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FOREWORD TO THE TENTH
RUSSIAN EDITION

TrE present Collection of Problems is intended for students
studying mathematical analysis within the framework of a
technical college course. In the arrangement of the material,
the style of the exposition and basic pedagogical tendencies
the Collection is most suited to the widely used Course of
Mathematical Analysis of A. F. Bermantt. At the same time,
since the book contains systematically selected problems and
exercises on the main branches of a Technical College course
of mathematical analysis, it forms a useful adjunct indepen-
dently of the text-book on which the course is based.

Theoretical information and references to the necessary
formulae are omitted in the Collection of Problems; it is
assumed that the reader can find them in the relevant sec-
tions of his text-book. Most of the articles of the Collection
of Problems are subdivided for convenience of use. A com-
mon instruction precedes a group of problems of the same
type. Problems with a physics content are preceded by the
necessary physical laws. In the case of more or less difficult
problems, hints are given in the answers; such problems are
marked by an asterisk (*).

The Collection of Problems was produced directly for the
first edition (1947) by Georgii Nikolayevich Berman. All
the subsequent editions, which have twice included sub-
stantial revisions, have been brought out without the original
author, who died on 9th February 1949 after a long and
serious illness, resulting from wounds received at the front
in the Second World War. Those who have undertaken the
revision — essentially friends and co-workers of Georgii Ni-
kolayevich — always recall him with feelings of great respect;
he was a man of wide culture and a talented pedagogue.

Both revisions of the Collection of Problems (the first for
the second edition of 1950, the second for the sixth edition of
1956) have been carried out by I. G. Aramanovich, B. A.

t This text-book is simply referred to as the Course in the text of
the Collection.

ix



b:¢ FOREWORD

Kordemskii, R. I. Pozoiskii and M. G. Shestopal. A part in
this work was taken by A. F. Bermant, the author of the
above-mentioned Course, who edited the Collection.

With the aim of improving the Collection of Problems from
the methodological point of view, and to take account of
criticisms obtained from teachers using the Collection, firstly
the second, then later the sixth edition were supplied with a
substantially increased number of problems in several sect-
ions; in addition, the problems were regrouped, the state-
ment of them revised afresh, and the solutions checked. In
the present tenth edition certain problems have again
been given a fresh statement. The previous numbering has
been retained for the unchanged problems. The only deviat-
ions from this system occur in two short chapters — the
tenth and eleventh, in connection with an additional re-
grouping of the problems of these chapters and the inclusion
of new problems on the theme of “Change of variables.” The
Collection contains a new chapter (XVI) on “Elements of
the Theory of Fields” (problems no. 4401-4464) and tables
of the values of certain elementary functions as an appendix.
(The tables have been borrowed from the book by V. P.
Minorskii, 4 Collection of Problems on Higher Mathematics
(Sbornik zadach po vysshei matematike), with the consent
of their compiler A. T. Tsvetkov.)

Thus certain modifications brought into the tenth edition
of the Collection of Problems do not hinder, in the vast major-
ity of cases, the simultaneous use of the present and pre-
vious editions (as from the sixth).

The work on the tenth edition of the Collection has had to
proceed in the absence not only of its first author, the late
G. N. Berman, but also of one of the co-authors and editor of
the work, Professor Anisim Fedorovich Bermant. A. F.
Bermant died suddenly on 26 May, 1959. His cherished image
will never be erased from our memories — he was a gifted,
lively and noble comrade, and a progressive pedagogue.

I. G.ARAMANOVICH
B. A. KORDEMSKII
R. 1. Pozoiskir
M. G. SHESTOPAL



CHAPTER I

FUNCTIONS

1. Funections and Methods of Specifying Them

1. The sum of the interior angles of a plane convex polygon
is a function of the number of sides. What sort of numbers can
the values of the argument be?

Specify this function analytically.

2. A function is given by the following table:

Independent variable © ...... 0 0-5 1 (1512 |3
Function 9 .....vvveennnnen. —~15| —1 0 [32]|26]|0
Independent variable @ ...... 4 5 617 |8 |9 |10
Function ¢ .....ccovvnivenn.n —18| —28]0|11|1419)|24

Draw its graph by joining the points with a ‘“‘smooth”
curve, and enlarge the table by using the graph to find the
values of the function at x = 2'5; 3'5; 4'5; 5'5; 6'5; 7'5;

85; 95,
[\

Fi1a. 1.

3. A function is given by the graph illustrated in Fig. 1.
Transfer the figure to millimetre paper by choosing a scale

1



2 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

and several values of the independent variable. Take from
the figure the values of the function corresponding to the
chosen values of the independent variable and form a table
of these values.

4. A function is given by the graph illustrated in Fig. 2.
Use the graph to answer the following questions:

(a) For what values of the independent variable does the
function vanish ?

(b) For what values of the independent variable is the
function positive?

(c) For what values of the independent variable is the
function negative ?

— N o<

Fig. 2.

5. The force F of interaction of two electric charges e,
and e, depends by Coulomb’s law on the distance r between

them:
.8,

ert

Putting ¢, = ¢, =1 and ¢ =1, form a table of values of
this function for r =1, 2, 3, .. ., 10 and draw its graph by
joining the points obtained with a ‘“smooth” curve.

6. Form the function expressing the dependence of the
radius r of a cylinder on its height % for a given volume
V (= 1). Work out the values of » for the following values
of h: 05; 1; 1'5; 2; 2'5; 3; 35; 4; 4'5; 5. Draw the
graph of the function.
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7. Write down the expression for the area of the isosceles
trapezium with bases a and b as a function of the angle
« at base a. Draw the graph of the function for a = 2, b = 1.

8. Express the length b of one adjacent side of a right-
angled triangle as a function of the length a of the other with
constant hypotenuse ¢ (= 5). Verify that the graph of the
function is a quadrant of a circle.

2. Notation for and Classification of Funections

9. Given the functions

_x——2

r—2 _ Jz—2]
Tx 41

(b) pla) = 15—

(a) f(z)

mnd: 0); J0; 1@ A=2)5 f(—g)s 1025 | ig) s
P(0); @(1); 9(2); o(—2); @4). Do f(—1), ¢(—1) exist?
10. Given the function
flw) = u3 — 1,
find: f(1); f(a); fla+1); f@a —1); 2{(2a).

11. Given the functions

F(z) = 2272 and ¢(z) = 21212,
find: F(0); F(2); F(3); F(—1); F(25); F(— 1:5) and
P(0); @(2); @(—1); e@); o(— 1)+ F(1).

12. Given the function

p(t) = ta,

find: (0); v(1); w(— 1); w(l); v(@); p(— a).

a

13. ¢(¢) = # + 1. Find ¢(f2) and [¢()]?.

14. F(x) = 2* — 22 + 5. Show that F(a) = F(— a).
15. @(z) = 2® — 52. Show that O(— 2) = — @(z).
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16. f() = 2% + 5 + > + 5. Show that f(t) = f(%)
17. f(z) = sin £ — cos z. Show that f(1) > 0.
18. y(x) = log x.Show that p(z) -+ v (x + 1) = y[z(x + 1))
19. F(z) = a?. (1) Show that, for any =,
F(—2z)F(z) —1=0.
(2) Show that
F(x) F(y) = F(2 +y).

20. We are given the graph of function y = f(x) and the
values ¢ and b of the independent variable z (Iig. 3). Con-
struct f(a) and f(b) on the figure. What is the geometric

- . f0) —fa) ,
meaning of the ratio b—a
I
| !
0] Q b x
Fic. 3.

21. Show that, if any chord of the graph of the function
y = f(z) lies above the arc subtending it, we must have

fe) o fem) (o)

for all z, + =,.

22, Given: f(x) = 2?2 — 22 - 3. Find all the roots of the
equations (a) f(z) = f(0); (b) f(x) = f(— 1).

23. Given: f(x) = 22® — 52® — 23z. Find all the roots of
the equation f(x) = f(— 2).

24, Given a function f(x), indicate a root of the equation

f(®) = fa).
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25, Indicate the roots of the equation
x4+ 8
e =115,

if it is known that f(x) is defined in the interval [—5, 5].
Find all the roots of the equation for the case when
flx) = 2? — 12z + 3.

26. F(x) = x2 + 6; ¢(x) = 5x. Find all the roots of the
equation F(x) = |p(x)|.

27. flx) == + 1; ¢(z) = x — 2. Solve the equation

(@) + o) = [f@)] + [p@=)].

28, Find the values of @ and b in the expression for the
function f(x) = ax? + bxr + 5 for which we have identically
flx + 1) — f(z) =8 + 3.

29. Let f(z) = a cos (bx + ¢). Find constants a, b and ¢
from the condition that f(z - 1) — f(z) = sin 2.

Functions of a Function

30. Given: y = 2% z = x -}- 1, express y as a function of x.

31. Given: y =YVz + 1, z = tan?x, express y as a func-
tion of . 3

32. Given: y =2% z=J)x+ 1,  =af, express y as a
function of ¢.

33. Given: y =sinw; v =1logy; u =}1 -+ v% express
% as a function of z.

34. Given: y =1+ 2; z=cosy; v =1 — 2%, express
v as a function of .

35. Represent the following functions of a function with
the aid of chains made up of basic elementary functions:
3

(1) y=sindz; (2)y =V + z)?; (3)y = log tan z;
(4) y =sin® 2z + 1); (5) y = 5Gx+ 17,
36. f(x) = 2® — x; @(z) = sin 22. Find:

(a)f[qv (1)]; () flf(V)]; (o) glf2)]; (@) flp(@)];
() fli@); @ AL (@) dle@).
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37. Check the validity of the following method for draw-
ing the graph of the function of a function y = flg(z)] =
= F(x) when the graphs of the component functions y =
= f(z), y = @(x) are known. From a point 4 of the graph
of p(x) (Fig. 4) corresponding to a given value of independent
variable z a straight line is drawn parallel to Oz to its inter-
section at B with the bisector of the first and third quad-
rants; from B a straight line is drawn parallel to Oy to its
intersection with the graph of f(x) at C. If a straight line is
drawn from C parallel to Oz, its point of intersection .D
with the straight line NN’ will be the point of the graph
of F(x) corresponding to the given value of x.

y N
g\*\ c Dl /
4

\

Fix)

Fic. 4.

Implicit Functions

38. Write down the explicit expressions for y, given impli-
citly by the following equations:

Wattyr=1; @2 L1
(3) 28 + 9° = a3;

(4) zy =C; (5) 2¥ =5;

(6) logz +log (y + 1) = 4;

(7) 2y (22 — 2) =234 T;

8) 1 +x)cosy — 22 = 0.
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39*. Show that, for > 0, the graph of function y given
by the equation y + |y| — « — |x| = 0 is the bisector of the
first quadrant, whilst for = 0 the function is many-valued
and its “‘graph” is the set of points of the third quadrant
(including its boundary points).

3. Elementary Investigation of Funections

Domain of Definition of a Function

40. Form a table of the values of the function of an integral
argument y = 5017 forl =z =6.

41. The value of the function of an integral argument
% = @(n) is equal to the number of positive integers not
exceeding n. Make up a table of the values of u for 1 =
=n = 20.

42, The value of the function of an integral argument
u = f(n) is equal to the number of integral divisors of the
argument differing from 1 and = itself. Form a table of the
values of u for 1 =n = 20.

43. A girder consists of three sections of 1, 2, 1 units of
length weighing 2, 3, 1 units of weight respectively (Fig. 5).
The weight of a variable section 4M of length z is a function
of z. For what values of 2 is this function defined? Form an
analytic expression for the function and draw its graph.

X
Dy .
A AT
— — ———— ————— p—
29 39 _ Ig

Frc. 5.

44. A tower has the following shape: a cylinder of radius
R and height 2R is mounted on a right circular truncated
cone with base radii 2R (lower) and R (upper); a hemisphere
of radius B is mounted on the cylinder. Express the area
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S of the cross-section of the tower as a function of the dist-
ance z of the cross-section from the lower base of the cone.
Draw the graph of § = f(x).

45. A cylinder is inscribed in a sphere of radius R. Find
the volume V of the cylinder as a function of its height x.
State the domain of definition of this function and the do-
main of definiteness of the corresponding analytic express-
ion.

46. A right circular cone is inscribed in a sphere of radius
R. Find the area S of the lateral surface of the cone as a
function of its generator . State the domain of definition
of this function and the domain of definiteness of the corres-
ponding analytic expression.

Give the domains of definition of the functions of problems
47-48.

47. (1) y=1—logz; (2) y=log(z+ 3);
B)y=V5—2x; (4) y=V—px(p>0);
1

1 1
(5)3/‘—“;2_—12 (6)y=m; (7) Y=pm_—2

9 -
O Y=gy O y=1-VT—s

1 -
10) y = —=—xy (11) y =V2? — 4z + 3;
(10) y VP iz (11) y =Va

x . xr

12 = (13 = arcsin -—;
(12) y = e (1) y .

(14) y = arcsin (x — 2); (15) y = arccos (1 — 2z);

(16) y = a,rccosl 4213; (17) y = aresin Vz_x—;
1
(18) y = VT =Tal; (19) g = s
Viz| —=
1 5x — a2
(20) ¥ rp—p (21) y Vlog—4

(22) y = logsinx; (23) y = arccos

2 + sin z
(24) y = log, 2.
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1 -
W;)+Vx+2;

(2) y=V3—x+arcsin3

48, (1) Y=

— 2z
5 b

(3) y = arc sing—;-é — log (4 — x);

3

(@) y=Vz + || L5 —log (20 — 3);
(5):’/=Vx—1+2v1—x+}/x2+l;
()?/— —|—1og(x3_x),
(7)?/——10gsm(x—3)+]/16_x2;
(8) y = Vsinz 4 V16 — «?;

3
(9)y=—.1——+1/sinx;

Vsin z

— 5 3

(10) y = 1°ng_—xl(m— Vz+5;
xr— 2 1 —x

any=|2 +2+Vv—“1+x’
(12) y VTH+
(18) y= @+ 2+ 172
(14)3/:10%(1/27—4—{—}/6—:;;);

(15) y = log[1 — log (x? — 5z - 16)].
49. Are the following functions identical ?

V3+2z—x2’

(W) f@) =2  and @)=

@ f&) =% and ge) =2

() fe) ==z  and g(x)=Va?
(4) f(x) =log2? and ¢(x) = 2logz?



10 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

b0. Suggest an example of a function specified analyti-
cally which is

(1) defined only in the interval —2 =z = 2;

(2) defined only in the interval —2 <<z << 2 and is not
defined at = 0;

(3) defined everywhere except for x = 2, x = 3, 2 = 4.

b1. Find the domains of definition of the single-valued
branches of the function y = ¢(x) given by
Ny —14log(z—1)=0; 2y —2zy*+22—2x=0

Elements of the Behaviour of Functions
x? . "
b2, f(x) = T state the domain of definition of f(x)

and verify that the function is non-negative.
53. Find the intervals in which the following functions are
of constant sign or zero:
DHy=3x—6;, Qy=2a2—5x+6; (3)y= 2"
(4) y =a® — 32>+ 22; (b) y = |z|
54. Which of the functions below are even, which are odd,
and which are neither even nor odd?

(1) y = a* — 22%; (2) y =2 — 2%
(3) y = cos z; 4) y = 2%,

xd  ad .
(5) y=x_g+‘12—0; (6) y = sin x;

(7) y=sinz —cosz; (8) y=1—a?;

(9) y = tan z; (10) y = 27
any="207 a2) g =T
1B y=20 g y=2T
(18) y =i (16) y =2
(17) y = In - =2

14z
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b5. Write each of the following functions as the sum of
an even and an odd function:

(1) y=2a>+ 32 + 2;
(2) y=1— 2% — 2t — 2a5;

(3) y = sin 2x + cosg + tanz.

56. Show that f(x) + f(— z) is an even function, and
f@) — {(— %) odd.

57. Write the following as the sums of even and odd func-
tions:

Dy=0a; 2)y= (14 )% (see problem 56).
58. Show that the product of two even functions is an

even function, the product of two odd functions is even,
and the product of an even and an odd function is odd.

59. Which of the following functions are periodic?

(1) y =sin2z; (2)y =sinz?; (3)y = xcosx;
(4)y=sin%; B)y=1+4tanz; (6)y=5;

(7) y=E@®); B8)y==2z— E(@).

(The function E(z) is defined thus: if z is an integer, E(x) =
= x; if x is not an integer, E(x) is the greatest integer less
than z. Thus E(2) =2; E(325)=3; E(—137) = -—2)

60. Draw the graph of the periodic function of period
T =1 which is given in the semi-open interval [0, 1) by

Dy==; (2)y=2~

61. State the intervals in which the following functions
are increasing, decreasing and constant:

My=|z|; Qy=|z|—=
62. Give the maxima and minima of the functions

(1)y=sinz?; (2)y=-cosa®; () y=1—sinx; (4) y= 2.
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63. Use graphical addition to draw the graph of the func-
tion

y = fx) + o)
(1) with the graphs shown in Fig. 6;

y=g(x)
y=fx)

Fic. 6.

(2) with the graphs shown in Fig. 7.

40 y=f(x)
y=@ X

AN x
N\

F1a. 7.

64. Knowing the graph of y = f(x), draw the graphs of:
W y=1/@]; @ y=3 )]+ @);

(3) y =511/ — f@)]
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4. Elementary Funections

Linear Functions

65. Given that the current I = 0-8¢ when the voltage
E = 24V, use Ohm’s law to express analytically the relat-
ionship between the current and voltage; draw the graph
of the function obtained.

66. A vessel of arbitrary shape is filled with liquid. At
a depth A = 25'3 cm the pressure of the liquid is p = 184
g/em?2.

(a) Obtain the function expressing the relationship bet-
ween the pressure and the depth;

(b) find the pressure at depth A = 14'5 cm;

(c) at what depth does the pressure become 265 g/cm??

67. Starting from Newton’s law, obtain the function
giving the relationship between the force ¥ and acceleration
w if the force performs work 4 = 32 ergs at an acceleration
of 12 cm/sec? over a path s = 15 cm.

68. Find the linear function y = ax -} b from the follow-
ing data:

1) =zly 2 2y (3) =ly
0/ 243 2572
3|6 — 160 32/6-8.

69. A certain quantity of gas occupies a volume 107 cm?
at 20° C, and 114 em3 at 40° C.

(a) Starting from the Gay-Lussac law, obtain the function
giving the relationship between the volume V of the gas
and its temperature £.

(b) What is the volume at 0° C?

70. A particle in uniform motion is at a distance of
327 em from the initial point after 12 sec; after 20 sec
from the initial instant the distance is 43'4 cm. Find the
distance s as a function of time t.

71. The voltage in a circuit falls uniformly (with a linear
law). The voltage at the start is 12 V, and falls to 64 V at
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the end of the experiment lasting 8 sec. Express the voltage
V as a function of time ¢ and draw the graph of the function.

72. Find the increment of the linear function y = 2z — 7
when the independent variable x passes from the value z;, =
= 3 to x, = 6.

73.Find the increment of the linear function y = — 38z -- 1 cor-
responding to an increment dx = 2 of the independent variable.

74. The function y = 2'5x -} 4 has received the increment
Ay = 10. Find the increment of the argument.

75. Given the function y = a;:_(l; and the initial value
of the independent variable z, =a — b, for what finite
value 2, of the independent variable x is the increment

1
a—>b
76. Function ¢(x) is given by: ¢(z) = %x + 2 for — oo <

?

Ay =

<z =2; p)=5—z for 2 =z < 4 co. Find the roots
of g(x) = 2xr — 4 analytically and graphically.
77. Draw the graphs of the functions
My=lz+1+|z—1];
@ y=lz+1—]z—1];
B)y=le—3—2]c+1|+2|z]—2+ 1L
78*. For what values of z does the inequality hold:

@) + o@)| < |/@)] + |p@)],
if f@)=2 — 3 and p(x) =4 — =.
79*. For what values of « does the inequality hold:
|f@) — o@)] > |f@)] — ()],
if f(x) =« and ¢(x) = — 2.
80. A function is defined thus: f(z) varies linearly in
each of the intervals » =z << n + 1 where n is a positive

integer, whilst f(n) = —1, f(n+ %) = (. Draw the graph

of the function.
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Quadratic Functions

81. Draw the graphs and indicate the intervals of increase
and decrease of the functions:

(1)y=—;:x2; @ y=a2—1; (3) y=|]2®—1];

4 y=1-2% B)y=2>—z+4
6 y=z—2a% (1) y=|c—a®[;
8) y =222+ 3; (9) y= 22% — 6z + 4;
(10) y = —3a2% 4 6z — 1;
(11) y=|—3ax2 4 6x — 1|; (12) y = —z ||
82. The graph of a single-valued function defined in the
interval (— oo, 6] consists of:
points of Oz with abscissae less than —3;
points of a parabola symmetric about Oy and passing
through the points A4 (—3,0), B (0,5);
points of the straight line CD, with C (3,0) and D (6,2).
Form the analytic expression for the function.
83. Find the maxima of:
My=—-24+z—1; 2 y=—a>—3+2;
B y=5—2 (4) y=—2*"+ ax — a?;
(5) ¥y = a%x — b%2.
84. Find the minima of:
VNy=2>2+42—2; (2) y=22%— 152 4 0'6;
3) y=1— 3z + 622; (4) y = a%*x? J a¥;
(8) y = (e + b) (ax — 2b).
85. Express the number a as the sum of two terms such
that their product is a maximum.

86. Express the number a as a sum of two terms such
that the sum of their squares is a minimum.

87. We want to build a wooden fence so as to enclose a
rectangular piece of ground next to a stone wall. The total
length of the fence is 8 m. What must be the length of the
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part of the fence parallel to the wall for the enclosed area to
be a maximum ?

88, In a triangle ABC angle 4 = 30° and the sum of
the sides including this angle is 100 cm. What must be the
length of side AB for the area of the triangle to be a maxi-
mum ?

89. Which of the cylinders with axial section of given
perimeter P = 100 cm has the greatest lateral surface?

90. Which of the cones with axial sections of perimeter
P has the greatest lateral surface?

91. A body consists of a right circular cylinder with a
cone (of the same base) mounted on it. The angle at the
vertex of the cone is 60°. The perimeter of the axial section
of the body is 100 cm. What must be the radius of the ecylin-
der for the lateral surface of the body to be a maximum ?

92. A rectangle is inscribed in an isosceles triangle of
base a and height %, as shown in Fig. 8. What must be the
height of the rectangle for its area to be a maximum?

Fi1c. 8.

93. A cylinder is inscribed in a right circular cone such
that the planes and centres of the circular bases of the cylin-
der and cone are the same. What is the ratio of the base
radii of cylinder and cone for the lateral surface of the cylin-
der to be a maximum?

94. A cylinder is inscribed in a given right circular cone
of base radius R and height H, such that the planes and
centres of the circular bases of cone and cylinder coincide.
What must be the radius of the cylinder for its total surface
area to be a maximum ? Consider the cases H > 2R, H = 2R.
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95. What must be the radius of a circle for the area of a
sector of given perimeter P to be a maximum ?

96. A window is in the form of a rectangle with an equilat-
eral triangle on top. The perimeter of the window is P.
What must be the base a of the rectangle for the window to
have maximum area ?

97. A window is in the form of a rectangle with a semi-
circle on top. What must be the base of the rectangle for
the window to have maximum area when its perimeter is
2m?

98. We want to cut out the corners from a rectangular
piece of card-board of 30X 50 em? so that, on bending along
the dotted lines (Fig. 9), a box is obtained with the greatest
lateral surface. Find the side of the squares cut out.

Fia. 9.

99. Using a piece of wire of length 120 c¢cm, we want to
make a model of a rectangular parallelepiped with a square
base. What must be the side of the base for the total area of
the parallelepiped to be a maximum ?

100. A piece of wire of length @ em is to be cut in two;
a square is made from one piece and an equilateral triangle
from the other. How must the wire be cut for the sum of
the areas of the figures thus obtained to be a minimum?

101. Find the point on the straight line ¥ = x such that
the sum of the squares of its distances from the points (—a, 0),
(a, 0) and (0, b) is & minimum.

102. Find the point on the straight line y = x + 2 such
that the sum of the squares of its distances from the straight
lines 32 — 4y + 8 =0 and 3z —y — 1 = 0 is a minimum.
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103. An electrical current J divides into two branches
with resistances r; and r, (Fig. 10). Show that the least loss
of energy passing into heat per unit time corresponds to a
distribution of the currents in inverse proportion to the re-
sistances of the branches. (Start from the law: the heat given
out @ = 0-24J2Rt.)

N

Fi1a. 10.

104. Trace the parabola y = 22 and use it for graphical
solution of the following equations:

(1) 22 —2x—225=0; (2) 222 — 32z — 5= 0;
(3) 3122 — 142 + 58 =0; (4) 422 — 122 + 9= 0;
(5) 322 — 8x + 7= 0.

105. Function ¢(x) is given by: ¢(z) =%x —% for

11
—<x><x§?; px) =1+ = for —13—1§x< + oco. Find

analytically and graphically all the real roots of the equation
[p(@)]P = T + 25.
106. Give the domain of definition of the function
y = log (ax? + bx + c).
107. Find f(x 4 1), given that flz — 1) = 2% — 3z + 1.
2
108*, Show that the function f(x) = o+ 2wt o takes

x? + 4z + 3¢
any real value if 0 <c¢ = 1.

Linear Rational Functions

109. Starting from the Boyle-Mariotte law, find the function
showing how the volume of a gas depends on the pressure
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at { = const, if it is known that the volume is 2'3 1. at
760 mm pressure. Trace the graph of the function.

110. The variable z is inversely proportional to y, y is
inversely proportional to z, and 2 in turn is inversely propor-
tional to ». What is the relationship between z and v?

111. Variable x is inversely proportional to y, ¥ is directly
proportional to z, z is directly proportional to «, « is inversely
proportional to ». What is the relationship between 2 and v?

112, During electrolysis the quantity of material separated
at the electrode is proportional to the current, the current is
proportional to the conductivity of the electrolyte, the
conductivity is proportional to the concentration of electrol-
yte, the concentration for a given quantity of material is
inversely proportional to the volume of solvent. How does
the quantity of material separated at the electrode depend
on the volume of solvent?

113. Draw the graphs of the linear rational functions:

z—1 2z 2z — 5
(1)3/=;—_—§: (2)y=3—z’ (3)?J=m,
x 4 — 3z
@ y=—73 O y=z3—55:-
I—Ex

114. Find graphically the maxima and minima of the
following linear rational functions in the stated intervals:

4 x

) y=_ [L5; @y=g—5 [—L2%
6y =1y [0.4]

115. Prove: (1) if the abscissae of the four points M,(z;, ¥,),
k
My, y)s 114-3(953: %), My(xy,y,) of the graph of y= po

(Fig. 11) form the proportion o G , the rectangular
g prop % %, g

trapezia M, M,N,N, and M,M,N,N, are of equal area;
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o

Fic. 11.

(2) if points M, and M, lie on the graph of y = g (Fig. 12),
the area of figures A, M M,A, and B,M,M,B, are equal.

y

B,

B2

116. Use graphical addition to draw the graph of y =
22+ 1

xr

5. The Inverse Functions. Power, Exponential and
Logarithmie Funetions

117. Find the inverses of the following functions:
V) y==2; (2)y=22; 3)y=1—3z;

@y=2+1 ) y=5 6)y=1—"
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]
(My=a—2; @B)y=Va2+1; (9)y=10;

(10) y =1 +1og (z + 2); (11) y =log, 2;
2x 10x — 10—%*
(12)?/=1—+—§(, (13)y=m+1,

. . X —
(14) y = 2 sin 3z; (15)y—1+251nm,
(16) y = 4 arcsin J1 — 22

118. Show that the function y = is the inverse of

1 —=2
14+ 2
itself. Give further examples of such functions.

119. Show that the function f{x) = z: :Z is the same

as its inverse.

120. Show that, if f(z) = Va — ", x > 0, then f{f(z)] = =.
Find the inverse of f(z).

121. What is the special feature of the graph of a function
which is the same as its inverse?

122. A function y of z is given by the equation y2 — 1 +-
+ log, (x — 1) = 0. Find the domain of definition of the
function and write down its inverse.

123. A function y of z is given by the equation y2 - sin® z—
— y + 2 = 0. Find the inverse of the function.

Power Functions
124, Draw the graphs of the functions:

(1) y=30% (2) y=—1a% (3) y=a + %a%;
Wy=a®—x+1; (6) y=—a%+ 2z — 2;

3 5
(6) y = 2a2; (7)y=%x4; (8)y = a%3;

9 y =2 (10) y =2 (1) y= 2%

(12) y = 5272%; (13) y = 1 — V[=].
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125. Find graphically the approximate values of the real
3

roots of the equation z + 3 = 4 /22

126*. Draw the graph of the cubical parabola y = a3
and use the graph to find graphically the solutions of the
equations:

VN a*tz—4=0; 2)2®—3?—2+3=0;
(3) 2® — 622 4 9 — 4 = 0;
(4) 3+ 322 + 6+ 4= 0.

127. Given the following data, form the corresponding
equation and solve it graphically:

(1) The square of a number is equal to the sum of the
number and its reciprocal.

(2) A wooden sphere of radius 10 cm and density 08 g/cm?
floats on water. Find the height of the segment submerged
in the water.

(3) A wooden cube and a pyramid with square base to-
gether weigh 0-8 kg. The side of the cube is equal to the side
of the base of the pyramid, the height of which is 45 cm.
Find the side of the cube. The specific gravity of wood is 0-8.

128. For what values of = has the function y = 2", x > 0,
values greater than those of its inverse, and for what x has it
smaller values?

Exponential and Hyperbolic Functions
129. Draw the graphs of the functions:

1
Dy=—-25 @y=2%; B y=33

1
Wy=1-37% B y= (-;—) ; (6) y =272,

130. Draw the graph of ¥ = 2*. Obtain on the same figure
without further calculations the graphs of the functions:

X

—

1 X :
My=2" @Qy=72 B y=352*+1
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131. Show that the graph of y = ka* (k > 0) is the same
curve as for y == a*, but displaced with respect to the axes.

132. Use graphical addition to draw on millimetre paper
the graphs of:
(1) y=a2 + 25 (2) y=a? — 2~
133. Solve graphically: 2x — 2z = 0.
134. Draw on millimetre paper the figure bounded by the
1+ 2

curves y = 2%, y = — and z = 3. Find approximately
from the graph the coordinates of the points of intersection
of these curves.

135. Find the greatest possible value of n for which
2* > z" for all x = 100 (n is an integer).

136. Show that y = sinh z and y = tanh « are odd func-

tions, and y = cosh x even (see the Course, sec. 22). Are
these functions periodic?

137. Prove the relationships:
(1) cosh?x — sinh?x = 1; (2) cosh?z + sinh?x =
= cosh 2z; (3) 2 sinh x cosh # = sinh 2x;
(4) sinh (« 4- B) = sinh « cosh 8 + sinh § cosh «;
(8) cosh (« 4- B) = cosh « cosh f§ + sinh « sinh §;

(6) l—tanh2x=c lzx; (7)1—co‘oh2:1r;=———1

cosh? z sinh?z°
Logarithmic Functions
138. Draw the graphs of:
(1) y = —logyz; (2) y = log %; (3) y = [log z[;
(4) y =log, |x|; (5) y =1+ log (x+ 2);
(6) y =logy |1 —x[; (7) y =a®; (8) y=log,2.

139. Draw the graph of y = log 2. Obtain on the same
figure without further calculations the graphs of:

x—}—l)

(1) y=3lg@+1); @y= 2log(—;2— -
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140. Use graphical addition to draw the graph of the
1
function y = = + log = and use the graph to find the minima

of the function in the interval (0, 2].

141. Show that the graph of y = log, (x + Va? + 1) is
symmetric about the origin. Find the inverse function.

142. Show that the ordinate of the graph of y = log, x is
equal to the ordinate of the graph of y = log, x multiplied by n.

6. The Trigonometric and Inverse Trigonometric Functions

Trigonometric Functions

143. Give the amplitude and period of the following har-
monic oscillations:

(1) y =sin 3x; (2) y = 5 cos 2x;
(3) y=4sinnz; (4)y= 2sin:§,
6) y= 3sin5g .

144. Give the amplitude, period, frequency and initial
phase of the harmonic oscillations:

. dnx
(5) y = s T:

(1) y = 2sin (3z 4 5); (2)y=—-cosx;1;
1 1) 2+ 3
(3)y—§sm2n(w—g), (4) y = sin o "

145. Draw the graphs of:
(1) y= —sinz; (2) y =1 —sinz;
3) y=1—cosz; (4) y=-sin2x; (5) y=sin

NJI&

(6) y = —2 sing; (7) y = cos 2x;

8 y= 2sin(x—7—?:); (9) y = 2sin(3x —[—%);

(10) y = %sin (2nx — 1°2);
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e /4 r— 7

(11)y=2—|—2sin(-2——|—6); (12) y = 2 cos 3

(13) y = [sinz|; (14) y = |cosz|; (15) y=|tanzx|;
(16) y = |cot z|; (17) y =secx; (18) y = cosec .
coszfor—a=x=0,

1 for O0O<ax<l,
(19) y =

1 for 1=x2=2
z

146. A triangle has sides of 1 cm and 2 cm. Draw the
graph of the area of the triangle as a function of the angle
x between these two sides. Find the domain of definition of
this function and the value of argument x for which the area
is a maximum.

147. A particle moves uniformly on a circle of radius
R with centre at the origin anticlockwise with linear velocity
v cm/sec. The abscissa of the particle at the initial instant
was a. Form the equation of the harmonic oscillation of the
abscissa (see Course, sec. 25).

148. A point moves uniformly along the circle 2 + y* = 1.
At time ¢, its ordinate is y,, at time # the ordinate is y,.
Find the ordinate of the point as a function of the period
and initial phase of the vibration and time.

149. Figure 13 illustrates a crank mechanism. The radius
of the fly-wheel is R, the length of the connecting-rod a.
The fly-wheel rotation is clockwise and uniform, at a rate
of n revolutions per second. At the instant ¢ = 0, when the
connecting-rod and crank form a straight line (the ‘“dead”
position), the cross-head (A4) is at point 0. Find the displace-
ment x of the cross-head (A) as a function of time 2.

150. Use graphical addition to draw the graphs of:

(1) y=sinz 4 cosz; (2) y = sin 2nx 4 sin 3nx;
(3) y=2sing+3sin§; (4) y=2 + sinx;

(5) y=2 —sinx; (6) y= —2% -+ cosz.
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151. Solve graphically the equations:
(1) 2= 2sinz; (2) x=tanz; (3) x —cosz = 0;
(4) 4sinz =4 — x; (5) 27* = cos x.
152. Find the periods of the compound harmonic vibra-
tions:
(1) y = 2sin 3x 4 3sin 2z; (2) y = sin ¢ + cos 2;
11

.l .
(3) y_smg—i—smz,

(4) y = sin (27tt + %‘) + 2sin (3nt + g) 1+ 3 sin 5nt.

153. Express as a simple harmonic vibration:

(1) y = sinz 4 cosx; (2)y=sinx+2sin(x+g).

154. Give a proof of the following graphical method for
adding harmonic vibrations. Given the vibrations

A, sin (wx 4+ ;) and A, sin (wx + @,).

we draw vectors A, and 4, of lengths A4, and 4, respectively
at angles ¢, and ¢, to a horizontal axis (Fig. 14). On adding
vectors 4, and A, we obtain the vector A of length 4 at an
angle ¢ to the horizontal axis; 4 and ¢ are the amplitude
and initial phase respectively of the sum

A, sin (wz 4 @) + A, sin (wx + @,) = A sin (0x + @).
156*. Give the periods and draw the graphs of:

(1) y =|sinz| 4| cos x|;
l(lsinm| sinx)

2) Y=32| cos= |cos x|
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Fic. 14,

156. Find the domain of definition and indicate the shape
of the graph of:

(1) y =logsinz; (2) y = Vlogsinx;
1
() y= Vlog [Ema]

Inverse Trigonometric Functions
157. Draw the graphs of:

(1) y = arccot z; (2) y = 2aresin g;

3) y=1-+arctan2z; (4) y = g — arc cos 2x;

1—=x

(5) y = arcsin 1

158. A circular sector with central angle « is folded into
a cone. Find the angle w at the vertex of the cone as a func-
tion of angle « and draw the graph of the function.

159. A painting of height a m hangs at a slope against
a wall so that the dihedral angle between them is ¢. The
lower edge of the painting is at b m above the eye-level of
the observer, who stands at a distance ! m from the wall.
Find the relationship between the angle y at which the observ-
er sees the painting and the angle ¢.
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160. Give the relationship between the angle « of rotation
of the crank and the displacement x of the cross-head for
the crank mechanism (see Fig. 13, problem 149).

161. Indicate the domains of z# in which the identities

hold:

=

(1) arcsin x 4 arccos ¢ = 35
(2) arcsin Yz + arccos Vx = g ;
(3) arccos Y1 — % = arcsin x;

(4) arccos Y1 — #® = —arcsin x;

(5) arctan x = arccot % ;

(6) arctan ¢ = arccot i — m;

(7) a l;xz——2arctanx'
rccosl+x2— ;
(8) arc cos 1= 2 arctan x;
1422 ’
(9) arctan x - arc tan 1 = arc tan i + :;
1
(10) arctan x 4 arctan 1 = = + arc tan fi__Z'

162. Using the identities of problem 161, find the domain
of definition and draw the graph of:

(1) y = arccos Y1 — 2;

(2) y = arcsin 1 — z 4 arcsin Vz;
1 — 22

(3) y = arccos T R

1
(4) y = arctan ¥ — arc cot i

163*. Draw the graph of y = arcsin (sin z). Show that
this is a periodic function.

164. Draw the graph of y = arc cos (cos ).
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165. Draw the graph of y = arc tan (tan z).
166. Draw the graph of:

(1) y = = — arc tan (tan z);
(2) y =2 — arcsin (sinz); (3) y = x arcsin (sin z);
(4) y = arc cos (cos x) — arcsin (sin z).

7. Numerical Problems

167. Draw the graph of y = 23 4 222 — 42 4- 7 in the
interval [ —4, 2] for values of z at intervals of 0-2; use an ordi-
nate scale 20 times smaller than the abscissa scale. Find from
the graph the maxima and minima of the function in the
interval [—3, 2]. What is the point of transition from in-
crease to decrease of the function? Find the zero of the func-
tion in [—4, 2]. The accuracy of the evaluation to be 0-1.

168. When studying the dispersion of shrapnel in artillery
theory it is required to draw the graph of y = e4ws=;
e ~s 2'718. Carry out the construction for 4 = 2, giving «
values from 0 to 90° every 5°. The accuracy required is 0-01.

169. Draw the parabola y = ax? - bx +- ¢ through three
given points M, (1, 8), M,(5, 6), M,(9, 3). Find the zeros of
ax? 4+ bz + c. The required accuracy is 0-01.

170. We require to cut out equal squares from the corners
of a square sheet of tin 30 X 30 cm? so that a box of capacity
1600 cm3 can be made by bending the remainder. What must
be the length of side = of the squares cut out? The required
accuracy is 0-01l.

171. Show that, if we put 22 = y in the equation
24 px? 4 qx + s = 0,
this can be replaced by the system
2=y,
(¥ — Yo)* + (x — x,)2 = 13,

1—
Yo = 2p, x0=—% and 72 =92+ 22 —s.
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Using this method, solve graphically the equation
2t — 322 — 8x — 29 = 0.

