homework 9.504
(i) Show that there exists a bounded linear functional F on ℓ∞ such that F (x) =505

limk→∞ xk whenever x is a convergent sequence.506
(ii) Show that there exists a bounded linear functional F ∈ L∞(R)∗ such that507

F (f) = ess limx→0 f(x) whenever the limit exists.508
(iii) Show that (ii) fails when L∞(R) is replaced by L1(R). To do this, find509

a bounded sequence {fn}∞n=1 ⊂ L1(R) with F (fn) → ∞ as n → ∞.510

Week 8.511

Problem 8.1 (dual of Lp). Let Ω ⊂ Rd be open. Let p ∈ (1,∞) and 1/p+1/p′ =512
1. In the sequel we will use the notation Lp := Lp(Ω) and (Lp)∗ := (Lp(Ω))∗ for any513
1 < p < ∞. Consider the mapping T : Lp′ → (Lp)∗ given by514

⟨Tu, f⟩ =
∫
Ω

uf dx, f ∈ Lp.515

(i) Show that T is linear.516
(ii) Show that T is isometry; precisely ∥Tu∥(Lp)∗ = ∥u∥p′ for every u ∈ Lp′

.517

(iii) Show that T (Lp′
), the range of T , is closed in (Lp)∗.518

(iv) Show that T (Lp′
) is dense in (Lp)∗. Use reflexivity of Lp′

and the following519
proposition.520

Lemma 8.1. Let V be a normed space and M ⊂ V be its subspace. Then521
M = V if and only if522

{F ∈ V ∗, F = 0 on M} = {F ∈ V ∗, F = 0 on V }.523
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(v) Conclude that, for 1 < p < ∞, (Lp)∗ is isometrically isomorphic to Lp′
524

(through T ).525

Proof of Lemma 8.1. Suppose that M is dense. If F = 0 on M and {xk} ⊂ M is526
such that xk → x ∈ M = V , then 0 = F (xk) → F (x) by virtue of continuity of F .527
As x ∈ V was arbitrary, this shows that F = 0 on V .528

For the opposite implication, suppose that M is a proper subspace of V . We use529
the following proposition from the class:530

Theorem 8.2 (a consequence of the Hahn–Banach theorem). Let M be a closed531
proper subspace of a normed space V and let x ∈ V \M be given. Then there exists532
F ∈ V ∗ such that F = 0 on M , ∥F∥ = 1, and F (x) = dist(x,M) > 0.533

Thus, there exists a non-zero F that vanishes on M , and, in particular, on M .534

Solution.535
(ii) Given an arbitrary u ∈ Lp′

, we obtain, using the definition of T and the536
Hölder inequality,537

∥Tu∥(Lp)∗ = sup
f∈Lp

⟨Tu, f⟩
∥f∥p

= sup
f∈Lp

∫
u f

∥f∥p
≤ ∥u∥p′ .538

On the other hand, the function fu := |u|p′−2u belongs to Lp, which is easily539

verfied by checking that (p′ − 1)p = p′, and it is ∥fu∥p = ∥u∥p
′−1

p′ . Hence540

∥Tu∥(Lp)∗ = sup
f∈Lp

∫
u f

∥f∥p
≥

∫
u fu

∥fu∥p
=

∥u∥p
′

p′

∥u∥p′−1
p′

= ∥u∥p′ .541

Altogether we have that ∥u∥p′ ≤ ∥Tu∥(Lp)∗ ≤ ∥u∥p′ , which shows that the542
inequality is actually an equality.543

(iv) Denote E := T (Lp′
). To show that E = (Lp)∗, it is sufficient (and necessary)544

by Lemma 8.1 to show that: if an arbitrary h ∈ (Lp)∗∗ vanishes on E then545
h = 0. Suppose that h ∈ (Lp)∗∗ vanishes on E, i.e., ⟨h, Tu⟩(Lp)∗∗,(Lp)∗ = 0 for546

every u ∈ Lp′
. As Lp is reflexive for 1 < p < ∞, there exists h ∈ Lp (denoted547

the same as h ∈ (Lp)∗∗) such that ⟨h, F ⟩(Lp)∗∗,(Lp)∗ = ⟨F, h⟩(Lp)∗,Lp for every548
F ∈ (Lp)∗. For F := Tu, we have 0 = ⟨h, Tu⟩(Lp)∗∗,(Lp)∗ = ⟨Tu, h⟩(Lp)∗,Lp =549 ∫
Ω
uh for every u ∈ Lp′

. The choice u := |h|p−2h is an admissible test550

function from Lp′
, which is easily verified by checking that (p − 1)p′ = p.551

Thus 0 =
∫
Ω
|h|p = ∥h∥pp, hence h ∈ Lp is the zero function, and, by the552

isometry of the canonical embedding, h ∈ (Lp)∗∗ is the zero functional.553
(v) Isometry of T immediatelly implies that T is injective. As E := T (Lp′

