1 FUNCTIONAL ANALYSIS FOR PHYSICISTS: EXERCISE

2 PROBLEMS
3 JAN BLECHTA* AND JOSEF MALEK*
4 Week 1.

5 PrROBLEM 1.1. Let A € R™*™ be given. The following assertions are equivalent:

6 (i) A is non-singular (the equation Az = b has one and only one solution for
7 each b € R™);

8 (ii) the mapping = — Az is injective (the equation Az = b has at most one
9 solution for each b € R™);
10 (iii) the mapping = — Az is surjective (the equation Az = b has at least one

11 solution for each b € R™).

12 In the following exercise we shall demonstrate that in the infinite-dimensional case
13 (ii) and (iii) are not any more equivalent.

14 Consider mapping T': C(]0, 1]) — C(]0, 1]) given by prescription

15 T: f(z) — f(z?), z €[0,1].

16 (i) Verify that this is a correct definition and that the mapping T is linear.

17 (ii) Show that 7" —Id is not injective.

18 (iii) Show that T+ Id is injective.

19 (iv) Show that T + Id is not surjective.

20 Solution.

21 (ii) As T is linear, it is sufficient to show that there is a non-trivial solution of
22 the homogeneous equation (7' —Id)f = 0. This is indeed the case, as any
23 constant function, e.g., f =1, is a solution.

24 (iii) Analogously, to show injectivity of T + Id, we have to show that the only
25 solution of the homogenous equation (7' + Id)f = 0 is the zero function.
26 Using the equation repeatedly, we obtain

27 fl@) = —f(a®) = fa*) = —f(2%) = f(2') = - -

28 The first equality in particular implies that f(0) = f(1) = 0. By induction,
29 for a fixed a € (0,1), we have, for any n € N, that

30 fla) = (=1)"f(0*) =0 as n — oo,

31 with the limit due to continuity of f. This shows that f(a) = 0. As a was
32 arbitrary from (0,1), we conclude that f = 0.

33 (iv) To show that T + Id is not surjective, we need to show that there exists
34 g € C(]0,1]) such that the equation (T' + Id)f = g does not have a solution
35 f€C([0,1]). Assume there is a solution. We have

36 f@*) =g(@) - f(z), xe[0,1],

37 which yields, with change of variable,

38 fe)=g(@'?) = f(='7?),  welo1],
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and, after recursive application of the equation,

f(z) = g(@'?) = g(a*) + f(@'),  ze0,1],

(L1 f@) =3 (1)@ )+ (-1 f* ), zelo1).

Set a := 1/2 and suppose that g: [0,1] — R is a piecewise affine function
interpolating the values

g(O) =0,
g(a2_j) = (13?]1 for j €N,
9(1) =0

It is left as a homework to show that g € C([0,1]). Substituting this choice
of g into (1.1) yields, for z = a,

The left-hand side is supposed to be a finite number by the required continuity
of f, the first term on the right-hand side diverges as n — oo, and the last
term goes to zero, which is the desired contradiction. ]

PROBLEM 1.2.
(i) For a p > 1 consider the set of sequences

£y = {{z)Rn C R, Sy loel? < o0},

What is the relation between ¢, and ¢, given 1 < p < ¢ < 00?
(ii) Let © := (0,1). For a given p > 1 consider the set of p-integrable functions

LP(Q) := {u: Q — R measurable, [, [u[f < oo}.

What is the relation between LP(2) and L(Q) given 1 < p < g < c0?
(iii) What is the relation between LP(R) and L9(R) given 1 < p < ¢ < o0?

Solution.

(i) Let {yx}p2, be arbitrary such that >, |yx|[” = 1. Then |yi| < 1forall k € N
and hence
(1.2) Sl <> el =1

keN keN

Now for an arbitrary nonzero z € £, set y = which satisfies

N
(IENDRE
>k lukl” =1, and hence (1.2) can be used for this y. After little rearrange-
ment one gets (3, [x|9)Y < (32, |zx[?)'/P, which proves the inclusion

0, C 4.
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70 (ii) Holder’s inequality, for r > 1,
, 1/r . 1/s 1 1

m Lrsar<(Lur) (L) fei-1

Q Q Q r s
72 gives for f := |[uP, g =1, and r :== ¢q/p

pla
73 / ufP < (/ |u|q) Q[1-P/a,
Q Q

74 After rearrangement,

7 (f1ur)"" < apir=sin( [ )™,

76 which shows that L?(2) C LP(€Q)) whenever |Q] < co.
7 (iii) For ©Q = R the above argument does not work and clearly there are functions

78 from LP(R) which are not in L?(R) and vice versa. For u(z) := Zg 1)z~ 1/P*e,
79 where Zj; denotes the characteristic function of set M C R, it is LP(R) >
80 u & LY(R) if € > 0 is chosen sufficiently small. On the other hand, for
81 v(z) = E(lm)x’l/q’a with € > 0 sufficiently small, it is L?(R) # v € LY(R).0
82 Week 2.
83 PROBLEM 2.1. Decide which of the following are normed spaces. If so, determine
84 whether they are Banach.
5 G) @] hye) for
3 2
86 el = (3 lasl2)
j=1

g ) R ) for

3z ifz >0,
88 zlle = .

—x  otherwise.
89 (iii) The space of polynomials of degree at most 2 with
90 Ipll = Ip(D)] + [ ()] + 510" (1)]
91 (iv) The space of all polynomials with the maximum norm ||p||c = m[ax] Ip(z)].

x€[0,1

92 Solution. (iv) The normed space (P, | - ||oo) of all polynomials on [0, 1] is not
93 complete. The sequence of polynomials >7_ja7 /5!, n = 1,2,... converges
94 uniformly in [0, 1], i.e., in the || - ||oc norm, to exp(z) ¢ P. O
95 PROBLEM 2.2.
96 (i) Show that every subspace of a normed space is also a normed space (under
97 the same norm).
98 (ii) Show that every closed subspace of a Banach space is also a Banach space

99 (under the same norm).
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Denote by £ the set of all bounded sequences of real or complex numbers, ¢ the set of
all convergent sequences of real or complex numbers, ¢q the set of all null (convergent
to zero) sequences, and cgg the set of all eventually zero sequences (sequences with
finitely many nonzero elements). Consider the supremum norm ||z|/s = sup;~ |zx|
and show that

(iii) (Yoo, || - ||oo) is & Banach space,

(iv) cis a closed subspace of (Yoo, || * ||c0)s

(v) ¢ is a closed subspace of (¢, |+ ||x), and

(vi) cgp is a subspace of (¢, || - ||oo) Which is not closed.