The required accuracy is 0°1.

172*, Using the method indicated in problem 171, show
that, with the aid of the further substitution z =z’ + a,
every fourth degree equation «* 4 ax® + b2® - cx +d =0
can be solved graphically by drawing a circle and the parabola
y = x2,

Using this method, solve graphically the equation

2t - 1-22% — 2222 — 392 - 31 = 0.
The required accuracy is 0-1.
173. Find graphically the roots of the equation
eXsinz =1, e~rs 2718,

lying between 0 and 10; give an approximate general formula
for the remaining roots. The accuracy required is 0-01.

174. Solve graphically the system:
r-+yt=1; 16224 y=4.

The required accuracy is 0-01.
175. Draw the graphs of the following functions (in the

polar system of coordinates) for values of ¢ every %:

(1) o= ap (spiral of Archimedes)
(2) o= % {hyperbolic spiral)

(3) g =e% (e x5 2'718) (logarithmic spiral)

(4) o = asin 3p (three-petal rose)

(5) o = acos2¢ (four-petal rose)

(6) po=a (1 — cosp) (cardioid)

The required accuracy is 0-01. Choose an arbitrary constant
a > 0.



CHAPTER II

LIMITS

1. Basic Definitions

Functions of an Integral Argument
176. A function of an integral argument takes the values

Uy = 0'9; uy = 099; u, =0999;...,u4,=0999...9;.
n times

What is the value of lim %,? What must be the value of

n— oo
n for the absolute value of the difference between u, and its
limit not to exceed 0-0001%

177. The function u, takes the values

1 1 1
U, =1; u2=z; u3=§; vl

Find lim u,. What must » be for the difference between u,

n— oo
and its limit to be less than a given positive ¢?
—1 . .
178. Show that u, = ZTI tends to unity as » increases
indefinitely. As from what » is the absolute value of the
difference between u, and unity not greater than 10—4?

179. The function v, takes the values

1 3n
(e} E oS 7 CcOS E‘
'Ul = 1 s 'UZ = 9 5 Uy = 3 3o e ey
nw
B COoSs 7
v, = poy H

Find lim v,. What must n be for the absolute value of the

n— oo

difference between v, and its limit not to exceed 0001 ?

31
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Does v, take the value of its limit?

180. The general term of the sequence u, = %, Uy = Z,
7 17 2n —1 .
Uy =g Ug = g0 has the form g if » is odd,
n
and 2 ; 1 if n is even.

Find lim %,. What must » be for the absolute value of the

diﬂ'erenge between u, and its limit not to exceed (i) 1074%;
(ii) a given &?
181. Show that the sequence u, = dn*+ 1 tends to a
T 3n?4 2

limit equal to Z whilst increasing monotonically on indefi-

oo .3
nite increase of n. As from what n is 7 U not greater

than a given positive ¢?
2 2
182. Show that u, = K’.Zgi has a limit equal to unity

as n increases indefinitely. As from what » is |1 — u,| not
greater than a given positive ¢?

What is the nature of the variation of variable u, in the
limit ?

183. A function v, takes the values (“binomial coeffi-
cients’’)

m(m — 1) m(m — 1) (m — 2)
S I I 1.2.3
U:m(m—l)(m—2)...[m—(n—l)]
n 1.2.3...n T

where m is a positive integer. Find lim v,,.

n— oo

184. Show that the sequence %, =1+ (—1)" has no
limit as » increases indefinitely.

n __9\n
185. Show that the sequence wu, = 2+ (=2 has no
2n
limit as = increases indefinitely, whilst the sequence v, =

_ =2

37 has a limit.
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What is it?
186. Do the following sequences have limits?

. N
sin ——

1) u,=mn sinn—;; (2) u,=

?
Tog (n>1)1

187. Prove the theorem: if sequences u,, u,, ..., u,, ...

and v, v, . . ., ¥,, . . . tend to a common limit a, the sequence
Uy, U1, Ug, Uy, - - -, Uy, Uy, . . . tends to the same limit.
188. Prove the theorem: if a sequence u,, %y, ..., U,, . - .

tends to a limit @, any infinite subsequence of it (say u,, u,,
Us, - . .) tends to the same limit.

189. The sequence wu,, #,, ..., #,,... has limit a <+ 0.

Show that lim Untt

nree Uy

limit if @ = 0? (Give examples.)

= 1. What can be said about this

Functions of a Continuous Argument

190. Given y = 2?, when =z — 2, y — 4. What must §
be for [z — 2| < 6 to imply |y — 4| < ¢ = 0'001?

22— 1 3

191. Let y=x2—+1. When z - 2, we have y—5-
What must é be for |z — 2| < to imply‘y—%|<0-1?
192, Let y = -~ . When z— 3, we have y—»
. Y= 5@ — 3, we have y-—_.
What must 8 be for |z — 3| < § to imply ‘i-y < 0017

193. Show that sinz tends to unity as =z — g . What

condition must x satisfy in the neighbourhood of the point
7

x_2 for 1 —sinx < 0:01°?
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194. When « increases indefinitely the function y =

1 . 1
=F 1 tends to zero.xli)nl Fri= 0. What must N be
for || > N to imply y < e?
x?—1
195, As z — oo, y=§+——> 1. What must N be for

|z| > N to imply |y — 1| < ¢?

2. Orders of Magnitude. Tests for the Existence of a Limit

Magnitudes of Large and Small Orders

196. A function u, takes the values
U =3, U =05, u=7..., u,=2n-+4+1,...

Prove that u, is a large order magnitude as n — oo. As from
what » is u, greater than N ?

197. Show that the general term u, of any arithmetic
progression is a large order magnitude as # — oo. (When is
it positive and when negative ?)

Does this statement hold for any geometric progression ?

1+ 22 — co. What condi-

198. As x — 0, we have y =
tion must z satisfy for the inequality |y| > 10t to hold?
199. Show that the function y =

is of large order

z—3
as  — 3. What must x be for |y| to be greater than 1000?
200. When z tends to unity, the function y = (x—l_l—)z

increases indefinitely. What must 6 be for |[x — 1| < 6 to
1

i —— — 42

imply %=1 > N = 10%?

201. The function y = —2x—1—— is infinitely large asz — 0.

—1
What inequality must x satisfy for |y| to be greater than
100?
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202. As z — oo, we have y = log # — co. What must M
be for x > M to imply y > N = 100?

203. Which of the basic elementary functions are bounded
throughout their domain of definition ?

. x? .
204. Show that the function y = T is  bounded
throughout the real axis.
2
205. Is the function y = I-T——x5 bounded throughout the

real axis? Is it bounded in the interval (0, co)?

206. Is the function y = logsinx bounded throughout
its domain of existence ?

Answer the same question for y = log cos z.

207. Show that the functions y = zsinz and y = z cos
are not bounded as z — oo (indicate for each of them at
least one sequence of z, such that y, — oo).

Do the functions become infinitely large?

Sketch the graphs of the functions.

208. Sketch the graphs of f(x) = 2% {"x and f(x) = 2—x sinx,

Indicate two sequences x, and z;, of values of x for each
of these functions such that lim f(z,) = oo and lim f(z;) =0

209. For what values of a is the function y = a*sinz
unbounded as £ — + oo (£ — — oo0)?

210. Are the following functions unbounded ?
(1) f(x) = %cos% as x — 0;
(2) f(x) =xarctanz as z — oo;
(3) f(x) = 2% arcsin (sin z) a8 & — + oo;
(4) f(x) = (2 + sinx)logx as x - + oo;
(5) f(x) = (1 + sinx)logx as z — -} oco.

211, The function u, takes the values

3 4 1
U = 2, u2=1, u3=§,..., u=n+

Show that u, is an infinitesimal as 7 — oc.



36 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

212. Function u, takes the values

u3=_ u4=

Show that u, is an infinitesimal as n — oo.
213. Show that

xr
v=zr17"

as z — 0. What condition must z satisfy for the inequality

|y] < 10~* to hold?
214. Prove that the function

y=Ve+1—Vaz

tends to zero as x — co. What must N be for x > N to

imply y < e?

215. Write each of the following functions, which has a
limit as  — oo, as the sum of a constant (equal to the limit)
and a function; prove that the latter function is an infini-

tesimal as x — oco:

a3 a2 1 — x2

(1) y=x3—1; (2)y=27x2+1; ()?/_1‘+x2'

Tests for the Existence of Limits
216*, u, takes the values

1 1 1
ul:Z’ ’U/z:Z—f‘l—O, Uy = + +

1
U, = 3+1+32+1+ ...—{-3n+1,...
Show that u, tends to a limit as » — oo,
217. u, takes the values
1 1 1 1 1 1
W= wT3tyg4 wTe Ty it 46
1 1 1
R L N B -
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Show that u, tends to a limit as n — oo.

218. Prove the theorem:

If, given the same variation of the independent variable,
the difference between two functions is an infinitesimal, one
function being increasing and the other decreasing, they both
tend to the same limit.

219. The terms of two sequences %, and v, are given by

_ Ut _ U+ 20
i e N
2
uzz————ul—zl_vl, 02=u~——1—*-3 vl;
and in general
u, = un—l_;vn-—l , v, = Up—1 +32vn—1 .

where u, and v, are given numbers (%, << ). Use the theorem
of the previous problem to show that the sequences both
tend to the same limit, lying between u, and v,.

220. Show that the sequence u,:

ul=]/€, u2=}/6—{—u1,...,un=1/6—|—un_1,...
has a limit and find the limit.

3. Continuous Funections

221. A function is defined as follows:

y=20 for z < 0;
y==z for 0 =2 <1;
y=—a24+4x—2 forl =<3
y=4—z for z = 3.

Is this function continuous?

222, Three cylinders of the same height 5 m and base
radii 3, 2 and 1 m respectively are set up end to end. Express
the cross-sectional area of the figure obtained as a function
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of the distance of the section from the lower base of the
bottom cylinder. Is this function continuous? Draw its graph.

223, Let
x+1, fe=1;

3 —ax? ifz > 1.

f(x) =

For what choice of number a is f(z) continuous? (Draw its

graph.)
224, Let
—2sin z, if z= __E’
2
fx) = Asinx—{—B,if—g<x<7~2t;
. .
cos &, if x= 3"

Choose the numbers A and B so that f(z) is continuous;
draw its graph.

225. At what points have the functions y = p i 5
1
_ . el g
and y @EoF discontinuities? Draw the graphs of the

functions. Describe the difference in the behaviour of the
functions close to their discontinuities.

2
226. The function f(x) = :3

: i is not defined at x = 1.

What value must we give f(1) in order to make f(x) conti-
nuous at x = 1°¢

227. What sort of discontinuities do the functions y =

sin x cos I
= and ¥y = p have at = 0%

Show the nature of the graphs of the functions in the
neighbourhood of # = 0.

228. Investigate the continuity of the function given by:
?/=%| at t+0, y=0 at x=0.

Draw the graph of the function.
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229. How many discontinuities (and of what kind) has
1
log ||

Sketch its graph.

230. The function y = arc ta,n;]l; is not defined at = = 0.

the function y =

Is it possible further to define f(x) at * = 0 in such a way
that the function is continuous at this point? Sketch the
graph of the function.

231. Investigate the continuity of the function given by
.7
fx) = sin o at z =+ 0, f(0) = 1.

Sketch the graph of the function.

232. Sketch the graph of f(z) = x sin g . What value must
we give f(0) in order to make the function continuous every-
where ?

233. Show that the function y = 1 r has a discontinu-

1+2x
ity of the first kind at x = 0. Sketch the graph of the
function in the neighbourhood of x = 0 (see Course, sec. 36).

234. Investigate the character of the discontinuity of the
1

function y = 2-2" at z = 1. Could y be defined at x =1
in such a way that the function would become continuous
at x =11
235. Investigate the nature of the discontinuity of the
1
. 2¢ — 1 .
function y = — at the point x = 0.
2 41
236, A function f(x) is defined as follows: f(z) =

11
=(@x+1)2 (m+’_‘) for -+ 0 and f(0) = 0. Verify that
the values of f(x) lie exclusively between f(—2) and #(2) in
the interval —2 = z = 2 and that f(z) is nevertheless discon-
tinuous (at what point ?). Sketch its graph.
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237. Investigate the continuity of the function y =
1
=7 - omnx’
238. A function is defined thus: if z is a rational number,
f(x) = 0; if z is irrational, f(x) = z. For what value of z is
the function continuous?

What sort of graph has the function?

239. Investigate the continuity and draw the graphs of:
1
W) y=z—E@); 2)y=_—F ok

(3) y = (—1)=.
Function E(z) is equal to the greatest integer not greater than
z (see also problem 59).

240. Use the properties of continuous functions to show
that the equation a® — 3x = 1 has at least one root lying
between 1 and 2.

241*,. Prove that: (a) a polynomial of odd degree has at
least one real root; (b) a polynomial of even degree has at
least two real roots if it takes at least one value of opposite
sign to its first coefficient.

242, Prove that the equation z2* =1 has at least one
positive root less than unity.

243. Show that the equation x = asinz 4 b, where
0 <a <1, b >0, has at least one positive root, which does
not exceed b - a.

244*, Show that the equation i 7 —i— A +

13 =0

where a) >0, a, >0, a; >0 and A <2 <13, has two
real roots in the intervals (4;, 4,) and (4, 4;).

4, Finding Limits. Comparison of Infinitesimals

Functions of an Integral Argument
Find the limits in problems 245-267:

245. lim “ 11 246. lim

n—-oo n—»oo

(n 4 1)
2n2
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. m+1P—(n—1) . nmd—100m% 41
A7 im e 218 I e e
_1000n® 4 3n2 (1 —(n— 1)
9. Iim & o —toomi 1 2P0 I oy =1
3
. e 1t—m—1¥ .. . Yni42n—1
251. &n; Ent T =1 252. }i‘ﬂ e
3
2 2 2
253. nm‘%—fl—”. 254. lim (“‘3+1+”) .
n-+oo n-—+oco Vn————e _I_ 1

3
. Vnd — 202 + 1 4 Vut + 1
255.}1»124 - .
Vnb 4+ 6n% + 2 — Vn? + 308 41
4 3

256, tim /0 H 2= Fn2 41
YR 2 —YaP 1

. n! . mE2) (4 1)
287. lim o 268. lim = = 57—
2 4 (n 1)
269. lim O T T F )
11 1
l+g+g+ - ton
260. lim

N oo 1 1 1’
l+3+g+ - +5

261 lim L (1 +2+3+...+n)

oo N2

. 1+2434...4+n n

262. lim o —.5).
263.nm1—2+3ﬁ'“_2n).

oo Vn? + 1

oed* lim{- L + L o o4 1
rewll1.27 2.3V (n—1n)”
265. lim (- !
'n»’?o(ﬁ+3—._5+"‘+(2n—1)(2n+1))'
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266.

lim ——

an
peo 27 417

—1

1
267, lim 2" — 1

n-+oo

P |

Functions of a Continuous Argument

Find the limits in problems 268-304:

268.

270.

272.

274.

276.

278.

279.

280.

281,

283.

285.

287.

288. 1i

. x24-5 . 22— 3z -+ 1
lim 2. 269. lim (sz—“)‘
z z2 — 3
i - 271, lim — > —°
g xj,la P21
2 _ 3 2
lim S 241 973, lim T T3¢+ 22
1 2 —=x xo—2 X2 —2— 6
. r—1YV2—= 823 — 1
l;ir} 2 —1 275'311 6x2 — B5x 4+ 1°
2
. a4z — 2 . 1 3
I;Iﬁ:ﬁ——x?—x—{—l' 277. ?f?(l—x—l—ﬁ)'
li 1 1
2=  E—sz 2|
. x+ 2 z— 4
lim [x2—5x+4 +3(x2—3x—|—2)]'
.oaxm—1 .
lim 7 1 (m and n are integers).
x-1 h
. 2+ . xt — bz
lm g1 282 lm 1
N | . 14z — 323
}i‘ﬁ 22 +1° 284'&2 1+ 2% 4 323 °
. z3 . 28 x?
lm (x2—|— 1 "‘”)' 286. ,}i’ﬁ‘o(zxz—l_zx+1)'
.| 3a2 2r — 1) (322 4z + 2)
,}ﬂ[2z+1 - 4z ]

X—+o0

L@+ @+ 20+

.+ (@ + 1000

210 1010
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JE— — 3
289, lim L LAVE  ggq VT I VaR A
. lim : . lim{ ! :
T YA L B

5 4
7 3
291, Lim S H3 V21
T YV FoFl—=

3 5
- 3
299, lim V2E 3=V + 4

= Ya? + 1
2 —_—
293. lim M_l . 294. lim ,ﬂy ]
x—+0 x x=+0 x
2 — J— —_—
095, im JE T 1 =1 ggg py JE—1—2
0 V2?2 4 16 — 4 x5 zx—5
2 _ 1o —
297, lim &% . 298, lim Y2+ =12
1 Yo —1 h+0 h
3 3 3
2 — —_
209, lim V2T =1 ggp iy PEE—VI—2
x-+0 x X0 x
301. lim Vx_’j_vf_b (@ > b).
x~a s —a

n

302. lim —V—;:—l— (n and m are integers).

m
x—+1

rx—1

3 4 3
2 _ 3 2
303+ 1im V1 T#—V1—22 g, . VTI+a®—V3+a
x+0 z + x? xorl z—1

305. How do the roots of the quadratic equation ax? -
+ bx 4+ ¢ = 0 vary when b and ¢ remain constant (b + 0)
and a tends to zero ?

Find the limits in problems 306-378:

306. lim (Vz + a — Vz). 307, Lim(Ya2+1—Va2—1).

X—+oo X~+oo
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308. lim (V2% + 1 — 2)t.

X—+too

309. lim z (Y22 +1 — z).

X—+too

310. lim (V(z + a) (x 4 b) — =).

X+ too

311. lim (Va2® — 2x — 1 — Ya2 — 72 + 3).

x—+too
3

3

312, lim (J(x + 1)2 — V(x — 1)2).

X~ o0

3

313. lim 22 (Ya® + 1 — Va® — 1).

X+ oo

sin 3z

314. lim

x—0

316. lim S>%*

10 8in Sz °

318, lim 2 (*")

wr0 (SIn )™

319, lim 22fosine
x-0 3z
321, lim 1= %%
x=0 T
. tan o
323. lim
a—~0

325. lim 3
a—+0 o

327. lim (L — 1
x—0 \SINZ tan x

cos

329. lim

331. lim (g — )tan .

X+

2

Y(1 — cos «)?
tan o — sin «

) .

X~y V(1 — sin x)?

tan kx

315. lim

x=0

317. lim 2222
x-0 Sin 5x

(n and m are positive integers).

. 2% — arcsinzx
320 I o T arotans °
1 — cos?
322, lim —— 0%
x-0 Zsin 2x

. 1-sinx —cosz
324, lim : .
x-0 1 — SInx — cos x

— 2
326. lim (L — %08 @)

e tand o — sind «

328, lim L —SIn%

x (7 2
x—>§ (é—x)

330. lim 2032
r-n SN 22

gin o

332, lim 5 -
KX+ 1 _ '“_

2

t In problems where we indicate x — & oo, the cases z — 4 oo
and # — — oo have to be considered separately.



333.

335.

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

347.

348.

II. LIMITS
. . nz . . Y—a wy
1211111 (1 — 2) tan 7 334. }15} (sm 3 tan 2a) .
cos & — sin sin( _E)
1.1 x '(ms—2x . 336. hni Vg———— .
x>z X*F — — COsS ¥
2
1 — sin %
. 2
lim .
7 608 2 [cos L — sin %
2 4 4
lim (290 tan x — _n_) .
cos
X
lim cos (@ + z) — cos (@ — x) '
x+0 x
lim 08 *% —2 cos fz _
x~0 x
i sin (@ + z) — sin (@ — %)
x-o tan (@ -+ x) — tan (a — )’
. 8in? @ — gin? §
lim = -
. sin{a 4+ 2h) — 2sin(a + A) + sina
lim .
h=0 h?
. tan (a 4 2h) — 2tan (@ + &) 4 tana
lim .
h=0 h2
. V2 — V1 + cos =z
m o .
x—+0 sSinc x
Yim Y1 +sinz — J1 —sinz )
20 tan
Yim Y1 + 2 sinz — Ycos 22 .
x-0 x

2%
tan 3

lim 1 — cosz Jcos2x .

x—0 x?

45
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349. lim

V1 + arctan 3z — J'1 — arc sin 3z

x-0 Y1 — arcsin 2 — J1 + arc tan 2z

350%. lim V@ — Varccosz .

Vo + 1

x->—1

. xr Y
351. 11110(1 +x) .

Ll
353. Lim (1 4 1) x
oo x
. x 1 2x—1
355. lim T2)
. x2 + 1 x?
359. lim (2" + l)x.
x~foo \ ¥ — 1
361. lim

1)\
14-1.

363. lim (1 4 sin x)rosecx,

x-+0
365. lim (1 T *2)
x—~+0 Z
367. lim {z [In (x + a) —
X~ 00
368. lim 2% — 1
x-e & —©
2x __

370. lim & — 1
x-0 3z
g72%.lim & 98¢
x~0 X

. esin2x __ gsinx
374, im —————

x—+0

352,

354.

364,

366.

In z]}.

369.

371.

373.

375.

x+1
n 3x — 4\ 3
X o 3x—|—2)
. -+ 1y
xllrinw(2x—1)
]_x
im 1+ =] .
tim (14 )
(22— 2 4 1\
1‘ﬁ(x2~4x+2

Jim (1 + tan? Jz)™.

x-+0

lim In(a+2)—Ina
x—+0 X
. oa'"—1
lim

B0 h

. e —e

lim

1 —1

. ex — e—x
lim -

x—0 sinx
l'm eax — ebx

i

x—0 x
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1

376. limz (e* — 1). 377. lim (cosh z — sinh z).

X—+o0 X+ too

378. lim tanh x.

x—+too

Miscellaneous Limits
Find the limits in problems 379-401:
(az + 1)

379. lim —. Consider the cases separately when
x-eo X"+ A
(1) » is a positive integer, (2) = is a negative integer, (3) »

is zero.

380. limx(Vx2+Vx4+ 1 —-x]@)

Xx—+ oo
. a . o —ax
381.,(_];1?; F—i—_i (a > O). 382.)‘11?; m (a > 0)
383. lim 207 384, lim 2roten?®
385, lim Z1 507 386. lim 2XOSR %
x-oo & + COS T X1 41
tan 5
387. lim sin (@ + 3%) — 3 sin (@ + 2h) -+ 3sin (@ - k) —sina ‘
h-+0 h3
388. lim tan2x (Y2 sin?x + 3sinx + 4 —
=7 — Vsin2x 4 6 sinx + 2).
. 1 —~cos(l —cosa)
389. ]xlir(} A

. Jim [c0s © cos & z
390*.lim (00520084...cos2n).

h—>oo

X—o00

391. lim x2(1 — cos %)

392. lim (cos Yo + 1 — cos}z) -

X~ oo

%13 x—*—l_y_z
393 .hmx(arc ta.nx+ 21l

X—+oo
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394. lim z (arc tan e+l arc tan L) .
x x -+ 2

xwoo )
395%, lim 2OSM T —aretan® - gqq (1 + i)x (n > 0).
x-+0 X X—+4 oo A
R . Incosz
397*.1{1101 (cos x)sinx | 398. lxl—I»nO —Q
sin x 1
399. lim ( sin x)"—s"’x 400. lim (cos 4 sin z)*
. . x-+0
x—+0 X

1
401. lim (cos 2 } a sin bz)* .

x—+0

Comparison of Infinitesimals

402. An infinitesimal u, takes the values

whilst the corresponding values of infinitesimal v, are

1

1
7)1:-‘1, 2)2:-2—!, - 3 e e

1
u3=§,..., 'Un——m

Compare %, and v,; which is of the higher order of smallness ?
403. The function u, takes the values

3 8 n?—1
g, Uy = o5 s U, = > e s ey

=0, u,= g7

whilst the corresponding values of v, are

53 10 n? -+ 1

v =2, Vp =g, V3= gmse-es

Compare these infinitesimals.

404. An infinitesimal %, takes the values

1 2 n—1
1, Uy == 0, U, = R

u, =0, u, = 9°
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whilst the corresponding values of infinitesimal v, are

5 7 2n 41
Z, 'U3=§,..., 'l)n= n2 y e e

v, =3, v,=

Show that u, and v, are infinitesimals of the same order but
are non-equivalent.

405. Functions y = i;—z and y =1 — Yz are infini-

tesimals as  — 1. Which has the higher order?

406. Given the function y = z3 show that Ay and Az
are in general infinitesimals of the same order as 4z — 0.

For what value of 2 will the order of smallness of the incre-
ments be different ?

For what values of x are increments Az and Ay equivalent ?

3 —_—
407. Show that 1 — x and 1 — Jzx are infinitesimals of
the same order as # — 1. Are they equivalent ?

408. Let x — 0. Then Ya + «®> — Va(a > 0) is an infini-
tesimal. Find its order with respect to x.

409. Find the order with respect to x of the following
infinitesimals as 2 — 0:

3
(1) «® +100022; (2) Va® — Va;
z(x + 1), Txl0
(3) 117 @ w71

410. Show that the increments of functions y = a V=
and » = bx? are of the same order of smallness for 2 > 0
and the common increment Az — 0. For what value of x
are they equivalent (¢ and & differ from zero)?

411. Show that, as x — 1, the infinitesimals 1 — 2 and
K

a (1 — Vz), where a + 0 and k is a positive integer, are of
the same order.
For what value of @ are they equivalent ?

412. Prove that sec * — tan 2 and = — 2z are infinitesi-

mals of the same order as z — g .
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Are they equivalent ?
413. Prove that the infinitesimals e?* — ¢* and sin 2z —
— sin z are equivalent as z — 0.

414. Find the order with respect to x of the following
functions, infinitesimal as z — 0:

1) V1+f/?c—1; @) Vi+ 25— 1—Vx;

(3)e¥x—1; (4) eSnx—1; (5) In(1 + Vzsinz);
(6) V1 + a2 tan—, (7) e* — cosz; (8) e — cosx;

3
(9) cos x — Vcos x; (10) sin Vl +x—1);

(11) In (1 + 2?) — 2V
(12) arcsin (V4 4 22 — 2).

Some Geometrical Problems

416. Starting from an equilateral triangle of side a, a new
triangle is constructed from the three heights of the first
triangle, and so on » times; find the limit of the sum of the
areas of all the triangles as n — oo.

416. A square is inscribed in a circle of radius R, a circle is
inscribed in the square, then a square in this circle, and so
on n times. Find the limit of the sum of the areas of all the
circles and the limit of the sum of the areas of all the squares
as n — oo.

417. A step figure is inscribed as shown in Fig. 15 in a
right-angled isosceles triangle, the base of which is divided

N
DN
A////
W0
gy
A%%%%/%%

Fi1c. 15.

\
&\\
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into 2n equal parts. Show that the difference between the
area of the triangle and that of the step figure is an infini-
tesimal as » increases indefinitely.

418, The hypotenuse of a right-angled isosceles triangle
of adjacent side a is divided into n equal parts and straight
lines drawn from the points of subdivision parallel to the
adjacent sides. The step line AKLMNOPQRTB (Fig. 16)

B
R/T
P Q
N 0
L M
A K C
Fic. 16.

is thus obtained. The length of this step line is equal to 2a
for any n, i.e. the limit of its length is equal to 2¢. But on
the other hand, as n increases indefinitely the step line ap-
proaches indefinitely the hypotenuse. Consequently the length
of the hypotenuse is equal to the sum of the lengths of the
adjacent sides. Find the error in this argument.

419. The straight line A B of length a is divided into equal
parts by n points, and lines are drawn from these points at

angles % (Fig. 17). Find the limit of the length of the step

line obtained as n increases indefinitely. Compare with the
result of the previous problem.

AIAAAAAAAAAAF
= o !
Fia. 17.

420. The straight line AB of length a is divided into n

equal parts. An arc of a circle equal to % radians is erected



52 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

on each part of AB (Fig. 18). Find the limit of the length of
the resulting curve as n — co. How does the result change if
semicircles are erected on each subdivision ?

Fia. 18.

421. A circle of radius R is divided into equal parts by n
points. Taking the points as centres, arcs of circles of radius
r are drawn to their intersections with neighbouring ares
(Fig. 19). Find the limit of the length of the resulting closed
curve when 7 increases indefinitely.

Fic. 19.

422, Two circles of radii B and r (B > r) are located to
the right of OY and touch it at the origin (Fig. 20). As x — 0,
of what order with respect to # are the infinitesimal segment
MM’ and the infinitesimal angle «?

423. The straight line OP joins the centre of a circle to a
point P lying outside the circle. A tangent P7 is drawn to
the circle from P and a perpendicular 7N dropped from 7’
to OP. Prove that segments AP and AN, where A is the point
of intersection of OP with the circle, are equivalent infini-
tesimals as P — 4.
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Fic. 20.

424. Tangents are drawn at the ends and mid-point of the
arc A B of a circle and points 4 and B are joined by a chord.
Show that the ratio of the areas of the two triangles thus
formed tends to 4 as arc AB diminishes indefinitely.

Numerical Problems

425. Starting from the equivalence of functions 1 4 = —

— 1 and %x (see Course, sec. 40) as x — 0, evaluate approxi-
mately: - - L

(1) Y105; (2)V912; (3) V260; (4) V1632;

(5) Y0'31; (6) Y 0-021.

R x
426. Prove that 1 + 2 — 1 and » are equivalent infini-

tesimals as  — 0. Use this fact to find approximately the roots

3
(1) VI087; (2) V814d; (3) YTT; (&) Y1080,

Find the same roots from logarithmic tables. Compare the
results.

427, Use the equivalence of In (1 4+ x) and = as = — 0
for approximate evaluation of the natural logarithms of
the following numbers: 1-01; 1-02; 1'1; 1-2, Find the loga-
rithms to base ten of the same numbers and compare with
the tables.



CHAPTER III

DERIVATIVES AND DIFFERENTIALS.
DIFFERENTIAL CALCULTUS

1. Derivatives. The Rate of Change of a Funetion

Some Physical Concepts

428, A particle moves in a straight line according to the
law
s =5t -+ 6.

Find the average velocity: (a) during the first six seconds,
(b) during the interval from the end of the third to the end
of the sixth second.

429, A particle M moves away from a fixed point 4 so
that the distance AM increases proportionally to the square
of time. After 2 min from the initial instant distance AM
is equal to 12 m. Find the average velocity: (a) during the
first 5 min, (b) during the interval from { = 4 min to { = 7
min, (c) during the interval from ¢ = ¢, to { = ¢,.

430. The equation of a rectilinear motion is

3
— 13 -
S—t—l—t.

Find the average velocity during the interval from ¢ =
=4 to t = 4 + At, putting 4t = 2, 1, 01, 0-03.

431. A freely falling body moves according to the law
gt?
? »
gravity. Find the average velocity during the interval from
t =5 sec to (¢t 4 Af)sec, putting A4t =1 sec, 0'1 sec, 0°05
sec, 0°001 sec. Find the velocity at the end of the fifth second

8§ = where ¢ (= 980 cm/sec?) is the acceleration due to

54
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and at the end of the tenth second. Obtain the formula
for the velocity of the falling body at any instant #.

432, AB is a thin non-homogeneous rod of length I, = 20
cm. The mass of a piece AM increases proportionally to the
square of the distance of point M from point 4, and we know
that the mass of AM = 2 cm is equal to 8 g. Find: (a) the
average linear density of the piece of rod AM = 2 cm,
{(b) of the whole rod, (c) the density of the rod at point M.

433. The mass (in g) of a thin non-homogeneous rod AB
of length 30 cm is distributed according to the law

m = 31 + 5,

where [ is the length of a piece of rod measured from 4. Find:
(1) the average linear density of the rod, (2) the linear den-
sity: (a) at the point distant I = 5 cm from 4, (b) at point
A itself, (c) at the end of the rod.

434. The amount of heat @ required to raise unit mass of
water from 0 to ¢° C is given by

Q = ¢ -+ 0-00002¢2 + 0-0000003¢* (cal/g).
g

Find the specific heat of water at ¢ = 30°, ¢ = 100°.

435*, The angular velocity of a uniform rotation is defined
as the ratio of the angle of rotation to the corresponding
time interval. Give the definition of the angular velocity
of a non-uniform rotation.

436. If the process of radioactive decay were uniform,
the rate of decay would be reckoned as the amount of materi-
al disintegrating in unit time. The process is in fact non-
uniform. Given the definition of the rate of radioactive
decay.

437. A constant current is defined as the quantity of
electricity flowing through the conductor cross-section in
unit time. Define a variable current.

438. The thermal coefficient of linear expansion of a rod

is the increase in unit length per 1° C rise in temperature if
we assume uniform expansion. The process is in fact non-
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uniform. Let I = f(¢), where I is the length of the rod, ¢ the
temperature. Define the coefficient of linear expansion.

439. The coefficient of extension of a spring is defined as
the increase in unit length of the spring under the action of
unit force acting per square centimetre of the spring cross-
section. It is assumed here that the extension is proportional
to the force (Hooke’s law). Define the coefficient of extension
k when there is a deviation from Hooke’s law. (Let [ be the
spring length, S the cross-sectional area, P the extending
force and I = ¢(P).)

Derivatives

440. Find the increment of the function y = 2® at the
point x = 2 when the increment Jx of the independent
variable is (1) 2, (2) 1, (3) 0'5, (4) 01,

441. Find the ratio Z—]?i for the functions:

Az
(1) y=22% —a2 41 for z =1; Az =01;
(2) ?/Z% for x = 2; Adx = 0'01;
(3) y= VE for z = 4; Axr = 0°4.

Show that, as 4x — 0, the ratio tends in the first case to 4,
in the second to — i, in the third to i .

442, Given the function ¥ = 2, find approximate numeri-
cal values for the derivative at x = 3 when Az is equal to
(a) 0'5, (b) 0-1, (c) 0-01, (d) 0-001.

3

3. f(x) = 2% find [(5); f(—2); /'(— 5)-

4. f(x) = 2%; find f(1); f(0); f(=V2); f(%)

445, f(x) = x% At what point does f(x) = f(x)?
446. Given f(x) = a2, show that f'(a 4 b) = f'(a) + f'(b)-
Does the same equation hold for f(z) = 23?
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447, Find the numerical value of the derivative of y =
=sinx at x = 0.

448. Find the numerical value of the derivative of y =
=logz at z = 1.

449. Find the numerical value of the derivative of y ==
= 10* at z = 0.

450, What is the limit of ]l;i) as x—0 if f(0) = 0?

451. Prove the theorem: if f(z) and p(z) vanish at x = 0:
f(0) =0, p(0) =0, and their derivatives exist at z = 0,
whilst ¢'(0) =~ 0, we have

. @) _ f(0)
lim ==L = 222
0 @(x)  9'(0)

452. Prove that, if f(x) has a derivative at = a, then
. zf(a) — af(xr) _ ,
iﬂﬁ = f(a) — af'(a).

453. Find the derivatives of the functions:

3

(1) 25; (2) 25 (3) 2T ; (4) 1?}?; (5) Va;
5

1

4
=i (9) & Vw; (10) 0725

—Jd l-
(6) € 3: (7) ;E’ (8)

_2
(15) ax 3

Geometrical Meaning of the Derivative

454. Find the slope of the tangent to the parabola y = x2:
(1) at the origin, (2) at the point (3, 9), (3) at the point (—2, 4),
(4) at its points of intersection with the straight line
y=3xr— 2.

455. At what points is the slope of the tangent to the
cubical parabola y = 23 equal to 31

456. At what point is the tangent to the parabola y = x2:
(1) parallel to Oz, (2) at an angle of 45° to Ox?
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457. Can the tangent to the cubical parabola y = «® form
an obtuse angle with Ox?

458, At what angle does the parabola y = x? cut the
straight line 3z —y — 2 = 0?

459. At what angles do the parabolas y = 22 and 2 = 2
intersect ¢

460. At what angles do the hyperbola y =% and the

parabola y = Jx intersect ?

461. Write down the equations of the tangent and normal
to ¥ = 2% at the point with abscissa 2. Find the subtangent
and subnormal.

462. For what values of the independent variable are the
tangents to ¥y = 2? and y = 23 parallel ?

463. At what point is the tangent to the parabola y =
= ?: (1) parallel to the straight line y = 4x — 5; (2) per-
pendicular to the straight line 22 — 6y + 5 = 0; (3) at an
angle of 45° to the straight line 3z — y + 1 = 0?

464. Show that the subtangent corresponding to any point
of the parabola y = ax? is equal to half the abscissa of the
point of contact. Using this fact, give a method of drawing
the tangent to the parabola at any given point.

465. Show that the normal to a parabola at any point
is the bisector of the angle between the line joining the point
to the focus and the line through the point parallel to the
parabola’s axis.

2. Differentiation of Functions

Sums, Products and Quotients of Power Functions

466, Differentiate the following functions (x, y, 2, ¢, u,
v are independent variables; a, b, ¢, m, n, p, ¢ are constants):

(1) 322 — 5z + 1; (2) x4—%x3—|—2'5x2—0'3x+0'1;

3 3
(3) ax® + bz +c; (4) Vz +V2;
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_ 4 4 3 1

®) 2Vi— 2 +V5  (6) 0-81@—?’—,+5—y2;

x , n, 2t m ez  plx,
(7),'—?’4';—{-;;2—*-?, V— ﬁ )

mz? + nz + 4p g3 25
(9) p_l_q ’ (]‘O)OIt 3 t14+ ‘5/7:
(11) (= — 0'5)%; (12) Vz (2 — Yz + 1);
(13) (v + 12 (v — 1);  (14) 05 — 3 (@ — 2)?;

az® + ba 4 ¢ mu + n\®
09 ST 0 (5

467. f(z) = 3z — 2V=. Find: f(1); f(1); f(4); f(4);
Ha®); f'(a?).

2 —_—
468, f(r) = L= % —1

. , R |
o - Find: A0 £ @) /(g

3 __ —_—
469, f(z) = 22 3zz+ V2=1 . G) .
470. f(x) = 4 — 5z 4 22® — a®. Show that
f(@) = f(—a).
Differentiate the functions of problems 471-489 (=, y, 2, ¢,
u, v, s are variables; a, b, ¢, d, m are constants).
471. (1) y = (2® — 32 + 3) (22 + 2z — 1);
(2) y = (28 — 3z + 2) (2t + 22 — 1);

(3)y=(ﬁ+l)(vi;—1);

2 y Va2
@) y=|=—y3|{aVe+ =|;
3
()i
(6) y = (Yz + 2x) (1 4 Va? + 3=);
(6) y = (2% — 1) (2% — 4) (2 — 9);

(M) y=(1+Vz) (1 4 V2z) (1 + V3x).