), the554
range of T , is closed and dense, it is E = E = (Lp)∗. Hence T is surjective.555

Week 9.556

Problem 9.1. On the Banach space C([0, 1]) consider the following operators and557
decide whether they are compact linear operators.558

(i) Tf(x) = f(cos2(x)),559
(ii) Tf(x) = cos2(f(x)),560
(iii) Tf(x) = f(0)f ′(x),561
(iv) Tf(x) = (x− 1)xf(0) +

∫ x

0
f(s) ds,562

(v) Tf(x) = y(x), where y is the solution of the initial value problem y′ + y = f563
in (0, 1), y(0) = 0.564
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Problem 9.2 (compact embedding of Hölder spaces). Let Ω ⊂ Rd be open and565
bounded and let 0 < α < β ≤ 1 be given. Show that C0,β(Ω) is compactly embedded566
in C0,α(Ω), i.e., show that the identity mapping from C0,β(Ω) to C0,α(Ω) is compact.567
Use the Arzelà–Ascoli theorem.568

Problem 9.3 (compactness of integral operator). Let K : [a, b] × [a, b] → R be569
a continuous function. Show that the integral operator T : C([a, b]) → C([a, b]) given570
by571

(9.1) (Tf)(x) =

∫ b

a

K(x, y) f(y) dy572

is compact. Use the Arzelà–Ascoli theorem.573
For f ∈ C([−1, 1]) consider the following boundary value problem:574

−u′′ = f in (−1, 1), u(−1) = u(1) = 0.575

Show that the solution to this problem is unique and that it is represented by the576
formula577

u(x) =

∫ x

−1

(1 + y)(1− x)

2
f(y) dy +

∫ 1

x

(1− y)(1 + x)

2
f(y) dy.578

Show that the solution operator f 7→ u can be written in the form (9.1) with certain K579
and hence it is compact.580

Solution of Homework 8. The right implication is the easy one. We will prove581
the left one. Suppose that Tj are all bounded and Tx ∈ ℓ∞ for all x ∈ U . Let x ∈ U582
be arbitrary and fixed. Then583

∞ > ∥Tx∥∞ = sup
j∈N

|(Tx)j | = sup
j∈N

|Tjx|.584

As {Tj}j∈N are all bounded operators from U to R and {Tjx}j∈N is a bounded sequence585
in R for every x ∈ U , the uniform boundedness principle yields that {Tj}j∈N is586
a bounded sequence of operators. Hence587

∞ > sup
j∈N

∥Tj∥ = sup
j∈N

sup
∥x∥U=1

|Tjx| = sup
∥x∥U=1

sup
j∈N

|Tjx| = sup
∥x∥U=1

∥Tx∥∞ = ∥T∥.588

Week 10.589

Problem 10.1 (compactness of integral operator). Let τh denote the shift oper-590
ator, i.e., given a function f : Rd → X and h ∈ Rd, the shifted function τhf : Rd → X591
is given by592

(τhf)(x) := f(x+ h), x ∈ Rd.593

Theorem (Kolmogorov–M. Riesz–Fréchet). Let q ∈ [1,∞) and d ∈ N be given594
and let {uj}∞j=1 be a bounded sequence in Lq(Rd). Suppose that595

lim
h→0

∥τhuj − uj∥q = 0 uniformly in j = 1, 2, . . .,596

i.e., for every ε > 0 there exists δ > 0 such that ∥τhuj − uj∥q < ε for all j = 1, 2, . . .,597
and all h ∈ Rd with |h| < δ.598

Let Ω ⊂ Rd be an arbitrary measurable set with finite measure. Then there exists599
a subsequence {ujk}∞k=1 such that {ujk |Ω}∞k=1 converges in Lq(Ω).600
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Let q > 1 be given and Ω ⊂ Rd be open and bounded. Let K : Ω × Ω → R be601
uniformly continuous. Show that the integral operator T : Lq(a, b) → Lq(a, b) given602
by603

(Tf)(x) =

∫
Ω

K(x, y) f(y) dy604

is compact. Use the Kolmogorov criterion.605

Problem 10.2. Let f ∈ C([0, 1]), q > 1, and n ∈ N be given. We consider the606
approximation problem of finding p∗ ∈ Pn, the space of polynomials of degree at607
most n, that would be the closest to f in the Lq(0, 1) norm. Denote608

M := inf
p∈Pn

∥f − p∥q.609

(i) Let q = 2. Use the projection theorem in Hilbert spaces to show that M =610
∥f − p∗∥2 for some p∗ ∈ Pn, that p∗ is uniquely given, and that the mapping611
f 7→ p∗ is linear.612

