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Short abstract.
Selected values of odd random simplex volumetric moments are derived in an exact form in various bodies
in dimensions three, four, five and six. In three dimensions, the well known Efron’s formula is also used. As
it turned out, the problem is solvable in higher dimensions too using nothing more than Blashke-Petkanchin
formula in Cartesian parametrisation in the form of the Canonical Section Integral.

Long abstract.

Let K4 be a compact and convex body in R? with dim Kz = d. One family of such bodies are the
d-simplex Ty, d-cube Cy or d-orthoplex Og4 (the dual of Cy). Let X = (Xo,Xjy,...X,) be a sample of
(n + 1) random points X;, j =0,...,n with n > d selected uniformly and independently from the interior
of Kq and let Hp(Kq) = conv(X) = conv(Xo,...,X,) be the convex hull of those points. We define
A, = voly H,(Kq4) and its corresponding metric moments
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the normalisation factor in the denominator ensures they stay affinely invariant, that is with respect to
affine transformations of K3. When n = d, we refer to fuék)(Kd) as the volumetric moments in K4. For

v (Ka) =

even k, (even) volumetric moments are trivial to obtain. For a d-ball By, its metric moments ’U»Slk)(Bd) are
known for any n, k and d due to Miles [4], although the special case v:(,,l) (B3) = 9/715 was already obtained

one hundred years ago by Hostinsky [3]. Later, Buchta and Reitzner [2] found 'Uél)(Tg,) =23 - 15"0215,
subsequently followed by Zinani’s [5] U§1>(Cg) = % . %. No other values of odd volumetric moments
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in three dimensions were known. From December 2020 onwards, we deduced vs ' (O3) = 5843840 184530

and also vél) (K3) for K3 being a tetrahedron bipyramid, square pyramid, triangular prism, cuboctahedron,
truncated tetrahedron and rhombic dodecahedron (revealed in Salzburg conference in September 2023, see
[1]). Later, we also derived some higher odd moments, namely ’Uék)(Pg) for Ps = T5,C3,03 with k = 3 and
k =5. For d > 4, no odd volumetric moments were known for any polytope. This changed in March 2024,
most notably, we found

v(Ty) = S0 — 27872 (0031803708487,

52026975

Uz(13)(T4) = 340%2?%33000 + 396665:)39055184801;725000 ~ 5.9023- 1077,

Vi (1) = sttt — ey sstomnos ~ 1.26573 107,

vi (Cu) = [RiETaIoesanTasa,  aechis + eslez  S5STAS) ~ 0.0021295294356,

04(13)(04) = 1681297323301692262105951642598151650905090O0 - 2168%21%7733%7{;0000 + 17%%%&12%3%%(1)%3 - ?i?i’f?é‘ﬁgéﬁéﬁ% ~ 751571077,

”él)(T5) = 32262509720 - 142542421722997;260 + 541753153232224351 ~ 0.0005230827206879,

ve (To) = 572058250 — Goiesiastoors + oo sy ~ 0.00007880487647920397.
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