3
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x4 1 oz
472. :l/-——*x—:—i'. 473. y—x-’—2+ 1 .
341 =
474.s*t_1—. 475.u-;2——+v+1.
_ax+b
476. Yy = cm .
ot 41 . _
o 1 — 8
2 _vr—wv 1
480.?/—-%—3-:—1. 481.“—W.
1 — 23 1
482, y = —— 483, z = —- .
Y & T 4+t 41
1 224
484- § = mt:*?s . 485. Yy = m .
Pt r—1 . 3
486, y = R s e 487, y = =) (1= 249 "
ax -+ bx?
488. y == am —|—b—m2 .
a?b%c?
489. yz(x—a)(x—b)x-—c) ’
490. f(x) = (22 4+ = + 1) (x2 — xz 4 1); find f(0) and f'(1).
491. F(z) = (x — 1) (x — 2) (x — 3); find F'(0); F'(1)
and F’(2).
1 3 ’ ’ _—
492, F(x) = P +x2—{— i find F'(0) and F'(—1).
3 2 , /
493. s(t) = E—3 -+ 5 find &'(0) and s'(2).
1 ’
494. y(x) = (1 4 2?) (5 —_ E); find y'(1) and ¥'(a).
495. o(p) = 1__‘%2; find ¢'(2) and g'(0).
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a—2z ,
I_—F—z’ find (p(l).

497. z(t) = (Y 4- 1) ¢; find 2/(0).

496. ¢(z) =

Powers of Functions
Differentiate the functions of problems 498-515:
498. (1) (x —a)(x — b) (x — ¢) (x — d);
(2) @2+ 1% (3) (L —2)®; (4) (1 + 20)%;
(8) (1 — a2 (6) (52° + 2% — 4)%; (1) (& — 2)f;
6 4

8 (7x2—§+6) (9)s=(t3—t1_3+3)

(10) y = (”‘ + 1—)2; (11) y = (1 + “"2)5;

x—1 142
(12) y = (223 -}- 322 + 62 4+ 1)%
(844 __ B
499, v = s 13 500.8—-(1_02.
3
so1, y = LTVE soz. y— L= V%
1
503, y =1 — 22 504, y = (1 — 2x2)%,
v \™ 2
505. u =(1 — ’l)) . 506. Yy = m .
3
1 1
507. Y = ——. 508- =V .
Y Va? — 22 Y 1+ 22
1 14+
509- -_ o, 510. i ——
y V1 —at — a3 y V1—2
x? 1
511- =, 512.u= p———
Y Va? + a? v — Va2 + v?
1 5
513.?/=3 + 3

Yoz —1 Y@@+ 2¢
3
514. u(v) = (02 + v + 2)%; find w'(1).
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515, y(z) = |/:—J_D%; find ¥'(2).

516. Show that the derivative of an even function is an
odd function, and the derivative of an odd function is even.

Trigonometric Functions

Differentiate the functions in problems 517-546;

517. y = sinx | cos z.
519, y = A0
B2l z=-m g %

o sin o

x
5. Y =Tz T oosz -
525. y = cos? z.
1
b27. y = cosx — gcos3 z.
529, y = %tan%—tanx—}-x.
b31. y = sec®x -+ cosec? x.
533. y=acos§.
536. y =tan?;— 1 .
537. y = sin -
-y =sin_.
539. y = cos? 4.
541. y = sin J'1 + 22,
543. y = (1 + sin2 )%
b45. y=cos21 _VE.
1+ Ve

z
518. Yy = m .
520. ¢ == @ sin ¢ + cos ¢.
sin ¢
b22. s = T(}()St .
zsinz
524, Y =T tanz T tenz
526, y = -l-tan4 x.
4
528, y = 3sin2x — gin? z.
530. y = x sec?x — tanw.
532. y = sin 3x.
534. y = 3sin (3x + 5).
536. y = V1 + 2 tanz.
538. y = sin (sin z).
x
540, y = tan—z— .
3
542, y = cot V1 4 22
44, y = Vl -+ tan(x —|—%)
546. y = sin® (cos 3z).



547.

Inverse T'rigonometric Formulae
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Deduce the formulae:

63

(sin™ z cos nx)’ = n sin" "1z cos (n + 1) z;

(sin™ 2 sin nx) = nsin® Yz s8in (n + 1) z;

(cos™ x sin nx)’ = n cos" 1z cos (v 4 1) z;

(cos™ x cos nx)’ = —n cos" Lz sin (n + 1) 2.

Differentiate the functions in problems 548-572:

548

550. y = (arc sin x)2

551. y = warcsinz + J1 — a2,

552, y— — . 553.
arcsin x

554, y = i‘%"ﬁf ) 555.

556, y = (arc cos x + arc sin )",

bb7, y = arcsec x. bb8.
aresin x

559. B ———— 560.

y V1 —a?

b61. y = arcsin (z — 1). b62,

b63. y = arc tan 22, b64.

565, y = arcsin (sin x). 566.

567. y = J1 — (arccos x)>..  b68.

4
569, y = %l/arc:sinya:2 -+ 2z .
570. y = are sin fmosne

9y = « arc sin x.

549. y

1—cosecosz’

arc sin x
" arccosz

y = x sin x arc tan .

Y= Y arc tan .

x arctanx
Yy =15 :
x2
Y = arctanz
x — 1
y = arc cos .

V3

. 2
=aresin-—- .
y z

1
— tan?- .
y = arctan®—

= arc¢sin l—x
y= i+z°
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b4 acosz
a+bceosz’

b72. y = arc tan(z — V1 + 22).

Logarithmic Functions
Differentiate the functions of problems 573-597:

571. y = arccos

b73. y = x%log, =. 574, y =In22.
575. y = z log x. 576. y = VIn .
x—1 .
577. yzlc)ch 678. y =z sinz ln =,
1 In 2
579.y=m. 580.y=96,1 .
l1—Inx In z
b83. y = 2" Inw. 584. y = }1 + In2 2.
585, ¥ = In (1 — 2x). 586. y = In (22 — 42).
587. y = Insin z. b88. y = log, (x% — 1).
589. y = In tan «. 590. y = In arccos 2z.

591. y = In*sin x. 592. y =arctan [In(ax - b)].

593. ¥ = (1 4 In sin z)". 594. y = log, [log, (log® x)].
595. y = In arc tan J'1 + 22
596. y = arcsin? [In (a® + x3)].
8
697. y = |/In sing%s

Ezxponential Functions
Differentiate the functions of problems 598-633:

598. y — 2=. 599. y — 10%,
600.y=3—1x 601 y =2

602, y = z10~. 603. y = ze*.

604, y = % 605.y=”3:;2x.
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606. y = e* cos .

608. y =°‘;i”"

610, y = 2® — 3~

612. y = (x® — 2x + 3) e*.
1—10%

614. y - —1—}——10"_ .

616. y = ze* (cos z -+ sin z).

618.
620.
622.
624.
626.

628.

630.
632,

Y = 102x—3,

y = gin (2%).

Yy = qsinx,

y = 28%,

y = sin (ex2+3x—2)_

y= eVln (ax*+bx4-c)
y = ae~ b,
y = Ae~¥*gin (wx + ).

Hyperbolic Functions
Differentiate the functions of problems 634-649:

634.
636.
638.

640.
642.

644.

646.

647.

y = sinh® z.
y = arc tan (tanh z).
y = sinh? x 4 cosh? z.
y = Veosh x.
y = tanh (In ).

4

y = V(1 + tanh®z)3. 645. y = ;tanh ; — —lﬁ-tanh"’ —.

4

1+tanhl:
Y= Vi —tanhz"

1
y=—2—tanhx+~—§

65

ex
607. Y= m .
609. y — 2%,
611. y =171+ e

1+ e

613. Yy = lTex .

e*
615. y == I——{——xé .
617. y = e,
619. y = eV*+1,
621, y = 3inx,
623, Yy = earcsian_
625. y = elinx,

627, y = 10! —sintx,
3
629. y = In sin arc tan e3.

631. y =a% <.
633. y = a*a.

635. y = In cosh .

637. y = tanh (1 — 2).
639. y = cosh (sinh z).

641. y = ecosh®x,

643. y = z sinh 2 — cosh z.

z
2

ﬁ]n 1+ Y2tanhz
1— Y2tanhz
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1 . 0.3
648. y = = cosh 2x 4 Vx sinh 2.  649. y = a2 cosech z.

Logarithmic Differentiation

Differentiate the functions of problems 650-666 by using
the rule for logarithmic differentiation:

650. y = x*'. 661. y = .
652, y = (sin z)eos*, 653. y = (In z)*.
664, y = V(x + 1)% 655, y = x%e* sin 2.
3
(=22 )x+1 .
656. y—w—. 657. Yy==x .

4

3V — 9 —
658.y=(xj——1)1x——2. 6569. y = Vasinz 1 — e~

V(x — 3)?
1 — arcsinz 1
660. Yy = m. 661. y=x.
sin x . z *
662, y = xsinx, 663.y—(—1+x).
664. y = 2xVx 665, y = (a2 - 1)sinx,
3
=>4+ 1)
666. y = i

Various Functions

Differentiate the functions of problems 667-770:

3
667. y = (1 + V) 668. y=atan(%-{—b).
669. y = V1 + y 2pz.

670, y = arc tan (22 — 3z + 2).
671. y = log (x — cos x). 672. y = 3 cos? & — cos® z.

n 1
8 674. y = T,

Vx—}—}/_a—:

673. y =25 tang -+ tan




675.

677.

679.

681.

682,

684.

686.

688.

689.
690.

691.

692.
694.

695.

696.

698.

700.

702.
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y = sin gsin 2. 676.

3
y = 25 Yab — 8. 678.

y=(ﬁ+%ﬂ)lo.

y=82x+3(x2_x+%).

2 8in?
Y= "os 2z 683.
tan ; -+ cot g
y= — 685.
9—_
V42542
Yy = A - 687.

y=xarcta,n}Fx.
y=V1 + tan?zx + tantz.
y = cos 2z In x.

y=§arctanx+ %arcta,n

680.

y = 8in xesx,

y=e*Inz

z 41

y=arctanx_1.

Y =—1—arc tan zy3

V3 1—a%

— sin? L cot X
Yy = sin 3cot2.

y=1n(c+ V@ T).

1 —

22’

y = arcsin (n sin ). 693. y = are sin }Jsin z.

1 1
— in® ins
Yy = g 8in 3x g SN 3.

y=z—Y)1 — 2% arcsin .

y=cosarcs2,mx. 697.y=Vx—|—Vx+ﬁ.
. l1—Inz
y = arc cos J1 — 3z. 699-y=s1n2( . )

y = log, (> — sinx).  70L.

Lzt Y1 —2a?
y=Ih-—7——.

703.

= arc tan 1—2
y= 152"

y = z arc sin (In z).
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1 —e* -

704, y = tan T o 705. y = cos z J1 + sin2 z.
2

706, y = 04 (cos d —21— 1_ sin 0'8 x) .

_ 1
707. y = x10Vx, 708. y = tan® %z

1
709. y = In arctan . MM y=ln ———— -,
y 1+ 2 y x4+ Var —1

3
711.y=V1+xVx—|—3. 712.y=x2V1+V§.
1

— e, 714. y = 2® arc tan a3,
3. y V1 + sin?x Y *

In sin 2
715'y=lnc_osx' 716, y=aresinz +}1 — 22
arcsin 4z 1
7. y =1 -4 718, y=elrx,
1 —e*
719. y=1In oF 720, y = 10xtanx,
721. y = sin® x sin 22, 722, y = 2—_(30_2” .
Y cos 2z
1—=x
723. y=wx Vm .
1. 1+= 1
724, y—zlnm— éarctanx.
x
725, y = 2nx
726. y = V(@ —x) (x — b) — (a —b)arctanvzzi .
. sin 3z _ V:E
72%7. y—ms—x'. 728.y—e +x .

729, y=Va2—x2—aarccos§.

730.y=}/x2+1—]n(£+V1+—1—).
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sin? x cos? z
1—|—cotx+ 14+ tanzx’

2
732. y=1In (x + Vaf — V2—1

733. y=e> (asinz —cos z). 734, y = ze! —cosx,

-

arctane—2c '

737. y = 3xdarcsinx + (22 4+ 2)}1 — 22
1

31, y=

736, y = 736. y = e* (sin 3z — 3 cos 3z).

738, y =
Jiie
739. y = 2arc sin % 1762 — V2 + 42 — 22
740, y = In (e* cos -+ e~* sin x).
1 -}—xarctanx . 1
1. y = Vl o 742, y = oos @ — oos) °
—
743. y = e* sin x cos® z. 744.y=V9+6V5;?.

745, y = x — In (2e* + 1 4 Ve + 4ex + 1).

8. y=1In tang—cotxln(l + sinx) — z.

746, y = exctan T+ +3, 47, y =

749, y = 21n (2 — 3 )1 — 422%) — 6 arcsin 2.
322 — 1

%0, y = + Iny1 + 22 4- are tan z.

1 . x41
751.y=§(3—-x)V1-2x—x2—|—2arcsm 7z
762, y=In (xsinz Y1 —a?). 753. y = 2 }1 + 2%sin z.

Yz + 2 (3 — ) S
754. Y= —W— . 755. y=V(1—l—erx)3.
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1 xz—arctanx+;—lnx+1

756, y =—=e
Va
1+ tanx
sin z 3sinx 3 2
BT Y= foosiz T Soostz T B0 z
1 — tan—
2
__xe*arctanx _ (1—a?)e*"1cosx
e RS A oo cox

3ax

760. y =z V(@ + a?)® + —- Va® + @ +—ln( x +
+ Yt + a?).

761, y = x (arcsin z)? — 2r + 2} 1 — 22 arcsin x.

762. y = In cos arctanex—ge——x-
1 a
763. y = arc tan e’""vi .
v= v )
1 z+ 1 1 9 — 1
764. Y = ]. Vm—l—l/_a:rctanT
Vl—}—x—]/l Vl—x
765. 2 arct .
y= V1 x+1/1—x + 2arctan 1+ 2
3
766. y=(tan2x)c°t5. 767. y = /ﬂ
Va2 4 4

N R e ¢ 2¢ 41
768. y =1n l/m+2 3(arc an 75 4

2z — 1
arc tan
" ")
z2 — 1
769. y = arc cos—m .
_ x 1 (1 4 2x)?
0.y =— T e T T oy T 4

V3 4z — 1

+ 3 arc tan 3
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771. Show that the function y =1In satisfies the

1
1 + z
relationship
dy
y

772. Show that the function

=%2+%x}/x2—|— 1 +anx—l—Vx2_—{:_l

satisfies the relationship

2y=zy +Iny'.
773. Show that the function
arcsin

y1—a2
satisfies the relationship
1—a?)y —ay=1.
774*, Evaluate the sums:

1+ 2¢ 4 3224 ...+ ne 1
24+2.3c4-3. 4224 ...+ n(n—1)a2"2

Inverse Functions

775. Suppose that the rule for differentiating power func-
tions is only proved for positive integral powers. Deduce the
formula for differentiating a root by using the rule for dif-
ferentiating an inverse function.

776. x = errcsiny;  find dy in terms of y, in terms of .

dz

V77, t =2 — 35 + s*; express g—: in terms of s.

78, u= % In i—:}:—% ; prove the relationship

du do
dv du
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779. Knowing that arcsin }z and sin?z are the inverse
of each other, and that (sin? )’ = sin 2z, find:

(arc sin Yz)'.

780. We use the symbol «(x) to denote the inverse of the
exponential function y = 2%, i.e. y = «* implies = = a(y).
Find the formula for the derivative of the function y = a(xz).

781. The inverse hyperbolic functions are written as
Arcsinh x Arccosh x, Arctanh . Find the derivatives of
these functions.

782, s =te~!; find d—t

783 y = :_xx: . Express gg in terms of z, in terms of y.
Show that gy gx

784. z =3y* — 4y + 1. Find g—z

785. t = arcsin 25. Find 3 in terms of s, in terms of ¢,

786. Show that gy g—: = 1ifx and y are connected by

the relationships:
My=a2~4+ax+5b;, (2y=2z"
B)y=In (z*2 —1).

Functions Given Implicitly

787. Show that the derivatives of both sides of the equation
sin?x =1 — cos? x
are identically equal, i.e. that the equation can be differenti-
ated term by term. Is it “possible” to differentiate term by
term the equation sinz =1 — cosz?
788. Show that the equation
2sin®x — 1 cosz (2sinx + 1)

+

: = tan z
cos ¥ 14 sinz

can be differentiated term by term.



789. What must the funetion y = f(x) be for the equation

to be
both

790. What must y be for the derivatives of both sides of

to be

ITII. DERIVATIVES AND DIFFERENTIALS

costz -1 2sin2xcos?z - 42 =1

differentiable term by term (i.e. for the derivatives of

sides to be identical) ?

a2 =1

equal, i.e. for the equation to be differentiable term by

term ?
791. What is the slope of the tangent to the circle

(@ — 12+ (y + 3)* =17,

at the point (2, 1)%

Find the derivatives of functions y given implicitly in

problems 792-812:

Y 1 1 1
792.-&?+b—2=1. 793. 22 4 y2 =aqa? .
794. 2? + y* — 3azy = 0. 795. y2? cos = a? sin 3.
796. y® — 3y + 2ax = 0. 797. y* — 2xy + b2 = 0.
798, 2t + ¥t = 222
799, 23 + ax’y + bxy? + y® = 0.

800. sin (zy) + cos (xy) = tan (x + y).
801, 2% 4 2y = 2x+y, 802. 2yIny = «.
803. x — y = arcsin x — arc sin ¥.
804, 2y = y~. 805. y = cos (z + ).
806. cos (zy) = x. 807. x% -+ y% = a%
808. y =1 -+ xe.
809. x sin y — cos ¥y 4 cos 2y = O,

1—% x
810. tan% = Vl +ktan§ .
811. ysinz — cos (x — y) = 0.

812

. Yy=ux 4 arc tan y.
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813. Show that the function y defined by the equation
2y — In y = 1 satisfies also the relationship

. d
¥+ @y — D=0

Geometrical and Mechanical Applications of the Derivative

814. Two points with abscissae x; = 1, x, = 3 are taken
on the parabola y = 22. A secant is drawn through these
points. At what point of the parabola is the tangent to it
parallel to this secant?

815. A chord is drawn through the focus of a parabola
perpendicular to its axis. Tangents are drawn to the parabola
at its points of intersection with the chord. Show that the
tangents cut at a right angle.

816. Form the equations of the tangent and normal to
the hyperbola y = -912 at the point with abscissa x == —% .
Find the subtangent and subnormal.

817. Show that the intercept of the tangent to the hyper-
bola y =g between the coordinate axes is bisected at the

point of contact.

818. Show that the area of the triangle formed by any
tangent to the hyperbola zy = a and the coordinate axes
is equal to the area of the square constructed on the semi-
transverse axis.

819. A particle moves along a straight line so that its
distance s from the initial point after ¢ seconds is equal to

8§ = it“ — 443 1+ 16¢2.

(a) At what instant was the particle at the initial point?
(b) At what instant does its velocity vanish?

820. A body of mass 3 kg moves along a straight line
according to the law

s=1-+1¢+
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8 is given in centimetres, ¢ in seconds. Find the kinetic energy
2
my

— of the body 5 sec after the initial instant.

821. The angle « of rotation of pulley is given as a function
of time ¢ by « = ¢ + 3t — 5. Find the angular velocity at
t = b sec.

822, The angle of rotation of a wheel is proportional to
the square of the time. The first revolution is accomplished
in 8 sec. Find the angular velocity w, 32 sec from the start of
the motion.

823. The angle 6 through which a wheel rotates in ¢ sec

is equal to 0= att — bt L c

where a, b, ¢ are positive constants. Find the angular velocity
w of the wheel. After how long will the angular velocity be
zero?

824. The quantity of electricity flowing through a con-
ductor, starting from the instant ¢ = 0, is given by
Q=2+ 3t-+1 (coulombs)

Find the current at the end of the fifth second.

825. Find the points of the curve y = a? (x — 2)? at which
the tangents are parallel to the axis of abscissae.

826, Show that the curve y = 2% 4 5z — 12 is inclined
to Oz at every point at an acute angle.

827. At what points of the curve y = a® 4 2 — 2 is the
tangent parallel to the straight line y = 4x — 1.

828. Form the equations of the tangents to the curve

y=ux —% at its points of intersection with the axis of
abscissae.

829. Find the equation of the tangent to the curve y =
= 2® 4- 322 — 5 perpendicular to the straight line 2x —
—6y+1=0.

Find the equations of the tangents and normals to the
curves of problems 830-833:
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830. y = sin x at the point M(x,, y,).
831. y = Inx at the point M(x,, y,).

832. y = at the point with abscissa =z = 2a.

8a?
4a® + 2?

3
833. y2 = 2ax— o (cissoid) at the point M(x,, ).

834, Show that the subtangent to the nth order parabola
y = a" is equal to 71& times the abscissa of the point of
contact.

Give a method of drawing the tangent to the curve y = z".

835. Find the subtangents and subnormals to the curves
y=2a% y?=a® zy?= 1. Give methods of drawing the
tangents to these curves.

836. Find the equations of the tangent and normal to
the parabola 2% = 4ay at the point (z,, y,); show that the
equation of the tangent at the point with abscissa z, = 2am

. Y
is 2 ==+ am.
i

837. A chord of the parabola y = 22 — 2z 4 5 joins the
points with abscissae x;, = 1, x, = 3. Find the equation of
the tangent to the parabola parallel to the chord.

838. Find the equation of the normal to the curve

2 __
y= x jzx 4 6
at the point with abscissa x = 3.
839. Find the equation of the normal to the curve y =

= — }z + 2 at its point of intersection with the bisector
of the first quadrant.

840. Find the equation of the normal to the parabola
y = 2% — 6x 4+ 6 perpendicular to the straight line joining
the origin to the vertex.

841. Show that the normals to the curve y = 22 — z 4 1
through the points with abscissae 2; =0, z, = —1 and

5. . . .
Ty =3 intersect in a single point.
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842. Normals are drawn to the parabola y = 2 — 4x 4 5
at its intersections with the straight line x — y 4- 1 = 0.

Find the area of the triangle formed by the normals and
the chord joining the points of intersection.

843. Show that the tangents to the hyperbola y =

= ::; at its points of intersection with the coordinate
axes are parallel.
844. Find the tangent to the hyperbola y = : T z such
that it passes through the origin.
. . 1 .
845. Find the point of the curve y = T at which

the tangent is parallel to the axis of abscissae.

846. Find the equation of the tangent to the curve
2z + y) = a® (x — y) at the origin.

847. Show that the tangents to the curve y = 13

3+ a

through the points for which y = 1 intersect at the origin.

848. Draw the normal to the curve y = z In & parallel to
the straight line 2z — 2y 4+ 3 = 0.

849. Find the distance from the origin to the normal to
the curve y = e* - z? at the point z = 0.
7

850. Draw the graph of the function y = sin (291: — 5)

and find the point of intersection of the tangents to the
graph when one is drawn through the point of intersection
of the graph with Oy and the other through the point

S5 ‘
5]
861, Show that the subtangent at any point of the curve
y = ae®™ (a and b are constants) is of constant length.

8562, Show that the subnormal at any point of the curve
y = xIn (cx) (¢ is an arbitrary constant) is the fourth pro-
portional of the abscissa, ordinate and sum of abscissa and
ordinate of the point.
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863. Show that any tangent to the curve y =z % YV — 4a?

cuts the axis of ordinates at a point equidistant from the
point of contact and the origin.

2 2
854. Show that the tangent to the ellipse %—f— % =1 at

Lo YYo =1

x.
a? b2

the point M(x,, y,) has the equation

2 2
855. Show that the tangent to the hyperbola ';% — %5 =

= 1 at the point M (x,, y,) has the equation o _ Y% _ 1.

a? b?
856. Prove that the normal at any point of an ellipse
bisects the angle between the focal radii of the point (Fig. 21).

g
1 s
=4
/- M
Fz o _j x
F1c. 21.

Deduce from this a method of drawing the tangent and nor-
mal to the ellipse; solve the corresponding problem for the

hyperbola.
857. Find the equations of the tangents to the hyperbola
2 42
% — 3,7 = 1 perpendicular to the straight line 2x + 4y —
—3=0.

858. A straight line is drawn through the origin parallel
to the tangent to a curve at a given point M. Find the locus
of point P of intersection of this straight line with the straight
line through M parallel to the axis of ordinates.
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Find these loci for (a) the parabola y2 = 2pz, (b) for the
logarithmic curve y = log, z, (c) for the circle z? + 2 = a2,
- 2 2
(d) for the tractrix y = Ja2 — 2% —a In ﬁv—a—i .
Find the angles at which the curves of problems 859-864
intersect:

2
859. (1)?/=;il and y:M.

2 16
(2) y=(r—2)? and y = 4x — 2® | 4.
860. (1) «2 + y2 = 8 and y% = 2z.
(2) 22+ 4> —4x =1 and 2% 4 y2 + 2y = 9.

Y
2 _ a2 T A
861. 22 — 42 =5 and 18+ 3 1.
2 2 d o2 a?
862. 22 - y? = 8ax an y=2a—z'
8q3
863- x2=4ay a;nd y=m.

864. y =sinz and y = cosx (0 = x = ).
865. Find the equations of the tangent and normal to

the curve 2\ o\
40

at the point with abscissa a.

866. Prove that the sum of the intercepts cut from the

coordinate axes by the tangent at any point of the parabola
1 1 1

z? 4 y? = a? is equal to a.

867. Prove that the segment of the tangent to the astroid
2 2 2
z3 4+ y® = a3 lying between the coordinate axes has a

constant length a.
868. Prove that the segment of the tangent to the tractrix

a, a+ Va®:— a?
=_In—""—— " — Va2 — 22,
¥y=3 a— Va2 — a? 4

lying between the axis of ordinates and the point of contact
has a constant length.
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869. Prove that the length of the normal at any point
M(z,, y,) of the equilateral hyperbola x* — y?> = a?, measured
from M to the point at which it cuts the axis of abscissae,
is equal to the radius vector of point M.

870. Show that the intercept cut off on the axis of abs-
cissae by the tangent at any point of the curve 52— +
+ % = 1 is proportional to the cube of the abscissa of the

point of contact.

871. Prove that the ordinate of any point of the curve
2x%y% — a* = ¢ (c is an arbitrary constant) is the mean pro-
portional between the abscissa and sum of abscissa and sub-
normal to the curve at that point.

872. Show that the tangents at points with the same ab-
2 2
scissa to the ellipses % 3 %2« = 1, where the axis 2a is com-

mon and axes 2b are different (Fig. 22), have a common
point of intersection on the axis of abscissae. Use this fact to
indicate a simple method of drawing the tangent to an ellipse.

y

Fia. 22.

873. Prove that the curve y = e** sin mx is touched by
each of the curves y = %, y = —e/* at every point common
to them.
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874. The following method is used for drawing the tangent

| Co
to the catenar =-_-a (e? +e 9):a semi-circle is drawn
Yy Y=3

on the ordinate MN of point M as diameter (Fig. 23) and
the chord NP = a obtained; the line MP is the required tan-
gent. Prove this.

Fia. 23.

Graphical Differentiation

875. The following results were obtained by measuring the
winding temperature of an electric motor when current
passed:

Time t min ............. 0 5 10 15 20 25
Temperature 6§ °C ...... 20 26 32-5 | 41 46 49
Time t min ............. 30 35 40 45 50 55
Temperature 6 °C ...... 525 | 54-5 | 565 | 58 59-5 | 61

Draw a rough graph of the continuous dependence of
temperature on time. Use graphical differentiation to
draw the graph of the rate of change of temperature
with time.

876. Figure 24 illustrates the curve of the rise of a steam

engine (low pressure) inlet valve. Draw the velocity curve
by graphical differentiation.
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o] 0-:02 004 006 008 010 042 014
sec

Fra. 24.

3. Differentials. Differentiability of a Function

Differentials

877. Find the increment of the function y = 2? corre-
sponding to the increment Az of the independent variable.
Evaluate Ay if = 1 and dx = 0'1; 0-01. What will be the
error (absolute and relative) in the value of Ay if we confine
ourselves to the term linear in Ax?

878. Find the increment Av of the volume v of a sphere
when the radius B = 2 changes by 4R. Evaluate 4v if 4R =
= 0'5; 0'1; 001. What will be the error in the value of
ZIUR if we confine ourselves to the term which is linear in

?

879. Given the function y = x® 4 2z, find the value of
the increment and its linear principal part corresponding to
variation of z from x = 2 to z = 2'1.

880. What is the increment of the function y = 322 —
when the independent variable passes from the value z =1
to = 1'02. What is the value of the corresponding prin-
cipal part? Find the ratio of the second quantity to the first.

881, We know that the increment Az = 0-2 for a given
function y = f(x) at the point . The corresponding principal
part of the increment of the funection is known to be 0'8.
Find the numerical value of the derivative at x.

882, We know that the principal part of the inerement
df(x) = —0'8 of the function f(x) = 2? corresponds to the
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increment Adx = 0-2 of the independent variable at a certain
point. Find the initial value of the independent variable.

883. Find the increment and differential of the function
y = 22 — z for x = 10 and Az = 0-1. Find the absolute and
relative error on replacing the increment by the differential.
Draw a figure.

884. Find the increment and differential of the function

y = Vz for x = 4 and Az = 0-41. Find the absolute and rela-
tive errors. Draw a figure.

885. y = 2® — z. Evaluate dy and dy at » = 2, giving
Az the values dx = 1, Ax = 0’1, Az = 0°01. Find the corres-
|dy — dy|

|yl -

886. Find graphically (by drawing a large scale figure on
millimetre paper) the increment and differential, and evaluate
the absolute and relative errors, on replacing the increment
by the differential for the function y = 2* with = 2 and
Ax = 04.

887. The side of a square is 8 cm. How much is its area
increased if each side is increased by (a) 1 cm, (b) 0'5 cm,
(¢) 01 cm. Find the linear principal part of the increment of
the area of the square and estimate the relative error (in

per cent) on replacing the increment by its principal
part.

ponding value of the relative error 6 =

888. We know that, when the side of a given square is
increased by 03 cm, the linear principal part of the increment
in the area amounts to 2'4 cm?. Find the linear part of the
increment of the area corresponding to an increment in each
side of (a) 0'6 cm, (b) 0°75 cm, (¢) 1'2 cm.

889. Find the differentials of the functions:

3
Ve 1 1 1
1) 0°25Yx; (2) —; (3 ; (4) —; (B) ——=;
(1) 025Yz @ 5 B o= @~ ()2Vx
1 Vo . @ P g7
O == M gy ® % o5
nYx
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ummﬁn;unwh+m+wﬂﬁ—W%

D 03 g (14 (Lo —

)
(1“) 1 — t2,

1
(15) tan®z; (16) Binteanx; (17) 2 cosx;

X cos
(18) In tan (5 — Z)’ (19) =z

(20) Varcsin  + (arc tan z)?;

. 1 1
(21) 3arcsinx — 4arc tanx +§arccosx— 3§arccotx;

1
(22) 3 ¥ + 313 — 4 Vw.
890. Find the value of the differential of the function:

(1) y= m when the independent variable changes

from z = = to x = 61—”; (2) y = cos? ¢ when ¢ varies from
6 360
, . . a4 61n
60° to 60°30"; (3) y = sin 2¢p when ¢ varies from 3 to 360
(4) y = sin 3p when ¢ varie from = ¢ 8lz B)y = 'n(9
Y = sIn op when @ S 1Iro 6 0] W’ Yy = 81 g

. n 61z
when 0 varies from 5 to 360
891. Find the approximate value of the increment of the
function y = sin x when z varies from 30° to 30°1’. What
does sin 30°1" equal?
892, Find the approximate value of the increment of the
function y = tan x when x varies from 45° to 45°10',

893. Find the approximate value of the increment of

14 cosx . - . 1
=1 oosz when z varies from 3 to 3 + 105 -

894. o = k }cos 2¢; find dp.
1
895. y = 3 - —2-15 + 6Yx. Evaluate dy for =1 and
dz = 0-2.

y
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896. Evaluate approximately sin 60°3’, sin 60°18’. Compare
the results with the tabulated figures.

897. Show that the function y = 51—_:*_—;%: satisfies the

relationship
222 dy = (x%y? + 1) dx.

898, Show that function y given by
arc tan g =1In Va2 + ¢2

satisfies the relationship z(dy — dx) = y(dy + dx).
899. f(x) = e X!—®, Work out approximately f(1'05).
900. Evaluate arc tan 1:02, arc tan 0-97.

(2°037)2—1

(2°037)2+1"°

902. Evaluate approximately arc sin 0-4983.

903. If the length of a heavy cord (cable, chain) (Fig.
25) is 2s, the half-span I, and the sag f, the approximate

equation holds: e 2 p
§ = ( + ‘3' ﬁ) .

901. Evaluate approximately

Fia. 25,

(a) Work out the change in the length of the cord when its
sag f increases by df.

(b) If we assume a change in the length of the cable dx
(say due to a change in temperature or load), how does the
sag vary?

904. Compare the errors in finding an angle from its
tangent and from its sine with the aid of logarithmic tables,
i.e. compare the accuracy of finding = from the formula
logsinz =y and log tan x = z, if ¥ and z are given with
the same errors.
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905. In engineering calculations = and g (g is the accel-
eration due to gravity) are often cancelled when one occurs
in the numerator and the other in the denominator. Find
the relative error resulting from this.

906. Express the differentials of the following functions
of a function in terms of the independent variable and its

differential :
3

(1) y=Va? 4 52; x =108+ 2t 4 1;

r2—1
2) s =cos?z, 2z = ;
(2) s =cos?z, 2 1
1
3) 2= tanwv, v = ;
3) arc tan v, v tons

1
4) v=3 * 2 =Intans;

1
(5)s=ez,z=§1nt, = 2u? — 3u + 1;

(6) y=1In ta,n;i; % = arcsin v, v = cos 2s.

Differentiability of Functions

907. The function y = |x| is continuous for any x. Show
that it is not differentiable at a = 0.

908. Investigate the continuity and differentiability of
the function y = |23 at 2 = 0.

909. A function f(z) is defined as follows: f(x) =14 2
for z=0; fx)=zfor0<xz<]l; flx)y=2—=z for
l1=2=2 and f(z) = 3z — 22 for z > 2. Investigate the
continuity of f(x) and examine the existence and continuity
of f'(x).

910. The function y = |sin x| is continuous for any z.
Show that it is not differentiable at 2 = 0. Are there any other
values of the independent variable at which the function is
not differentiable ?

911. Investigate the continuity and differentiability of the
function y = el at ¥ = 0.
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912, f(x) = 22 sin% for x + 0, f(0) = 0. Is f(z) differenti-
able at £ = 0?

913. f(x) = IM;I for # + 0, f(0) = 0. Is f(x) con-
tinuous and diﬂ'erelrifiable at z =0?

3

914. Given f(x) =1+ V(x — 1)?, show that it is impos-
sible to extract from the increment of f(z) at x = 1 a linear
principal part, so that f(x) has no derivative at x = 0. Inter-
pret the result geometrically.

915. f(x) = z arctan 1/x for x = 0, f(0) = 0. If f(x) conti-
nuous and differentiable at * = 0? Interpret the result geo-
metrically.

916. f(z) = —>

1
14 ex
tinuous or differentiable at z = 07

for z <+ 0 and f(0) = 0. Is f(x) con-

4. Derivative as Rate of Change (Further Examples)

Relative Velocity

917. A particle moves along the spiral of Archimedes
¢ = ap. Find the rate of change of the radius vector p rela-
tive to the polar angle ¢.

918. A particle moves along the logarithmic spiral p = e%.
Find the rate of change of the radius vector if it is known
to rotate with angular velocity .

919. A particle moves along the circle p = 2r cos ¢. Find
the rate of change of the abscissa and ordinate of the particle
if the radius vector rotates with angular velocity w. The
polar axis is the axis of abscissae and the pole the origin in
the system of Cartesian coordinates.

920. A circle of radius R rolls along a straight line without
slip. The centre of the circle moves with constant velocity v.
Find the rate of change of the abscissa x and ordinate y of a
point on the circumference of the circle.
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921. The barometric pressure p varies with the height A
in accordance with the function

In2 —ch,
Po
where p, denotes the standard pressure. The pressure at a
height of 5540 m is half the standard; find the rate of change
of the pressure with the height.

922, The relationship 3% = 12z connects y and z. The
argument  increases uniformly with a velocity of 2 units per
second. What is the rate of increase of y at = 3%

923. The ordinate of a point describing the circle x? +
-+ 42 = 25 decreases at a rate of 1'5 cm/sec. What is the rate
of change of the abscissa of the point when the ordinate
becomes 4 cm?

924. At what point of the ellipse 16z2 4 932 = 400 does
the ordinate decrease at the same rate as the abscissa in-
creases ?

925. The side of a square increases at a rate of » cm/sec.
What are the rates of change of the perimeter and area of
the square at the instant when the side is a em.

926. The radius of a circle varies with velocity v. At what
rates do the area and circumference of the circle change?

927. The radius of a sphere varies with a speed ». What
are the rates of change of the volume and surface of the
sphere ¢

928. For what angles does the sine vary twice as slowly as
the argument ?

929. At what angles are the rates of change of the sine and
tangent of the same angle equal?

930. The rate of increase of a sine is increased » times.
How many times will the rate of increase of the tangent be
increased ?

931. Assuming that the volume of a wooden cask is pro-
portional to the cube of its diameter and that the latter in-
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creases uniformly from year to year, show that the rate of
increase of the volume when the diameter is 90 cm is 25 times
greater than the rate when the diameter is 18 cm.

Functions given Parametrically

932. How do you prove whether or not a point given by
Cartesian coordinates lies on a curve whose equation is
given in the parametric form? (a) Does the point (5, 1) lie
on the circle =2 + 5cost, y= —3 4 5sint? (b) Does
the point (2, }3) lie on the circle x = 2 cosf, y = 2 sin ¢?

933. Plot the graphs of the functions given parametri-
cally:

(a) x = 3cost, y = 4sint;
(b) =t — 2t, y = 1?4 2t;
(¢) x = cost, y=1+ 2sin{;
(d) == 21, y=i(t3—]— 1).

934. Eliminate the parameter from the parametric equa-
tions of the functions:

(1) x=3t y=6t—1t2; (2)x=-cost, y=nsin2i;
B)e=84+1y=t; A xr=¢—singp, y=1—cosg;
(5) *x=tant; y =sin2f - 2 cos 2t

935. Given the following curves, specified by parametric
equations, find the valies of the parameter corresponding to
the points with given coordinates on the curves:

(1) x = 3(2 cos t — cos 2¢), y = 3(2 sin ¢ — sin 2f);
(=9, 0);

z=0+2t,y=08+1t (3,2);

(3) z=2tant, y = 2sin¢ + sin 2¢; (2, 2);

@x=80—1 y=88—1t; (0,0).

Find the derivatives of y with respect to z in problems
936-945:

936. x = a cos ¢, y = bsin .

937. x = a cos? ¢, y = b sind ¢.
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938. x = a (p — sin ¢), =a (1 — cos ¢).
939, x =1 — 22, y=1=t—1,
940.x=———t+1, y=————t_1.
3 ¢
941. x =In (1 + ¢?), y=1¢—arctant.
942, z = ¢ (1 — sin ¢), Yy = @ cos @.
14 ot
943.x—t2_1, y—tle.
944, z = e'sint, y = ¢! cos t.
3at 3at?
945. x=m, y=l—_|_—t-3‘.

Find the slope of the tangents to the curves of problems
946-949:

946, x = 3 cost, y = 4sint at the point (3~2V—§, 2}@) .

947. x =t — 84, y = {2 — 3 at the point (0, 0).

9M8. z =8+ 1, y=1> 4t + 1 at the point (1, 1).

2

950. Give the simplest geometrical significance of para-
meter ¢ for the following curves specified parametrically:

949. z = 2 cost, y = sint at the point (1, — }/_5) .

2
x=cost+tsint—t—cost,

2

) .