(ii) Let q > 1 be arbitrary. Show that there exists a unique p∗ ∈ Pn such that613
M = ∥f − p∗∥q and that the mapping f 7→ p∗ is nonlinear unless q = 2.614

Solution. (ii) We will present the direct method in the calculus of variations.615
Step 1 (show that M > −∞). Clearly it is M ≥ 0. One also gets that M < ∞616

as for the zero polynomial one gets M ≤ ∥f∥q < ∞.617
Step 2 (take a minimizing sequence). This is trivial, from the definition of618

infimum: M = limk→∞ ∥f − pk∥q for some sequence {pk}∞k=1 ⊂ Pn.619
Step 3 (establish a limit). If we show that {pk}∞k=1 is bounded in Lq(0, 1),620

the Banach–Alaoglu theorem and reflexivity of Lq assure that there is621
a weakly convergent subsequence, i.e., pkj

⇀ p∗ weakly in Lq. So it re-622
mains to show the boundedness: ∥pk∥q ≤ ∥pk−f∥q+∥f∥q → M+∥f∥q <623
∞, i.e., the sequence ∥pk∥q is dominated by a convergent sequence.624

Step 4 (show inclusion of the limit in the trial space). Pn is a finite-dimensional625
subspace of Lq(0, 1), hence closed and in turn, by Lemma 5.3, weakly626
closed. So the weak convergence pkj

⇀ p∗ implies p∗ ∈ Pn.627
Step 5 (pass to the limit in the functional). Our functional is p 7→ F (p) := ∥f−628

p∥q. In this step one wants to show that F (p∗) = M . As F (pkj
) → M by629

construction, this step amounts to showing that F (pkj ) → F (p∗). So far630
we have established that pkj is weakly convergent. It is left as an exercise631
to show that F : Lq(0, 1) → R given above is continuous and convex. We632
can use Theorem 5.4 to deduce that F is weakly lower semicontinuous.633
Hence the weak convergence implies that lim infj→∞ F (pkj

) ≥ F (p∗). In634
the other words,635

M = lim
k→∞

∥f − pk∥q = lim inf
j→∞

∥f − pkj
∥q ≥ ∥f − p∗∥q ≥ M.636

Both the left-hand side and the right-hand side are M , so we conclude637
that M = ∥f − p∗∥q.638

Step 6 (uniqueness). Suppose that ∥f − p1∥q = ∥f − p2∥q = M for distinct p1,639
p2 ∈ Pn. Then, for arbitrary fixed λ ∈ (0, 1),640

∥f − λp1 − (1− λ)p2∥q = ∥λ(f − p1) + (1− λ)(f − p2)∥q641

< λ∥f − p1∥q + (1− λ)∥f − p2∥q = M,642



FUNCTIONAL ANALYSIS: EXERCISE PROBLEMS 19

where the inequality follows from the strict convexity of g 7→ ∥g∥q (recall643
that q > 1), and this is a contradiction: ∥f − pλ∥q < infp∈Pn

∥f − p∥q644
for pλ := λp1 + (1− λ)p2 ∈ Pn.645

It remains to show nonlinearity of the projection f 7→ p∗ for q ̸= 2.646

Problem 10.3. Show that every Hilbert space is reflexive. Use the Riesz repre-647
sentation theorem.648

Problem 10.4. Prove the following Hilbert space analog of Lemma 8.1. Notice649
that the Hahn–Banach theorem is not needed.650

Theorem. Let H be a Hilbert space and M ⊂ H be its subspace. Then M = H651
if and only if652

{x ∈ H, (x, y) = 0 for all y ∈ M} = {0}.653

Problem 10.5 (orthogonal complement). Let V be a real or complex inner-654
product space and suppose that M is a non-empty subset of V . We define the655
orthogonal complement of M as656

M⊥ := {x ∈ V, (x, y) = 0 for all y ∈ M}.657

Theorem. Let V be an inner product space and let M be its non-empty subset.658
Then M⊥ is a closed subspace of V . Furthermore, (M)⊥ = M⊥ and M ∩M⊥ = {0}659
if 0 ∈ M and M ∩M⊥ = ∅ if 0 ̸∈ M .660

Corollary (direct sum theorem). Let H be a real or complex Hilbert space and661
let M be a closed subspace of H. Then H = M ⊕M⊥.662

Problem 10.6 (adjoint).663

Theorem. Let X, Y be complex Hilbert spaces and let A ∈ L(X,Y ) be given.664
There exists a uniquely given A∗ ∈ L(Y,X), the adjoint of A, that satisfies665