Solution.

(iii) We leave the task to verify that ({s, || - ||co) is a normed space for the reader

(iv)

and proceed with completeness. Suppose that {z"}2°; C f is a Cauchy
sequence, i.e., for every € > 0 there is N € N such that ||z — 2" || < € for
all m, n > N, or equivalently, using the definition of || - ||,

(2.1) lzy — x| <e for all m, n > N and all k € N.

In particular, for a fixed k € N the number sequence {z}}52; C R is Cauchy
and hence convergent to xj, := lim, . z}. Taking the limit m — oo in (2.1)
yields that for every € > 0 there exists N € N such that

(2.2) |z —xk| <e  forallnm> N and all k € N,

which can be rewritten as || — z||oc — 0 as n — oo where z = {x,}72,.
Let us finish by verifying that z € £.. Indeed, fixing € > 0 arbitrarily, (2.2)
implies that for some N € N

x| = 2y || <e  forallk €N,

and in turn |z | < |20 T+ ¢ for all k € N. As 2V+! € £ and ¢ is fixed, one
immediatelly gets that = € /.

Let us show the closedeness. Suppose that {z"}52, C ¢ is a convergent
sequence (in the || - ||ooc norm), ie., [|[z™ — z|lcc — 0 as n — oo and x €
due to its completeness. We shall show that x € c. Let us fix ¢ > 0 to an
arbitrary value. By the uniform convergence ™ — =z, there exists N, € N
such that

|27 — 2 <§ for all n > N. and all k € N.

The number sequence {xiv =152, is convergent by the hypothesis xNe ¢, ie.,
(for the above chosen £ > 0) there exists K € N such that

€
|xk5—xévﬁ|<§ for all k, £ > K.
Altogether, for arbitrary ¢ > 0 there exists K € N such that
ok — 2| < Jay — 27|+ |27 — 2"+ |2~z < S+ 5+5=¢

for all k, £ > K. In the other words, the number sequence {z;}72, is Cauchy
and hence x € c.
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Let us show the closedeness. Suppose that {z"}52, C ¢o is a convergent
sequence (in the || - ||oo norm), i.e., ||z" — z||loc — 0 as n — o0 and z= € ¢
as (¢, ] - |loo) is a Banach space by virtue of the previous task (iv). We shall
show that x € ¢y. Let us fix € > 0 to an arbitrary value. By the uniform
convergence " — x, there exists N. € N such that

|27 — g <§ for all n > N, and all k € N.

The number sequence {ka =}22 , is null (convergent to zero) by the hypothesis
xNe € ¢, i.e., (for the above chosen & > 0) there exists K € N such that

€
|mf€V€\<§ for all k > K.
Altogether, for arbitrary € > 0 there exists K € N such that
k| < lok —ad* [+ lags| < §+5=¢

for all £ > K. In the other words, the number sequence {x}}?° ; is null and
hence x € c.

%7 %7 e %, 0,0,0,...)}5%, C coo converges in the supre-
,%,...) € cg, which is not an element of cypg. Hence cq is

mum norm to (1,
not closed in (cy, |

HOMEWORK 1.

(1)

(i)

Show that, for a fixed p € [1,00), cgp is dense in the Banach space (¢p, || - ||),
where

o 1

P

ol = (3 laal”) "
j=1

Show that the closure of cgy in the supremum norm || - ||, coincides with c.

HOMEWORK 2. We say a subset V' of a metric space is (sequentially) compact if

every sequence in V has a convergent subsequence with the limit in V.

Let X be a Banach space, a set A C X be closed, and a set B C X be compact.

Show that the set A+ B :={x+y, z € A, y € B} is closed in X.

HOMEWORK 3. Let

0 otherwise.

fula) = {n if z € (0,n),

For every p € [1, 00|, determine whether {f,} has a limit in (LP(R), || - ||»),

I = ([ 150Pas)". peloo)

| flloo = esssupg | f(z)|.

HOMEWORK 4. For each n € N, let the sequence {z}}72, C R be given by

k+1 n+1

EETRErTEE

xp =



174
175
176
177
178
179

180

181
182

184

185
186

187

188

189
190
191

192

193
194
195
196

197

198
199
200
201
202

J. BLECHTA, J. MALEK

(i) Determine whether ™, n € N, belong to co, ¢1, f2, {3, and {.
ii) Determine whether the sequence {x™}°% ; converges in Banach spaces (co, || -
n=1
lloo) and (Yoo, || - |loo)- If yes, establish the limit.

Week 3.

PrROBLEM 3.1.

(i) Consider (C([0,1]),] - |loo), the vector space of continuous functions on [0, 1]
equipped with the maximum norm ||u|o = max,e,1] |u(x)|. Think through
that this is a normed space. Show that it is complete.

(if) Show that (C([0, 1)), - |l1), llull1 = fol |u(z)| dx is a normed space which is
not complete. As a counterexample consider the sequence

07 JJS%—%,

— 1 1 1 1 1 1

fal@)=q5@=3)+3 z-nSes3+5,
1, i+1i<q

(ili) ARZELA—-ASCOLI THEOREM. Let a sequence of continuous functions { fn}52 4
C C([0,1]) be given.

If {fn}52, is uniformly bounded, i.e., there exists M > 0 such that

[fnlloe < M,

and uniformly equicontinuous, i.e., for every € > 0 there exists § > 0 such
that for all z,y € [0,1] with |z — y| < & it holds

sup | fn(z) — fu(y)| < e,
neN

then there exists a subsequence {fn,, }72, that converges uniformly on [0, 1].