. 2,
y=smt—tcost—§smt;

(2) xz=acos®t, y=asindt;
(3) x=acost)2cos2, y=asint})2cos 2t

951. Show that the function given by the parametric
equations
x =20+ 32, y=12-+ 28,

satisfies the relationship y = y? - 2y® (the prime denotes

differentiation with respect to x, ie. y' = g—g) .
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952. Show that the function given by the parametric
equations 14¢ 3 9
=T YT mTy
satisfies the relationship
dy
'3 __ ’ r__ I
vy?=1-4y (ZI = dx) .

953. Show that the function given by the parametric

equations at @ 4P 11

“T+e’ YT e a+er
satisfies the relationship

@ + y° = axy’ (y’=g—5)-

T

954. Show that the function given by the parametric

equations
__ 1 1+ vVi+te y=
V1+¢ ¢ ’ y1i+e’

satisfies the relationship
_ dy
12 — ’ . _J
yV1+y2=y (y—dx).

955. Show that the function given by the parametric
equations
g L4t _ 34 2In¢
e YT t
satisfies the relationship
! ' ’ d
vy = 2wy? + 1 (y=(TZ)

956. Find the angles at which the following curves intersect:

y=a?
M) x=§cost y=§sint'
3 ’ 4 ’
r=acosp, y=asing and
(2)§ al? atV3
Trye YT iye
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957. Show that, whatever the position of the generating
circle of the cycloid, the tangent and normal at the corre-
sponding point of the cycloid pass through its highest and
lowest points (see Course, sec. 55).

958. Find the lengths of the tangent, normal, subtangent
and subnormal at any point of the curve (cardioid)

z = a(2cost — cos 2t), y = a(2 sin t — sin 2f)

959. Find the lengths of the tangent, normal, subtangent
and subnormal at any point of the curve (astroid)

xz=asin®t, y=acosdt

960. Prove by evaluation that the tangent to the circle
2?2 4+ y? = a? is normal to the curve (involute of circle)

x = a(cost | tsint), y = a(sin ¢ — £ cos ¢).

961. Find the lengths of the tangent, normal, subtangent
and subnormal of the involute of the circle (see the equations
of the latter in the previous problem).

962. Prove that the segment of the normal to the curve
= 2asint 4 asinicos®?, y = —a cos? ¢,

lying between the coordinate axes is equal to 2a.
Find the equations of the tangent and normal to each of
the curves of problems 963-966 at the point in question:

963. x = 2¢'; y=e"tatt=0.

964, x =sint, y = cos 2t at t=%.

965, x = 2Incott+ 1, y=tant 4 cott at t=—z.

3at 3at?
966. (l)x=m-, y=H——t2 at t=2,
) x=1{t({cost— 2sint) ¢ t=g,

y=1Itsint 4+ 2 cost)
(3) z=sint, y=a'att=0.
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967. Show that, for the cardioid (see problem 958), the tan-
gents are parallel at any two points corresponding to values

of the parameter differing by g 7.

968. If OT and ON are the perpendiculars dropped from
the origin to the tangent and normal at any point of the
astroid (see problem 959), we have

4072 4 ON2? = a?.
Prove this.

969. Find the length of the perpendicular dropped from
the origin on to the tangent to the curve

2x = a(3 cos t -+ cos 3t), 2y = a(3 sin ¢ + sin 3¢).

Prove that
4@2 = 3p2 + 4q2,

o is the radius vector of the given point, and p the length
of the perpendicular.

Rate of Change of Radius Vector

970. Find the angle 6 between the radius vector and
tangent, and the angle « between the polar axis and tangent,
for the circle g = 2r sin ¢.

971. Show that the sum of the angles formed by the tan-
gent with the radius vector and with the polar axis is equal

to two right angles for the parabola ¢ = a sec? g Use this
property for drawing the tangent to the parabola.

972. Given the curve p = asin"% (conchoid), show that
o = 46 (the notation is the same as in problem 970).

973. Prove that the two parabolas p=oa sec2% and
p=25 coseczg intersect at right angles.

974. Find the tangent of the angle between the polar

axis and tangent to the curve p = a sec? ¢ at the point for
which ¢ = 2a.
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975. Find the tangent of the angle between the polar
axis and the tangent at the origin for (1) the curve p =
= sind ¢, (2) for the curve g = sin 3¢p.

976. Show that the two cardioids ¢ = a(l -+ cos ¢) and
o = a(l — cos ¢) intersect at right angles.

977. The equation of a curve in polar coordinates is given
parametrically: o = f,(¢), p = f,(f). Express the tangent of the
angle 6 between the tangent and radius vector as a function of ¢.

978. A curve is given by the equations ¢ = af?, ¢ = bi2.
Find the angle between the radius vector and tangent.

979. Express the radius vector ¢ and polar angle ¢ as
functions of parameter ¢ for the ellipse x = a cos f, y = b sin ¢.
Use this form of writing the ellipse to evaluate the angle
between the tangent and radius vector.

The polar subtangent is defined as the projection of the
piece of tangent, measured from its point of contact to its
intersection with the perpendicular erected on the radius
vector at the pole, on to this perpendicular. The polar sub-
normal is similarly defined. Use the definitions to solve pro-
blems 980-984.

980. Deduce the expression for the polar subtangent and
polar subnormal of the curve g = f(¢).

981. Show that the length of the polar subtangent of
the hyperbolic spiral p = % is constant.

982, Show that the length of the polar subnormal of the
spiral of Archimedes p = a¢ is constant.

983. Find the length of the polar subtangent of the loga-
rithmic spiral p = av.

984. Find the length of the polar subnormal of the loga-
rithmic spiral p = ar.

Rate of Change of Arc Length

In problems 985-999, s denotes the length of arc of the
curve.
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ds

985. The straight line is y = ax + b. Find L
. . ds

986. The circle is z? + y? = r2; 3= ?
s @ yr o ds

987. The ellipse is El—z—}— b= 1; ay =

988. The parabola is y2 = 2pz; ds = ?

989. The semi-cubical parabola is y? = ax®; ds

) @:: ¢
990. The sine wave is y = sinz; ds = ?

X -X
991. The catenary is y = f o (y = cosh x); ds = !
2 dx
. . . ds
992, The circle is = rcosé, y =rsint; &= ?

993. The cycloid is z = a(t — sin#), y = a(l — cost);

=1

994. The astroid is * = a cos®?, y = a sin3f; ds = ?
995. The spiral of Archimedes is # = afsin ¢, y = at cos ¢;

ds = 1

x = a(2 cost — cos 2t),

996. The cardioid is ds = ?

y = a(2sin ¢ — sin 2{);
997. The tractrix is

x:a(cost—{—lntan%), y=asint; ds= 1

998. The involute of a circle is

x=a(cost + tsint), y =a(sint— ¢cost); %: ¢

999. The hyperbola is x = a cosh t; y = asinh¢; ds = ?

Velocity of Motion

1000. A ladder of length 10 m has one end resting against a

vertical wall and the other on the ground. The lower end
moves away from the wall at a speed of 2 m/min. At what
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speed is the upper end falling when the bottom is 6 m from
the wall? What is the direction of the velocity vector?

1001. A train and a balloon leave the same point at the
same instant. The train travels uniformly at a speed of
50 km/hr, and the sphere rises (also uniformly) at a speed
of 10 km/hr. At what speed are they leaving each other?
What is the direction of the velocity vector?

1002. A man of height 1'7 m moves away from a light
source at a height of 3 m at a speed of 6'34 km/hr. What
is the speed of the shadow of his head?

1003. A horse runsround a circle at a speed of 20 km/hr.
A lamp is located at the centre of the circle, whilst there is
a fence tangential to the circle at the point at which the
horse starts. At what speed is the shadow of the horse moving

along the fence when the horse has travelled % of the

circle ?

1004. Figure 26 illustrates schematically the crank mecha-
nism of a steam engine: 4 is the cross-head, BB’ the guide,

Fia. 26.

AP the connecting-rod, @ the fly-wheel. The fly-wheel rotates
uniformly with angular velocity w, its radius is R, and the
length of the connecting-rod is I. At what speed does the
cross-head move when the fly-wheel has rotated through
the angle o?

1005. A fly-wheel disrupts when rotating at 80 rev/min.
The radius of the wheel is 90 cm, the centre is 1 m above the
ground. What is the speed of the piece indicated by 4 in
Fig. 27 when it strikes the ground?
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5. Repeated Differentiation

Functions given Explicitly
1006. y =22 — 3z + 2; o' =1
1007. y=1— 2% —a4; ¢y =1
1008. /(@) = (& + 10)%; f7(2) = ¢
1009. f(x) = a® — 4a® + 4; fIV(1) = ?
1010, y = (224 1)3; " = ? 1011, y = cos?z; "' = 1
1012, f(x) = e®~1; f'(0) = ?
1013. f(z) = arctan z; f'(1) = ?

1014, f(z) = { 1 S f@) =1

1015, y =B Inz; y™V =2 1016. f(z) — ; y'(@) = !

l—2
14=x

4
1017. ¢ = asin 2p; g—«p%= 7 1018, y = sy = ¢

Find the second derivatives of the functions of problems
1019-1028:

1019. y = xe*2. 1020. y = 1

14 a3 °
1021. y = (1 4 2?) arctanz. 1022, y = }a® — 22

_ 1
1023. y = In T+ 29). 1024 y = )
Yy (x + V1 + 2?) y P~
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1025, y = eV~. 1026. y =V1 — a? arc sin «.
1027. y = arc sin (e sinx). 1028, y = a~.

Find general expressions for the nth order derivatives of
the functions of problems 1029-1040:

1029, y = =, 1030. y = e~>.

1031. y = sinax 4 cos bxz. 1032, y = sin®x.

1033. y = xe*. 1034. y =z In x.

1

1035. y = P 1036. y = In (az 4 b).
x

1037. y = log, . 1038, y = T

1
— - — gint 4
1039. y = proy s M 1040, y = sin* z 4 cos? x.

1041, Prove that the function y = (z? — 1)* satisfies the
relationship

(2% — 1) y+2) — 22y"+D — p(n + 1) y™ = 0.

1042, Prove that the function y = e*sin x satisfies the
relationship ¥ — 2y’ 4 2y = 0, whilst ¥ = e~* sin = satisfies
y' + 2y 4+ 2y = 0.

1043. Show that the function y = %‘1’ satisfies the rela-
tionship 2y%2 = (y — 1) y"".

1044. Show that the function y = }2x — 2? satisfies the
relationship %" 4 1 = 0.

1045. Show that the function y = e** + 2e~* satisfies the
relationship y"’ — 13y’ — 12y = 0.

1046. Show that y = eV* 4 e~ V¥ satisfies the relationship

1

r’ 1 '
' +5¥ —39y=0

1047, Show that y = cos e* 4 sin e* satisfies the equation
yn _ yl + yegx = 0.
1048. Show that the function

y = A sin (@t + wy) + B cos (wt 4 wy)
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(4, B, o, », constant) satisfies the equation
g;ﬂ + 0’y = 0.
1049. Show that the function
a.e™ | a,e~"™* - a, cos nx + a, sin nx

(a,, a,, a5, a,, n constant) satisfies the equation Tk = nly.

1050. Show that the function

Yy = sin (n arc sin x)
satisfies the equation
(I — a2y —ay + n’y=0.

1051. Show that the function e*arsin* gatisfies the equa-
tion
I—a?)y —ay — a2y =0.

1052. Prove that the function y = (x 4 J«2 + 1)* satis-
fies the relationship
(I+a8)y" +ay —ky=0.
1053. Prove that the expression

17 AV}
=53l
Yy 2\y

is unchanged if y is replaced by ?1/, ie. if we put y = 1 ,

1
ylll’”__§ ?/—;,,2=S.
Y 2\n

we have

. . dz . dy
1054. Given y = f(x), express & in terms of iz and

3
2 22
%?yz. Show that the formula R = (1—_'%) can be trans-

formed to
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1065, Given F(x) = f(x)p(x), where f'(x)¢'(x) = C, show
that
FII fll ¢I’ 20 FIII flll (plll
=5+ "—+4+ — and & = .
Fo i e T ™M T -7

Functions given Implicitly

1056, %22 + a%? = a?b?; % =1
1057, 22 4 y2 = 72; % = 1
1058. y = tan (z + ¥); %z ?
1059, s =1 4 te; G2 =1

1060. 3 4 2® — 3azy = 0; y"' =1
1061. y =sin (x4 y); 3" = ?
1062. ety = zay; y' = 1

1063. Deduce the formula for the second derivative of the
inverse of y = f(x).

1064. e 4 zy = e; find y''(z) for z = 0.

1

1065. 42 = 2pz; find b= —9 .
V(1 -+ y?)?
1066. Show that #2? 4 22 = R? implies %k = 11?, where
P 0 -
V@ + g3

1067. Prove that, if

ax? 4 2bxy + cy?® + 2g9x 4+ 2fy + h =0,
then

dy _ext+by+g .9 4

Az ™ " bwtoy+f de? = (bx + oy + N*°

where A is constant (independent of x and ).
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1068. Prove that, if
y
(@ + bx) e* =z,

d2y d:l/ 2
2 ~J __ Y% _
.

then

Functions given Parametrically

d%z

1069. z = at?, y = b3, &2 = ?
2

1070. x = a cos ¢, y =asint; %:?
3

1071, x = a cos ¢, y = bsint¢; gxs—y=?
. d%y

1072. z = a(p — sin ¢), y = a(l — cos ¢); L = ?

1 3 1 — 3 n3 £ d3y ?

073. (1) z = a cos?t, Yy = asin® {; 3 =
2

(2) x = a cos?¢, Yy = asin?¢; %‘Z—=?
d%y

1074, (1) z = In ¢, y=1t*—1; W:?
2

(2) x = arcsin ¢, y=1In(1—#); 3}'717:?
2

1075. x = at cost, y = at sin £; g%=z

1076. Show that y = f(x) given by the parametric equa-
tions y =ef cost, x =e'sint, satisfies y"(x + y)®2=
= 2(zy’ — y)-

1077. Show that y = f(z) given by the parametric equa-
tions y = 3t — 3, x = 312, satisfies

36y” (y — V3z) = = + 3.

1078. Show that the function given by the parametric

equations
x=siné, y = sinki,
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satisfies the relationship

1079. Prove that, if
xz=f(t)cost — f(t)sint, y = f(t) sin¢ 4 f'(¢) cos ¢,

we have

ds® = d2® 4 dy® = [f(¢) + f"(6)]* A&

Acceleration

1080. A particle moves along a straight line such that

8§ = §t3 — ¢ + 5. Find the acceleration ¢ at the end of the

gecond second (s is given in metres, ¢ in seconds).
1081. A rectilinear motion is given by

s=1 — 4t + 1.

Find the speed and acceleration.
1082. A particle moves on a straight line such that

2 . . .
§ =g sin % at -+ 8. Find the acceleration at the end of the

first second (s in cm, £ in sec).

1083. A particle moves in a straight line, and s =} ¢.
Show that the motion is slowing down and that the accele-
ration a is proportional to the cube of the velocity ».

1084. A heavy beam of length 13 m is being lowered to
the ground, its lower end being fixed to a trolley (Fig. 28)
and its upper end attached to a rope wound round a windlass.
The rope unwinds at a speed of 2 m/min. What is the accele-
ration of the trolley away from point O when its distance
from Ois 5 m?

1085. A barge, the deck of which is 4 m below the level of
the wharf, is drawn towards the latter by a rope wound up
on a windlass at a speed of 2 m/sec.

What is the acceleration of the barge at the instant when
it is 8 m away from the wharf (measured horizontally)?
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1086. A particle is moving along a straight line in such
a way that its speed is changing proportionally to the square
root of the path traversed. Show that the motion occurs
under the action of a constant force.

Fic. 28.

1087, If the force acting on a particle is inversely propor-
tional to the speed, show that the kinetic energy of the
particle is a linear function of time.

Letbniz’s Formula

1088. Use Leibniz’s formula to evaluate the following
derivatives:

(1) [(2* + 1) sin 2]®0;  (2) (e* sin z)™;
(3) («® sin ax)™.

1089. Show that, if ¥y = (1 — z)— e—, then

(1—x)%=axy.

Prove by using Leibniz’s formula that

(1 — ) "D — (n + ax) y™ — nay®=D = 0,
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1090. The function y = e*?csin* gatisfies the equation
I—2%)y" —ay — Py =0.

(see problem 1051). By applying Leibniz’s theorem and
differentiating this equation n times, show that
(1= 2) g — (20 + 1) ay™*D — (2 + a2 g = .
1091, Prove that

(6™ cos bx)"M = rte® cos (bx -+ ng),
where

r=Ya®+ b3 tan<p=§.

Obtain the following formulae by using Leibniz’s theorem:
7" cos np = a" — C2a"~22 4 Cla™ 14 — . . .,
" sin np = Cla™~1b — Ca"~3b% + C3a"~5% — . ..

1092. Prove that
1

x'"lex =(—1)" i

1093. Prove that y = arcsin « satisfies the equation

7

1—-2Y)y" =uay.

Apply Leibniz’s formula to both sides of this equation to
find y")(0) (n = 2).

1094. By applying Leibniz’s formula n times, show that
Yy = cos (m arc sin x)
satisfies the relationship
(1= 29 g — (2 + D ay™+) — (m? — n?) y = .
1095. If y = (arc sin )2, we have
1 — 22y — (2n — 1) 2y™ — (n — 12y~ = 0.
Find '(0), %(0) . . ., ¥(0).
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Differentials of Higher Orders

8
1096, y = Va2 ; d2y =?
1097, y = 2m; d¥%y = ?
1098. y = (z -+ 13 (x — 1)2; d% = ?
1099, y = 4—; d%y = ?

1100. y = arc tan (g tan x); d%y = ?

1101, y =} In22z — 4; d2y = ?
1102. y = sin?z; d3y = ¢
1103. g% cos® ¢ — a%sin® p = 0; d?p = ?

2 2 2
1104. x3—|—y3=a3; d2y=?
1 — 22
— c = . 2, 3 .
1105. y = 1n~———-1 T z = tan?; express d?y in terms of:

(1) z and de, (2) ¢ and dt.
1106. y = sinz; z = a*; x = #3; express d2% in terms of:
(1) z and dz, (2) # and dz, (3) ¢ and di.



CHAPTER IV

THE INVESTIGATION OF
FUNCTIONS AND CURVES

1. The Behaviour of a Funetion “at a Point”

1107. Plot the graph of the function
y = 3at — 4% 1222 - 1.

1108. Starting directly from the definition, show that the
function y = 2® — 3x 4 2 is increasing at x;, = 2, is decreas-
ing at x, = 0, has a maximum at ; = —1 and a minimum
at xy = 1.

1109. Starting directly from the definition, show that the

. .. . 3 . .
function y = cos 2z is increasing at x, = = is decreasing at

%, = =, has a maximum at z; =0 and a minimum at

NA o

Ty =

1110. Starting directly from the definition, describe the
behaviour of the following functions at x = 0:
3
Dy=1—at (2 y=2o—2% (3) y=Va;
3 5
4) y=Va?; (5) y=1—Vat; (6) y = |tanz| ;
(My=|n@+1); B8 y=el,;

9) y= Va4 a2

1111. Show by using the tests for the behaviour of a
function at a point that y = In (¢ 4 2x — 3) is increasing
at z;, = 2, is decreasing at x, = —4 and has no stationary
points.

106
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1112. Examine the behaviour of the function

y =sinz + cosx

atx1=0,x2=1,x3=—7—; and z, = 2.

1113. Examine the behaviour of the function
y=x—Inz

at ¥, = =, x, = 2, ¥, = e and x, = 1, and show that, if the

‘é’
function is increasing at = a > 0, it is decreasing at ' =
1

a
1114. How does the function

y = x arctan x
behave at x; =1, z, = —1 and 2; = 0?
1115. Examine the behaviour of the function given by

sin

at x &+ 0,
y:
1 at x =0,
1 1
at 7, = g x2=—§andx3=0.

2. Applications of the First Derivative

Theorems of Rolle and Lagrange

1116. Prove that Rolle’s theorem holds for y = 2% |
+ 422 — 72 — 10 in the interval [—1, 2].

1117. Prove that Rolle’s theorem holds for y = Insin

. . n bn
in the interval [?i’ FJ .

1118. Prove that Rolle’s theorem holds for y = d4sin*
in the interval [0, x].

1119. Prove that Rolle’s theorem holds for the function

3
y = V% — 3z 4 2 in the interval [1, 2].
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— 2
xt

the ends of the interval [—1, 1]. Show that there is no point
in the interval at which the derivative vanishes, and explain

this deviation from Rolle’s theorem.

1120. The function y = takes equal values at

1121. The function y = |z | takes equal values at the
ends of the interval [—a, a]. Verify that there is no point of
the interval at which the derivative of the function vanishes,
and explain this deviation from Rolle’s theorem.

1122. Prove the theorem: if the equation
ax™ +ax" 4 ...+ e, =

has a positive root * = z,, the equation

nagxt 4+ (n—1)a2"24+...4a,.,=0
also has a positive root, which is less than .
1123. Given the function f(x) =1 + «™(x — 1)*, where
m and n are positive integers, show without working out the

derivative that the equation f'(z) = 0 has at least one root
in the interval [0, 1].

1124, Show that the equation 2® — 3z 4 ¢ =0 cannot
have two different roots in the interval [0, 1].

1125. Given

f@)=@—-1)x—2) (-3 (-4,

discover how many roots the equation f'(z) =0 has, and
indicate the intervals in which they lie.

1126. Show that the function f(x) = 2" 4 px + ¢ cannot
have more than two real roots for n even or more than
three for n odd.

1127. Obtain Lagrange’s formula for the function y =
= sin 3z in the interval [z, z,].

1128. Obtain Lagrange’s formula for y = 2(1 — Inx) in
the interval [a, b].

1129. Obtain Lagrange’s formula for y = arcsin 2z in the
interval [x,, ¥, + dx].
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1130. Prove that Lagrange’s theorem holds for the func-
tion y = 2" in the interval [0,a]; n > 0, a > 0.
1131. Prove that Lagrange’s theorem holds for the function
y = In z in the interval [1, e].
1132, Use Lagrange’s formula to prove the inequality
~a—b

a—>b a
a éln7)= b

when 0 < b =a.
1133. Use Lagrange’s formula to prove the inequality

, if 0<ﬁ§_a<%n.

1134. Prove with the aid of Lagrange’s formula that the

inequalities

nb""l(a — b) <a® — b < na"1!(a —b),
hold with ¢ > b if » > 1, whilst they hold in the opposite
sense if n << 1.

1135. The function f(z) = «? sini forz + 0, f(0)=0 is
differentiable for any z. Lagrange’s formula for it gives in
the interval [0, z]:

f®) — f(0) = 2f(§) (0 < & < =).
We have:

£ £

.1 .
xzsln;;:x (225s1n1 — CoS8 l) ,

. .1
whence cos1 = 2¢ sm1 — z8In ot If we now let a tend

£ 3
to zero, £ will also tend to zero, and we get: lim cos % = 0.
£+0
Explain this paradoxical result.

1136. By applying to the function f(x) = arctan z in the
interval [1, 11} the formula

fzo-+ d2) o fw0) 4 1 (w0 4 5 ) 42

find the approximate value of arc tan 1-1.
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In problems 1137-1141, use the formula
, A
I+ d) o [l + 1 (w0 + 5 ) 4,

to find approximate values of the given expressions.
1137. arcsin 0-54.
1138. log 11. Compare with tables.
1139. In (z 4 V1 + a?) for & = 0°2.

1140. log 7, knowing that log 2 = 0-3010 and log 3 =
= 04771. Compare the result with tables.

1141. log 61. Compare the result with tables.
1142. Show that, if we use the formula

1) =)+ 6 = o) (242

to work out the logarithm of N 4- 0-01N, i.e. if we put

log (N + 0:01 N) = log ¥ -+ -%O‘ff—o-ouv
v+ 20w

043429

=log N + —555~»

the error involved is less than 0:00001, i.e. the answer is
correct to five figures after the decimal point, provided log N
is correct to five figures.

The Behaviour of a Function in an Interval
1143. Prove that the function
y=2x34 32> — 12x 4+ 1
is decreasing in the interval (—2, 1).
1144. Prove that the function
y=V2x —a?

is increasing in the interval (0, 1) and decreasing in (1, 2).
Draw the graph of the function.
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1145. Prove that the function y = 2® 4 z is always in-
creasing.

1146. Prove that the function y = arc tan x — x is always
decreasing.

2
1147, Prove that the function y = il

is increasing in

any interval not containing the point x = 0.

1148. Prove that the function y = im_(g—{—_a) varies mo-
sin (z + b)
notonically in any interval not containing a discontinuity.
1149*, Prove that 2% . % i
tanxz, =

<oy <z, < 7—2t .
1150. Find the interval in which
y =2 — 32 — 9z | 14
is monotonic, and plot its graph in the interval (—2, 4).
1151. Do the same for the function
y=oaot— 222 — 5

in the interval (—2, 2).
Find the intervals in which the functions of problems
1152-1164 are monotonic:

1162, y = (x — 2)5 (2= + 1)~

1153, y = =};[(2:411 —a){a — z)? (@ > 0).

11—z 2 _ 10
11564. y—-m. 1155. Yy = m.
1156. y = x — e*. 1157, y = x2e—x.
1158, y = lnix : 1159. y — 222 — In .

1160. y = 2 — 2sin 2 (0 = z = 2n).
1161. y = 2sin z 4 cos 2z (0 = z = 2x).

1162. y = = + cos z. 1163. y = In (z -+ J1 + 22).
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1164. y =z Var — 2 (a > 0).
Find the extrema of the functions of problems 1165-1184:
1165. y = 22® — 3a2.
1166. y = 22® — 62® — 18z 4- 7.
32 + dr + 4
a2tz 41
1

Y= In @ F 4 + 30) °

3

1170. y = — 2 VF F2. 1. y— g 2 Y6z = 7.

3
1168, y = Va® — 322 + 8.

1167, y =

1169.

1172. y=;4-‘/—3—. 173, y = ~13%
2yl —=x V4 + 522
3
1174. y = V(2% — a2)2. 11765, y =2 — In (1 + 2).
3

1176. y =2 —In (1 + 2?). 1177. y = (x—5)2 ) (x + 1)
1178, y = (22 — 22) Inz — §x2 + 4.

1179, y = (ar:2 -+ 1) arc tan & — g x? — '7—57;.—1 ;

1180. y = ;(xz — %) arc sinx + x}/l — 2% — 17z2 x2.

1 11 /4
= i 4 _ = =_
1181, y = xzsinz + cos z i ( 3 _x__z).

2 _
1182. y=(%—x)cosx+sinx—x 1 T (Oéxéy—tJ.

1183, y = 2=

% cos n(x 4+ 3) +7-:5sinn(x+ 3) (0 <z < 4).

1184, y = ae™ + be—r*,

Find the maxima and minima of the functions of problems
1185-1197 in the intervals quoted:

1186, y = ot — 222 4- 5; [—2, 2].
1186. y = = + 2 Vz; [0, 4].
1187. y = 2% — 52t + 523 + 1; [—1,2].
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1188. y = 2® — 322 + 62 — 2; [—1,1].
1189, y = V100 — 2?2 (— 6 =z = 8).

1191. y=:;i O0=z=4)
a? b?
1192.y=7+1_ 0<z<l) (@a>0,0>0).

A

1193. y =sin 2z — (——géx

)

1194, y =2tanz —tan22 |0 =z <

82| ]

——

1195. y = 2x (01 =2 < o0).
3

1196, y = Y(x2 — 22)2 (0 =2z = 3).

= 1—= =r=
1197. y = arc tan 1Tz O=z=1)
Inequalities
Prove the inequalities of problems 1198-1207:

1198. 2V§>3—£ @ > 1).

1199. e > 1 4z (z + 0).
1200. z >In (1 4 ) (x > 0).
2(x — 1)
z-+1
1202, 2z arc tan 2 = In (1 4 22).

1203. 1 +zIn (x + V1 + 22) = V1 + 22

1201. Inx >

(x > 1).

arctan x

14z

. 28 8
1205. Slnx<x—‘?+m—

1204. In (1 + z) >

(x > 0).

(x > 0).



114 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

1206. sin x + tan z > 2z (0<x<g~).

e e * x?
1207.—2—él+—§-.

Problems on Finding Maxima and Minima

1208. Divide the number 8 into two parts such that the
sum of their cubes is a minimum.

1209. What positive number gives the least sum when
added to its reciprocal ?

1210. Divide the number 36 into two factors such that
the sum of their squares is a minimum.

1211. We want to make a box with a lid, its volume being
72 em3, and the sides of the base in the ratio 1:2. What must
be the dimensions of all the sides for the total surface area
to be a minimum ?

1212, We want to cut out equal squares from the corners
of a square piece of paper measuring 18X 18 cm? so that the
box made by folding the paper along the dotted lines (Fig. 29)
has the maximum capacity. What is the side of the squares
cut out?

Fia. 29.

1213. Solve the previous problem for a rectangular sheet
measuring 8X5 cm?.

1214. The volume of a regular triangular prism is v. What
must the side of the base be for the total surface area of the
prism to be a minimum ?
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1215. An open vat has a cylindrical shape. Given the
volume v, what must be the radius of the base and the height
for its surface area to be a minimum ?

1216. Find the ratio of the radius R and height H of a
cylinder of given volume when its surface area is a mini-
mum.

1217. We want to make a conical funnel with a generator
20 cm long. What must be the height of the funnel for its
volume to be a maximum ?

1218. A sector with central angle « is cut out of a circle.
The sector is folded to form a conical shape. What is the
value of « for the cone to have maximum volume ?

1219. The perimeter of an isosceles triangle is 2p. What are
its sides for the volume of the solid formed by revolving the
triangle about its base to be a maximum ?

1220. The perimeter of an isosceles triangle is 2p. What are
its sides if the volume of the cone formed by revolving the
triangle about its height is a maximum ?

1221, Find the height of the cylinder of maximum volume
that can be inscribed in a sphere of radius R.

1222. Find the height of the cone of maximum volume
that can be inscribed in a sphere of radius R.

1223. A rain drop of initial mass m, evaporates uniformly
whilst falling under the action of gravity, so that its mass
decreases proportionally to time (coefficient of proportiona-
lity k). How many seconds after the drop starts falling is its
kinetic energy a maximum, and what is the maximum?
(Air resistance is neglected.)

1224, A lever of the second kind has support point 4;
the load P is suspended at point B (4B = a). The weight of
unit length of the lever is k. What is the length of the lever
for load P to be balanced by the least force? (The moment
of the balancing force must be taken equal to the sum of
the moments of load P and the lever.)

1226. The cost of fuel for the furnace of a steamer is
proportional to the cube of its speed. We know that the fuel
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costs at a speed of 10 km/hr amount to 30 roubles/hour,
the remaining costs (independent of the speed) being 480
roubles/hour. What is the speed for the total cost per km
travelled to be a minimum ? What is the total cost per hour
in this case?

1226. A, B and C are three non-collinear points, and
ZJABC = 60°. A car leaves from A, and a train from B,
at the same instant. The car travels towards B at a speed of
80 km/hr and the train towards C at 50 km/hr. If AB =
= 200 km, how long after the start are the car and train
a minimum distance apart ?

1227. Given the point A on a circle, draw the chord BC
parallel to the tangent at 4 such that the area of the triangle
ABC is a maximum.

1228. Find the sides of the rectangle of maximum peri-
meter inscribed in a semi-circle of radius R.

1229. Inscribe the rectangle of maximum area in a given
segment of a circle.

1230. Circumscribe the cone of maximum volume about
a given cylinder (the planes of the bases of cylinder and cone
must coincide).

1231. Find the height of the right circular cone of least
volume circumscribed about a sphere of radius R.

1232. Find the vertex angle of the axial section of the
cone of least lateral surface area circumscribed about a given
sphere.

1233. What is the angle at the vertex of an isosceles triangle
of given area for maximum radius of the inscribed circle?

1234. Find the height of the cone of least volume circum-

seribed about a hemisphere of radius R (the centre of the
base of the cone lies at the centre of the sphere).

1235. What must be the height of a cone inscribed in a
sphere of radius R if its lateral surface is a maximum ?

1236. Prove that a conical tent of given capacity requires
a minimum amount of material when its height is }/2 times
the base radius.
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1237. Draw a straight line through the given point P (1,4)
such that the sum of the lengths of the positive intercepts that
it cuts off the coordinate axes is a minimum.

1238. Find the sides of the rectangle of greatest area
. . . . x| y?
inseribed in the ellipse po + o 1.

1239. Find the ellipse of least area circumscribed about
a given rectangle (the area of an ellipse with semi-axes a
and b is mab).

1240, If the area of the triangle formed by a tangent to
2 2
the ellipse % -+ ;/_8 =1 and the coordinate axes is a mini-

mum, what is the point of contact?

1241, Two points 4 (1, 4) and B(3, 0) are given on the
ellipse 222 4+ %% = 18. Find the third point C of the ellipse
such that the area of triangle 4 BC is a maximum, a minimum,

1242. Given a point on the axis of the parabola y? = 2px
at a distance a from the vertex, find the abscissa z of the
point of the parabola closest to it.

1243. An iron strip of width a has to be bent to form an
open cylindrical gutter (the gutter section is the arc of a
circle). Find the angle subtended by the arc at the centre
of the circle for maximum capacity of the gutter.

1244. A log 20 m long is in the form of a frustum of a
cone, the base diameters of which are 2 m and 1 m respectively.
We want to cut out a beam from the log with a square cross-
section and the same axis as the log, the volume of the beam
being & maximum. What will be the dimensions of the beam ?

1245. A series of experiments leads to n different values
Z, % ... %, for the required quantity A. The value of 4
is often taken as the x such that the sum of the squares of
its deviations from x;, x,, . . ., 2, is & minimum. Find the z
satisfying this requirement.

1246. A torpedo-boat stands at anchor 9 km from the
nearest point of the coast; an express messenger has to be
sent from the boat to a camp 15 km along the coast, measured
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from the point nearest the boat. If the messenger can walk
at 5 km/hr and row at 4 km/hr, at what point should
he land on the coast in order to reach the camp in the shortest
time ?

1247. A lamp has to be suspended directly above the centre
of a circular area of radius E. What should its height be in
order to get the best illumination of a path round the area?
(The degree of illumination of an area is directly proportional
to the cosine of the angle of incidence of the ray and inversely
proportional to the square of the distance from the source.)

1248. Find the least illuminated point on a straight line
of length [ joining two light sources of intensities I; and I,.

1249. A picture 14 m high hangs on a wall so that its
lower edge is 1'8 m above the eye of an observer. At what
distance should the observer stand from the wall for his posi-
tion to be the most favourable for viewing the picture?
(i.e. for maximum angle of vision).

1250. A load of weight P on a horizontal plane has to be
shifted by applying a force F to it. The friction force is pro-
portional to the force pressing the body to the plane and
is directed in opposition to the displacing force. The coefficient
of proportionality (coefficient of friction) is k. At what
angle ¢ to the horizontal should the force be applied in order
for it to be a minimum ? What is the value of this minimum ?

1251. The speed of flow of water along a circular pipe is
directly proportional to the so-called hydraulic radius R,

calculated from the formula R = 5’ where S is the cross-

sectional area of the water in the pipe and p is the wetted
perimeter of the pipe section. The degree to which the water
fills the pipe is characterized by the angle subtended at the
centre by the horizontal surface of the water. At what degree
of filling is the speed of flow of the water a maximum?
(Find graphically the roots of the transcendental equation
encountered in this problem.)

1252. The printed text has to occupy S square centimetres
on the page of a book. The upper and lower margins must be
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a cm, the left and right margins b em. If we are concerned
only with paper economy, what are the best dimensions of a
page?

1253*, A conical funnel of base radius R and height H is
filled with water. A sphere is submerged in the water. What
should the radius of the sphere be for the maximum volume of
water to be displaced from the funnel by the submerged part
of the sphere ?

1254. The vertex of a parabola lies on a circle of radius
R, the parabola axis being along a diameter. What should the
parabola parameters be for maximum area of segment boun-
ded by the parabola and its common chord with the circle ?
(The area of a symmetrical parabolic segment is equal to
two-thirds the product of its base and height.)

1256, A cone of base radius R and height H is cut by a
plane parallel to a generator. What is the distance between
the line of intersection of this plane with the base plane and
the centre of the base for a maximum area of intersection
(See the previous problem.)

1256. At what point P of the parabola y? = 2pz is the
segment of the normal at P, contained inside the curve, a
minimum ?

1257. Prove that the tangent to an ellipse, the intercept
of which between its axes has minimum length, is divided
by the point of contact into two pieces respectively equal to
the semi-axes.

1258. Prove that the distance from the centre of an ellipse
to any normal does not exceed the difference between the
semi-axes. (It is advisable to use the parametric equations of
the ellipse.)

1259. A point (a, b) and a curve y = f(z) are given in a
rectangular system of coordinates 0y. Show that the di-
stance between the fixed point (@, b) and the variable point
(%, f(x)) can only have an extremum in the direction of the
normal to the curve y = f(x).
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A Property of the Primitive
1260. Prove (by two methods) that the functions y =
= Inax and y = In x are primitives of the same function.
1261. The same for functionsy = 2 sin2 xand y = —cos 2.
1262. The same for y = (e* 4 e~*)2 and y = (e¥ — e~ *)2.
1263*. Prove that the function

y = cos?x cosz(g-}—x)— cosxcos(g—{—x)

is constant (independent of z). Find the value of this constant.
1264. Prove that the function
. 2z
y = 2 arctan x | arcsin i
is constant for 2 = 1. Find the value of the constant.
1265. Prove that the function

acosx + b

= arc cos
Y a -+ bcosx

x
— 2are tan( ot btan 2)

where 0 << b = a, is constant for x = 0. Find the value of the
constant.

1266. Show that the functions %e”, e* sinh  and e* cosh x

differ by a constant. Show that each function is a primitive
£
* coshz —sinhz ’

3. Applications of the Second Derivative

Extrema

Find the extrema of the functions of problems 1267-1275
by using the second derivative:

1267, y = 2® — 2a2® 4 a% (@ > 0).
2
1268. p = a2 (@ — x)° 1269, y =z + ‘3;— (@ > 0).
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1270, y = + V1 — 2. 1271, y = 2 }2 — 2%

1272, y = e“ Je 9. 1273, y = z%~>.
1
1274, y = Exz . 1275, y = z~.

1276. For what value of a¢ has the function
Hx) =asinz %sin 3x

T . . P
an extremum at x = 52 Is this a maximum or minimum ?

1277. Find the values of a and b for which the function
y=alnz 4 bz? + x

has an extremum at points ; = 1 and x, = 2. Show that, with
these values of a and b, the function has a minimum at z, and
a maximum at x,.

Convexity, Concavity, Points of Inflexion
1278. Find whether y = 2% — 52® — 1522 4 30 is convex
or concave in the neighbourhood of points (1, 11} and (3, 3).
1279. Find whether the curve y = arc tan z is convex or

concave in the neighbourhood of points (1, Z) and (— 1,

_7
HE
1280. Find whether the curve y = 22Iln 2 is convex or

concave in the neighbourhood of points (I, 0) and (615 ,

2
_?),

1281. Prove that the graph of y = z arctan x is concave
everywhere.

1282. Prove that the graph of y = In (22 — 1) is convex
everywhere.

1283. Prove that, if the graph of a function is everywhere
concave or convex, the function cannot have more than one
extremum.
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1284. Let P(x) be a polynomial with positive coefficients
and even powers. Show that the graph of y = P(z) + ax + b
is everywhere concave.