(Ax, y)Y = (x,A∗y)X for all x ∈ X, y ∈ Y .666

Furthermore,667

(ImA)⊥ = KerA∗, Y = KerA∗ ⊕ ImA,668

(ImA∗)⊥ = KerA, X = KerA⊕ ImA∗.669

Homework 10. Let q > 1, f ∈ Lq(0, 1), and n ∈ N be given. Consider functional670
F : Pn → [0,∞) given by671

F (p) := 1
q∥f − p∥qq.672

(i) Compute the Gateaux derivative of F .673
(ii) Formulate the necessary condition for p∗ = argminp∈Pn

F (p).674
(iii) Show that the necessary condition is sufficient.675
(iv) Show that the mapping P : Lq(0, 1) → Pn : f 7→ p∗ is a projection onto Pn,676

i.e., it is an idempotent mapping (P 2 = P ) and the range of P is Pn.677
(v) Show that P is nonlinear unless q = 2.678

Homework 11. Solve Problem 9.1 (i), (v).679

Homework 12. Let H := L2(0, π) and fn(x) := sin2 nx.680
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(i) Given 0 ≤ a ≤ b ≤ π, compute
∫ π

0
fn(x)Ξ(a,b)(x) dx =

∫ b

a
fn, where Ξ(a,b) is681

the characteristic function of interval (a, b). Verify that the integral tends to682
b−a
2 as n → ∞.683

(ii) Show that
∫ π

0
fn(x)φ(x) dx →

∫ π

0
1
2φ(x) dx for every step function φ : [0, π]684

→ R.685
(iii) Recall that for an arbitrary φ ∈ L2(0, π) and ε > 0, there exists a step686

function φε such that ∥φ− φε∥2 < ε. Consider the identity687 ∫ π

0

(
fn(x)− 1

2

)
φ(x) dx688

=

∫ π

0

(
fn(x)− 1

2

)(
φ(x)− φε(x)

)
dx+

∫ π

0

(
fn(x)− 1

2

)
φε(x) dx689

and the facts shown above to prove that fn ⇀ 1
2 weakly in L2(0, π).690

(iv) Show that fn does not have a strong limit (in L2(0, π)).691
(v) Consider linear operator T : L2(0, π) → L2(0, π) given by Tf(x) =

∫ x

0
f(y) dy.692

This is a bounded linear operator. Indeed,693

∥Tf∥22 =

∫ π

0

∣∣∣∫ x

0

f(y) dy
∣∣∣2 dx694

≤
∫ π

0

(∫ x

0

|f(y)|dy
)2

dx ≤
∫ π

0

(∫ π

0

|f(y)|dy
)2

dx ≤ π2∥f∥22,695

where the last inequality follows from the Hölder inequality. Show that T is696
compact using Kolmogorov’s criterion.697

(vi) Compute Tfn and T 1
2 , show that ∥Tfn − T 1

2∥∞ → 0, and conclude that698
Tfn → T 1

2 strongly in L2(0, π).699

Homework 13. Let Y be the subset of ℓ2 given by700

Y :=
{
x = {xi}∞i=1 ∈ ℓ2, x2k−1 = x2k for all integers k ≥ 1

}
.701

(i) Show that Y is a closed subspace of ℓ2.702
(ii) Identify the orthogonal complement of Y in ℓ2.703
(iii) Identify the ℓ2-orthogonal projection onto Y .704

Homework 14.705

Theorem 10.1 (Hahn–Banach theorem in Hilbert spaces). Let H be a Hilbert706
space, Y ⊂ H be a subspace, and f ∈ Y ∗ be an arbitrary linear bounded functional707
on Y . Then there exists a bounded linear functional F ∈ H∗ such that F = f on Y708
and ∥F∥ = ∥f∥. Besides, such F is unique.709

For the proof of this theorem, carry out the following steps. Notice that Zorn’s lemma710
(axiom of choice) has not been invoked, in contrast to the Hahn–Banach theorem in711
nonseparable Banach spaces.712

(i) Show that there exists a unique continuous extension of f from Y to Y . If713
y ∈ Y , then there exists {yn} ⊂ Y such that yn → y in norm. Define714

f̂(y) := limn→∞ f(yn). Show that this is a correct definition (i.e, y 7→ f̂(y)715

is a function), that f̂ is linear, and that f̂ is bounded. Show that such f̂ is716
uniquely given.717

(ii) Now for an arbitrary x ∈ H, consider its decomposition x = Px+ (I − P )x,718
where P is the orthogonal projection onto Y , cf. the direct sum theorem. Set719
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F (x) := f̂(Px) for all x ∈ H, verify that F is a linear extension of f , and720
compute the norm of F .721

(iii) It remains to show uniqueness of F with such properties. This is postponed722
to the exercise session or is considered a bonus task.723
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