The converse is true as well in the following sense: If every subsequence
of {fn}52 admits a uniformly convergent subsequence then {f,}32, is uni-
formly bounded and uniformly equicontinuous.

Use the theorem to judge whether {f,,}52; from (ii) is uniformly convergent.

Solution.

(i) This is the wniform limit theorem. Tts proof uses the /3 strategy as in
Problem 2.2 (iv).

(ii) The pointwise limit

fla) = {0’ vy

1, x>%,

does not belong to C([0,1]), but a straightforward computation shows that
lfn— fll1 = 0 as n — oo.

(iii) Clearly it is || fn|| < 1 for all n € N, so the sequence is uniformly bounded.
On the other hand, the modulus of continuity blows up with n — oo: For
arbitrary € > 0, it is

ful@) = falw)| < iflz—y| < 2n£
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So § > 0 cannot be chosen independent of n € N, and the uniform equicon-
tinuity is violated. Hence, according to the theorem, it cannot be that
Ifn — flloo = 0. (The reader should think through that selecting a sub-
sequence and/or assuming a different limit instead of f is of no help here.) O

AL

Babis vytihl na operatory

Hrozi funkcionalni analyze nebezpe¢i? e

E§S

PROBLEM 3.2.

(i)

(i)

(ii)

(iv)

Let A € R™ ™ be a given matrix. Consider the mapping T4: R™ — R": x —
Azx. Verify that T4 is a linear bounded operator w.r.t. the Euclidean norm on
R™ and R™. Does the operator norm ||T4|| coincide with some matrix norm
of A7 Is the norm attained for some x € R™?

(Diagonal operator on /,). Let an arbitrary sequence {\;}72; C R and
p € [1,00] be given. Consider the operator T : ¢, — £, given by

T(iﬂl,xg,l'g, .. ) = ()\1.%1, )\212, )\31’3, .. )

Equip ¢, with its usual norm ||z, = (377, |x|p)1/p. Compute the norm of
T: (Up, |- llp) = (Up, || - llp). When is the operator bounded?

For real functions on [0, 1], consider the differentiation mapping f — f’. This
is clearly a linear operator. Consider the sequence {f,}22,, fn(x) = sin(nx).
Compute | f oo and [|£3 ]sc. Ts the operator (€'([0, 1), |-l <) — (€([0, 1),
lloo): f + f’ bounded?

(Shift operator on L?). Let a € R and p € [1,00] be given. Consider the
mapping T, given for a f € LP(R) by prescription

(Tof)(z) = f(x —a) for a.e. z € R.

Clearly T, is a linear operator and |7, f|l, = ||f|l,. Hence, To: LP(R) —
L?(R) is bounded with ||T,|| = 1. Observe that T, is a bijection.

(Shift operators on ¢,). For any 1 < p < oo, define the right shift Sg: £, —
£, and the left shift Sp: £, — ¢, by

Sr(x1, 29, 23,...) = (0,21, 22, ...),

Sp(x1,x9,x3,...) = (T2,23, T4, ...).
Verify that these are bounded linear operators, compute their norms, and
check whether they are injective or surjective.
(Multiplication operator). Let 2 C R be open and let g € L>*(f2) be

given. Cousider the multiplication operator, which, for an f € LP(Q), 1 <
p < o0, is given by

(Mg f)(x) = f(x) g(x) for a.e. z € R.

Compute the norm of M,: LP(Q2) — LP(Q).
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(vii) Consider the indefinite integral operator, for f € C([a,b]), a < b, given by

Tf(x):/zf(s)ds for all x € [a, b].

Show that T': (C([a,b]), || |lec) = (C([a,b]), || lec) is bounded and that ||T'|| =
b—a.
Do you know how can be the range of T': L!((a,b)) — C([a,b]) described?

Solution.
(i) We have

ITall = sup [[Ta(z)lla = sup [[Az]ls = [All2,
lefl2<1 lefla<1

the spectral norm of A. The norm is attained by any dominant right sin-
gular vector: If A = %", ouv] with oy > 09 > --+ > 0 and {w;};, {v;};
orthonormal systems, then ||Av|| = ||oyv1|| = o1 = || A||2-

(i) Suppose that p < co. We estimate

oo o0
ITzf =D Niwal” < sup Al? D Ll = (1A% |13,
i=1 teN i=1

which implies that
1T

|T']| = sup < [Affoe-
w20 [Zp
For
2" =(0,...,0,1,0,...),
it is n-th pTosition
", =1 and 1Tx"||p = |Anl-
Hence
Tx Tx™
1) = sup 122l 5 gy Wl 0, =
z#0 \|$||p neN ||z ||p neN
Using both inequalities we conclude that [|T'|| = ||A||ec and clearly T is

bounded if and only if A € ¢,,. We leave the modifications necessary to
handle the case p = oo for the reader.

(iii) It is
[falle =1 and  [fillc =n
and hence
o= sup [f'llc = sup|lfyllc =supn = oo,
[l flloo<1 neN neN

that is the operator f — f’ is not bounded.
(v) Assume first p < co. We have

oo
I1Srally =D el = |allp,

i=1

oo
ISzl =" lail” < |-

1=2
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The inequality becomes an equality if z = (0, 23, 3, . ..). This together shows
that ||Sgrl| = 1 and ||SL|| = 1. A minor modification shows the same for
p = 0.
Given any p € [1, 00|, the equation

Srz = (1,0,0,...)

does not have a solution = € ¢, and hence S is not surjective. On the other
hand the equation

ASRQTZZO

only has a trivial solution z = 0 and hence Sg is injective.
Given arbitrary p € [1,00] and y = (y1, 92, ...) € {p, the equation

Spr =y

has a solution, for example, x = (0, y1, y2, y3, - . .) and hence Sy, is surjective.
On the other hand, the equation

SLx =0

has a non-trivial solution = (1,0,0,...) and hence Sy, is not injective. 0O

Week 4.