1285. The curves y = p(zx) and y = y(z) are concave in
the interval (a, b). Show that, in this interval: (a) the curve
y = ¢(x) + y(x) is concave; (b) if p(z) and yp(z) are positive
and have a common minimum, the curve y = ¢(z) p(z) is
concave.

1286. Find the shape of the graph of the function when we
know that, in the interval [a, b]:

My>0 9 >0 v'<0; 2y>0, ¥ <0, ¢y >0;

B y<0, ¢y >0, y>0; Hy>0, y <0, y' <O.

Find the points of inflexion and the intervals of convexity
and concavity of the graphs of the functions of problems
1287-1300:

1287, y = 28— 522+ 3x—5. 1288, y = (z + 1)* 4 e*.

1289, y = ot — 12a% 4 48a2 — 50.

1290. y = x -+ 3622 — 223 — 21,

1291, y = 32% — 52t + 3z — 2.

3
— 6 - —
1292, y = (x -} 2)8 4 2x4-2. 1293, Y= T 3a (@ >0).
3
1294, y =a — Yz —b.
. T 41

1295, y = esinx (— F=x = 5) .

a. x
1296. y = In (1 4 22). 1297. y = p lna (@ > 0).

5

1298. y = a — J(x — b)2. 1299. y = earctanx,
1300. y = 2}(12Inz — 7).

1301. Show that the curve y = ;—_:—_—11 has three points
of inflexion which are collinear.

1302. Prove that the points of inflexion of y = x sin z lie
on the curve y? (4 + 22) = 422
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1303. Prove that the points of inflexion of the curve y =

= sn;x lie on the curve y%(4 + %) = 4.

1304. Show that the graphsof y = +e *andy = e *sin
(the curve of a damped vibration) have common tangents at
the points of inflexion of the curve y = e~ gin x.

1305. For what values of @ and b is the point (1, 3) a
point of inflexion of the curve y = aa® + bx??

1306. Choose « and f such that the curve 22y 4 ax +
+ By = 0 has a point of inflexion at 4 (2, 2'5). How many
further points of inflexion are there ?

1307. For what values of @ has the graph of y = e* 4 ax®
a point of inflexion ?

1308. Prove that the abscissa of the point of inflexion of
the graph of a function cannot coincide with an extremal
point of the function.

1309. Prove that, for any twice differentiable function, at
least one abscissa of a point of inflexion of the graph lies
between two extremal points.

1310. Prove by taking y = a* 4 82% 4 1822 + 8 as an
example that there can be no extremal points between the
abscissae of points of inflexion of a function (cf. the previous
problem).

1311. Find the shapes of the graphs of the first and second
derivatives from the graph of the function of Fig. 30.

y

y = f(x}

o=
oh—————————-

F1a. 30.
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1312, Do the same from the graph of the function of
Fig. 31.

y=f(x)

ob=-~——

va

Fic. 31.

1313. Find the shape of the graph of a function, given the
graph of its derivative (Fig. 32).

’l

o

<
il

Fic. 32.

1314. Find the shape of the graph of a function, given the
graph of its derivative (Fig. 33).

Fic. 33.

1315. A curve is given by the parametric equations x =
= g(t), y = y(t). Show that the curve has points of inflexion
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L

(¢'y" —v'¢")
(pl
changes sign (the primes denote differentiations with respect

to t), and ¢'(t) + 0.

1316. Find the points of inflexion of the curve z = {2,
y =3t + 8.

1317. Find the points of inflexion of the curve z = ef,
y = sin {.

at the values of ¢ for which the expression

4. Auxiliary Problems. Solution of Equations

Cauchy’s Formula and UHépital’s Rule

1318. Write Cauchy’s formula for the functions f(z) =
= gin 2 and ¢(z) = In  in the interval {a, b], 0 < a < b.

1319. Write Cauchy’s formula for the functions f(z) = e
and ¢(z) = 1 + e* in the interval [a, b].

1320. Prove that Cauchy’s formula holds for f(x) = a® and
@(x) = 2% 4 1 in the interval [1, 2].

1321. Prove that Cauchy’s formula holds for f(z) = sin

and g(x) = x + cos x in the interval [O, ;—t] .

1322, Prove that, if |f'(z)| = |¢'(x)] in the interval
[a, b], we also have |Af(z)|= |dp(x)|, where Af(z) =
= flx + 4z) — f(x), d¢(x) = ¢(x + dx) — p(x), and = and
x + Az are arbitrary points of interval [a, b].

1323. Prove that the increment of y = In (1 4 #?) is less
than the increment of y = arctan # in the interval |z, %]
(x = 0), whilst the converse holds in [%, x]: Aarc tan z <
< A41In (1 4 2?). Use the latter relationship to show that,

in the interval [%, 1] s

arctanz — In (1 +x2)§g—1n2.
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Find the limits of the functions of problems 1324-1364:

Vi — Ya

1324. Lim .
x—+a ﬁ — }/a

1326. lim & — !
x~0 SINXx

1328, lim 2 — 2227002 tanz .
x+0 €

1330, lim 2517

o0 & —tanaz

1325.

1327.

1329.

1331.

. Incosz
lim
x-+0

lim e — cos ax
im = TS x,
x-0 €/ — cos Sz
. erVxr—1

lim

x~0 Jsin bz '

n— 2arctanx

lim —— 1
In(l + E)

. axm — g™ . X — b
1332. l’cl_{r; 7 gn 1333. 1}{1_{13 m .
1334, lim 2! 1835. lim & &
w0 COSZ — 1 x0 SIN & COS T
1336. lim-%_— % 1337. lim S0 @—a)
Rir Py e In (&% — &)
X __p—X __ tanx __
1338, lm© =2 =% 1339 im &=,
x+0 £ — S otan r — x
3 2
e — % — % —x—1
1340. lim 5
x-+0 X
cosx +——1
2
. e —1— g3
1341. }3’2 sin® 2z
ln(l—|—x)4—4x+2x2—§x3+x4
1342. 1:33 6sin x — 62 + 28
1343, lim 28R 2% 1344. lim 2%
x~0 Insin z x—0ln sin x
In(l1 —=x) —I—tan?
1345. lim 1346. lim (x"e—x).

xr1 cot nx

X~ 400
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1347. lim {(z — 2 arc tan ) Inx].

X—~+oo

1348. lim [x sin “-] . 1349, lim [—i— — L] .

Yoo z s-1]2—1 Inzx

a2 — o2y tan *P im (L %
1850. lim [(a #)tan 2. 1851, lim (lnx = x)
. 1 . 1

1352. lim (cot 7 — 5) . 1353, lim —— :

=0 "”'cos%ln(l — )

3

1354. lim [ (a + =) (b + =) (c + ) — =].

X—+o0

1 1

1355. lim [x(e — 1)] 1356. lim [xZe**].

X—+o0o x—+0
13567. lim (tan x)2x—=, 1358, lim gsinx,

E3 x~0
x>y
. 1 1 tan x

1359. lim oG- D, 1360. lim (—) )

x—+0 x—+0 \L

1 nx

1361. lim (e* 4 )% . 1362. Lim (2 _ 2)"2" .

x-+0 x—+a

x 1+

1363. lim (1 4 L), 1364, Iim [ T2 1)

oo z2 0 2 z

1365. Prove that lim r— Sﬂ exists but cannot be eval-

xvoo & + SIN X
uated by P'Hopital’s rule.

1366. For sufficiently large values of x, which is the big-
ger: a*a® or a*?
1367. Assuming that f(z) - oo as & — oo, which is the

greater, f(x) or Inf(x), for sufficiently large values of x?
1
1368. Let x — 0. Prove that e — (1 +2)* is a first-order

infinitesimal with respect to z.

1369. Let = — 0. Prove that In (14 z) — e(Inln (e -}-z))
is a second-order infinitesimal with respect to x.
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1370. A length AN is marked off along the tangent to a
circle of radius r at point 4 (Fig. 34) equal to the length of
arc AM. NM produced cuts diameter A0 produced at B.

Prove that
r (xcos & — sin o)
sina — a

OB = ,
where o is the angle in radians subtended at the centre by
arc AM, and show that lim OB = 2r.

a—+0

Fig. 34.

Asymptotic Variation of Functions and Asymptotes to Curves

1371. Prove directly from the definition that y = 2x 4 1
is the asymptote to the curve

28 + 23 + 1
y=""u -
1372. Prove directly from the definition that » 4y = 0
is an asymptote to the curve z% + zy* = 1.
3
1373. Prove that the curves y — Ja® + 322 and y =

2

=2 f_ ; are asymptotic to each other as x — 4 oo.

1374. Prove that the functions
f(x) = Vb 4 222 - 722 4- 1 and ¢(x) = 23 4 2

are asymptotically equal as 2 — oco. Use this fact to evaluate
approximately f(115) and f(120). What is the error if we put
£(100) = p(100)?
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Find the asymptotes of the curves of problems 1375-1391:

1376. Z—Z — :Z—: =1. 1376. zy = a.

1877, y=— - 1.y=ct " .
22— 4z 45 (x — b)?

1379. 2y (x 4 1)2 = ad. 1380. 33 = a® — a8,

1381. 3 = 62% 4 3. 1382. y*(x%+1) = x?(x2—1).

1383. xy? + 2%y = ad.
1384, y(x? — 3bx + 2b%) = a® — 3ax? 4 a.
13856, (y + = + 12 =22 - 1.

1
1386. y = ln(e + a%) . 1387, y = we*.
2
1388. y = wex -+ 1. 1389. y = x arc sec z.
1390. y = 2x 4 arc tan; .
1391. y = if(;:()x;l_ a , where f(z) is a polynomial (¢ & 0).

1392. A curve is given by the parametric equations x =
= ¢@(t), ¥ = y(t). Show that there can only be asymptotes,
not parallel to either axis, for the values ¢ = ¢, at which
simultaneously

lim () = oo and lim y(f) = oo.

t-~1lo t=lo
In this case, if the equation of the asymptote is y = ax 4 b,
we have

a=lim£(~t—)

im gy b =Tmp(t) — ag(t)]

How do we find the asymptotes parallel to an axis?

1393. Find the asymptotes of the curve

1 ¢

Ty YT rn
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1394. Find the asymptotes of the curve

2et et
-1 YT

1395. Find the asymptotes of the curve

1396. Find the asymptotes of the folium of Descartes:
_ 3at _ Bat?
Tixes YToixe
1397. Find the asymptotes of the curve

=8 . __3
r—4 YT

General Investigation of Functions and Curves

Carry out a full investigation and draw the graphs of the
functions of problems 1398-1464:

1898, y = s 1399, y = 1.
xr

1400. Yy = m .

1401 yx — D (x — 2) (x — 3) =1
2

1402. y = = . 1403. y = (22 — 1)

1404, y = 322%(x% — 1)

14056, y = 1 + 422 (Newton’s “trident’).
Y=z

1 20 — 1
— 2 —_— = ————
1406. y = 2* + ok 1407. y @ —1¢"
i 409 il
W08 y=5—2- M0y =g+ ip-

1410. y(x — 1) = 8, 1411, y(z® — 1) = at,
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__(x—l)2_ 2342024 Tx — 3
1412, y = @iy 1413. y = G
1414, ay = (22 — 1) (x — 2).
1415, (y — ) 2* + 8 = 0. 1416.y=§.
1417, y — a?e—x. 1418, y — % :
1419. y =z — In (z + 1). 1420. y = In (z® + 1).
1421, y = z% ", 1422, y = z%e~>.
_x 1
1423, y = ze 2 UM y=——7.
Inz 1)\*
1425, y = 2+ 7 1426.y=(1+5).
1427, y = « + sin . 1428, y = zsin .
1429. y = In cos =. 1430. y = cosx — In cos z.

1
1431. y =z — 2arctanz. 1432, y = e** —4x+3 |

1433. y = es"* — sinx (without seeking the points of
inflexion).
3

1434. y = /a? — x. 1436. ® = x?(2? — 4)3.
1436. (3y + z)® = 27x.

3 3
1437. y = V(@ + 1)2 — Va2 + 1.
2
1438. y = (x — 1)3 (x 4 1)3.

1439. 4® = 6x% — a3. 1440. (y — z)? = a>.
1441. (y — 2%)2 = 5. 1442, 2 =23 4+ 1.
1443, o2 = 2® — . 1444, y* = x(x — 1)2
1445, 3 = 2% — 1), 1446. 4 = "3?; 2

1447, x%y 4+ zy? = 2.
1448, y? = a2 % (strophoid)
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1449. 9y = 423 — 2. 1450. 25y = x?(4 — x?)3.
1451, 2 = 2® — 2. 1452, z%y? = 4(x — 1).
1453. 32(2a — x) = a® (cissoid)

1454, 2% = (x — 1) (x — 2).

1455. 2%% = (a + x)* (@ — x) (conchoid)

1456, 16y = (22 — 4)2 (1 — z?)

1457, 2 = (1 — x?). 1458, y%xt = (x2 — 1),
1
1459. y2 = 2e ze~ 2. 1460. y = ex —=.
1461. y = etenx, 1462. f(x) = s“;", £(0) = 1.

1 1

1463. y =1 — ze I* * for x + =0, y = 1 for x = 0.

1464. y = 2? — 4 |z| + 3.

Investigate the functions given parametrically in problems
1465-1469 and sketch their graphs:

1465. 2 =3+ 3¢+ 1, y = — 3t + 1.

1466. x = t* — 3n, y = * — 6 arctant.

3t 3
1 Y= 158

1468, =z = te!, y = te~1.

1469. x = 2a cost — acos 2t, y = 2asint — a sin 2f (car-
dioid).

Investigate the curves whose equations are given in polar
coordinates in problems 1470-1477:

1467. z =

1470. ¢ = a sin 3p (three-petal rose).

1471, o = a tan ¢. 1472. o = a(1 + tan ¢).
1473. o = a(1 + cos ¢) (cardioid).

1474. p=a(l 4+ bcos¢p) (@ > 0,b > 1) (limagon).

2
1475. o = V (litus). 1476, ¢ = - are tan g .

1477. o= Y1 — 2, p=arcsint -+ J 1 — £



IV. INVESTIGATION OF FUNCTIONS AND CURVES 133

First reduce the equations of the curves of problems 1478-
1481 to polar coordinates, then investigate and plot the
curves:

1478, (a2 + y*)® = da2x%y?. 1479, (2 + %) x = a%y.
1480. z* 4 y* = a?(2? + y2).
1481, (22 + 3?) (2% — y?)? = 4x%>.

Solution of Equations
1482. Prove that the equation
2 —a2—8+12=0

has one simple root ¥, = —3 and one double root r, = 2.
1483. Prove that the equation

4203 — 32 —4x+4=0
has two double roots ; = 1 and z, = —2.

1484. Show that the equation x arc sin x = 0 has only one
real root, this being double.

1486. Show that the roots of the equation x sin x = 0 have
the form « = kn(k =0, 4+ 1, 4+ 2,...), where k = 0 corre-
sponds to a double root. What is the multiplicity of the re-
maining roots?

1486. Show that the equation 2® — 3224 6x — 1 =20
has a unique real simple root in the interval (0, 1), and find
the root, by using trial and error, to an accuracy of 0°1.

1487. Show that the equation a* 4 32 — 2 — 2 = 0 has
two (and only two) real simple roots, lying in the intervals
(—1, 0) and (O, 1) respectively. Use trial and error to find
these roots to an accuracy of 0'1.

1488. Show that the equation f(x) = a - 0, where f(z) is
a polynomial with positive coefficients and odd powers only,
has one and only one real root (which may be multiple). Con-
sider the case when a = 0. Find to an accuracy of 0'01 the
root of the equation

23+ 3x—1=0,

by combining trial and error and the chord method.
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1489. Prove the theorem: the necessary and sufficient
condition for the equation 23 + pxr 4 1 = 0 to have three
simple real roots is that coefficients p and ¢ satisfy the in-
equality 4p® 4+ 27¢% < 0. Find to an accuracy of 0-01 all the
roots of the equation

2 —9r 4+ 2=0,

by combining trial and error and the chord method.
1490. Prove that the equation

2t 4+ 222 —6x4+2=0

has two (and only two) real simple roots, lying in the intervals
(0, 1) and (1, 2) respectively. Find these roots to an accuracy
of 0:01 by combining the tangent and chord methods.

1491. Prove that the equation
¥ —br+1=0

has a unique real simple root lying in the interval (—1, 0},
and find the root to an accuracy of 001 by combining the
chord and tangent methods.

1492. Show that the equation xe* = 2 has only one real
root, which belongs to the interval (0, 1), and find the root
to an accuracy of 0-01.

1493. Prove that the equation x In x = a has no real roots

1 1
for ¢ < — > has one real double root for ¢ = — o two

. 1 .
real simple roots for — < < 0 and one real simple root

for @ = 0. Find the root of the equation zInx = 0'8 to an
accuracy of 0-01.

1494. Show that Kepler’s equation z = ¢ sin -+ a, where
0 < ¢ < 1, has one simple real root, and find this root to an
accuracy of 0-001 when & = 0538 and a = 1.

1495. Show that the equation a* = ax always has two
(and only two) real positive roots for @ > 1, one root being
equal to unity and the other less, greater than or equal to
unijty, depending on whether a is greater than, less than or
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equal to e. Find the second root of the equation to an accu-
racy of 0001 when a = 3.

1496. Show that the equation z? arctanx = a, where
@ + 0, has one real root. Find the root to an accuracy of
0:001 when g = 1.

1497. For what base a of a system of logarithms do num-
bers exist which are equal to their logarithms? How many
such numbers can there be? What is this number (to an

accuracy of 0:01) when a = %?

5. Taylor’s Formula and its Applications

Taylor’s Formula for Polynomials

1498. Expand the polynomial x* — 52% 4 2 — 3x 4 4
in powers of z — 4.

1499. Expand the polynomial #?® - 32?2 — 22 4- 4 in po-
wers of z -+ 1.

1500. Expand 29 — 325 4 1 in powers of 2 — 1.

1501. Expand the function f(x) = (#® — 3z 4- 1)® in po-
wers of x by using Taylor’s formula.

1502. f(x) is a fourth-degree polynomial. Knowing that
f2)=—1 f(®)=0, ["(2) =2, ["(2) = —12, fV(2) = 24,
find f(—1), £(0), f*(1).

Taylor’'s Formula

1503. Find Taylor’s formula of order n at x, = —1 for

y=z-

1504. Find Taylor’s formula of order » at z, = 0 (Mac-
laurin’s formula) for y = xe*.

1505. Find Taylor’s formula of order n at z, =4 for

y =V
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1506. Find Taylor’s formula of order 2n at z, = 0 for
ex + e—x
y= D)

1507. Find Taylor’s formula of order n at , = 1 for y =
= 2%In x.

1508. Find Taylor’s formula of order 2n at z, = 0 for
y = sin®z.

1509. Find Taylor’s formula of order 3 at x, = 2 for y =

=z i i and draw the graph of the function and of its

third-degree Taylor polynomial.

1510. Find Taylor’s formula of order 2 at x, = 0 for y =
= tan z and draw the graph of the function and of its second-
degree Taylor polynomial.

1511. Find Taylor’s formula of order 3 at z, = 0 for y=
= arcsin z and draw the graph of the function and of its
third-degree Taylor polynomial.

15612, Find Taylor’s formula of order 3 at 2, =1 for

Y= % and draw the graph of the function and of its
x
third-degree Taylor polynomial.
1513*. Prove that the number 6 in the remainder term of
Taylor’s formula of order 1:

fa + B) = fl@) + b/ (@) + 5 "(a + OB)

tends to % as h— 0 if f'"'(zx) is continuous at z =a and

f"'(a) + 0. Generalize this result.

Some Applications of Taybor’s Formula

Describe the behaviour of the functions of problems 1514~
1519 at the points mentioned:

1514. y = 22°® — 23 + 3 at the point x = 0.
15615, y = x'* 4 328 4 1 at the point z = 0.
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1516. y = 2 cos x + 2% at the point z = 0.
1617, y = 6 Inx — 22% 4 92® — 18z at the point 2 = 1.
1618. y = 6sin x + 2? at the point 2 = 0.

1519. y = 24e* — 24x — 122% — 4a® — a* — 20 at the
point z = 0.

15620, f(x) = 21° — 32® + 22 + 2. Find the first three
terms of the Taylor expansion at x, = 1. Evaluate approxi-
mately f(1:03).

1521. f(x) = 2® — 227 4 52® — 2 + 3. Find the first three
terms of the Taylor expansion at 2, = 2. Evaluate approxi-
mately f(2:02) and f(1-97).

1522, f(x) = 280 — x4 4 2%, Find the first three terms of
the expansion of f(z) in powers of x — 1 and find approxi-
mately f(1-005).

1523. f(x) = 2® — 52® 4+ . Find the first three terms
of the expansion in powers of + — 2. Evaluate approximately
f(2'1). Evaluate f(2'1) accurately and find the absolute and
relative errors.

1524. Show that the error is less than 0-01 when evaluating
e* for 0 << 2 <1 from the approximate formula

x? 23
exr%’l"*‘x-{-?"l—g.

Using this, find Ve correct to three figures.
1525. By using the approximation formula

2
am1+x+%,

find % and estimate the error.

Ve

15626. Show that, if we take x —:;—T —}—:;—T instead of sin z

for angles less than 28°, the error is less than 0-000001. Use
this to evaluate sin 20° to six correct figures.
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1527.

Find cos 10° to an accuracy of 0-001. Show that this

accuracy can be achieved by taking the second-order Taylor

formula.

1528,

Use the approximation

2t

x? a2t
In (1 +x)Nx—E+§—Z’

to find In 1'5, and estimate the error.

6. Curvature

Find the curvatures of the curves of problems 1529-1526:

1529.
1530.

1531.
1532.
1533.

1534.
15356.

The hyperbola zy = 4 at the point (2, 2).
. T . .

The ellipse a_2+ i 1 at its vertices.

y = x* — 423 — 1822 at the origin.

y?> = 8z at the point (ﬁ_;’ 3) .

y = Inx at the point (1, 0).
y =1In (z + V1 + 2?) at the origin.

y = sin x at points corresponding to extremals of

the function.

1536.

The folium of Descartes 2% 4 3 = 3axy at the

. 3 3
point (— a, 3 a) .

2

Find the curvatures of the curves of problems 1537-1542
at an arbitrary point (z, ¥):

x2 2
1537, y = a3, 1638. 5 — % =1
22 2
1539. y = In sec . 1540. z° 4 y3 = a3 .

LY — z
1541, o + b = 1. 1542, y = a cosha .
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Find the curvatures of the curves of problems 1543-1549:

1543. x =3, y=3t—¢ for t =1.

1644. x = acos®t, y =asin®t for t =¢,.

1545. x = a (cost + tsint), y=a (sint — ¢ cos t) for
7

t=§.

1546. z = 2a cost — a cos 2¢, y = 2asint — a sin 2 at an
arbitrary point.

1547. o = @ at the point p =1, ¢ = 0.

1548. ¢ = ap at an arbitrary point.

1549. o = ag* at an arbitrary point.

1550. Find the radius of curvature of the ellipse %: +
+ ‘Z—: =1 at the point where the segment of the tangent
lying between the coordinate axes is bisected by the point
of contact.

1551, Show that the radius of curvature of a parabola is
equal to twice the segment of the normal lying between its
points of intersection with the parabola and with the direct-
Tix.

1552, Show that the radius of curvature of the cycloid at
any point is twice the length of the normal at that point.

15653. Show that the radius of curvature of the lemniscate
o®> = a? cos 2¢ is inversely proportional to the corresponding
radius vector.

1554. Find the circle of curvature of the parabola y = 2
at the point (1, 1).

1555. Find the circle of curvature of the hyperbola zy = 1
at the point (1, 1).

1556. Find the circle of curvature of y = e* at the point
(0, 1).

1557. Find the circle of curvature of y = tanz at the

point (g 1) .
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15658. Find the circle of curvature of the cissoid (22 4-
+ y?) z — 2ay® = 0 at the point (a, a).

Find the vertices (the points at which the curvature has an
extremal value, see Course, sec. 93) of the curves of problems
1559—1562:

1559. Vz + Vy = Va. 1560. y = In 2.

1561. y = ex.

1562, £ = a (3 cos t 4 cos 3t), y = a(3 sin ¢ +- sin 3¢).
1563. Find the maximum radius of curvature of the curve

. P
— 3 L .
¢=asin® g

1564. Show that the curvature at a point P of the curve
y = f(x) is equal to |y’ cos® « |, where « is the angle formed
by the tangent at P with the positive direction of the axis
of abscissae.

1565. Show that the curvature of a curve at an arbitrary

point can be expressed as k = ds(;l; 2,

where « has the same meaning as in the previous problem.
1566, Function f(x) is defined thus: f(z) = 2® in the inter-
val — o<z =1, f(x) =ax®+4 bx +c¢ in the interval
1 < # < oo. What must be the values of a, b, ¢ for the curve
y = f(x) to have a continuous curvature at all points?
1567. Given (Fig. 35) arc AM of a circle of radius 5 with
centre at (0, 5) and segment BC of the straight line joining

y c(l,e6)

03)

-~ 8(1,3)
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B (1, 3) and C (11, 66), we require to join M and B with a
parabolic arc such that the curve AMBC has continuous
curvature everywhere. Find the equation of the required
parabola (take a fifth-order parabola).

Find the coordinates of the centre of curvature and the
equation of the evolute for the curves of problems 1568-1574:

1568. Parabola of nth order y = z".
T
1569. Hyperbola i Tl 1,
2 2
1570. Astroid a° + y® =a®.
1571. Semi-cubical parabola y® = az2

1572. Parabola x = 3f, y = > — 6.

a3
20 —

1573. Cissoid y2? =

1574. The curve | = (1 + cos?¢) sin ¢,

y = asin?{ cos .
1575. Show that the evolute of the tractrix

z = —a(lntan%—}- cos t), Yy =asint

is a catenary.

1576. Show that the evolute of the logarithmic spiral
o = a? is precisely the same spiral except for rotation through
a certain angle. Is it possible to choose a so that the evolute
coincides with the spiral?

1577, Show that any evolute of a circle can be got by
rotation of one of them through a suitable angle.

1578. Show that the distance of a point of the cycloid
from the centre of curvature of the corresponding point of
the evolute is equal to twice the diameter of the rolling circle.

1579. The evolute of the parabola y? = 4px is the semi-
cubical parabola

4
Pyt = o7 (x — 2p).
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Find the length of arc of the semi-cubical parabola from
the cusp to the point (z, y).

1580. Find the total length of the evolute of the ellipse
with semi-axes a and b.

1581. Show that the evolute of the astroid x = a cos? ¢,
y¥ = a sin® ¢ is an astroid of twice the linear dimensions turned

through 45°. Use this to find the length of arc of the original
astroid.

1582*, Show that the evolute of the cardioid
x=2acost —acos2; y=2asint — asin 2¢

is also a cardioid, similar to the first. Use this to find the total
arc length of the cardioid.

15683*. Prove the theorem: if the curvature of the arc of
a given curve is either only increasing or only decreasing,
the circles of curvature corresponding to different points of
the arc lie inside each other and do not intersect.

7. Numerical Problems

15684. Find the minimum of the funection
y=at+a2+x+1
to an accuracy of unity.
1585. Find the maximum of the function
y=z—+Inz — 23
to an accuracy of 0-001.
1586. Find the greatest and least values of the function
y=ux?+ 3cosx

in the interval [O, g] to an accuracy of 0-01.

1587. Find the greatest and least values of
y=2x — e

in the interval [0-2, 0-5] to an accuracy of 0-001.
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1588. Find the coordinates of the point of inflexion of the
curve

X
y=‘;_0(x3—6x2+19x—30)

to an accuracy of 0-01.
1589. Find the coordinates of the point of inflexion of the

curve
y = 62%In x 4 22% — 922

to an accuracy of 0-01.

1590. Find to an accuracy of 00001 the curvature of the
curve
1

Yy=p
at its point of intersection with the straight line y = = — 1.

1591. Find to an accuracy of 0-001 the coordinates of
the point on the curve ¥ = In « at which the radius of curva-
ture of the curve is three times the abscissa of the point.



CHAPTER V

THE DEFINITE INTEGRAL

1. The Definite Integral and its Elementary Properties

1692, Express with the aid of an integral the area boun-
ded by the following curves:

(1) the coordinate axes, the straight line x = 3 and the
parabola y = 2% 4+ 1;

(2) the axis of abscissae, the straight lines x =a, x = b
and the curve y = e* + 2 (b > a);

(3) the axis of abscissae and the arc of the sine wave
y = sin 2 corresponding to the first half-period;

(4) the parabolas y = 22 and y = 8 — a2;

(5) the parabolas y = 2? and y = Vx;

(6) the curves y = In z and y = In?x,

1593. A figure is bounded by the axis of abscissae and the
straight lines y = 2z, x = 4, x = 6. By dividing the interval
[4, 6] into equal parts, finds the areas of the “inner” and
“outer” n-step figures. Show that both the expressions ob-
tained tend on indefinite increase of n to the same limit S,
the area of the figure. Find the absolute and relative errors
on replacing the given area by the areas of the inner and
outer n-step figures.

1594. A curvilinear trapezium with base [2, 3] is bounded
by the parabola y = z%. Find the absolute and relative error
on replacing the given area by the ‘“‘inner” 10-step figure.

1595. Find the area of the figure bounded by the parabola

2
Yy = %, the straight lines x = 3, z = 6, and the axis of

abscissae.

1596. Find the area of the segment cut out of the parabola
y = 2 by the straight line y = 2z - 3.

144
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1597. Find the area of the parabolic segment with base
a = 10 ecm and “height” » = 6 cm (the base is the chord
perpendicular to the parabola axis. Fig. 36).

I

Fia. 36.

1598. Find the area of the figure bounded by the parabola
y = x* — 4x + 5, the axis of abscissae and the straight lines
x=3, z=25.

1599. Find the area of the figure bounded by the arcs of

1 x?

parabolas y = sz and y = 3 — 5 -

1600. Find the area of the figure bounded by the parabolas
y=2%— 6z + 10 and y = 6z — 22.

1601. Find the area contained between the parabola
y = 2% — 2z + 2, the tangent to it at the point (3, 5), the
axis of ordinates and the axis of abscissae.

1602. A particle travels with a speed v = 2¢ 4 4 cm/sec.
Find the path traversed in the first 10 sec.

1603. The velocity of a body falling freely is v = gt.
Find the distance traversed in the first 5 sec.

1604. If the velocity is proportional to the square of time
and is equal to 1 em/sec at the end of the 4th second, what
is the distance travelled in the first 10 sec?

1605. We know from physics that the force opposing the
extension of a spring is proportional to its elongation (Hooke’s
law). The work done on extending a spring 4 cm is 10 kg.
How much work is done in extending the spring 10 cm?
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1606. The work required to extend a spring 2 em is 20 kg.
How much can the spring be extended on expending work
of 80 kg?

1607. The speed v of radioactive decay is a known function
of time: v = v(t). Express the amount m of radioactive
material disintegrating between time 7', and time 7: (a)
approximately, by a sum, (b) exactly, by an integral.

1608. The rate of heating of a body is a known function of
time p(t). How many degrees § is the body heated from time
T, to time 7?7 Express the solution: (a) approximately, by
a sum, (b) exactly, by an integral.

1609. A variable current I is a known function of time:
I = I(t). Express (approximately by a sum and exactly by
an integral) the quantity of electricity ¢ that has flowed
through the cross-section of the conductor after time 7
from the start of the experiment.

1610. The voltage E of a variable current is a given func-
tion of time F = ¢(¢); the current [ is also a given function
of time I = y(t). Express the work 4 done by the current
between time 7') and time 7';: (a) approximately, by a sum,
(b) exactly, by an integral.

1611. An electrical circuit is supplied from batteries.
During 10 min the voltage at the terminals falls uniformly
from E, = 60V to E = 40 V. The circuit resistance B = 20
ohm. Find the amount of electricity flowing through the
circuit in 10 min.

1612. The voltage drops uniformly in an electrical circuit,
at 1'5 V per min. The initial voltage £, = 120 V. Find the
work done by the current in 5 min. The circuit resistance
R = 60 ohm. Inductance and capacity are neglected.

1613. The input voltage of a circuit rises uniformly, being
zero at the start of the experiment. The voltage reaches
120 V during one minute. The circuit resistance is 100 ohm.
Inductance and capacity are neglected. Find the work done
by the current during one minute.
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1614. The water reaches the top of the rectangular wall of
an aquarium of base @ and height b. Express the pressure of
the water over the entire wall: (a) approximately, by a sum,
(b) exactly, by an integral.

1615. (a) Evaluate the pressure P exerted by the water in
an aquarium on one of its walls. The wall is rectangular.
Its length @ = 60 cm, and height & = 25 cm. (b) Divide the
wall by a horizontal line so that the pressure on the two
parts is the same.

Evaluation of Integrals by Summation

1

1616. Find Jex dr by direct summation followed by
0
passage to the limit. (Divide the interval of integration into

n parts.)
b
1617. Evaluate fx" dx, where k is a positive integer, by

direct summation followed by passage to the limit (divide
the interval of integration so that the abscissae of the points
of subdivision form a geometrical progression) (see Course,
sec. 87).

1618. Use the formula obtained in the previous example to
evaluate the integrals:

10 a+2 a 2a
W) fedz; @) [a @ (@ @ [Tra
0 a—2 a a
Z

<5)j(3x2—x+1)dx; (6) f?‘%’fdx;
: .

0

2'5 b
(7) j(2x+1)2dx; (8)j(x—a) (z — b) da;



148 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

1

2
Q)J + 2 g (10)J'(“:_“£)2dx; (11)stdx;
4]

o f o (55

k k k
1619*. Find lim (1 T2t +”) for & > 0. Eva-

nktl

n--oo

luate approximately 154 25 + ... 4 1005,
2
1620. Find de_x by direct summation followed by pas-

sage to the limit. (Divide the interval of integration so that
the abscissae of the points of subdivision form a geometrical
progression.)

2
1621. Form the integral sum for Ji—x by dividing the

interval of integration into »n equal parts. By comparing
with the previous problem, evaluate:

hm(1+ L +...+l).

oo +1 n 4 2 2n
1622*, Evaluate lim ! —i— 1 + 1 . 1
H— oo n+1 n -+ 2 an

(a is an integer). Evaluate approximately

1 1 1 1
(m+m+1o—z+--'+m)-

1623*. Use direct summation followed by passage to the
limit to evaluate:

()Jxe"dx @) Jlnxdx, (3) Jlnx

0
(Divide the interval of integration into equal parts in (1),
and as in problem 1620 in (2) and (3)).
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2. Fundamental Properties of the Definite Integral

Geometrical Interpretation of the Definite Integral

1624. Express with the aid of an integral the area of the
figure bounded by the arc of the sine wave corresponding to
the interval 0 = z = 2z and by the axis of abscissae.

1625. Find the area of the figure bounded by the cubical
parabola y = a® and the straight line y = =.

1626. Find area of the figure bounded by the parabolas
y=2>—2xr—3 and y = —2% 4+ 6z — 3.

1627, Find the area of the figure bounded by the curves
y=2*—zand y =at — 1.

Inequalities for Integrals 10

5
1628. Show that the integral J v 1 1S less than .

2
1629. Show that the integral Je"z—x dx lies between
0

41 and 2e?
Ve
35 2dx 2
1630 f“’_l : 1631. f
15
o 5
2
) X
1632. J (1 + sin®z) da. 1633. f s
i
Y3 e
1634. | arctan = de. 1635. | 2%~ dz.
y3 1
3 e

1636. Find out, without evaluating them, which of the
integrals is the greater:
‘ 2

1 1 2
(1) szdx or Ix"‘dw? (2) szdx or Jx‘*dx?
0 0 1
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1637. Find out which of the integrals is the greater:
1 1 2 2
(1) [2dz or [27de? (2) [2°dz or |27 de?
0 0 1 i
2

2
(3) Jlnxdx or f(ln z)? dx?
i i
4

4
(4) jlnxdx or [(ln x)? de?
3 3

1
1638. Prove that |J1 + 23dx < 5 (use Bunyakovskii’s
0

inequality). Show that employment of the general rule yields
a cruder estimate.

1639. Prove the following propositions by starting from
geometrical considerations:

(a) if function f(z) is increasing in the interval [a, ] and
has a concave graph, then

b
(b——a)f(a)<Jf(x)dx<(b_a)f(“)2M;

(b) if the function f(z) is increasing in interval [a, b] and
has a convex graph, then

(b —a) &;ﬂ < ff(z) dxr << (b — a) f(b).

3
2
1640*, Estimate the integral Jﬁd—xz .
z
2

1
1641. Estimate the integral IVI + «* dz, by using:
0]

(a) the fundamental theorem on estimation of an integral,
(b) the result of problem 1639,
(c¢) Bunyakovskii’s inequality.
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Mean Values of a Function

1642. Find the mean value of the linear function y =
= kz 4 b in the interval [z,, z,]. Find the point at which the
function takes this value.

1643. Find the mean value of the quadratic function
y = ax? in the interval [z,, z,]. At how many points of the
interval does the function assume this value?

1644. Find the mean value of y = 222 4+ 3z 4 3 in the
interval [1, 4].

1645. Starting from geometrical considerations, find the
mean value of ¥y = Ya? — «? in the interval [—a, a].

1646. Starting from geometrical considerations, obtain
the mean value of a continuous odd function in an interval
symmetric with respect to the origin.

1647. A gutter section is in the form of a parabolic seg-
ment. Its base @ = 1 m, the depth 2 = 1'5 m (see Fig. 36).
Find the mean depth of the gutter.

1648. The voltage of an electrical circuit increases uni-
formly during one minute from E, =100 V to ¥, = 120 V.
Find the average current during this time. The circuit resist-
ance is 10 ohms.

1649. The voltage of an electrical circuit falls uniformly
at a rate of 0'4 V per minute. The initial voltage of the circuit
is 100 V. The circuit resistance is 5 ohm. Find the average
power of the current during the first hour of working.

Integral with Variable Limits

1650. Find the expressions for the following integrals
with variable upper limit:

(1) jﬁdx; (2)afx5dx; (3)f(%3—%4)dx.

16561. The speed of a moving body is proportional to the
square of time. Find the relationship between the path trav-
ersed ¢ and time Z, if it is known that the body moves 18 em
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in the first 3 sec and that the motion starts at the instant
t=0.

1652. The force acting on a material particle varies uni-
formly with respect to the path traversed. It is equal to
100 dynes at the start of the path, and increases to 600 dynes
when the particle has moved 10 cm. Find the function
defining the dependence of the work on the path.

1653. The voltage of an electrical circuit varies uniformly.
It is equal to E, at t = ¢;, and equal to E, at ¢ = ¢,. The resist-
ance R is constant, whilst we neglect inductance and capacity.
Express the work of the current as a function of time ¢
after the start of the experiment.

1654. The specific heat of a body depends on the temper-
ature as follows: ¢ = ¢, + «f 4 St Find the function that
defines the dependence of the quantity of heat, acquired by
the body on heating from zero to ¢, on the temperature £.

1655. A curvilinear trapezium is bounded by the parabola
y = 22, the axis of abscissae and a movable ordinate. Find
the value of the increment A8 and differential dS of the
area of the trapezium at x = 10 when Az = 0°1.

1656. A curvilinear trapezium is bounded by the curve
y = Va? 4+ 16, the coordinate axes and a movable ordinate.
Find the value of the differential dS of the area of the tra-
pezium when z = 3 and dz = 0-2.

1657. A curvilinear trapezium is bounded by the curve
y = 28, the axis of abscissae and a movable ordinate. Find
the values of the increment A4S of the area, its differential d.S,

and the absolute («) and relative (6 = %) errors arising on

replacing the increment by the differential, if x = 4, and 4
takes the values 1; 0-1 and 0-01.

1658. Find the numerical values of the derivative of

(l—t4e _
0
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16569. Find the numerical values of the derivative of
X
y=jsinxdx at =0, x=g and x=g.
0

1660. Find the derivative with respect to the lower limit
of an integral with variable lower and constant upper limit.

1661. Find the numerical values of the derivative of
5

y=J.V1+x2dx Withx=0andx=§.

1662. Find the derivative with respect to z of the function

2x
smx
= |—dz.
0

1663. Find the derivative with respect to « of the functions

ez
Inz
— dz;
2

1
1) (2) |Inzde.
2 xj

1664*. Find the derivative with respect to x of the function
2x
| In? z dz.
x

1665. Find the derivative y with respect to z of the
function given implicitly:

X

_fve‘dt-{—J‘ cos £ df = 0.

0 0
1666. Find the derivative of y with respect to = for the
functions given parametrically:

t t

(1) z = J.sintdt, Yy = J'costdt;

0 0

[ 1
() z= [thtd, y= [entar
1 t?
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1667. Find the value of the second derivative with respect

z
to z of the function y = j%

0
1668. For what values of x does the function

for z = 1.

X
I@) = |ze* da
0
have extrema?

1669. Find the curvature of the curve given by the equation

X

y= [0+ 5 +at.

Y]

1670. Find the extremal points and points of inflexion of
X

the graph of the function y = J (x* — 3z + 2) dx. Draw the
0

graph of this function.

1671. Use the graphs of functions illustrated in Fig. 37
and 38 to find the shape of the graphs of their derivatives.

O \/ 5 \/ W

Fia. 37. Fi1a. 38.

Newton—Leibniz Formula

1672. Evaluate the following integrals by a suitable choice
of the primitive function for z*:

(1) j‘i—‘f 2 fi—if ) fg:a Va da;
1 4 1
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4) f(m +%)2dx; (5) fﬁ‘(l + V=) dz

(6)f(ﬁ—i/5)dx; (7)“ ; (8 f””dt

(9)f— (@>0, b > 0); (10)J. 7 —1)2de.

1673. By using the fundamental tables of derivatives, pick
out the primitive and evaluate the integral:

(1) fsinxd:c; (2) jcosxdx
0 0

(interpret geometrically the result obtained),

b

3 1
3) Je" dz; (4) Jsec%vdz; 5) _[l_j—i:c_z;
0 0 0

V3
2

® [
J1 — 22
7
1674. A function f(z) has equal values at points r=oa
and z = b and a continuous derivative. What does ff (x) d=
equal ?
1675. The tangent to the graph of the function y = f(x)

at the point with abscissa & = a forms an angle g with the

axis of abscissae, and an angle g at the point with abscissa

b b
z=b. Evaluste |f'(z)dz and [f(z){"(x)dw; f'(z) is

assumed continuous.



CHAPTER VI

THE INDEFINITE INTEGRAL.
INTEGRAL CALCULUS

1. Elementary Examples of Integration

Find the integrals of problems 1676-1702 by using the
basic table of integrals and the theorems on splitting up the
integrand and on taking outside a constant factor:

1676. [z de. 1677. V2" da.
1678, |42 1679. | 10+ da.

X
1680. | aex da. 1681. J de

2V

dh .
1682. J < 1683. | 34201 dz .

V2gh

1684. [(1 — 2u)du. 1685, [Vz +1) (e —Vz +1) da.
1686. JVE“ TELY

1687. [ (2212 + 3208 — 520%) da.

_ 2
1688. J (1 _ z) dz. 1689. J a— x) dz.
3 2
1690. j a+ye g, 1691. JV_x_VE dz.
Ve 1£3
1692. JL 1693. J 3.2—2.8 4.
V3 — 322 2%
14 cos?x cos 2x
1694. J 1 4 cos 22 dz. 1695. J cos? z sin? x

156
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1696. j tan? z de. 1697. f cot? z da.
L@ (1 + 222) dz
1698.J2sm > d. 1699 J e +x2) .
(1 + z)?2dx
1700. J Sy 1701. J c~_os e

1702. J(arc sin z - arc cos z) dz.

Find the integrals of problems 1703-1780 by using the
theorem stating that the form of the integration formula is
independent of the nature of the variable of integration:

1703. | sin z d(sin 2). 1704. [ tand z d(tan 2).
d(1 + «?)
1705. : 1706. [ (z + 1) dz.
15 TL 2 [+
de
1707, f T 1708. f o €+
5
1709. [V(8 = 32)° da. 1710. |8 — 2z da.
1711. J 1712. (22 V2 ¥ 1 de.
a—l—bx)2
— 5
1713. | x]/l — o da. 1714, |22V F 2 da.
1715. f . 1716 JW& .
sz + 1 V4 + 28
1717, j . 1718. J2 w :
VAT V322 — 5z + 6
. sin x dx
1719. fsma z cos x dzx. 1720. J—2 .
Cos°“ o
cos z dx

1721,

1722. Jcos” z sin 2z dz.
Vsirﬁ
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1723.

1725.

1727.

1729.

1731.

1733.

1737.

1739.

1741.

1743.

1745.

1747.

1749.

1751.
1753.

1755.

J Vinz

dx
J(arc sin 2)3 J1 — w2

Jcos 3x d(3x).

fcos 3z du.

jsin (2x — 38) dx.

d (1 + 2%
142
r (22 — 3) de
22 — 3z + 8°

dzx
ch—}—m'
x2 dx
Jx"—{— 1’
e dx
Je”+a2 )

jcot z dx.

jcot 2z + 1) dz;

da
Jxlnx'

[ esnx d(sin ).

Ja“x dx.

J‘ e—3x+1 dg.

r 12
] [cos (2x —_ 71)] dz.

1735.

1724.

1726.

1728.

1730.

1732,

1734.

1736.

1738.

1740.

1742.

1744.

1746.

1748.

1750.

1752.

1754.

1756.

J(arc tan z)? dz
1+ 22

JcosszI + tanz

d(1 +1nz)
f@m FInz)"

f(cos o« — cos 2x) dx.
_[cos (1 — 2z) d=.
.[e" (sin e*) dz.
Jé@?ﬁin_x)

arc sin x

_dz
2c —1°

z dx
sz—{—l'
e* dx
Jex—l— 1°

jtan z dx.

J' tan 3z dz.

sin 2z
1+ cos?x

‘[§9132T<Ln

T

einx cos x dx.

|
Jor
Jora
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1757, | e 22 da. 1758. .
B x
o Vl - (3)
dz r dx
1759. Jm 1760. | s -
F e
1761. JV4 = 1762 | g -
x dx
1763. J 1/——995 . 176 [ Z
x2 dx
1765. J Va2— . 1766. J&m :
e dx
1767. JV = 1768.J82x+4.
2x dx cos « du
1769. J 1 _4x. 1770. fazm
1772, | (& + 1 da.
R 3x — 1
1773. J —_ 1774, J e
—z z (1 —2a?)
1775. ”/T de. 1776. J_l i da.
1777. J 2 g, 1778. J @
V(1 — a2p (@4 Va2 — 1)
1779, J2x V arcsin dz. 170, Jx + (arc cos 3x)2 de.
Y1 — a2 Y1 — 922

Find the integrals of problems 1781-1790 by dividing out
the integrand fraction:

X x
1781. J oy e 1782, Jm do

Ax 3 + m
1783. Jm da. 1784. j
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(22 — 1) dx x4+ 2
1785. JTT . 1786. Jz Lo
a2y -
1787. J . 1788. de
xt dx
2 1790J2+1

Find the integrals of problems 1791-1807 by using the
method of partial fractions and the method of completing
the square:

1791. j;@i_x—f)' 1792. J %

1793. J 2,6 Sy 10t j = x()bib —
1795. J T 1796, J ET%
1797. J ﬂé&%ﬁ' 1798. J‘@?:@.
1799J2_32. ISOO.JH%.
1801. J ?ﬁ%g. 1802. J e

dx dx
1803. | ————— . 1804. — .
J4x2—[—4x+5 J]/l-(2x+3)2
1806.

1805.J¢—. J d= |
Var — 3 — «? V8 4+ 6x — 9a?

1807.J &
V2 — 6x — 9x2

Find the integrals of problems 1808-1831 by using trigo-
nometric formulae for transforming the integrand:

1808. fcos2 x dz. 1809. _[sin2 z dz.
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1810. JL .
1l —coszx

— COs x

1814, f(’can2 z -+ tan® x) dz.

1816. j cos z sin 3z dx.
1818. Jsin 22 sin 5z dz.

1820. J dz
CosS x
in3

1822, J S Z g

0S8 &

1824. f st
Vcos

1826. j cos® z dz.
1828. fsin5 z dx.

1830. J'tanax dz.

2. Basic Methods of Integration

Integration by Parts

1811.

1813.

1815.

1817.
1819.

1821.

1823.

1825.

1827.
1829.

1831.

dx
Jl +sina
Jl 4+ sinz d

1 —sinz

cos 2z dz
Jl—{—sinxcosx )

fcos 2z cos 3z dz.
fcos z cos 2z cos 3z dx.
1 — s
j sin x Az
cos T

Jcos3 rdx

sint z

dx
J cost x

ftan4 z dz.

fsin‘1 z dz.

dz
sin® 2 °

Find the integrals of problems 1832-1868:

1832. fx sin 2z da.
1834. jxe—x dz.

1836. [z Inwdz (n -+ —1).

1838. farc cos z dx.

1840, f arc sin x

1833.
1835.
1837.
1839.

1841.

f:v cos x dx.
jx3" dx.
jx arc tan z dux.

f arc tan 'z d.
jx tan? z dz,
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1842. lx cos? x dz. 1843. Jlofsx dx
x arc tan x . Ve
1844, ———— d. 1845. | arcsin dz.
V1 + a? 1—x
z? dz
2 _ _
1846. [In (22 + 1) da. 1847. J e
% dx i
1848. . 1849, | x2In (1 dx
AT J 22In (1 4 z)
1850. | 22 o> da. 1851. | %~ da.
1852. | zta* da. 1853. | a8 sin  da.
1854. sz cos? x dx. 1855. ‘ In2 z dz.
3 2
1856. J T e, 1857, (27 4.
x Va®
1858. f(arc sin x)? de. 1859. J (arctan )2 x dz.

1860. fe" sin z dzx.

1861. J.e3" (sin 2z — cos 2x) dx.

1862. Je cos nz da. 1863. J sin In z da.
1864. [ cos In  da. 1865*. J .
e
* (Vo2 12 ze* dr
1866*. | Va7 + 22 da. 1867. J Ty

1868. faﬁex sin x dz.

Change of Variable
Find the integrals of problems 1869-1904:

1869. J _ A= (substitute z + 1 = 22).
1+Yz+1

1870. J o do 1871. J 4“’+ 3

x—l
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1872. J . 1873. f 2+ 1
zfz +1 zy. x—2
1874. X 1875. Z _ da.
Jl + Ve fx(x +1)
1876. f Ve g, 1877. f .
1+Vx+1

1880. (5—5—— . : —
f yzlyz=1) Vot Vz
1882. f d—ﬁr de
Vot~V

1883. J e dz (substitute ex - 1 = 2%),

Vex +1 + 1

1884, [ & 1885. f_“ +thzg,
}/ 14 e* zlnx

1886. fVl —+ cos?  sin 2z cos 2x dx.

1887. j ntanz g, 1888. J .
sin & cos x Va® — a3

1889. J( T

1
1890, | ———— ; — —, or x =a tan z, or
jaﬁ Vot o (substitute z =

x = a sinh z).

1891. J (substitute x = a sin z).
Va? — a?
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1892, j—di— (substitute x=l, or ¥ = e

z)a? — al z cos z’
x = a cosh 2).
pe T
1893. JVI da. 1894, Jlez ~ dw
— 723
1895. j yz—df”zﬁ . 1896. Jﬂf)xe_w) do
a X
1897. f L 1898, f =
22y at — )1 4 a2
1899, J 17(;%(12)3 ; 1900. |24 — 2* da.
dx —1d=x
1901. , .
J(x2+4)V4x2+1 1902 W Tl
dz (x +1)dx
* *
1903 'qux <. 1904% ([ FE S

Find the integrals of problems 1905-1909 by first changing
the variable and then integrating by parts:

_ 3
1905. [eV7 dz. 1906. sin Y da.
2
1907. J arcsin x da. 1908. Jx arc tan x
Y@ —x2)?
arc tan x
1909. J s

Miscellaneous Problems

Find the integrals of problems 1910-2011:
1910. |z + 1)YVa® T 2wde. 1911 | (1 + )2 esx da.

Vx
1912 J °Z aw. 1913. f sz
V; COS X

1914. [ YT — &% % da. 1915. | cos a? da.
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41 1
3

1916. [ (2 — 32

1918.j ﬁdﬁ .
14 22

dz
1920, | ———— .
J‘ex I/ 1 _ e—2x

1922, 23’7_1
V922 — 4
1924, J =
V3 —In?x
—z+1

1926. de
J 1/(902 4 1)3
1928, f pr .

ind
1930. f sin’z dz

cos® x

1932. | (1 — tan 32)° dz.

1934, J(x_ oy

1936. .
J V1 + 22

1938. J(Vsm x + cos z)2 dz.

1940.]*.
V5 — 2x + 2

dx
1942, —
fV 122 — 922 — 2

(z+ 2)dx
1944J Y

—1)de
1946. J4 T 4z 17

) @ dz.

1917.

1919.

1921.

1923.

1925.

1927.

1929.

1931.

1933.

1935.

1937.

1939.

1941,

1943.

1945.

1947.

J 25 -—3x2
1+ 325 — a8
f_< ST

2x—|—3dx
JVl—l—xz )

jcos V; da

xr

Inzdx
Jx(l —In?z)°
(arc tan )"

14 a2

cos 2z
3 dx
cos? x

f Vtand z sect x dx.

J‘w3dx
z+1°

z dx
JV2+4x'
foa—l—xdx.

fa’""b”x dz.

_ d=
JV9x2—6x+2'

(8z — 11) d=
V5 + 2c — a?
(x — 3)dx
V3 — 2z — a2
(z — 1) d
fvm'

165
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(x — 2)dx
1948. m .
3 — 4x
1950. J T &
— Bx) dx
1952.
J Vi f 9z + 1
1954. )( Veds
V2x + 3

1956. J arc tan z dz.
1958. J x2? cos wz dx.

In cos x dx
1960. J i
27 dx
1962. (1Tx4)‘2 .

dz
1964. J\m .

do
1966. j -
1968. | o=+ de.

3
1970. [ -2+ % 4o
V2 + 222

1972. j TOOST 4.

sin® z

1974. j(l -}- tan x) dx

sin 2x

1976

sin? x cos x

P
'fﬁcos¢+sin¢.

20+ 5 .
V92 + 6x + 2

(4 — 3x) dx
951 [t 18

1953, J zd
V3x® — 11z + 2 2

a—x
1955. ﬂ/x_b

19b67. jx sin z cos z dz.

1949.

1959. fezxﬁ de.

cot x
Insinz

1961.

3
1963. f os* 3% 4

sin 3x
sin 2z dzx
1965. J Pt o8
ex — 1
1967. &1

1969. J'e2x-+mx dz.

x arc sin x

V1 — x?
1973. J'ex sin? z dz.

1971. dz.

] —tanx
1975. f Troag %

sin z dx
1977. j T e

1979. f—“Jr""” de

sin z
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de.

1950. J‘ln Inz
z

1982, |e—+a5 da.

1984, J i

1986' ——
jw’* Va2 + 4

2
1988. J' 4 :; ¥ dw

xt de
1 — a2}

1990. f Vode
V—+1

1992. f m .

2 1 Oe
1994. jl"—‘{ﬁ"— da.

1996.f_~d_”—.
ax + b)Vx
1998, J—&

3

x4)2

2000. J m .

xt da
2002. m .

+ eX) dx

Inz

In{x -+ 1) —
j z(x + 1)

dz.

167

1981. |23 < da.

1983.
j V14 222

1985. J Via* — a?F “2)5
1987. f Yat — 8

X

de
1989. Jﬁ-_-—

pr) sz —

1991. J Vet1 + L4
1993. J

z (Y +Vx
27 dx

*
1995, j—(l S8
1997. f Raea

1999. f =
2001. f VZ:_V;”‘

3
dz.
32 —
2003.
J 2z ﬁ

2005. | Yex — 1 dz.

dz.

Vx dx

x5 dx

1
arctan x dx.

—
2008. Jarc cosvm dz
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2009. |In x—}—Vl T %) dz.  2010. ﬂ/sm ? dz.

2011. J S A
cos3 x Vsin 2

3. Basic Classes of Integrable Functions

Rational Fractions

Find the integrals of problems 2012-2067:
(1) The denominator has only real distinct roots.

z dx z dx

2012. j<x+1)(2x+ 7o 2018 Jm

222 + 41x — 91
2014'1( —1)(x+3)(x—4)

2015[63 — 2016f”+f44;8dx.
2017'JF_—“

2018'J 50 — 1)(ii§ix16x+l5) ’
2019J 32+2 2020, fﬁi;ff’;
2021. J” e e

(2) The denominator has only real roots; some roots are
multiple.

(x2 — 3z + 2) de x -+ 2)2dx
2022.J ) 0B f( ) :

x2dx 23 4-1
2024, J TR e 1 J .

6x2 4+ 1l — 5
2026. j T dx.
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2027. fji'l_f‘—x—z
622 + 0z + 7
2029. J g

2030. J H (m) d

(@2 — 2z + 3) dw

dx
202 x
OSJ ey

2° d
2031. fx_ =T

2032.

(@ — 1) (@ — 42 + 3z) °

(72 — 9) d=
2033. J e

32 —|—1
2035. J( gy o

2
— 2 +4dx

2034. J

(3) The denominator has complex distinct roots.

dz
2036. [ — %
036J(2+1)
2038f”d”‘

(x* + 1) dz
2040j 2+x_1.
2042, J 1) TS

2044 J‘(3x2 + o+ 3)de

1P+ 1)

6) de
20486, J#+6x2+8

2037. J T

2x2 3x—3)dx
2039. j( P Er
2041. fm

L
208, |y
92045 Jx5+2x3+4x+4dx

2t 4 223 - 222

dz
% |9
2047.J1 -

(4) The denominator has complex multiple roots.

23+
2048f(2+2)2

(5x2 — 12) dx
2050. _[ —6x+13)2

2052. f Crat

dz
2049. f +x2)2( -

2051. f( (@ + 1

2 - 2x + 2)3
2053. J v

2x dx
TF2) (12
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2054. f sy 2055. f TR

(5) Ostrogradskii’s method.

2056J- ”+2 . dz. 2057f((4x_8”d”

DE @2 + 1
2058. j x_+2:4-:_1x3dx. 2059. J”+”4_f’i2)2_2dx.
2060. f 1(_";‘_ _)11:1“;2) . 2061 f 9&%3?1-)5 .
2062. f Wﬁgﬁf)“' 2063. f (Qfﬁ)ixms
T R s R
2065. f = :()’”1 * f)s

5 — 3x -+ 6x% } 52% — ot
2066.fx5_x4_2x3+2x2+x_ldx.

9 dx
2067. j P

Some Irrational Functions

Find the integrals in problems 2068-2989:
(1) Functions of the form

m p
ar + b ax + b
wl foabn V)
2068. J — . 2069. J ; —
o(Jz + Va?) V7+ﬁ 2V

xdx
2070J - 2071J 1+xx.
(412 + @+ 1)
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2072.J 1—Vz g,
14 Va

—-xdx
2074. JV T2z

2073. j"" +Vita
V1—|—x

2075*. f dz

4

Vi — 1) (& + 2

(2) Binomial differentials x™(a -} bz")? dz.

2076. [Vz (1 4 13/5)4 de.

2078, JBL
xVx? + 1

2080.J3 do
Y1+ a8

2082. J' 1 ;”" dz

3
2084. JVI 1“/5 dr

3
3
2086. J‘/l T2 .
X

3
2088. [V (1 — 2?) da.

Trigonometric Functions

1
2077. [271(1 4 2%)-3 da.

3
2079. |5 V(T + 290 da.

2081. f .
V1+x4

2083, JVIV;V;‘ dz

dx
2085. J —
le + x5

2087, | ———— .
Jx“}/l—{—x“
3

4
2089. JV] + Vx de.

Find the integrals in problems 2090-2131:

2090. j sin® z cos? z dz.

_ dx

coszsindz

X
2094, Jmm -

2092.

In3
2091, J ST g
Cos* &
ind
2093. J ST g
Cos“ x

2005, (%
sin® x costzx




2096. J sin x dz

1 —cosz)?’

2098. j cost z du.

2100. f tan® z dz.

2102. J dz

sindz °

dz
2104. J(sin x + cos x)2

dx

2106. ja cosx + bsinzx

9108, J cos? z dx .
sin x cos 3z

2110. J e
— ginx
2+ cosx
de

2112. [

2114. j4 4+ tanz 4 4 cotx’

dx
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2097.J cos x dx

(1—cosx)? "
2099. _[ cot? x dx.

dz
2101. J oo

4 2

Cos* & sin* x
2103, | - 2T % gy,
CO8“ ¥ — SIn“x

2105. J _ =

sine + cosz °

2107. J dz

tan x cos 2x

dx
2109. J T

d
2111. f i

° sin? z dz
2113. J e
dx

2115. (sinx + 2secx)? ’

2116'[5—4sinx+3cosx )

dx

2117, j4 — 3cos?z + 5sinx

dx
2118, f 1T sinfa

dz

2120. Ja2 sin? x + b2cos? x

9199 cos z dx
: Jsin?'x —cosdzx

2123. | V1 1 sinz da.

da
2119, Jm :
do
2121. Jsinzx + tanz

Vtan z
sin z cos x

2124,
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2125*, f’ 27 2126. Lﬁ_
Vsin3 x cos’
2127. JVI—;“—.T . 2128. fVI + cosec z dzx.
— 811’

o1p9, ((c82—8)dw o5y [ dz
costz {4 — cot? . xV 3 &
sinz |/ cos® 3

2131. I Vtan z de.

Hyperbolic Functions
Find the integrals of problems 2132-2150:

2132. j cosh z dz. 2133. f sinh z d.
dx ex dz
2134, jcosh2 x’ 2135. J coshz -+ ginhx °
2136. f (cosh? ax + sinh? az) dze.  2137. f:s;inh2 z dx.
2138, f tanh? z d. 2139. f coth? z dz.
2140. f sinh? z dz. 2141. j cosh3 z dz.
2142, f tanht z dz. 2143, f sinh? z cosh? x d.
: dx
5
2144. | coth® z da. 2145. f Tl
dz dx
2146. f e 2147. j (1—+W .
2148. [} tanh z da. 2149, f il
e2x dx
2150. J P

Rational Functions of z and V ax® + bx + ¢
Find the integrals of problems 2151-2174:

2152.J _d=
zVa® 4 42 — 4

2151*.j—-di—.
zVa?+ 2+ 1
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2153. f 2 o f 4
xfa? 4 22 — 1 zY2 4+ x — a?
V 22 + 2 dx

2155. J xz— dx. 2156- (x . 1) Vm .

dx e
2157. . 2158. 22 — 22 — 1 dx.
J(2x—3)}/4x—x2 fV

2159. (V32" — 8z + 1dz.  2160. | VT — 4z — 2% da.

dz dz
2161. ., 2162, .
Jx—}/ﬁ—x—{—l sz(x—i—Vl—l-xz)

2
2163, J A TV N (. AN
1+ Va2 4 22+ 2 V1 — 2z — a2
2 __
2165. J (2% — 3z) dx 2166, (3% —5% 4,
Vat — 2 + 6 V3 — 2x — 22
32 dx »—z+41
0167, [ "% o168, L2 4,
,[Vx2+4x+5 JVx2+2x+2
2169. J —8+5 e orpo. [
Va2 —dx — 7 Va2 4 4 + 5
2171.J A
(x3+3x2-|—3x+1)]/x2+2x—3
2172. f’““f . 2173J —ldz
2+« 2?2 — 2 + 1

2174'J (2z + 3) dx
(x2+2x+3)]/z2—{—2x+4'

Various Functions

Find the integrals of problems 2175-2230:

23 dx z dx
2175. 2176. | ————— .
J — 1) Jx—}/xz—l
2177. o ya T 5 do o178, (9% ___
-JzVa 4+ zde. * ) aem™x - be—mx

zV1 + 2 xt dz
2179. J o 2180.J(x2_ N eTT
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de
2181. fm

2183'JM ]
Ve +1

2185. IxZ sinh z dx

2187. f arcsinz dz
x

2189. | zol* da

2191. | sin Yz da.

dx
2193, | —————— .
fx—-Vaﬂ—l

2195.
f V2% +

2197. J __d=
BV (14 )
A de
2199. Jm

dz

2203. [z 1In (1 4 o%) da.

xlnx

2205.
J V(22 — 1)3
2207. [2e¥(a? + 1) da.

2209. —L .
sin® 2 cos®

2182.

JaZm

2184, j(xz—}— 3x -+ 5) cos 2z dz.

2186.

2188.

2190.

2192.

2194.

2196.

2198.

2200.

2202.

2204.

2206.

2208.

2210.

Iarcta,n (1+Vz)da
fe"/; dz.
f(:;tr:3 — 222 -} 5) e¥ du.

_d=z
T -
j 23z — 1)2

fV(l + 2 4.

I

V2x—

dz
sin 2x — 2sinx

_ d=z -
Jaz — b2cosZx

(lnz — 1)dx
j In2 2 )

ds
_.

fxz e* cos z dx.

dx
Vsin3 z cos®
sin 2x dx
costz 4 sintzx’
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dx

2211. J 14 sine+tcosa’

2213J (2 — 1) d
Vot + 322+ 1

dz
2215. e .
Jagar

arc tan z dz
2217, f o,

9919. Jarc tan x
Trap

e2x+1 ’

tan z dz

2223. _[1 + tan x + tan®x

2 3
2225J (B + @ abdr

x2)3

dz

2227. _[sin4 x4+ costa’

—1 dz
2229%,
Jx2+1 VIfat

rcostr —sinx

2230, f goinx

cos? x

2212, J Vtan2z + 2 da.

dz

214.[(2x—3)V4x—x2.

2216.J werdz
V1 + e

9918, Jx arctan x

2)2
2220, J g

2222.J4.
V1 + e + ex

9294, jsina z d.

— 8x 4+ 7
2226. f( G 10)2dx.

(x + sin z)
2228. J 1+ cosxz

dz.



CHAPTER VII

METHODS OF EVALUATING
DEFINITE INTEGRALS.
IMPROPER INTEGRALS

1. Methods of Exact Evaluation of Integrals

Direct Application of the Newton—Leibniz Formula
Evaluate the integrals in problems 2231-2258:

1
2231. J‘ V1 + z da. 2232, f(_ll——iﬁw .
—13 dx - 9
2933. f | 2934, J y=1 g
VB —ay JVy+1

5 16
2nt dz
2235. == — dt. 2236, | —————.
j ( %) f Vz+9— Vo
0

2237. f (6% — 1)t e da. 2238, J 34 S as0).
de
2239, 2240, | — %% .
J(2+ 1?° Jle—(lnxP
1
2 1
2241, j 14 loga 2242, Jex dz
x x
2 . es
9243, j etde 2944, J _ 4=
Va2 — x2n 2yl + Inz

1

177
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V3
2

3
2945, . "’”d"5 )
(5"") V@‘x‘
05

3
dx
240, [ ey
2
2

dx
2249, f -t
1

24

2
do
2951. Jm@ .

N e TS B

2253.

19

S

cos® z dx

3 .
Vsin

sin %
2257. 5 dz.
x

1
n

2265.

R e |

AN

Definite Integration by Parts

Vcos z — cos® x dz.

a

z
a dx
2246. J e

1
dx
2248, f S ToTE
0

1
225o.j A=
V8 + 2x — a?

—03

]

2252, | cos® x sin 2x dx.

(=13 ~

2254. | sin® (wx 4 ¢,) dz.

Sty g |2

7
ry

2236. | cott ¢ dp.

i

2
2258. Jcos ¢t sin (2t — g) det.

2

Find the integrals in problems 2259-2268:

1
2259. jxe‘x dz.
1]

n
2

2260. Ix cos z dx.
0
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w]a

2261.

92692, J'xa sin z da.
Q

e—1

%
2
-]
a7

2263. |z log, z dz. 2264. [In (& + 1) de.
0
2265. J P2 4. 2266. | }a® —2* da.
6 Va2 +a? °
7 :
2267. J e2 cos x dzx. 2268. J In3 x dz.
1

3
2269, Form recurrence formulae for J cos” x dx and
0

2
Js zdx (n is a positive integer or zero; see Course, sec.
0
1

06) and evaluate the integrals:

n T n

2 2 2
(a) jsin5 zdz; (b) Jcos8 zdx; (e) jssin11 z dz.
0 0 0

2270. Form a recurrence formula for the integral

| R

sin™ x cos” x dr (m and n» are positive integers or zero;

O —n

investigate the particular cases of even and odd values
of m and n).

0
2271, Form a recurrence formula for J zre*dx (n is a
positive integer or zero). -1
2272, Obtain the recurrence formula
x
(U+a)" ~ 20— 1) (1 + 273
n 2n — 3 dx
2(n — 1) J (1 + 2?1

_|_
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(n is a positive integer or zero) and evaluate with its aid
the integral

f T

2273. Prove that, if J,, = [ In™ 2z dx we have J,, = e —

i
— md,,_, (m is a positive integer or zero).

1
2274*, Find [ zP(1 — z)3dx (p and ¢ are positive inte-
0
gers).

Change of Variable tn a Definite Integral
Evaluate the integrals in problems 2275-2295:

9
2975. J& dz. 2976. fod”‘
Ve —1

2277. . 2278,
fVl +a J 1+ Vo
20 3
R
2279. f A2y 2980, J‘/(—xsi)-d—” .
Ve + o~ +e i34+ = 2
. T
2981*, J sin® £ dz. 2282%, | cos? 2z da.
0 2 0
¥3
x? do Y1+ a2 de
2283, f T 2984, Jx—2

2
— e
2285, JVI a1 2286, JM dz.
T x
V2

2



VII. METHODS OF EVALUATING DEFINITE INTEGRALS 181

2 1
dz -
2987, | ——— 2988, 1 — 22)3 dzx.
fxsw_l OIV( )

—1n2

1
2989, j 2 V71— 2 de. 2290. | YT —e> da.
1]

[=/
w

dz

2291, J . 2292, f S
g ot Ve e @+ 3)?

wllh‘

5
(V25 — 22 J dz
2293.I—T do. 24 | o

25

2)2
2295, J _ G
% V(@ — 2y

VTs
3
Miscellaneous Problems

2296. Find the mean value of the function y =}z + —V—I;
T

in the interval [1, 4].
2297, Find the mean value of the function

fle) =
in the interval [1, 1-5].
2298. Find the mean value of the functions f(z) = sin 2
and f(z) = sin? z in the interval [0, =].
2299, Find the mean value of the function

fzx) =
in the interval [0, 2].

2300. For what a is the mean value of the function y =
= In z in the interval [1, a] equal to the mean rate of change
of the function in this interval?

a:2—|—x

e"-|—l



182 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

Evaluate the integrals of problems 2301-2317:

2
dx
2301. J T
1

1
2

2303J _3x+2

2305.J dz .
JVe+ 1+ Ve +1)
1
2307. j V2z + a2 da.
1]
inb5
ex Vex — 1
2309. —eT_'—_3_“— dx-
1]
T
2311, | 2227 g,
COos° &

1]
7
2313. ‘i—‘”.
Zqin2
1+631n x
0
1

2314, f(arc sin x)* dz.
o

(32 + 2) do
. -
b (@ + 4z + 1)2

n
2

2316.

sin z cos x dz

2317. jaz cos?x 4 b2sinZz

0

/ 29 dx
2302. J(l
0

218 dx

!
V2
2304. f :
1+ a7

0

2306. :
I

Vs
2308. j Y1 L 22

0

22 du.

dzx

2310.f *
xVx: + 5z + 1
1

MK

2312. J2 cosx + 3°
0

16

2315. [arc tan VVE — 1dz.
i
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n

2
|ab] dx @
2318. Prove that Ja2 ootz & bisinfa — 2’ where a and

0
b are any real non-zero numbers.

X

2319. Solve the equation f
vz

2320. Solve the equation f

In2

T

Az

sz —1 12
bz =
Jex — 1 6"

2321. Having verified the inequalities z >Inz >1 for
4

x > e, prove that the integral 3dx is less than unity

but greater than 0-92. 3 Vlnw
2322*, Prove that
1
% o 0-523<j __d= 7 o,
6 Ve —a22 —23 4y2
0

2323*. Prove that

05
0-5<JV——ld’” 2n§’—;w 0523 (n=1).
— &
0

2324, By using the inequality sinz > z — %3, valid for

z >0, and Bunyakovskii’s inequality, estimate the integral

n
2

V2 sin  dz.
4]

2326*, Prove that

1
078 < ji—— < 0-93.
Y1 4 ot
0
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2326. Find the maximum and minimum of the function
X

J(x) =J52£_%t -li- 5 dz in the interval [—1, 1].

0
2327. Find the extremal points and points of inflexion of
the graph of the function y = f(x — 1) (x — 2)2dz.
0

In problems 2328-2331, prove without evaluating the
integrals that the equalities hold (see Course, sec. 107):
8
2328. | 210 sin? & dz = 0.

8
1
7 — 3
2329.]” 4T =2 g — 0.
CO8“ X
—1

2330. fe“’s" dx = 2 femsx dz.
—i 0

1

!

2331.Jcosxln 142 40 —o.
l—=z

1

2

2332+, (a) Prove that, if f(t) is an odd function, [ (1) dt
is an even function, i.e. that f @) dt = f f(t) dt.

(b) Will j f(¢)dt be an odd function, if f(f) is an even

function ?
2333*. Prove the equality

1
1

d [ dt
J1+t2 =J1+t2 (& > 0).

x 1
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2334. Prove the identity

tan x cot x

tdt dt
f 1—|—t2+_[t(1 s s
1

€ e

2335. Prove the identity

sin®x cos? x
J arcsin )/t df + J arccos )/t df = l—z- .
0 1]

2336. Prove the equality
1 1

Jxm(l —z)tdx = fx"(l — z)™ d.

0

2337. Prove the equality
b 4
| 1@) de = | fla + b — @) da.

2338. Show that

IR

7
[ Hteos 2) dz = | f (sin x) da
0 1]

(see Course, sec. 107).
Apply the result obtained to evaluation of the integrals

Fi n

2

fcosz xzdx and J sin? x dz.
0

0

2339*. Prove that

n

fxf(sinx)dx - g'[f(sinx)dx —
0

0
E n
2 2

= 721 X ZJ‘f(sin z)de == 0ff(sin z) dz.
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Apply the result obtained to evaluation of the integral

k14

xsinx
Jl + cos?x dz.
0

2340*, Show that, if f(x) is a periodic function of period
a+T
T, | f() de is independent of a.

a

2341*. We know in regard to the function f(z) that it is

odd in the interval [— %, %] and has the period 7. Show

X
that f f(x) dz is also a periodic function with the same period.

1

2342. Evaluate J (1 — 2?)" dx, where n is a positive inte-
0
ger, by two methods: by using Newton’s formula to expand

the integrand as a series, and by substituting x = sin ¢.
By comparing the results, obtain the following summation
formula (C¥ are binomial coefficients):

o2 08 (—1yCn 2.4.6...2n
0o __ 1 —n__n n—
G-3t+3% 7 T T T 185, . @t D)

27
2343. The integral Jm is easily obtained with
0

the aid of the substitution tan g = z. We have:

2% 0
dz _ 2dz —0
J5—3005x -

: B (1—}—22)(5—31_22)
0

14 22

But on the other hand, —3 << —3 cosx < 13, so that

1 1 1
2<5—3cosxz< 8 and §>5——3cos_x>§' Hence
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27 2x dx 2%

1 1
Jédx >J5 — 3cosx >J§dx,
0 0 0

2n

ie. _ = > 7. Find the mistake in the argument.
5 —3cosx” 4

0

b1

1
2344*. Let I, = Itan" z dz (n > 1 and an integer). Prove
0

1

1 1
tha:t In+In_2='— ShOW tha‘t——<In<én—_2‘.

n—1" on + 2
2345*. Prove the equality
* o X _ 2
J.ez" e~ dz = e? J e *dz
0 0

2346*. Prove that

oo {0,if & < bY,

lim (w>0,%k>0b>0).

W — oo
Ie’“‘”"' dx

a

" oo, if x = b,

2. Approximation Methods

Carry out the working to an accuracy of 0:001 in problems
2347-2349.

2347. The area of the quadrant of a circle of unit radius
is equal to ;—t On the other hand, on taking the unit circle

with centre at the origin, the equation of which is 2 + 42 =1,
and using integration to evaluate the area of a quadrant of
this circle, we get: '

1 1
ngyl—aﬁdx, ie. ﬂ=4JVi—x2dx.
0 0



188 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

By using the rectangle, trapezium and Simpson rules,
evaluate approximately the number z, the interval of inte-
gration [0, 1] being divided into 10 parts. Compare the results
with each other and with the tabulated value of the number s.

1
2348, Knowing that f

0
mately the number n. Split the interval of integration into

10 parts and compare the results obtained by the various
methods with each other and with the results of the previous
problem.

dzx

7 .
TT2=41° evaluate approxi-

10
2349, Evaluate In 10 = j%x, by using Simpson’s rule
1

with » = 10. Find the modulus of transition from natural to
common logarithms. Compare with the tabulated value.

Use Simpson’s rule to evaluate approximately the integrals
given in problems 2350-2355; these integrals cannot be found
in a finite form with the aid of elementary functions. The
number (n) of sub-intervals is quoted in brackets.

1 1
2350. [YT—2tdz (n=10). 2351 [VT+atdz (n=10).
0 0
: T
z _—
2352, f ! 2353, 6[Vcoscpd(p (n = 10).
2

2
2354, [YT— 0Tsmtpdp (n = 6).
0

3
2355. f &e (v =10).
0

2356. Evaluate from Simpson’s formula the integral
135

J f(x) dz, by using the following table of values of f(z):

105
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120 | 125 | 130 | 1-35

z 105, 1-10 | 1-15

f(z) 236 | 250 | 274

3-04\ 3-46 3-98’ 4:60
| |

2357. A straight line touches a river bank at points 4
and B. To measure the area lying between the river and 4B,
11 perpendiculars 5 m apart are drawn to AB from points
along the river (hence 4 B has a length of 60 m). The lengths of
these perpendiculars turn out to be 3:28; 4:02; 4:64; 526;
4.98; 3'62; 3'82; 4'68; 526; 382; 324 m. Work out
approximately the area in question.