PROBLEM 4.1. On the Banach space (C(]0,1]),] - ||oo) consider the following op-
erators and decide whether they are linear and bounded:

) = f(cos?(x)),
x) = cos®(f(x)),

Tf(x
Tf(x)=
Tf(z) = f(0)f (= )
Tf(z)=(x—1)x +fo
(()

y(x), Where y is the solutlon of the initial value problem ' +y = f

D, 9(0) — 0

Solution.
(i) T is clearly linear and also bounded. Indeed, for arbitrary x € [0, 1], it is

F(eos* )| < ma 1)) = 1/

Hence ||T'f|ls = max,eo,1) |f(cos? )| < ||f|loo, which shows that ||T]| < 1.
Choosing f = 1 shows that ||T|| = 1.

(ii) T is clearly non-linear.
(iii) T is clearly non-linear.
(iv) T is linear and, for arbitrary x € [0, 1],

1
siumn+4\ﬂ@m8
< 1 flloe + 1]

74 < 17O~ 1llel + | [ 7(s)ds

Hence ||T|| < 2 and T is bounded.



308

309
310
311

w
—
[\

314

316
317

318

319
320

10 J. BLECHTA, J. MALEK
(v) For f1, fo € C([0,1]), consider y1, y2 € C([0, 1]) such that

v+ =fi in (0,1), y1(0) =
yé + Y2 = f2 in (07 1)a y2(0) =

Due to the linearity of the equations, we have
(1 +y2) + Wi +y2) =(fi+fo)) in(0,1), (y1+y2)(0)=0,

which shows that T'(f1 + fo) = Tf1 + T f2. Proceeding similarly for homo-
geneity, we get that 7' is linear.
It is readily verified that T" has the explicit representation

Tf(x) = /0 exp(t — z) f(£) dt.

Hence, for any z € [0, 1],

Tf()| < / “exp(t — ) |F(1)] dr < / C1FO1dE < [l

Hence, T is bounded with ||T]| < 1. O

PROBLEM 4.2 (inequality used in [1, proof of Lemma 2.24]). Let f: [0,00) = R
be concave such that f(0) > 0. Show that then f(a+0b) < f(a)+ f(b) for all a, b > 0.

Solution. By hypotheses, we have, with ¢t € [0,00) and 0 < X\ < 1, that

FO8) = F(X 4 (1= A)0) = AF(1) + (1= N F(0) = Af(2).

Hence,
F@+ 50 = 5 (0 +0) + 1 (50 +)
2aibf(a+b)+ai+bf(a+b):f(a+b). q

EXAMPLE 4.3 (examples of Fréchet spaces [1, Examples 2.25, 2.26]).
Week 5.

EXAMPLE 5.1 (Schwartz space of rapidly decreasing functions [2]). The Schwartz
space (the space of rapidly decreasing functions)

S(R") = {u € C®(R"), [|2°0au s < oo for all multiindices o, 5}

is a Fréchet space (without proof) when equipped with the sequence of seminorms
{pj }?iov

pj(u) = Z ||x58au\|oo,

el 1B1<3

or, for example, {g;}3%,

gj(u) = max [|(1 + |2[*)’ Do ul|oo-
| <j
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These two generate the same topology. Significance of the space is that (i) Fourier
transform F: S(R™) — S(R™) is one-to-one, (i) Fourier transform F: S(R™)" —
S(R™) on tempered distributions S(R™)" is naturally defined (by moving F to test
functions), and (iii) as S(R™) is dense in L2(R"), F can be extended to F: L2(R") —
L?(R™), which is unitary. For details see [2].

PROBLEM 5.2 (Minkowski functional). Let X be a real normed space and B C X
be a non-empty convex open set containing the origin. Let the functional p : X —

[0, 00) be defined by
p(z) == 1inf{\ > 0, z € AB}, for every z € X.

Show that
(i) there exists M > 0 such that p(x) < M||z| for all z € X;
(i) B={x€ X, p(z) < 1};
(iii) p is sublinear, i.e.,

plazx) = ap(x) for all x € X and a > 0 and
p(z+y) < plx)+ ply) for all z, y € X.

~

Solution.
(i) By the hypothesis, there exists a ball B, := {x € X, ||z|| < r} with certain r >
0 such that B, C B. Hence

p(z) =inf{A >0, § € B} <inf{A >0, £ € B} = —

(ii) To show “C”, suppose that © € B. As B is open, (1+§)x € B for some ¢ > 0

small enough. In the other words, ¥ € B for A = 1%—6’ and hence
1
f{A>0,2¢eB <f{ }:447 1.
p(z) =inf{A >0, £ € B} <in T35 1+5<

For the opposite inclusion, suppose that p(z) < 1. By the definition of p,
there exists 0 < § < 1 such that 8 € {A > 0, /A € B}, and hence z/8 € B.
As B is convex and contains the origin, we have

x:ﬂ%+ﬂ—m063

(iii) We leave the task to verify positive homogeneity, p(ax) = ap(x), for allx € X

and a > 0, up to the reader, so it remains to prove the triangle inequality.

Suppose that z, y € X and ﬁx € > 0. Then for )Jr , we have

x p(x)
= <1,
g <p(w) + e) pl)+<
where the equality follows from the positive homogeneity, and hence, by virtue

of (ii), p(r)+s € B. Similarly, p(y)+6 € B. By the convexity of B, it follows
that, with arbitrary 0 < p < 1,

+(1-p—2L eB.

p(z) +¢ p(y) +¢
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Chossing p := % and using (ii) and the positive homogeneity yields
) ( T+y ) _ plz+y)
> = .
p(@) +py) +2)  pl@)+ply) + 2
As e was arbitrary, it is p(z +y) < p(z) + p(y). d

HOMEWORK 5 (Hahn-Banach separation theorem, weak topology). For a func-
tion f: X — R, its epigraph is defined as

epif ={(z,y) e X xR,y > f(z)}.

LEMMA 5.1. Let X be a convexr subset of a real vector space and suppose that
f: X = R is convex. Then epi f is conver.