2358. Work out the cross-section at the widest part of a
ship (middle rib section) from the following data (Fig. 39):

AA, = A4, = 4,4, = A,A, = A, A; = A, Ay = AgA, =

= 04 m,
AB=3m,4,B, =292m, 4,8, = 2:75m, 4,B, = 262 m
A,B, =230 m, A;B; =184 m, 4;B, = 092 m,

0-4
n
©
N

pd
~
=T

-40- 4

Fia. 39.

2359. The work done by the steam in the cylinder of a
steam engine is worked out by finding the area of the indi-
cator diagram, representing graphically the relationship
between the steam pressure in the cylinder and the movement
of the piston. The indicator diagram of a steam engine is
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p

A
B
C
Eh— )
1 i L 1 L 1 1 1 1 ID v
OfXo X; Xz Xz X4 X5 Xg Xz Xg Xg Xgg~p

Fic. 40.

illustrated in Fig. 40. The ordinates of the points of curves
ABC and ED, corresponding to abscissae z,, z, z,,

.o Ty
are given by the following tables:
ADSCIiSSB « . vevrrennneanan T, , x, @5 z, s
Ordinate of curve ABC . 60-6 | 53-0 | 32:2 | 244 | 199 | 17-0
Ordinate of curve ED .. 58 1-2 0-6 0-6 07 08
Abscissa . .veniiiiiieaeen g T, g Zy Xy
Ordinate of curve ABC . 150 | 133 | 120 | 110 62
Ordinate of curve ED .. 0-9 1-0 1-3 1-8 57

Evaluate the area ABCDE with the aid of Simpson’s
formula. The ordinates are given in millimetres. Length
OF = 887 mm.

In problems 2360-2363 it is necessary to use methods of
approximate solution of equations for finding the limits of
integration. '

2360. Find the area of the figure bounded by the arcs of
parabolas y = 2® — 7 and y = —222 + 3z and the axis of
ordinates.

2361. Find the area of the figure bounded by the parabola
y = 2® and the straight line y = 7(z 4 1).

2362. Find the area of the figure bounded by the gara,bola,

y = 16 — a2 and the semi-cubical parabola y = —}a2.



VII. METHODS OF EVALUATING DEFINITE INTEGRALS 191
2363. Find the area of the figure bounded by the curves
3

y=4—2¢ and y = ).

2364. A steam engine indicator diagram (simplified) is
shown in Fig. 41. Starting from the dimensions quoted in the
figure (in mm), evaluate the area 4 BCDO, if it is known that
the equation of curve BC is: pv” = const (curve BC is
called an adiabat), y = 1:3, AB being a straight line parallel
to the Ov axis.

AP

B
10 !
:\C
3 D,

Fic. 41.

2365. The indicator diagram of a Diesel engine is shown in
Fig. 42. Segment A B corresponds to the mixture combustion
process, adiabat BC to expansion, segment CD to exhaust
and adiabat DA to compression. The equation of adiabat
BC is pv'? = const, and of adiabat AD :pv'¥ = const.
Starting from the dimensions given in the figure (in mm),
find the area ABCD.

0
2]
C
E v
QL F
)
20

Fia. 42.
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3. Improper Integrals

Integrals with Infinite Limits

Evaluate the improper integrals in problems 2366-2385
(or establish their divergence):

2366. J dz 2367. J dz
x?t Vx
i
- —ax 2z dx
2368.je dz (@ >0). 2369 j T
- dx ln z
2370. j AT 2371 J— da.
N dx x
i 0
dx dz
2374. — 2375, | ———— .
jxyxz—l ijl—l—xz
1 a?
2376. Ix e~ dux. 2377. J.xS e dx.
0 )
2378. |z sin @ dz. 2379. J e~V da.
1]
2380. J —X sin z dz. 2381. fe—“" cos bz dzx.
o
arctanx - dz
2382, J 12 gz, 2383, f T

de
2384. J(?%L—T)E' 2385. fl ¢

—oco
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Investigate the convergence of the integrals of problems
2386-2393:

x
2386. Jxa—+1 de

‘o (@ + 1)
2388. f m 2389. J 2T da,
2390. | Yo~ d. 2391. f (zarctenz o
0 rd V1 + 2t
2392, J # 2393. J
ezxnnx Jx (Inx)?

Integrals of Functions with Infinite Discontinuities

Evaluate the improper integrals of problems 2394-2411
(or establish their divergence):

1 2
d de
o304, [ % I
fyl = 89, | 5 s
0
!
2396. J . 2397. G'xlnxdx.
Yx —1
: de - d
2398, f e 2399. j -
0
2400.j dz 2401. J‘ (a<b).
zVInz Viz—a)(p—z)

2402. L/(x_a) — @<
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1
dx

2403J . 2404.J .
Vx—3(5—x) 1—224+2)1 — a2
0

1
2

2405. J . d“’l_s. 2406, f 27+ 2

§emaVi-e Sy

1
2107 (211 qy.

7 Va?
1 3 0 l
2409, JIM da. 2410. J% da.

Vz =
11

2411, f‘% dz.
X

dz.

Investigate the convergence of the integrals of problems
2412-2417:

1
2412.f £ d. 2413. J
s V1 —at 1= xz)s
2414.f & | 2415. s}ﬁx—dxl :
: e/ ¥ — 1 -
) %
2416. f _d=z 2417. J SN2
eX — cos x
1] 0

Various Problems

2418. Function f(x) is continuous in the interval [a, co)

oo

and f(x) - A+ 0 as  — oo. Can J f(x) dz be convergent ?
x -+ sin x
x —sinx

2419. For what values of kt will J dx be

convergent ?
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2420. For what values of k will the following integrals be

convergent:
[ dz ( ds
— 1
jx" Inz and Jx (Inz)y -~

2

2421, For what values of k is j B — ) (b > a) con-

vergent ?

2422, Can a k be found such that Jw" dz is convergent?

2423. For what values of t and ¢ lsj dz con-
14+ 2
vergent ?
7
2424, For what values of m is J # dx conver-
gent ? s

*+ A

2425. For what values of k isJ d;v

convergent ?
sin* x

0
Evaluate the improper integrals in problems 2426-2435:

e 3
2426.JL. 2427+, Jl 1tz 2fdz
zYzr —1 I—ayl—2
1
2428.J‘arc t:,n(x—l)dx .
0 V@ — 1}

2429. fw%ﬁ)_“ (n is a positive integer).

2430. f z'e~* dx (n is a positive integer).
0

2431. sz”“e—x’ dx (n is a positive integer).
¢
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1
2432. f (In z)" dx (» is a positive integer).

i dx - for m: (a) even, (b) odd (m > 0).

2433*, J s

1
_ n
24:34*.‘](1—1/_ﬂ dx (n is a positive integer).
x

0

2435. j & 0<a<2on).
(x — cos @) Va2 — 1

oo

* dw wx2 dx 7
* J— —
2436*. Prove that Jl - Jl 1 = 2V§ .
0

0

oo

% zInx _
2437+, Prove that J o =0,

0

—2

— dx.
28 Y22 — 1

2438. Evaluate the integral J

Evaluate the integrals of problems 2439-2448 by using
the formulae (see Course, secs. 111, 180, 181)

oo

f e~ dr = 1/2_n — Poisson’s integral,

0

oo

J‘sm L ax _—-g — Dirichlet’s integral.

x
0

oo

e—x
2439. J o=etdr (a>0). 2M0. | de

¢ X

2441*, j 2o~ dz.

0
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co

2442, f:z;”‘e—"2 dz (n is a positive integer).
v

2443, J S0 2% 40 2444, j sSmaz g,
X X
0 1]

2M5.Jm“”x—de (@>0,b>0).
0

g 2 e 3 S 4
2446*, [ % qp.  2447*, [ % qp. oaas* [ T g
x? x x?

0 0 0

2449*. We put ¢(z) = — Jln cos ¥ dy. (This is known as
0

Lobachevskii’s integral.) Prove the relationship
n n oz
p(x) = 2‘;0(1 -+ E) — 2<p(1 — 5) — z1In 2.

Evaluate with the aid of this relationship:

k24

2
(p(g) = — jlncosydy
0

(The quantity (p(% n) was first evaluated by Euler.)

Evaluate the integrals of problems 2450-2454:

n

2 .1
2450. J In sin « dz. 2451, J  In sin z de.
0 0
5 o
2452*.j x cot z dz. 2453*.‘1‘&;11”0 dz.

0

[}

1
2454, J Inzde
Y1 — a2
0



CHAPTER VIII

APPLICATIONS OF THE
INTEGRAL

1. Some Problems of Geometry and Statics

Areas of Figures

2455. Find the area of the figure bounded by the curves
whose equations are 2 =2x 4+ 1 and x —y — 1 = 0.

2456. Find the area of the figure lying between the para-
bola y = —a? 4- 4z — 3 and the tangents toit at the points
(0, —3) and (3, 0).

2457. Find the area of the figure bounded by the parabola
y? = 2px and the normal to it inclined at 135° to the axis of
abscissae.

2458. Find the area of the figure bounded by the para-
bolas y = 2? and y = J=.

2459. Find the area of the figure bounded by the para-
bolas %2 4+ 8x = 16 and y? — 24x = 48.

2460. Find the area of the figure bounded by the parabolas

3
y=x2andy=£.

3
2461, The circle 22 4+ %2 = 8 is divided into two parts by
2
the parabola y = g— Find the area of each part.

2462. Find the areas of the figures into which the parabola
y? = 6z divides the circle 22 4 y? = 16.

2463. An ellipse is cut out from a circular disc of radius a
such that its major- axis coincides with a diameter of the
circle and its minor axis is equal to 2b.

Prove that the area of the remaining part is equal to the
area of the ellipse with semi-axes @ and a — b.

198
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2464. Find the area of the figure bounded by the arc of a
hyperbola and a chord passing through a focus perpendi-
cularly to the transverse axis.

2465. The circle 22 + y? = a? is cut into three parts by the

2
hyperbola 2% — 2y = Z—. Find the areas of these parts.

2466. Find the areas of the curvilinear figures formed by
2
the intersection of the ellipse xz 4+ > = 1 and the hyper-

2
bola :i —y2=1
2467 Fmd the area of the figure lying between the curve

Yy = ) -l— 2 and the parabola y= :i

2468. Find the area of the ﬁgure bounded by the curve
y = z(x — 1)? and the axis of abscissae.

2469. Find the area of the figure bounded by the axis of
ordinates and the curve x = y?(y — 1).

2470. Find the area of the piece of the figure bounded by
the curves y™ = z" and " = 2™, where m and n are positive
integers, lying in the first quadrant. Consider the area of the
whole figure from the point of view of the property of num-
bers m and » of being even or odd.

2471. (a) Find the area of the curvilinear trapezium boun-
ded by the axis of abscissae and the curve y = 2 — 22 }/=.

(b) Work out the area of the figure bounded by the two
branches of the curve (y — )2 = 2% and the straight line
z = 4.

2472. Find the area of the figure bounded by the curve
(y — « — 2)®> = 9z and the coordinate axes.

2473. Find the area of the loop of the curve y? = x(x — 1)2.

2474, Find the area of the figure bounded by the closed
curve y2 = (1 — z2?)3,

2475. Find the area of the figure bounded by the closed
curve y* = x2 — 2.
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2476. Find the area of the figure bounded by the closed
curve 2t — ax® 4 a?y? = 0.

2477. Find the area of the finite part of the figure bounded
by the curve a?%y? = 4(x — 1) and the straight line passing
through its points of inflexion.

2478, Find the area of the figure bounded by the curves
y = e*, ¥y = e~* and the straight line x = 1.

2479. Find the area of the curvilinear trapezium bounded
by the curve y = (2 + 2x) e~ and the axis of abscissae.

2480. Find the area of the curvilinear trapezium bounded
by the curve y = e=* (2% 4 3z 4 1) 4 e2, axis Ox and the
two straight lines parallel to Oy passing through the extremal
points of function y.

2481. Find the area of the finite part of the figure bounded
by the curves y = 2z%* and y = —a® e~

2482. (a) Work out the area of the curvilinear trapezium
with base [a, b] bounded by curve y = In «.

(b) Work out the area of the figure bounded by the curve
y = In z, the axis of ordinates and the straight lines y = In a
and y = In b.

2483. Work out the area of the figure bounded by the cur-
ves y =Inx and y = In? 2.

2484. Find the area of the figure bounded by the curves

In z
yzﬂandy=xlnx.

2485. Find the area of one of the curvilinear triangles
bounded by the axis of abscissae and the curves

y =sinz and y = cos x.

2486. Find the area of the curvilinear triangle bounded by
the axis of ordinates and the curves

2
y=tanxandy=gcosx.
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2487. Find the area of the figure bounded by the curve
y = sin® x + cos® x and the segment of the axis of abscissae
joining two successive points of intersection of the curve
with the axis of abscissae.

2488. Work out the area of the figure bounded by the
axis of abscissae and the curves

y = arcsinz and y = are cos x.

2489. Find the area of the figure bounded by the closed
curve (y — arcsin z)? =z — z2

2490. Find the area of the figure bounded by one arc of
the cycloid = = a(t —sint), y = a(l — cost) and the axis
of abscissae.

2491. Work out the area of the figure bounded by the
astroid * = a cos®t, y = a sind ¢.

2492. Find the area of the figure bounded by the cardioid
x=2acost — acos, y= 2asint — asin 2.

2493. Find the area of the figure bounded: (1) by the
epicycloid

= (R + r)cost — r cos R+rt,
y= (R +r)sint — rsin Rj_rt,
(2) by the hypocycloid
x= (R —r)cost + r cos _rt,
R—r

y= (R —r)sint — rsin t

where R = nr (n is an integer). Here R is the radius of the
fixed, and r the radius of the moving circle; the centre of the
fixed circle coincides with the origin, whilst ¢ denotes the
angle of rotation of the radius from the centre of the fixed
circle to the point of contact (see Course, sec. 83).

2494. Find the area of the loop of the curve:
Dz=32 y=3%—8; Qa=r—1,y=18—1
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2495. (a) Find the area swept out by the radius vector of
the spiral of Archimedes p = ap during one rotation, if the
start of the motion corresponds to ¢ = 0.

(b} Find the area of the figure bounded by the second
and third turns of the spiral and the segment of the polar
axis.

2496. Find the area of the figure bounded by the curve

= a sin 2¢.

2497. Find the area of the figure bounded by the curve
p = a cos bg.

2498. Find the area of the figure bounded by the limagon
of Pascal p = 2a(2 4 cos ¢).

2499. Find the area of the figure bounded by the curve

¢ = a tan p(a > 0) and the straight line ¢ = Z .

2500. Find the area of the common part of the figures
bounded by the curves p = 3 + cos 4p and p = 2 — cos 4¢.

2501. Find the area of the piece of the figure bounded by
the curve g = 2  cos 2¢p lying outside the curve p = 2 4
+ sin ¢.

2502. Find the area of the figure bounded by the curve
0> = a? cos np (n is a positive integer).

2503. Prove that the area of the figure bounded by any two
radius vectors of the hyperbolic spiral pp = a and its arc is
proportional to the difference between these radius vectors.

2504. Prove that the area of the figure bounded by any
two radius vectors of the logarithmic spiral p = ae™ and
its arc is proportional to the difference between the squares of
these radius vectors.

2505*. Find the area of the figure lying between the exte-

rior and interior parts of the curve p = a sin? % .

2506. Find the area of the figure bounded by the curve

o=V1—1#, ¢p=arcsint )1 — ¢
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It is convenient to pass first to polar coordinates in
problems 2507-2511.

2507. Find the area of the figure bounded by the lemniscate
of Bernoulli (z? + ¥2)? = a?(x® — ¥?).

2508. Find the area of the part of the figure bounded by
the lemniscate of Bernoulli (see problem 2507) lying inside
the circle 22 + 32 =§2f .

2509. Find the area of figure bounded by the curve
(x® + 9%)2 — a2 — b%y? = 0 (“‘pedal of ellipse”).

2510. Find the area of the figure bounded by the curve

@ + y*)® = 4a’zy(x® — y°).

25b11. Find the area of the figure bounded by the curve
oyt =2ty

2512, Find the area of the figure lying between the curve

Yy = ﬁ and its asymptote.

2513. Find the area of the figure lying between the curve

y = xe 2 and its asymptote.

2514. Find the area of the figure contained between the
3

x
(2a — x)

2515. Find the area of the figure lying between the curve
zy? = 8 — 4x and its asymptote.

2516*. (1) Find the area of the figure bounded by the curve
y = z%e—** and its agymptote.

(2) Find the area of the figure bounded by the curve
Y2 =zxe %,

2517. Find the area of the figure lying between the tractrix

cissoid y? = and its asymptote.

x=a (cos t+In tan%) , ¥ = a sin ¢ and the axis of abscissae.

o8 2<p’ find the area of the
08

2518. For the curve p =

loop and the area of the figure lying between the curve and
its asymptote.
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Length of Arct
2519. Find the length of arc of the catenary

af 2 _X
y=§(e"+e a) (from 2, = 0 to x, = b).

2520. Find the length of arc of the parabola y? = 2pz
from the vertex to its point M(z, y). (Take y as the indepen-
dent variable.)

2521, Find the length of arc of the curve

y=Inz (fromax, =}Y3tox, =
2522. Find the length of arc of the curve

y=In (1 — 2? (fromxl—_—Oton:%).

2523. Find the length of arc of the curve
e +1

y:lnex_1 (from z, = a to x, = b).

2524. Find the length of arc of the semi-cubical parabola
= g (x — 1) lying inside the parabola 3% = -

2525. Find the length of arc of the semi-cubical parabola
5y® = a? lying inside the circle x* 4+ y2 = 6.
2526, Find the length of the loop of the curve
9ay? = z(x — 3a)?.

2527. Find the perimeter of one of the curvilinear trapezia
bounded by the axis of abscissae and the curves y = In cos
and y = In sin 2.

. 22 Inz

25628. Find the length of arc of the curve y = T 5
lying between its lowest point and the vertex (the point of
the curve of extremal curvature).

t In the problems on evaluating the length of arc, the interval
of variation of the independent variable corresponding to the rectified
arc is indicated where necessary.
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2629. Find the length of the curve y=})ax— %}

+ arcsin V2.

2530. Find the length of the curve (y — arcsinz)? =
=1—2z%

25631. Find the point that divides the length of the first
arc of the cycloid x = a(f — sin?), y = a(l — cost) in the
ratio 1 : 3.

2532. Given the astroid x = R cos®f, y = R sin®¢ and the
points A (R, 0), B(0,R) on it, find the point M on arc
AB such that the length of arc AM amounts to a quarter
of the length of arc AB.

2533*. Find the length of the curve

% 2
(& (=
2534. Find the length of the curve
x=acos’t, y =asindt.

2535. Find the length of arc of the tractrix

x-—-a(cost-{—lntan—;—), Yy =asint

from the point (0, a} to the point (z, y).
2536. Find the length of arc of the involute of the circle

= R(cost | tsint), y = R(sint — ¢ cos £)

(from £, = 0 to t, = m).
2637. Find the length of arc of the curve

z==(t?— 2)sint + 2 cost, y = (2 — t?) cost + 2sint

(from ¢, = 0 to ¢, = =).
2538. Find the length of the loop of the curve z = #2,
{2

y=t—§.
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2539. Two circles of radii equal to b roll without slipping
with the same angular velocity on the inside and outside of a
circle of radius a. At the instant { = 0 they touch the point
M of the fixed circle with their points M, and M,. Show that

the ratio of the paths traversed by points M; and M, after
a-+b

an arbitrary interval of time ¢ is a constant equal to P

(see

problem 2493).
2540. Show that the length of arc of the curve

x=f'(t)cost + f'(t)sint, y = —f'(¢)sint 4 f'(¢) cost,
corresponding to the interval (¢, £,) is equal to

L) + @] [z -

2541. Apply the result of the previous problem to evaluat-
ing the length of arc of the curve x = e (cost -+ sini),
y = el (cost — sint) (from ¢, = 0 to £, = ¢).

2542, Show that the arcs of the curves

z=ft) — '), y=o@)+ [
and

x=f(t)sint — ¢'(t) cos?t, y = f'(t)cost + ¢'(t)sin ¢,
corresponding to the same interval of variation of parameter
¢, have equal lengths.

2543. Find the length of arc of the spiral of Archimedes

¢ = ap from the origin to the end of the first turn.
2

2544. Show that the arc of the parabola y = ;—p corre-

sponding to the interval 0 = x = ¢ has the same length as
the arc of the spiral p = pp corresponding to the interval
0=p=a.

2545. Find the length of arc of the hyperbolic spiral

3 4
op = 1,(from %:Zto (p2=§).

2546. Find the length of the cardioid ¢ = a(l 4 cos @).
2547. Find the length of the curve p = a sin® %’ (see
problem 2505).
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2548. Show that the length of the curve p = asin™ %

(m is an integer) is commensurate with @ when m is even and
commensurate with the circumference of a circle of radius
a when m is odd.

2549, For what values of the exponent k (k =~ 0) is the
length of arc of the curve y = ax* expressed in elementary
functions? (Take as basis Chebyshev’s theorem on the condi-
tions for integrability in a finite form of the differential
binomial; see Course, sec. 102.)

2550. Find the length of the curve given by the equation

X

y= |Veosz da.

n

2
2551, Find the length of arc of the curve

t t
cos 2 sin 2
r = J d2, y= J dz
1 1

2z 2

from the origin to the nearest point with vertical tangent.

2552. Show that the length of arc of the sine wave y = sin
corresponding to one period is equal to the length of the
ellipse whose semi-axes are equal to } 2 and 1.

25563. Show that the length of arc of the curtate or prolate
cycloid # =mt —nsint, y=m —ncost (m and n are
positive numbers) in the interval from # =0 to ¢, = 2=
is equal to the length of the ellipse with semi-axes a = m + n,
b=|m—mn|.

25h4*, Show that the length of the ellipse with semi-axes
a and b satisfies the inequality m(a + b) < L < m}2Xx
% Va? 4 b2 (Bernoulli’s problem).

Volume of a Solid

2555. Find the volume of the solid, bounded by the surface
which is formed by revolution of the parabola y? = 4x about
its axis (paraboloid of revolution), and by the plane perpendi-
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cular to the axis and at a distance equal to unity from the
vertex.

2556. An ellipse with major axis equal to 2¢ and minor
axis 2b revolves (1) about the major axis, (2) about the
minor axis. Find the volumes of the ellipsoids of revolution
thus obtained. Obtain the volume of a sphere as a partic-
ular case.

2567. A symmetric parabolic segment of base @ and height
k revolves about the base. Find the volume of the solid of
revolution thus obtained. (Cavalieri’s ‘“lemon’.)

25568, The figure bounded by the hyperbola z? — y? = @2
and the straight line 2 = a -}- 2(h > 0) revolves about the
axis of abscissae. Find the volume of the solid of revolution.

2559. The curvilinear trapezium bounded by the curve
y = xe* and the straight lines =1 and y = 0 revolves
about the axis of abscissae. Find the volume of the solid
thus obtained.
ex + e—Xx
2

2560. The catenary y = revolves about the axis

of abscissae. The surface thus obtained is called a cate-
noid. Find the volume of the solid bounded by the catenoid
and two planes at distances of ¢ and & units from the origin
and perpendicular to the axis of abscissae.

2561, The figure bounded by the arcs of parabolas y = z?
and y? = z revolves about the axis of abscissae. Find the
volume of the solid thus obtained.

2562. Find the volume of the solid obtained by revolution
about the axis of abscissae of the trapezium lying above
Oz and bounded by the curve (x — 4) 2> =z (x — 3).

2563. Find the volume of the solid obtained by revolution
of the curvilinear trapezium bounded by the curve y =
= aresin z, and with base [0, 1], about the Oz axis.

2564. Find the volume of the solid obtained by revolution
of the figure, bounded by the parabola y = 22 — 2% and the
axis of abscissae, about the axis of ordinates.
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2565. Find the volume of the body which is obtained on
revolution about the axis of ordinates of the curvilinear trap-
ezium bounded by the arc of the sine wave y = sin 2 corre-
sponding to a half period.

2566. The lemniscate (2% 4- y2)? = a?(2? — y?) revolves
about the axis of abscissae. Find the volume of the solid
of revolution thus formed.

2567. Find the volume of the solid formed by revolution
about the axis of abscissae of the figure bounded by the
curve: (1) 2t 4 y* = a%x?; (2) 2 + y* = 28,

25668. One arc of the cycloid =z =a(t —sint), y=
= a(l — cos t) revolves about its base. Find the volume of
the solid bounded by the surface obtained.

2569. The figure, bounded by an arc of the cycloid (see
previous problem) and its base, revolves about the perpendi-
cular bisector of the base (the axis of symmetry). Find the
volume of the solid thus obtained.

2570. Find the volume of the solid obtained on revolution
2 2 2

of the astroid z3 + y3 = a3 about its axis of symmetry.
2571. The figure bounded by the arc of the curve z =

2 2
= % cos®t, y =%sin3t (evolute of the ellipse), lying in the

first quadrant, and by the coordinate axes, revolves about
the axis of abscissae. Find the volume of the solid thus ob-
tained.

2572. Find the volume of the solid bounded by the surface
of the infinite “spindle”, formed by revolution of the curve

y = (1—_:?; about its asymptote.

2573. The curve 2 = 2exe—2* revolves about its asymptote.

Find the volume of the solid bounded by the resulting surface.

2674*. (1) The figure bounded by the curve y = e—** and
its asymptote revolves about the axis of ordinates. Find the
volume of the resulting solid.
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(2) The same figure revolves about the axis of abscissae.
Find the volume of the resulting solid.

2575*, Find the volume of the solid formed by revolution
of the curve y = 2%—* about its asymptote.

2576*, The figure bounded by the curve y = sn; ad
the axis of abscissae revolves about the axis of abscissae.
Find the volume of the resulting solid.

2577*, Find the volume of the solid bounded by the surface
3

produced by revolution of the cissoid y? =

and

x
Ga—2) (@ > a)
about its asymptote.

25678, Find the volume of the solid whose boundary
surface is obtained by revolution of the tractrix =z =

a (cos t + In tan %) , ¥ = asint about its asymptote.

2579*, Find the volume of the solid bounded by the ellip-
. x2 y2 Z2
Solda—2+-b—2+c—2‘= 1.
2580. (1) Find the volume of the solid bounded by the
2 2
elliptic paraboloid z = % + % and the plane z = 1.
(2) Find the volume of the solid bounded by the hyper-
2 2
boloid of one sheet % -+ % — 22 =1 and the planes

z= —1 and z = 2.

2581, Find the volumes of the.solids bounded by the para-
boloid z = 2% 4 2y and by the ellipsoid x? 4 2y® + 2% = 6.
2582, Find the volumes of the solids formed by intersection

. 2 oy 2
of the hyperboloid of two sheets — — = — — = 1and

T L TR 2
the ellipsoid & + T + 9= 1.
2583. Find the volume of the solid bounded by the conical

a2

2
surface (z — 2)? = 5 + % and the plane z = 0.
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2584. Find the volume of the solid bounded by the para-
2
2585*, Find the volume of the solid cut out from a circular
cylinder by a plane through a base diameter (“special ungula
of cylinder”, Fig. 43). In particular, put B = 10 cm, H =
= 6 cm.

2 2 2
boloid 2z = % + % and the cone % +

Fic. 44.

2686. A parabolic cylinder is cut by two planes, one of
which is perpendicular to the generators. The resulting solid
is illustrated in Fig. 44. The common base of the parabolic
segments is @ = 10 cm, the height of the parabolic segment
lying in the base is H = 8 cm, and the height of the solid
is » = 6 cm. Find the volume of the solid.

25687. A cylinder, whose base is an ellipse, is cut by an
inclined plane through the major axis of the ellipse. Find the
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volume of the resulting solid. The linear dimensions are
given in Fig. 45.

25688*. Symmetrical parabolic segments, of constant height
H, are constructed on all the chords of a circle of radius B
parallel to a single direction. The planes of the segments are
perpendicular to the plane of the circle. Find the volume of
the solid thus obtained.

25689*. A right circular cone of radius R and height H is
cut into two pieces by a plane through the centre of the base
parallel to a generator (Fig. 46). Find the volumes of the two
pieces. (The sections of a cone by planes parallel to a generator
are parabolic segments.)

Fic. 46.

2590. The centre of a square moves along a diameter of a
circle of radius a, the plane of the square remains perpendi-
cular to the plane of the circle, whilst two opposite vertices
of the square move round the circumference. Find the volume
of the solid formed by this moving square.

2591. A circle of variable radius moves in such a way that
a point of its circumference remains on the axis of abscissae,
whilst the centre moves along the circle 22 4 y* = 7%, and
the plane of the circle is perpendicular to the axis of abscissae.
Find the volume of the solid thus obtained.

2592. The axes of two equal cylinders intersect at right
angles. Find the volume of the solid consisting of the common
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part of the cylinders (/s of the solid is illustrated in Fig. 47).
(Consider the sections formed by planes parallel to the axes
of the two cylinders.)

Z
R
]
1
=C R
Lo e nlnptni d
/ !
| ]
|
5 B
MEANNISN 7y
A =" P R
X
Fia. 47.

2593. Two circular cylinders have the same height H and
a common upper base of radius R, whilst the lower bases touch
(Fig. 48). Find the volume of the common part of the cylin-
ders.

Fic. 48.

Area of a Surface of Revolution

2594. Find the area of the surface formed by revolution
of the parabola y2 = 4az about the axis of abscissae from
the vertex to the point with abscissa x = 3a.

2595. Find the area of the surface formed by revolution
of the cubical parabola 3y — z® = 0 about the axis of abscis-
sae (from z, = 0 to =, = a).
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2596. Find the area of the catenoid — the surface formed
by revolution of the catenary

=i+
about the axis of abscissae (from z; = 0 to x, = 2).
2597. When the ellipse
x2 y2
atp=1
revolves about its major axis a surface is obtained which is
called a prolate ellipsoid of revolution, whilst when it revolves
about the minor axis the surface is an oblate ellipsoid of
revolution. Find the surface areas of the prolate and oblate
ellipsoids of revolution.
2598, Find the area of the spindle-shaped surface formed by
revolution of one arc of the sine wave y = sin x# about the
axis of abscissae.

2599. The arc of the tangent curve y = tan x from the
point (0, 0) to the point (g, IJ revolves about the axis of

abscissae. Find the area of the surface thus obtained.

2600. Find the area of the surface formed by revolution
about the axis of abscissae of the loop of the curve 9ay? =
= z(3a — x)2.

2601. The arc of the circle 2% + y? = a? lying in the first
quadrant revolves about the chord subtending it. Find the
area of the resulting surface.

2602. Find the area of the surface formed by revolution
about the axis of abscissae of the arc of the curve

x=e!'sint, y =e'cost (from t, =0 to t2=g).
2603. Find the area of the surface formed by revolution

of the astroid x = a cos®f, ¥y = asin3¢ about the axis of
abscissae.
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2604. An arc of the cycloid revolves about its axis of
symmetry. Find the area of the surface thus obtained. (See
problem 2568.)

2605. Find the area of the surface formed by revolution
about the polar axis of the cardioid ¢ = a(l - cos ¢).

2606. The circle p = 2rsin ¢ revolves about the polar
axis. Find the area of the surface thus formed.

2607. The lemniscate p? = a? cos 2¢p revolves about the
polar axis. Find the area of the resulting surface.

2608. The infinite arc of the curve y = e~*, corresponding
to positive values of z, revolves about the axis of abscissae.
Find the area of the surface thus obtained.

2609. The tractrix =z = a(cos t + In tan %), y=asini

revolves about the axis of abscissae. Find the area of the
resulting infinite surface.

Moments and Centres of Gravityt

2610. Find the statical moment of a rectangle of base a
and height & about its base.

2611. Find the statical moment of a right-angled isosceles
triangle, whose adjacent sides are equal to a, with respect to
each of its sides.

2612. Prove that the following formula holds:

b b
| (az + b) f(z) dz = (at + b) | f(2) d,

where £ is the abscissa of the centre of gravity of the curvi-
linear trapezium with base [a, b], bounded by the curve
y = f(z). (Vereshchagin’s rule.)

2613. Find the centre of gravity of the symmetrical
parabolic segment with base equal to a and height A.

t The density is taken as equal to unity in all the problems of
this section (2610-2662).
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2614. A rectangle of sides a and b is divided into two parts
by the arc of the parabola whose vertex coincides with one
corner of the rectangle and which passes through the opposite
corner (Fig. 49). Find the centres of gravity of the two parts
8, and S, of the rectangle.

i

s, l
O X

y

Fig. 49.

2615. Find the coordinates of the centre of gravity of the
semi-circular arc
y=Vr*— a2
2616. Find the coordinates of the centre of gravity of the
semi-circular area bounded by the axis of abscissae and

y=)r?— a2

2617. Find the centre of gravity of the circular arc of
radius R subtending an angle « at the centre.

2618. Find the coordinates of the centre of gravity of the
figure bounded by the coordinate axes and the parabola
Vz + Vy = Va.

2619. Find the coordinates of the centre of gravity of the
figure bounded by the coordinate axes and the arc of the

2 2
ellipse 254— % =1, lying in the first quadrant, with re-

spect to the axis of abscissae.
2620. Find the statical moment of the arc of the ellipse

2 2
;% 4+ % = 1, lying in the first quadrant, with respect to
the axis of abscissae.
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2621. Find the coordinates of the centre of gravity of the
figure bounded by the arc of the sine wave y = sin z and the
segment of the axis of abscissae (from z, = 0 to z, = 7).

2622. Find the statical moment of the figure bounded by

the curves y = H—j‘—ﬁ) and y = 2? with respect to the

axis of abscissae.
2623. The same for the curves y =sinz and y =%

(one segment) with respect to the axis of abscissae.

2624, The same for the curves y = a® and y = Jx with
respect to the axis of abscissae.

2625. ¥Find the coordinates of the centre of gravity of the
figure bounded by the closed curve y? = az® — 24,

2626. Find the coordinates of the centre of gravity of the

X

X
arc of the catenary y = g(e7 +e 7), lying between the

points with abscissae z;, = —a and z, = a.

2627. Prove the theorem: the statical moment of an
arbitrary arc of a parabola with respect to the parabola axis
is proportional to the difference between the radii of curvature
at the ends of the arc. The coefficient of proportionality is
14
3’

2628. Find the coordinates of the centre of gravity of the
first arc of the cycloid

equal to £, where p is the parameter of the parabola.

z=a(t —sint), y = a(l — cost).

2629. Find the coordinates of the centre of gravity of the
figure bounded by the first arc of the cycloid and the axis
of abscissae.

2630. Find the coordinates of the centre of gravity of the
arc of the astroid x = acos®f, y = asin®¢, lying in the
first quadrant.

2631. Find the coordinates of the centre of gravity of the
figure bounded by the coordinate axes and the arc of the
astroid (in the first quadrant).
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2632. Prove that the abscissa and ordinate of the centre of
gravity of the sector bounded by two radius vectors and the
curve whose equation is given in polar coordinates ¢ =

=p(p), is given by

7* P2
jga cos ¢ do l o® sin ¢ do
T = g L5} _ g (P‘l
3 T2 ’ y= 3 ?s
fez do jez d
?1

?1

2633. Find the Cartesian coordinates of the centre of
gravity of the sector bounded by one half turn of the spiral
of Archimedes p = a¢p (from ¢, = 0 to ¢, = =).

2634. Find the centre of gravity of the circular sector
of radius R subtending an angle 2« at the centre.

2635. Find the Cartesian coordinates of the centre of
gravity of the figure bounded by the cardioid o = a(l +
+ cos ¢).

2636. Find the Cartesian coordinates of the centre of

gravity of the figure bounded by the right-hand loop of the
lemniscate of Bernoulli

2637. Prove that the Cartesian coordinates of the centre
of gravity of the arc of the curve whose equation is given in
polar coordinates as p = p(¢) is given by

P2 Ps
[ecosp V@ Taap | esingVe® + ¢ dyp
T = P1 . |
o P2 > Y= P2 *
| Ve +o2dy [VeTetde
F1 (41

2638. Find the Cartesian coordinates of the centre of
gravity of the arc of the logarithmic spiral ¢ = ae? (from

7
‘P1=§t°‘7’z=7‘)-
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2639. Find the Cartesian coordinates of the centre of
gravity of the arc of the cardioid p = a(l 4 cos p) (from
¢, = 0 to g, = m).

2640. At what distance from the geometrical centre is the
centre of gravity of a solid hemisphere of radius R?

2641. Find the centre of gravity of the surface of a hemis-
phere.

2642. The base radius of a right circular cone is R, its
height is H. Find the distance from the base of the centre of
gravity of its lateral surface, of its total surface and of its
volume.

2643. How far from the base is the centre of gravity of the
solid bounded by a paraboloid of revolution and a plane
perpendicular to its axis? The height of the solid is A.

2644. Find the moment of inertia of the segment 4B =1
with respect to an axis lying in the same plane, given that
the distance of end A of the segment from the axis is a
units and the distance of end B from the axis is b units.

2645, Find the moment of inertia of the semi-circular arc
of radius R with respect to the diameter.

2646. Find the moment of inertia of the arc of the curve

y=¢e* (O =z = %) with respect to the axis of abscissae.

2647. Find the moment of inertia with respect to both
coordinate axes of an arc of the cycloid x = a(t — sin ),
y = a(l — cos?).

2648. Find the moment of inertia of a rectangle with sides
a and b with respect to side a.

2649. Find the moment of inertia of a triangle of base a
and height 2 with respect to:

(1) the base;

(2) a straight line parallel to the base through the vertex;

(3) a straight line parallel to the base through the centre
of gravity of the triangle,
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2650. Find the moment of inertia of a semi-circular area of
radius B with respect to its diameter.

26561. Find the moment of inertia of a circular disc of
radius B with respect to the centre.

26562. Find the moment of inertia of the ellipse with semi-
axes @ and b with respect to both its axes.

2653. Find the moment of inertia of a cylinder of base
radius B and height H with respect to its axis.

26564. Find the moment of inertia of the cone of base
radius R and height H with respect to its axis.

2666, Find the moment of inertia of a sphere of radius
R with respect to a diameter.

2656. An ellipse revolves about one of its axes. Find the
moment of inertia of the resulting solid (ellipsoid of revolution)
with respect to the axis of revolution.

2667. Find the moment of inertia with respect to the axis
of revolution of the paraboloid of revolution, the base radius
of which is R, and the height H.

26568. Find the moment of inertia with respect to Oz of
the solid bounded by the hyperboloid of one sheet

2y )
PR

and the planes
z=0 and z=1.

2659, The curvilinear trapezium bounded by the curves
y=¢€, y=0, =0 and =1,

revolves (1) about Oz, (2) about Oy.

Find the moment of inertia of the resulting solid with
respect to the axis of revolution.

2660. Find the moment of inertia of the lateral surface of
a cylinder (base radius R, height H) with respect to its
axis.

2661. Find the moment of inertia of the lateral surface of a
cone (base radius R, height H) with respect to its axis.
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2662. Find the moment of inertia of the spherical surface
of radius R with respect to a diameter.

Guldin’s Theorem

2663. A regular hexagon of side a revolves about one of the
sides. Find the volume of the solid thus obtained.

2664. An ellipse with axes 44, = 2a, BB, = 2b, revolves
about a straight line parallel to axis 44, and at a distance 3b
from it. Find the volume of the solid thus obtained.

2665. An astroid revolves about an axis through two
neighbouring cusps. Find the volume and surface of the body
thus formed (see problem 2630).