If X is a normed space, the product X xR is a normed space with, e.g., ||(z,y)||xxr =
lz]lx + |y|- Recall we say that a function f: X — R is (norm) lower semicontinuous
if ,, = = (in norm) implies liminf f(z,) > f(z).

n—oo

LEMMA 5.2. Suppose that X is a normed space and f: X — R is (norm) lower
semicontinuous. Then epi f is (norm) closed.

We say that a subset M C X of a normed space X is (sequentially) weakly closed
if every weakly convergent sequence {z,}n,>1 C M satisfies x,, — = € M. We can
immediately see that a weakly closed set is closed. Indeed, suppose that {z,} C M
conveges in norm to x € X. Then {z,} converges weakly to the same z. As M is
weakly closed, it is necessarily z € M. The converse holds true for convex sets:

LEMMA 5.3. A subset of a normed space that is closed and convex is weakly closed.

We say that f: X — Ris weakly lower semicontinuous if the weak convergence z,, — x
implies liminf f(z,) > f(z).
n— oo

THEOREM 5.4. Let f be a real-valued functional on a normed space which is lower
semicontinuous and convex. Suppose additionally that f is bounded from below. Then
f is weakly lower semicontinuous.

COROLLARY 5.5. Let V' be a normed space. Then the norm ||-||: V — R: x — ||z]|
is weakly lower semicontinuous, i.e.,

liminf ||z, || > ||| whenever x, — .
n—o0

Prove the lemmas, the theorem, and the corollary. Lemma 5.3 can be proved by
contradiction, invoking the Hahn—Banach (strict) separation theorem. (Recall that
any singleton set is compact). The lemmas are all to be proved independently and
shall all be used to prove the theorem. It is sufficient to carry out all the proofs for
a normed space over reals only; the complex case will be treated later in the class.

Week 6.

PROBLEM 6.1 (complex Hahn—Banach theorem).
(i) Let V be a vector space over C. Show that V is a vector space over R.
(ii) Let f: V — C be a linear functional on the complex vector space V. Define
fl; fQZ V —-R by
fi(z) = Re f(z),
fo(z) =Im f(x).
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Show that f; and fy are linear functionals on V' over R, but they are not, in
general, linear functionals on V' over C.

Show that fa(x) = —f1(ix), and hence f(z) = fi(z) —if1(iz).

Let X be a complex vector space, p: X — R be a seminorm, and let V' C X
be a subspace of X. Suppose that f: V — C is linear such that |f(x)| < p(z)
on V. Apply the real version of Hahn—-Banach theorem to construct a linear
Fi: X — R, an extension of fi: V — R, such that |F| < p on X.

From F} construct a linear F': X — C, an extension of f: V — C, and show
that |F| < pon X.

Solution.

(i)

For arbitrary z, y € V, we have fi(z+y) = Re f(z+y) = Re f(z)+Re f(y) =
fi(@)+ f1(y). As of homogeneity, we have f1(Ax) = Re f(Az) = Re(Af(x)) for
any A € C. If X is real, then the last expression equals Afi(z), which shows
that f; is linear on V over R. On the other hand, homogeneity fi(Ax) =
Afi(z) is clearly violated if, for example, A = ¢ and fi(x) # 0. Indeed, the
left-hand side is real and the right-hand side is imaginary.

Indeed, for any = € V, we have fi(iz) = Re f(ix) = Re(if(z)) = — fa(z).
Linear functional f1: V — R is dominated by p on V. Indeed, |fi(z)] =
|Re f(z)] < |f(z)] < p(x). By the real Hahn-Banach theorem, there exists
Fy: X — R, a linear functional on X over R, such that F; = f; on V and
F; <pon X. As pis a seminorm (recall that a sublinear function which is
additionally absolute homogeneous is a seminorm), it is —F (z) = Fy(—z) <
p(—2x) = p(x), which shows, together with Fi(x) < p(z), that |F1| < p on X.
For an arbitrary x € X, let F(z) = Fy(z) — iFy(iz). It is readily verified,
directly from the definition, that F' is a linear functional on X over C. It is
also an extension of f. Indeed, for x € V, it is F(z) = Fi(z) — iFi(iz) =
fi(x) —if1(iz) = f(z). It remains to verify that |F'| is dominated by p.
Let z € X be arbitrary and fixed. There exists ¢ € R such that |F(z)| =
e®F(x) = F(e''z) = Fy(e''x) — iFy(ie''z). The left-hand side is real and Fy
is real-valued so it must be |F(z)| = Fy(e''z) < p(e''z) = |e%|p(x) = p(z).

Thus we have proved the complex version of the Hahn—Banach theorem:

COROLLARY. Let X be a complex vector space and V- C X be its subspace. Let

f:V — C be linear, p: X — R be a seminorm, and |f| < p on V. Then there exists
a linear F: X — C such that F = f on'V and |F| <p on X.

PROBLEM 6.2 (Mazur’s lemma). Let X be a real vector space and M C X be an

(i)
(i)

(iii)

arbitrary set. We define the conver hull of M as

conv M = {z € X, x is a finite convex combination of elements of M}

x € X, there exists m € N, positive numbers Aq,..., A, with
AjTj

doim1Aj =1, and vectors a1, ..., 2, € M such that z = >7"

Show that M C conv M and that conv M is convex.
Use Lemma 5.3 to prove the following result:

THEOREM (Mazur’s lemma). Let X be a real normed space and suppose that
{z;}52, C X converges weakly to some x € X. Then x € conv{z;}22,.

Show that this statement is equivalently formulated as follows:
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THEOREM (Mazur’s lemma). Let X be a real normed space and suppose that
{xj};?’;l C X converges weakly to some x € X. Then there exists a sequence
of finite convex combinations of {x; };";1 which converges strongly to x. Pre-
cisely, there exists a sequence of integers {m; };";1 and numbers 0 < \j; <1,
J=1,2,...,i=1,2,...,mj, with >\ Xj; = 1 for every j € N, such that

m;
Z AjiT; = strongly as j — oo.
1=1

Week 7.

PROBLEM 7.1 (on separability).
(i) Show that every subset of a separable metric space is separable.
(ii) Show that ¢, is separable for every 1 < p < co and that {, is not separable.
(iii) Let Q C R? be open. Show that LP(2) is separable for every 1 < p < oo and
that, provided §2 is not empty, L>° () is not separable.

PROBLEM 7.2 (Baire property). Let X be a topological space. Show that the

following properties are equivalent.
(i) Every countable union of closed sets with empty interior has empty interior.

(ii) Every countable intesection of dense open sets is dense.
We say that a set is a nowhere dense subset of X if its closure has empty interior. We
say that a subset of X is a meager subset of X, meager in X, or of the first category
in X if it is a countable union of nowhere dense subsets of X. A subset of X which is
not meager in X is called a nonmeager subset of X, nonmeager in X, or of the second
category in X. Then the Baire property (i), (ii) is equivalently expressed as follows.

(iii) Every meager subset of X has empty interior.

(iv) Every nonempty open subset of X is nonmeager in X.

PROBLEM 7.3 (Everywhere-defined unbounded operator on a Banach space).
Let X be an infinite dimensional vector space. We say that a set M = {v;}ier is
linearly independent if for every finite index set J C I, the equation ZjeJ cjv; =0
implies that ¢; = 0 for all j € J. We say that a set B C X is a Hamel basis of X
if B is linearly independent and every element of X can be written as a finite linear
combination of elements of B.

(i) Let alinearly independent sequence {b;}3°, C X be given. Show, using Zorn’s

lemma, that there exists a Hamel basis B containing {b;}52, as its subset.
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(ii) Let X be a Banach space. Recall that, by the Baire category theorem, {b;}32,
alone cannot be a Hamel basis of X. In the other words, the dimension of X

is uncountably infinite.
(iii) Now assume w.l.o.g. that [|b;|| =1 for i = 1,2,...
F: B — Rgivenas F(b;) =ifori=1,2,...

and consider the function
and F(b) =0for b € B\ {b;}52,

Show that F' is uniquely extended to a linear functional F': X — R. Show

that F' is unbounded.

HOMEWORK 6.

(i) Show that the unit ball in L?((0,
is a nowhere dense subset of L!((0

))-

))1 i.e., the set {f € L?((0,1)), ||f]l= < 1},

(ii) Building on (i), decide whether L?((0,1)) is a meager or nonmeager subset

of L1((0,1)).

HOMEWORK 7.
(i) Recall that for every vector space a Hamel basis exists by Zorn’s lemma;
cf. Problem 7.3 (i). Use the Baire category theorem to show that for every
infinite-dimensional Banach space its Hamel basis is uncountable.

(ii) Consider P, the space of polynomials in one variable of arbitrary degree
Show the following statement: There does not exist
a functional || - ||: P — R such that (P, ]| - ||) is a Banach space.

with real coefficients.

HoMEWORK 8. Let U be a Banach space and let T': U — £, be a linear operator

defined on whole U, i.e., such that Tz € £,
T;: U — R given by Tj(z) = (Tx

and only if T}, j € N, are all bounded.

HOMEWORK 9.
(i) Show that there exists a bounded linear functional F on ¢, such that F'(z) =
limg_. oo ©x Wwhenever x is a convergent sequence.
(ii) Show that there exists a bounded linear functional F' € L (R)* such that
F(f) = esslim,_ f(z) whenever the limit exists.
(iii) Show that (ii) fails when L*°(R) is replaced by L'(R). To
a bounded sequence {f,,}°°; C L}(R) with F(f,) — co as n — oo.

Week 8.

PROBLEM 8.1 (dual of LP). Let 2 C R be open. Let p € (1,

1. In the sequel we will use the notation L? := LP(Q)) and (L
1 < p < oo. Consider the mapping T: LP — (LP)* given by

(Tmf)z/ufda:, ferr.
Q

Show that T is linear.

for every x € U. Consider its components
)j for z € U and j € N. Prove that T is bounded if

do this, find

l,00)and 1/p+1/p’ =
) (10

(©))* for any

Show that T' is isometry; precisely | Tul(ze)« = [Jul|, for every u € L,

Show that T'(L?"), the range of T, is closed in (LP)*.
Show that T'(L? ) is dense in (L?)*. Use reflexivity of L? and the following

proposition.

LEMMA 8.1. Let V' be a normed space and M C V be its subspace. Then

M =V if and only if

{FeV",

F=0onM}={FeV",

F=0onV}.
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(v) Conclude that, for 1 < p < oo, (LP)* is isometrically isomorphic to L’
(through T).

Proof of Lemma 8.1. Suppose that M is dense. If F =0 on M and {x} C M is
such that zx — x € M =V, then 0 = F(xy) — F(x) by virtue of continuity of F.
As x € V was arbitrary, this shows that FF =0 on V.

For the opposite implication, suppose that M is a proper subspace of V. We use
the following proposition from the class:

THEOREM 8.2 (a consequence of the Hahn-Banach theorem). Let M be a closed
proper subspace of a normed space V. and let x € V' \ M be given. Then there exists
F e V* such that F =0 on M, |F| =1, and F(z) = dist(z, M) > 0
Thus, there exists a non-zero F that vanishes on M, and, in particular, on M. 0

Solution.

(ii) Given an arbitrary u € LP, we obtain, using the definition of 7' and the
Hoélder inequality,

(Tu, f) Juf

|Tul| (o) = sup = sup < [fuafr-
= et Ml rerr [T ?

On the other hand, the function f, := |u|?"~2u belongs to L?, which is easily
verfied by checking that (p — 1)p =p/, and it is || fu ||, = ||u||§,71. Hence

p/
||,

”TUH(LP)* = sup fuf > fufu _ H ||/p,1 _ ”qu/
rece 1fllp = Ifullp [[ull?,

Altogether we have that [lull, < |[Tu||(zr)- < |Jullp, which shows that the
inequality is actually an equality.

(iv) Denote E := T(L?"). To show that E = (L?)*, it is sufficient (and necessary)
by Lemma 8.1 to show that: if an arbitrary h € (LP)** vanishes on E then
h = 0. Suppose that h € (LP)** vanishes on E, i.e., (h, Tu)(pp)+= (rr)- = 0 for
every u € LP'. As LP is reflexive for 1 < p < 0o, there exists h € L? (denoted
the same as h € (LP)**) such that (h, F')(pr)=« Lr)» = (F, h)(Lp)= L» for every
F € (LP)*. For F = Tu, we have 0 = (h, Tu)(p)+= (Lr)- = (Tu, h> s Ip =
Jouh for every u € LP". The choice u = |h|P~2h is an adrms&ble test

function from LP, which is easily verified by checking that (p — 1)p’ = p.
Thus 0 = [, |h[P = ||h|[}, hence h € LP is the zero function, and, by the
isometry of the canonical embedding, h € (L?)** is the zero functional.

(v) Isometry of T immediatelly implies that T is injective. As FE = T(Lp,), the
range of T, is closed and dense, it is E = E = (LP)*. Hence T is surjective.0

‘Week 9.

PROBLEM 9.1. On the Banach space C([0, 1]) consider the following operators and
decide whether they are compact linear operators.
) Tf(x) = (COS (=),
) Tf(z) = cos*(f(x)),
i) Tf(x) = f0)f (= )
) Tf(x) = (x = 1)af(0) + [5 f(
) Tf(z) =y(z), Where y is the solutlon of the initial value problem ¢y’ +y = f

in (0,1), 5(0) =
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PROBLEM 9.2 (compact embedding of Hélder spaces). Let @ € R? be open and
bounded and let 0 < o < 3 < 1 be given. Show that C%?(Q) is compactly embedded
in C%(Q), i.e., show that the identity mapping from C%#(Q) to C%%() is compact.
Use the Arzela—Ascoli theorem.

PROBLEM 9.3 (compactness of integral operator). Let K: [a,b] X [a,b] — R be

a continuous function. Show that the integral operator T': C([a,b]) — C([a,b]) given
by

b
(9.1) <fox>:L/ K(z,y) f(y) dy

is compact. Use the Arzela—Ascoli theorem.
For f € C([—1,1]) consider the following boundary value problem:

—u" = f in (-1,1), u(—1) =u(l) =0.

Show that the solution to this problem is unique and that it is represented by the
formula

o) = [ gy ay o [ U0 gy

—1 x

Show that the solution operator f +— u can be written in the form (9.1) with certain K
and hence it is compact.

Solution of Homework 8. The right implication is the easy one. We will prove
the left one. Suppose that T are all bounded and Tz € ¢, for all x € U. Let x € U
be arbitrary and fixed. Then

00 > ||T%||oc = sup |(Tx);| = sup |T;z|.
JEN JEN

As{T}} ey are all bounded operators from U to R and {T;x}en is a bounded sequence
in R for every x € U, the uniform boundedness principle yields that {T}},en is
a bounded sequence of operators. Hence

oo >sup ||T;]| =sup sup |[Tjz| = sup sup|Tjz|= sup [Tzl =T O
jeN FEN |lz]lu=1 lzllo=1j€N lzllo=1

Week 10.

PROBLEM 10.1 (compactness of integral operator). Let 7, denote the shift oper-
ator, i.e., given a function f: R — X and h € RY, the shifted function 75, f: R — X
is given by

(nf)(z) = flx+h), zeRL

THEOREM (Kolmogorov—M. Riesz—Fréchet). Let ¢ € [1,00) and d € N be given

and let {u;}52, be a bounded sequence in L4(RY). Suppose that

’llii% | Thu; — ujllqg =0 uniformly in j =1,2,.. .,

i.e., for every € > 0 there exists § > 0 such that ||Tpu; — ujllq < e forall j=1,2,...,
and all h € R with |h| < 4.

Let Q C R? be an arbitrary measurable set with finite measure. Then there exists
a subsequence {u;, }72, such that {u;, o}, converges in LI(L2).
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Let ¢ > 1 be given and Q C R? be open and bounded. Let K: Q x Q — R be
uniformly continuous. Show that the integral operator T': L(a,b) — L%(a,b) given

by

(Tf)(x) = /Q K(z,9) f(y) dy

is compact. Use the Kolmogorov criterion.

PROBLEM 10.2. Let f € C(]0,1]), ¢ > 1, and n € N be given. We consider the
approximation problem of finding p. € P,, the space of polynomials of degree at

most n, that

would be the closest to f in the L9(0,1) norm. Denote

M = inf — .
plenPn I.f qu

(i) Let ¢ = 2. Use the projection theorem in Hilbert spaces to show that M =

If -

p«||2 for some p, € P, that p, is uniquely given, and that the mapping

f > px is linear.
(ii) Let ¢ > 1 be arbitrary. Show that there exists a unique p, € P, such that
M = ||f — p«|lq and that the mapping f + p, is nonlinear unless ¢ = 2.

Solution.
Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

(ii) We will present the direct method in the calculus of variations.
(show that M > —o0). Clearly it is M > 0. One also gets that M < oo
as for the zero polynomial one gets M < || fl|, < cc.

(take a minimizing sequence). This is trivial, from the definition of
infimum: M = limy_, ||f — p&||q for some sequence {px}>, C Pp.
(establish a limit). If we show that {px}32, is bounded in L9(0,1),
the Banach—Alaoglu theorem and reflexivity of L9 assure that there is
a weakly convergent subsequence, i.e., py; — p. weakly in L9. So it re-
mains to show the boundedness: ||pxlly < |lpx—Ffllg+ 1 fllg = M+ fllq <
00, 1.e., the sequence ||py||, is dominated by a convergent sequence.
(show inclusion of the limit in the trial space). P,, is a finite-dimensional
subspace of L?(0,1), hence closed and in turn, by Lemma 5.3, weakly
closed. So the weak convergence py; — p. implies p. € P,.

(pass to the limit in the functional). Our functional is p — F(p) == || f —
Pllg. In this step one wants to show that F'(p.) = M. As F(py,) — M by
construction, this step amounts to showing that F'(px;) — F(p«). So far
we have established that py; is weakly convergent. It is left as an exercise
to show that F': L2(0,1) — R given above is continuous and convex. We
can use Theorem 5.4 to deduce that F' is weakly lower semicontinuous.
Hence the weak convergence implies that liminf; . F'(px;) > F(p«). In
the other words,

M = lim | = pully = liminf £ = pi,ly > f = pelly > 02

Both the left-hand side and the right-hand side are M, so we conclude
that M = || f _p*HtJ'

(uniqueness). Suppose that || f — p1llq = ||f — p2llq = M for distinct pi,
p2 € Py,. Then, for arbitrary fixed A € (0,1),

1f = Ap1 = (1= Mpallg = IA(f = p1) + (1 =N = p2)llg
<A =pillg + A =N = p2llg = M,
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where the inequality follows from the strict convexity of g — ||g||4 (recall
that ¢ > 1), and this is a contradiction: |f — pallq < infpep, ||f — pllq
for px = Ap1 + (1 = A)p2 € Py.

It remains to show nonlinearity of the projection f +— p, for q # 2. 0

PRrROBLEM 10.3. Show that every Hilbert space is reflexive. Use the Riesz repre-

sentation theorem.

PRrROBLEM 10.4. Prove the following Hilbert space analog of Lemma 8.1. Notice

that the Hahn—Banach theorem is not needed.

THEOREM. Let H be a Hilbert space and M C H be its subspace. Then M = H

if and only if

{z € H, (xz,y) =0 for ally € M} = {0}.

PROBLEM 10.5 (orthogonal complement). Let V' be a real or complex inner-

product space and suppose that M is a non-empty subset of V. We define the
orthogonal complement of M as

M* ={z €V, (z,y)=0forally € M}.

THEOREM. Let V' be an inner product space and let M be its non-empty subset.

Then M+ is a closed subspace of V. Furthermore, (M)* = M+ and M N M+ = {0}
if0€M and MO ML =0if0& M.

COROLLARY (direct sum theorem). Let H be a real or complex Hilbert space and

let M be a closed subspace of H. Then H= M & M~*.

PROBLEM 10.6 (adjoint).

THEOREM. Let X, Y be complex Hilbert spaces and let A € L(X,Y) be given.
There exists a uniquely given A* € L(Y, X)), the adjoint of A, that satisfies

(Az,y)y = (x, A*y)x forallzx e X,yeY.

Furthermore,
(Im A)* = Ker A%, Y =Ker A*®Im A,
(Im A*)* = Ker 4, X =Ker A®Im A~

HoMEWORK 10. Let ¢ > 1, f € L(0,1), and n € N be given. Consider functional

: Pn, — [0,00) given by

F(p) = ¢|If —plli

(i) Compute the Gateaux derivative of F.
(ii) Formulate the necessary condition for p. = argmin,cp F(p).
(iii) Show that the necessary condition is sufficient.
(iv) Show that the mapping P: L9(0,1) — P,: f — ps is a projection onto P,
i.e., it is an idempotent mapping (P? = P) and the range of P is P,,.
(v) Show that P is nonlinear unless ¢ = 2.

HOMEWORK 11. Solve Problem 9.1 (i), (v).
HOMEWORK 12. Let H := L?(0,7) and f,(z) = sin® na.
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Given 0 < a < b < 7, compute [ fn(2)E(qp)(2)dz = ff fn, where Z, ) is
the characteristic functlon of interval (a,b). Verify that the integral tends to
b2 as n — oo,

Show that [ fn(2)p(x)dz — [ 2¢(x)da for every step function ¢: [0, 7]
— R.

Recall that for an arbitrary ¢ € L?(0,7) and € > 0, there exists a step

function @, such that ||¢ — ¢c||2 < . Consider the identity
| nta) = Byte) aa
= [ (@) = D et@) = pela)) da+ [ (falo) - Declordo

and the facts shown above to prove that f,, — % weakly in L2(0, 7).
Show that f,, does not have a strong limit (in L%(0, )).

) Consider linear operator T': L?(0,m) — L?(0,7) given by T'f () = [ f

This is a bounded linear operator. Indeed,

2
Y) dy’ dx

0 0
< ['([ 1rwla) e < [7([rwiw) e <2

where the last inequality follows from the Holder inequality. Show that T is
compact using Kolmogorov’s criterion.

Compute Tfn and Tl, show that ||Tf, — T%”oo — 0, and conclude that
Tfn, — T strongly in L?(0, ).

ITfI3 =

HOMEWORK 13. Let Y be the subset of ¢y given by

(i)
(i)
(i)

Y = {o = {2;}32, € lo, wop_1 = wyy, for all integers k > 1}.

Show that Y is a closed subspace of £5.
Identify the orthogonal complement of Y in /5.
Identify the ¢2-orthogonal projection onto Y.

HOMEWORK 14.

THEOREM 10.1 (Hahn-Banach theorem in Hilbert spaces). Let H be a Hilbert
space, Y C H be a subspace, and f € Y* be an arbitrary linear bounded functional
on Y. Then there exists a bounded linear functional F € H* such that F' = f on'Y
and ||F|| = || f]|. Besides, such F is unique.

For the proof of this theorem, carry out the following steps. Notice that Zorn’s lemma

(axiom of choice) has not been invoked, in contrast to the Hahn—Banach theorem in

(1)

(i)

nonseparable Banach spaces.

Show that there exists a unique continuous extension of f from Y to Y. If
y € Y, then there exists {y,} C Y such that y, — vy in norm. Define
fy) = limy, 00 f(yn). Show that this is a correct definition (i.e, y f( )
is a function), that f is linear, and that f is bounded. Show that such f is
uniquely given.

Now for an arbitrary = € H, consider its decomposition x = Pz + (I — P)z,
where P is the orthogonal projection onto Y, cf. the direct sum theorem. Set
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F(z) == f(Pz) for all z € H, verify that F' is a linear extension of f, and
compute the norm of F.

(iii) It remains to show uniqueness of F' with such properties. This is postponed
to the exercise session or is considered a bonus task.
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