2666. The figure formed by the first arcs of the cycloids

z=oa(l —sint), y=a(l — cost)
and
x=a(t —sint), y= —a(l — cosi),

revolves about the axis of ordinates. Find the volume and
surface of the solid thus obtained.

2667. A square revolves about an axis, lying in its plane
and passing through one of its corners. For what position of
the axis with respect to the square is the volume of the solid
thus obtained a maximum ? The same problem for a triangle.

2. Some Problems of Physics

2668. The speed of a body is given by » = J1 + ¢ m/sec.
Find the path traversed by the body during the first 10 sec.
from the start of the motion.

2669. The speed g—f for a harmonic vibration along the

axis of abscissae about the origin is given by

dxr 2= 2t
TR g (T+"’°)
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(t is time, T the period of vibration, ¢, the initial phase).
Find the position of the point at the instant #,, if it is known
that it was at the point x = =, at the instant ¢,.

The force f of interaction of two material particles is given
mM

r2
the particles, r is the distance between them, and k is a
coefficient of proportionality, equal in the CGS system to
6:66x10~% (Newton’s law). Use this in solving problems
2670-2678. (The density is assumed constant.)

2670. A rod AB of length I and mass M attracts a particle
C of mass m which lies on the continuation of the rod at
a distance a from its nearest end B. Find the force of interac-
tion of the rod and particle. What material particle must be
located at A in order for it to act on C with the same force as
rod AB? How much work is done by the force of attraction
when the particle, situated at a distance r, from the rod, appro-
aches along the straight line forming the prolongation of the
rod until its distance from the rod is 7,?

by the formula f = % , where m and M are the masses of

2671. With what force does a half-ring of radius r and mass
M act on a material particle of mass m situated at its centre ?

2672. With what force does a wire ring of mass M and
radius R act on a material particle C of mass m, located on the
straight line through the centre of the ring perpendicular
to its plane? The distance from the particle to the ring centre
is equal to a. What work is done by the attraction force
when the particle moves from infinity to the ring centre ?

2673. Using the result of the previous problem, find the
force that a plane disc of radius K and mass M exerts on a
material particle of mass m, which lies on its axis at a distance
a from the centre.

2674. Using the result of the previous problem, find the
force exerted on a material particle of mass m by an infinite
plane on which mass is uniformly distributed with surface
density o. The distance from the particle to the plane is equal
to a.
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2675. The base radii of the frustum of a right circular
cone are equal to R and r, its height is 2 and density y.
What force does it exert on a material particle of mass m
located at its vertex?

2676. With what force does the material step-line y =
= |z | 4 1 attract a material particle of mass m, located at
the origin? (The linear density is equal to y.)

2677. Prove that the material step-line y =a |z |+ 1
(@ = 0) attracts a material particle, situated at the origin,
with a force independent of g, i.e. independent of the angle
between the sides of the step-line.

2678*, Two equal rods (each of length ! and mass M) lie
on the same straight line at a distance [ from each other. Work
out the force of mutual attraction.

2679. A drop with initial mass M falls under the action
of gravity and evaporates uniformly, losing mass m per second.
W hat is the work done by gravity from the start of the motion
to the complete evaporation of the drop? (The air resistance
is neglected.)

2680. How much work must be done in producing a conical
heap of sand of base radius 1:2 m and height 1 m? The specific
weight of sand is 2 g/em3 (the sand is taken from the surface
of the earth).

2681. The dimensions of the pyramid of Cheops are roughly
as follows: height 140 m, side of the (square) base 200 m.
The specific weight of the stone of which it is made is approxi-
mately 2'5 g/ecm?. Find the work done during its construction
in overcoming the force of gravity.

2682, Find the work required when pumping out the water
from a cylindrical reservoir of height H = 5 m, having a
circular base of radius B = 3 m.

- 2683, Find the work that must be expended in pumping
out liquid of specific weight d from a reservoir, having the
shape of an inverted cone with vertex downwards, the height
of which is H and base radius E. How is the result affected if
the one has ite vsertx upwards ?
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2684. Find the work that must be expended to pump
out the water filling a hemispherical vessel of radius R =
= 06 m.

2685. A boiler has the shape of a paraboloid of revolution
(Fig. 50). The base radius B = 2 m, the depth of the boiler
H = 4 m. It is filled with liquid of specific weight d = 08
g/cm3. Find the work which must be done to pump the liquid
out of the boiler.

Fia. 50.

2686. Find the work which must be expended to pump out
the water from a trough which has the following dimensions
(Fig. 51): a =075 m, b =12 m, H =1 m. The surface
bounding the trough is a parabolic cylinder.

——
_éb

Fia. 51.

The kinetic energy of a body rotating about a fixed axis is

equal to %Jaﬂ, where o is the angular velocity and J is the

moment of inertia with respect to the axis of rotation. Know-
ing this, solve problems 2687-2692.
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2687. Arod 4B (Fig. 52) rotates in a horizontal plane about
axis 00’ with angular velocity v = 10z rad/sec. The cross-
section of the rod § = 4 em?, its length ! = 20 cm, the density
of the material of which it is made is y = 78 g/cm?. Find the
kinetic energy of the rod.

— =t

”“ ----- <
'/’ A ~\B
i 7

Seo H ’/’

_________ ‘_/
(o]
Fia. 52

2688. A rectangular plate with sides @ = 50 cm and b = 40
cm rotates with constant angular velocity w, equal to 37z sec™1,
about the side a. Find the kinetic energy of the plate. The
plate thickness d is equal to 0'3 cm, the density of its material
y is equal to 8 g/em3.

2689. A triangular plate, whose base a = 40 cm and height
h = 30 cm, rotates about its base with constant angular
velocity @ = 6z sec™!. Find the kinetic energy of the plate,
if its thickness d = 0'2 cm, and the density of its material
y = 2.2 g/em3.

2690. A plate in the shape of a parabolic segment (Fig. 53)
rotates about the parabola axis with constant angular veloc-
ity = 4n sec=2. The base of the segment a = 20 cm, the
height h = 30 cm, the thickness of the plate d = 0-3 cm,
the density of the material y = 7-8 g/em3. Find the kinetic
energy of the plate.

[

F1a. 53.
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2691. A circular cylinder of base radius R and height H
rotates about its axis with constant angular velocity w.
The density of the material of which the cylinder is made is
equal to y. Find the kinetic energy of the cylinder.

2692. A thin wire of mass M is bent to form a semi-circle
of radius R and rotates about an axis passing through the
ends of the semi-circle, performing n revolutions per minute.
Find its kinetic energy.

Work out the kinetic energy if the axis of rotation is the
tangent at the mid-point of the semi-circle.

2693. A plate of triangular shape is submerged vertically
in water so that its base lies at the surface of the water.
The plate base is a, its height A.

(a) Find the force of the water pressure on each side of the
plate.

(b) How many times is the force increased if the plate
is turned over so that the vertex is at the water surface and
the base is parallel to the water surface ?

2694. A square plate is submerged vertically in water so
that one corner lies at the water surface and a diagonal is
parallel to the surface. The side of the square is a. What is the
water pressure on each side of the plate?

2695. Calculate the water pressure on a dam having the
shape of an isosceles trapezoid, whose upper base ¢ = 6'4 m,
lower base b = 42 m, and height H = 3 m.

2696. A plate in the form of an ellipse is half submerged in
liquid (vertically), so that one of its axes (of length 2b) lies
at the surface of the liquid. How great is the fluid pressure on
each of the sides of the plate if the length of the submerged
semi-axis of the ellipse is equal to a, whilst the specific weight
of the fluid is d?

2697. A rectangular plate with sides ¢ and b (& > b) is
submerged in fluid at an angle « to the fluid surface. The
longer side is parallel to the surface and lies at a depth A.
Calculate the fluid pressure on each of the plate sides, if the
specific weight of the fluid is d. -
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2698. A rectangular vessel is filled with equal parts by
volume of water and oil, the oil being twice as light as water.
Show that the pressure on each wall of the vessel is diminished
by a fifth if oil only is taken instead of the mixture. (Take
into account the fact that all the oil is on top.)

The solutions of problems 2699-2700 must be based on
Archimedes’ law: the buoyancy force acting on a solid body
immersed in a fluid is equal to the weight of displaced fluid.

2699. A wooden float of cylindrical shape, the base area of
which § = 4000 cm?, and height H = 50 cm, floats on water.
The specific gravity of wood d = 0-8 g/cm3, (a) What work
must be done in order to pull the float out of the water?
(b) Find how much work must be expended to submerge the
float completely.

2700. A sphere of radius R with specific weight 1 is sub-
merged in water so that it touches the surface. How much
work must be done in order to pull the sphere from the
water ?

Problems 2701-2706 are connected with the flow of a
fluid from a small orifice. The velocity of flow of the fluid is

defined by Torricelli’s law: v =} 2gh, where A is the height
of the column of fluid above the orifice, g is the acceleration
due to gravityt (see Course, sec. 116).

2701. There is an orifice at the bottom of a cylindrical
vessel, the base area of which is 100 cm, and the height 30 cm.
Find the area of the orifice if it is known that water filling
the vessel flows out in the course of 2 min.

2702. Water fills a conical funnel of height H = 20 cm.
The radius of the upper orifice R = 12 cm. The lower orifice,
through which the water flows from the funnel, has radius
r = 0-3 cm. (a) How long does it take the level of water in
the funnel to fall by 5 cm ? (b) When will the funnel be empty ¢

t Torricelli’s law in the form given here is only applicable to
an ideal fluid. The answers to the problems are given for this ideal
fluid. (In practice, the formula » = u [/2gh is used, where u is a
coefficient depending on the fluid viscosity and the nature of the
orifice. For water in the simplest case, x = 06,
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27038. A hole of area S = 0'2 cm? has formed in the bottom
of a boiler, of hemispherical shape with radius B = 43 cm.
If the boiler is filled with water, how long will it take the
water to flow out?

2704. A boiler has the form of an elliptic cylinder with
horizontal axis. The semi-axes of the elliptic section (per-
pendicular to the cylinder axis) are b (horizontal) and a (ver-
tical); the cylinder generator is of length I (Fig. 54). The boiler

~
\
\
\

Fig. 54.

is half filled with water. How long does it take the water to
flow from the boiler through an orifice of area S at the
bottom ?

2705. A rectangular vertical slit, of height ~ and width b,
is made in the vertical wall of a prismatic vessel filled with
water. The upper edge of the slit, parallel to the water surface,
is at a distance H from the surface. What amount of water
flows from the vessel in 1 sec., if the water level is assumed
always to be maintained at the same height? Take the case
H = 0 (problem of a spill-way).

2706. A vessel filled to the brim with water has the shape
of a parallelepiped with base area 100 cm?2. There is a narrow

Fia. 665.
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slit in the side wall, of height 20 cm and width 0'1 cm (Fig.
55). How long does it take the water level in the vessel to
fall by (a) 5 cm? (b) 10 cm? (¢) 19 cm? (d) 20 cm? (The
result of the previous problem should be used.)

The equation of state of an ideal gas has the form pv = RT,
where p is the pressure, v the volume, 7' the absolute tempe-
rature, and R a constant for a given mass of gas. Solve
problems 2707-2709 on the assumption that the gases are
ideal.

2707. Atmospheric air is contained in a cylindrical vessel
of base area 10 cm? and height 30 cm. What work must be
expended in order to drive in a piston 20 cm, i.e. so that the
piston is 10 cm from the cylinder bottom (Fig. 56)? Atmosphe-

ric pressure is 1033 kg/cm?. The process is carried out iso-
thermically, i.e. at constant temperature. (To find the work
in kgm, the pressure must be taken in kg/m? and the volume
in m3.)

2708. Air at atmospheric pressure is contained in a cylind-
rical vessel of cross-section 100 cm2. There is a piston in the
vessel. Its initial distance from the vessel bottom is 0:1 m.
The vessel is placed in a vacuum, as a result of which the air
in it expands and pushes out the piston. (1) Find the work
done by the air in the cylinder when it raises the piston a
height (a) 0-2 m, (b) 0:5 m, (¢) 1 m. (2) Can this work increase
indefinitely on indefinite expansion of the gas? (The process
is isothermal, as in the previous example.)
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2709. Atmospheric air is contained in a cylindrical vessel
of volume v, = 0'1 m® and is subjected to compression by
rapidly driving in a piston (it is assumed here that the pro-
cess is carried out without the influx or transmission of heat,
i.e. adiabatically). What work must be expended to compress
the air in the vessel to a volume v = 0-03 m3? (Atmospheric
pressure is 1:033 kg/cm?.) In the case of an adiabatic process
the pressure and volume of the gas are connected by the rela-
tionship pv? = pyvy (Poisson’s equation). For diatomic gases
(as also for air) y ~ 1-40.

By Newton’s law of cooling, the rate of cooling of a body is
proportional to the difference in temperature between the
body and the surrounding medium. Solve problems 2710-2711
on the basis of this law.

2710. A body whose temperature is 25° is placed in a ther-
mostat (the temperature of which is maintained at 0°). How
long does it take the body to cool to 10°, if it has cooled to
20° after 20 min.?

2711. A body whose temperature is 30° reaches a tem-
perature of 22:5° after being placed for 30 min in a ther-
mostat whose temperature is 0°. What will the temperature
of the body be 3 hours after the start of the experiment ?

. . . . ee
The force of interaction of two electric charges is —1752
€

dynes, where ¢, and e, are the charges in electrostatic units,
r is the separation in cm, and ¢ is the dielectric constant
(Coulomb’s law). Solve problems 2712-2714 on the basis of
this law.

2712, An infinite straight line is uniformly charged with
positive electricity (the linear density of electricity is o).
What force does this straight line exert on a unit charge
located at a point A distant @ from it ? The dielectric constant
of the medium is equal to unity (see Course, sec. 116).

2713. Two electric charges: e, = 20 electrostatic units and
e, = 30 electrostatic units, are separated by a distance of
10 cm. The medium between them is air. Both charges are
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first held fixed, then charge e, is freed. Under the action of the
force of repulsion, charge e, starts to move away from charge
¢, How much work is done by the repulsion force when the
charge (a) moves away to a distance of 30 em? (b) moves
away to infinity?

2714. Two electric charges: e, = 100 electrostatic units
and e, = 120 electrostatic units, are at a distance of 20 cm
from each other. What will the distance be between the char-
ges if we bring the second closer to the first whilst expending
1800 ergs of work? (Air is the separating medium.)

2715, The voltage is » = 120 V at the terminals of an
electrical circuit. Resistance is introduced into the circuit
at a uniform rate of 0’1 ohm per sec. Furthermore, a constant
resistance of r = 10 ohm is included in the circuit. How many
Coulombs of electricity pass through the circuit during two
minutes ?

2716. The voltage at the terminals of an electrical circuit,
initially equal to 120 V, falls uniformly, decreasing by 0-01 V
in a second. Simultaneously with this, resistance is introduced
into the circuit, also at a uniform rate, viz. 0‘'1 ohm per sec.
Moreover, constant resistance equal to 12 ohm is present in
the circuit. How many Coulombs of electricity flow through
the circuit during 3 min?

2717, When the temperature changes, the resistance of
a metallic conductor varies (at normal temperatures) in
accordance with the law R = R, (1 -{- 00004 0), where R,
is the resistance at 0° C and 6 is the temperature in centi-
grade. (This law holds for the majority of pure metals.)
A conductor whose resistance at 0° C is equal to 10 ohm is
uniformly heated from 0, = 20° to 0, = 200° in the course
of 10 min. A current flows along it in this time at a voltage
of 120 V. How many Coulombs of electricity flow through
the conductor during this time?

2718, The law of variation of the voltage of ordinary

alternating (urban) current, of 50 cycles per sec, is
given by the formula: E = E, sin 100 nf, where E, is the
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maximum voltage and ¢ is time. Find the mean value of the
square of the voltage during 1 period (0-02 sec). Show that,
when the resistance is constant, alternating current produces
as much heat during 1 cycle as a constant current having

a voltage equal to Y(E?%),. (In view of this, expression

V(E?),y is termed the effective voltage of the alternating
current.)

2719. The voltage of a sinusoidal electric current is given by

. (2n
E=Eosm(Tt),

whilst the current is given by
. (2nt
I= Iosm(T i (po),

where F; and I, are constant quantities (the peak values of
the voltage and current), T' is the period, and ¢, the phase
difference. Find the work done by the current during the
time from #, = 0 to ¢, = T and show that the peak value of
this work will be obtained when the phase difference ¢, is
zero.

2720. Find the time required to heat 1 kg of water electri-
cally from 20 to 100° C, if the voltage is 120 V, the spiral
resistance is 14'4 ohm, the air temperature in the room is
20° C and it is known that 1 kg of water cools from 40°C to
30° C in 10 min. (By the Joule-Lenz law, @ = 0-2412Rt, where
@ is the amount of heat in small calories, I is the current in
amperes, R is the resistance in ohms, and ¢ is the time in
seconds. In addition, use is made of Newton’s law of cooling
(see problem 2710).

2721. Air filling a vessel of capacity 3 1., contains 20 per
cent oxygen. The vessel has two pipes. Pure oxygen is now
pumped into the vessel through one of them, whilst air
passes out through the other, the amount of air leaving being
the same as the amount of oxygen flowing in. How much
oxygen will the vessel contain after 10 1. of gas have flowed
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through it? The concentration of oxygen is kept the same in
the vessel at each instant with the aid of a mixer.

2722. Air contains a per cent (= 8 per cent) CO,; it is
filtered through a cylindrical vessel with an absorbent
medium. A thin layer of the medium absorbs an amount of
gas proportional to its concentration and the layer thickness.
(a) If air that has passed through a layer H em (= 10 cm)
thick contains b per cent (= 2 per cent) CO,, what thickness
H, must the layer have for the air leaving the filter to contain
only ¢ per cent (= 1 per cent) carbon dioxide? (b) How
much carbon dioxide (in per cent) remains in the air after
passing through the filter if the thickness of the absorbent
layer is 30 ecm?

2723. If half the initial quantity of light is absorbed on
passing through a layer of water 3 m thick, what part of this
quantity remains at a depth of 30 m? The quantity of light
absorbed on passing through a thin layer of water is propor-
tional to the layer thickness and the quantity of light incident
on its surface,

2724. If an initial quantity of ferment equal to 1 g becomes
1-2 g after an hour, what will it be 5 hours after the start of
the fermentation, if the rate of growth of the ferment is
assumed proportional to the initial quantity ?

2725. If the quantity of ferment present is 2 g two hours
after the start of the fermentation, and is 3 g after 3 hours,
what was the initial quantity of ferment? (See previous
problem.)

2726. Two kilogrammes of salt are dissolved in 30 1. water.
One kilogramme of salt passes into solution after 5 min.
How long will it take 99 per cent of the initial quantity of
salt to pass into solution? (The rate of solution is proportional
to the amount of undissolved salt and the difference between
the concentration of a saturated solution, which is equal to
1 kg per 3 1., and the concentration at the given instant.)



CHAPTER IX

SERIES

1. Numerical Series

Convergence of Numerical Series

For each series of problems 2727-2736: (1) find the sum
(8,,) of the first n terms of the series, (2) show directly from
the definition that the series is convergent and (3) find the
sum (8) of the series.

« 11 1
9797, 5T 3 3+"'+n(n—|—l)+"'
2728, . 1 1
‘T.3T3.5T: '+(2n—1)(2n+1)+"'
- 1 1 1
1 1 1
2730.'1.—4:+—2—:—g+...+n(n—_*_—37+...
1 1 1
2732, — 1 -
"T.2.372.3.47 "+n(n+1)(n+2)+"‘
5 13 gn . on
2733-g+%+ e AR
3 5 2n + 1
2734, T+ 5 + .+n2(n+1)2+..
1 2 1
2735.§+2—25+...+(2n_1)2(2n+1)2+...

1 1 1
2736. arc tan§ -+ arc tang + ...+ arc tanrn2 +...
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Series with Positive Terms

235

Solve the question of the convergence of the series of
problems 2737-2753 with the aid of the theorems on compa-
rison of series:

2737.

2738.

2739.

2740.

2741.

2742,

2743.

2744.

2745.

2746.

2748,

2750,

2752.

2763.

%+W+“'+( 1) o T
smg+smg+...+sm;’—n+...
1+1‘i§2+ it

1 1
R R e
FEPRNET N
tang—l—tang—i-...—l—tanﬁ—f—...
%+%+...+7ﬁ+...
mztmst +ln(n1+1)+
Satore o 302
e 1 nmeo

S 2749, M%;‘T_j
:g(l/——l/n—l) 27512"%'




236 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

Prove the convergence of the series of problems 2754-
2762 with the aid of d’Alembert’s test:

1

2754. 3'+ + +m+...

1 2 n
2755.5—1—@4—.. +§F+"'

7 n
2756. tanz—{—2tan§+. .+ n tan 2n+1+.

2 2.5 2.5...03n —1)
2757'T+m+"'+1 5 (4n—3)+'

1 4 n?
2788. 5+ 5+ gt

1 1.3 1.3...(2n—1)
2759.§+m+ .+ T +...
2760. sinE—|—4sinE+ —[—n2s1n——|—.

2 4 2n

1 2 n
2761.2—+-3—i+...+'(—n-_l_—1)'+.

2 (n + 1)!

Prove the convergence of the series of problems 2763-2766
with the aid of Cauchy’s test:

1 1
263 ot st wm gyt

1 232 n \?
2764.§+(5J +...+(2n—+1) +...
2765, arcsi111+a.rcsin2—21-+...+arcsin"%+...

3\ n + 1)\*
I
‘§+_9_+"‘+_?1_ + ...
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Solve the question of the convergence of the series of
problems 2767-2770 with the aid of the integral test for

convergence :
1 2 1
2767. 21n2 2 + 3In23 LR (n 4+ l)lnz(n+1)+
1 1 1
2768. 2Tn 2—|———3ln3+...—|—n———lnn—{—...

141y (142 14n
2mh+d+b+ﬁ+“+h+ﬁ+”.
ne 1

n—|—1
2770. In
P

Examine the series of problems 2771-2784 for convergence
or divergence'

1

.+ +
n+1)yrn+1
Ty

2771.

ﬁl
ﬁ

2772. 1 + = + o+

2W&V@+V§+“.+ ”+1+.
2774 1+ 15 + - + +

2775.2+§+...+

2 n

2776. 507 + 007 + * ¥ T000n 1

1001 2001 T

2777.

n
1+12+1+22+...+———1+n2+...

2n — 1

1 3
2778, g+ o -+ o

4.
2779. arctan 1 + arctan2% 4+ ...+ arc tan"%’ + ..

4
2780.2+—1—6+. + +
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9781, 1 6—1—7

13 +... .+

1
(5n — 4) (4n — 1) T

3n
n.2"

3,9
2782.§+§+...+ + ...

2

2783, 1+1 +...+1;7§+...

v sin® 4 sin™ in ™
2784.s1n2—|-sm4—|—...+sm2n+...

Prove each of the relationships of problems 2785-2789
with the aid of the series whose general term is the given
function:

2785. lim £ = 0. 2786. lim ' — 0 (a > 1),
. n" n"
1\n
( ) —o0

n--oco

Series with Arbitrary Terms. Absolute Convergence

Examine the series of problems 2790-2799 for absolute
convergence, non-absolute convergence, or divergence:

1 1
— = . 1\n+1

2790. 1 — o+ ... + (=) o ...
9791 1 — o ...+ (=l

. st @n—1F T
2792 L~ 1 -+ + __1)n+1_»_l_+

"In2 In3 7 ( In(n + 1)
9793, smo:+sm23+ +s1r;:m+_”

1 1 1 1

2L 1y s .
2794, 5 — 5oz + oo+ (=1 2n+
2795. 2 %+...+(—1)"+1’%—1+..
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1 1
2796, —1 4+ — — ... —r =4 ...
+V2 + ( )ﬁ+
1 8 nay P2
2797.5—'1 "'+(—1)+1§F+"'

n

"5 (=)
2798. 2: ey

2799, 2 ,( 1)+,

2800. Prove that, if the series 2 a? and Z b% are conver-

gent, the series Za b, is absolutely convergent
2801. Prove that if the series Za,, is absolutely conver-
n=1

n=oo
gent, the series + 1

n=1

a, is also absolutely convergent.

2. Functional Series

Convergence of Functional Series

Find the domains of convergence of the series of problems
2802-2816:

2802, 1+ 2+ ...+ ax" 4.
2803. nz +In?2z+4 ...+ In"x 4 ...
2804, x+x4—|— —{—x"’—l—

2805.x+ + + +

2806. x +V 4. +;—;+...
2807.1ix+1+x2+...+ﬁ,+...
2808. 2z + 622 + ... + n(n + 1) 2" L

2 n
2809.§+#§+...+ﬁﬁ+
2810.1ix2+1:_2x4'+...+$+
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2811. smé—!—smz—{—...—{-sm?—l—.

2812. xtan% + 22 tanz + ...+ 2 tan >~ +.

2n
. sin 2x sin nx
2813. sm.’x:-{——z-z——|—...—{——n2 T
cos & cos 2x COs nx

B -+ e ot o

2816, e~* e & 4 ... e x|,

2x
o2

x nx
2816.e—x—|— +"'+€r§+"‘

Uniform Convergence

Verify that the series of problems 2817-2820 are uniformly
convergent throughout the Ox axis:

sin x sin na
2817.1+1—!+...+ o + ..
" 1 n=gin nx
28180 ngl m . 2819» ngl 2” .
n=oo g—nix?
2820. ng D
. 1 1
2821. Shc;w that the series T T [p@) + PP + ...
R 72+ [o@) 4+ ... is uniformly convergent in any

interval in which the function ¢(z) is defined.

2822. Show that the series

1
+'“2”—1V1+nx )
out the positive semi-axis (0 = x < oc). Given any non-
negative #, how many terms of the series must be taken
for the sum to be calculable to an accuracy of 0:001?

1
_|_
V1 4= + 2Vl + 2«
4 ... is uniformly convergent through-
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2823*. Show that the series In (lx_'_ 2) + In (12:; 22) +
1
+ .0+ ln(nT—l;nx) 4+ ... is uniformly convergent in any

interval 1 4+ o =& < oo, where w is any positive number.
Verify that, for any = of the interval (2 =z = 100), it is
sufficient to take eight terms in order to obtain the sum of
the series to an accuracy of 0-01.

2824. Prove that the series i‘ 2"(1 — z") is non-uniformly
n=1
convergent in the interval [0, 1]. (See Course, sec. 127).

2825, The function f(z) is given by the series

e cos nx

flx) = Z_IOT

n=1
Show that f(x) is defined and continuous for any . Find
f(0), f(%) , and f(%) . Verify that it is necessary to take

three terms of the series in order to compute the approximate
values of f(x) for any z to an accuracy of 0:001. Find to this
accuracy f(1) and f(—0-2).

2826. The function f(x) is defined by the series

1 n=s 1
e =itet Z1iretaeprt

ne 1

Show that f(x) is defined and continuous for any x. Establish
that f(z) is a periodic function with period w.

Integration and Differentiation of Series

2827. Show that the series 22 4+ 2% 4 ...+ 24"~2 } ... s
uniformly convergent in any interval —1 + o =2 =1 — o,
where w is any positive number less than unity. By integ-
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rating this series, find the sum in the interval (-1, 1) of
the series

x4n—1

27
§+7+"'+4n—1+"'
2828. Find the sum of the series
x5 ZAn-3
x + g—{— v e + m + .
2829. Find the sum of the series
x2 x3 xn+1
— P BY5 > S
1.2 2.3+"'+( 2 n(n+1)+"'

2830. The function f(z) is defined by the series

flx) =e™> 4+ 272 4 ... 4-me=" 4, ..,
Show that f(z) is continuous throughout the positive half

n3

of the Ox axis. Evaluate [ fz) dz.

In2

2831, Function f(x) is defined by the series
f&)=1+2.3x+ ...+ 03" "1 ..,

Show that f(z) is continuous in the interval ( ——%, 5) .
0-125
Evaluate [ f(z) dx.
0

2832*, Function f(z) is defined by the series

1 z 1 z 1 z
fle) = gtang +gtan 2+ ...+ otan oo 4 ...
Evaluate | f(x) dz, having first established that f(z) is

@|'-‘!g_ﬁ“

continuous in the interval of integration.



IX. SERIES 243
2833 *, Function f(x) is defined by the series f(z) =

Z‘ (n'* . Show that f(zx) is continuous throughout

the real axis. Evaluate {[f(m) dz.

1

2834. Starting from the relationship fx” der = ! -
n41
find the sum of the series:
1 (—1)n+1
(1) =4+ .+ 35, =5+~
1 (—1)m+1
(2) 1 — '5 + . e + m

oo

2835, Starting from the relationship J%‘:—l = 72-;7, find
2

L

n2"

1 1
‘ohesumofthe:senes1 2—{——2——.—25—{—...—{— + ...

2836. Starting from the relationship

2

on _a (2n—1)(2n—3)...3.1
jcos = nEn—9)...4.2,
0

find the sum of the series

1 1.3 1.3. (2n— D,
—— _ n+1
2 2.4+"'+( 1) 24 . 2n
2837. Show that the series
sin 2nx . sin 4nx sin 2" nx
gttt

is uniformly convergent throughout the real axis. Prove that

this series cannot be differentiated term by term in any inter-
val.
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2838. Starting from the progression 1 + 2 + a2+ ... =
1
=1 (|| < 1), sum the series 1 -+ 2z + 322 + ...

1
...+ mnx""1 4+ ... and the series 1+ 3z 4 ...+
1
+ n—(r—L—;———)x"‘l 4+ ... and show that the series 1 4+ 2x 4-
+ ...+ nz""! 4 ... is uniformly convergent in the inter-

val [—op, ¢], where |p| < 1.
2839. Show that the equality
1 2x on—lg2ni—1 1
i1z 1+x2+"'+ﬂ_x2"7+"‘=
holds for —1 <z < 1.

2840. Verify that the function y = f(z) defined by the

series = -+ x? - ;—:: 4+ ...+ (T—i—l)—' + ... satisfies the rela-

tionship zy" = y(x + 1).

3. Power Series

Ezxpansion of Functions in Power Series

2841. Expand the function ¥ = In x in a Taylor series in
the neighbourhood of the point * =1 (with z, = 1) (see
Course, sec. 130).

2842. Expand the function y = J/a® in a Taylor series in
the neighbourhood of the point z = 1.

2843. Expand the function y = 9—15 in a Taylor series in the
neighbourhood of the point z = 3.

2844. Expand the function y = sin ? in a Taylor series

in the neighbourhood of the point x = 2.

Expand the functions of problems 2845-2849 in Taylor
series in the neighbourhood of the point x = 0 (Maclaurin
series):
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2845, y = i —;e_x 2846. y = x%*.
2847, y = cos (x + «). 2848, y = e* sin 2.

2849. y = cos x cosh x.

Find the first five terms of the Taylor series of the functions
of problems 2850-2854 in the neighbourhood of the point
x=0.

2850. ¥y = In (1 4 ex). 2851, y = eosx,

2862. y = cos" z. 2853. y = —~In cos z.

2864. y = (1 + ).

By using the formulae for the Taylor expansions of fune-
tions e*,sin®x, cosz, In (1 + z) and (1 4 =)™, expand the
functions of problems 2855-2868 as Taylor series in the
neighbourhood of the point = 0:

28566, y = e, 2866, y = e
e —1
2857, y =) & oreF O
1 forxz=0.
ex* _ g
o858, y — ) 2z T+ 0,
1 forx = 0.
2859, y = sing . 2860. y = cos® .

sin x
2861.y=§ g orz+0,
1 for 2 = 0.

2862, y = (x — tan z) cosx. 2863. y = In (10 4 x).
2864. y = zIn (1 4 x). 2866, y = V1 + a2

3

2866, y = J/8 — 8. 2867. y = 5 -
V1 + a®
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2

v

2869. Expand the function y =

2868.

14z
(I —ap
series in the neighbourhood of the point x = 0. Use this

in a Taylor

. . 4
expansion to find the sum of the series 1 4 3 + ...
nZ

ot gt

2870. By using the Taylor expansion of the function,
find the values of:

(1) the seventh derivative of the function y = T
at ¢ =0,

4
(2) the fifth derivative of the function y = 221 4 x at
xr =0,
(3) the tenth derivative of the function y = 2%~ at x =0,
3
(4) the curvature of the curve y==x[}(1 + x)* — 1]at the
origin.

In problems 2871-2877, use the Taylor expansions of the
functions to evaluate the limits:

o871, lim F T V1 +22—2)

x—+0 x3
— 3
2872, lim (A0 2 sin z) — @
x—+0
2 — 2
o873, lig Az +2?) +In(1—a a7
x+0 z(e* — 1)

2874. lim lx —22In (l + 1)] .

X—+o0 x

2875. lim (lz — cot? x) . 2876.lim (-15 -
T X

x—+0 x-0

9877. lim (M _ 3) .

x-0| a®sinz zt

cot x
el
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Interval of Convergence

Find the intervals of convergence of the power series of
problems 2878-2889:

2878, 10z 4 10022 + ... 410%™ - . ..
x2 xn
- — 1yt
2879. & — & + ...+ (=)

xn

2
2880. x-l—z—o'—{—'...—}"n—.l—on—_l

+.

2881, 1 + x4 ...+ nla ..
2882, 1 + 222 ... 4 27— 1p20n-1) L,

x2n 1
‘=1 @ =)

2883. x — 33,+ A (=1 + .

2884, 1+ 3z 4+ ...+ (n — 1) 3n—1gn—1 4

z x? x"
2885, tstest o tamrnt
2886. = - (2;!)2 4+ ...+ (7;—:';)" . (In studying the

convergence at the right-hand end of the interval, use the
fact that the factorials of large numbers can be approximately
expressed in accordance with Stirling’s formula:

n ___
n! ~ (g) Y2an.

2887, x 4 422 4 ... + (nx)"

In2 In 3

+ .
2888——2—}————3—!— _*_M

n+1
2889, 2x+(2x)2+...+[(n_:1)nx]n+...

2890. Expand the function y =In (x4 J1 + 22) in a
Taylor series in the neighbourhood of the point # = 0, starting

P S R
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from the relationship
2
In(z+ Y1 + 2?) j}/l o

and find the interval of convergence of the series obtained.

2891. Expand the function y =In ‘/i i: in a Taylor

geries in the neighbourhood of the point z = 0, by starting
from the relationship

X

1+x dx
lnl/l—x_ 1 — a2’
0

and find the interval of convergence of the series obtained.

2892, Expand the function gy =In[(1 4 z)+*] 4
4+ In[(} — 2)*-*] in a Taylor series in the neighbourhood
of the point x = 0 and find the interval of convergence of
the series obtained.

2893. Expand the function y = (1 4 2)e—* — (1 — z) e
in a Taylor series in the neighbourhood of the point = 0
and find the interval of convergence of the series obtained.
Use the expansion to find the sum of the series.

1 2
gtat T @it

T

4. Some Applications of Tayler’s Series

Finding Approximate Values of Functions

3

2894, Find the approximate value of Ve by taking three
terms of the Taylor expansion of f(x) = e*, and estimate the
error.

2895, Find the approximate value of sin 18° by taking
three terms of the Taylor expansion of f(x) = sin z, and es-
timate the error.
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3

2896. Find the approximate value of Y10 by taking four
terms of the Taylor expansion of the function f(z) = (1 + z)™,
and estimate the error.

In problems 2897-2904, use the formulae for the Taylor
expansions of the functions e*, sin # and cos z to find:

2897, e? to an accuracy of 0-001.
2898. Ve to an accuracy of 0-001.

2899. % to an accuracy of 0-0001.

2900. ‘—1—1— to an accuracy of 0-0001.

Ve

2901. sin 1° to an accuracy of 0-0001.
2902. cos 1° to an accuracy of 0-001.
2903. sin 10° to an accuracy of 0-00001.
2904. cos 10° to an accuracy of 0-0001.

In problems 2905-2911, use the formula for the Taylor

expansion of the function (1 + z)™ to find to an accuracy of
0-001:

3 3
2905. ¥/30. 2906. }70.

3 3
2907. 1/500. 2908. /1-015.
5 3

2909. }/250. 2910. }/129.

10

2911. Y1027.

In problems 2912-2914, use the formula for the Taylor
(1+2)
(I—=2)
2912. In 3 to an accuracy of 0-0001.

expansion of the function In to find:

1
2913. loge = 1o to an accuracy of 0-000001.

2914. log 5 to an accuracy of 0-0001.
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The Solution of Equations

2915. Given the equation zy 4 e* = y, use the method of
undetermined coefficients to find the expansion of function
y in a Taylor series in powers of x. Solve the problem by finding
the coefficients of the Taylor series by successive differenti-
ation.

2916. Given the equation y =In (1 4- ) — xy, use the
method of undetermined coefficients to find the expansion
of function y in a Taylor series in powers of x. Solve the
problem by finding the coefficients of the Taylor series by
successive differentiation.

Solve the equations of problems 2917-2919 with respect
to y (find an explicit expression for y) with the aid of Taylor
series by two methods: the method of undetermined coeffi-
cients and successive differentiation:

2917, 4 + a2y = 1 (find three terms of the expansion).

2018, 2sinx 4 siny =z —y (find two terms of the
expansion).

2919. e — eY == zy (find three terms of the expansion).

Integration of Functions

Express the integrals of problems 2920-2929 in the form
of a series by using the expansions of the integrands into
series; indicate the domains of convergence of the series
obtained.

2920 f SN . 2921, J 05 % .
x x
2922, je— dz. 2923, J ® da.
X X
2024, e da. 2925. j W da.
0
0

x de x
2926, | —— . 2927. 1 4 28 dx.
Sz JITE

0
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x x 4
92998, f& ) 2929 fm—_l_ de.
1 — 29 ax2
0 0

Obtain approximate values for the definite integrals of
problems 2930-2934 by taking the indicated number of
terms of the expansion of the integrand; indicate the error:

1

4 4
2930. J‘co:x dz (3 terms).  2931. Je‘x’ dz (3 terms).
0

7
1
2 1
2932, f _ % (5 terms).  2933. j‘i d (6 terms).
Y1+ at x
0

01

y3
3
2934. Jm"' arctanz dr (2 terms).

Evaluate the integrals of problems 2935-2938 to an accu-
racy of 0-001:

02 05
—X
2935. J ° da. 2936. J aretans 4.
x X
01 0
o8 05
de
o
2937. Ofx 0 in & da. 2938, J et
0

X
2939. Show that the functions fe*x’ dx and arctanx — 1_x05
0
differ by not more than 0-0000001 in the interval (—O0-1,
01).
2940. By taking into account the identity
/4 1 1
= 4arcta,n3 —arctanﬁ ,
evaluate m correct to 10 figures.
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2941. Expand in a Taylor series the function y =

X

= e* fe—"” dx by using two methods: direct evaluation of the
0

successive derivatives at * = 0 and cross-multiplication of
the series.
1

2942*, Evaluate the integral jxx dz.
0

5. Numerical Problems

05
2943. Evaluate I[ efinxdz to an accuracy of 00001,

6
2944. Evaluate f}/cos z dx to an accuracy of 0°001.
¢

2945. Evaluate the area bounded by the curve 3% = 23
+ 1, the axis of ordinates and the straight line « =% to an

accuracy of 0-001.
2946*. Evaluate the area of the oval 2t - #* =1 to an
accuracy of 0-01.

2947. Evaluate the length of arc of the curve 25y% = 4a5
from the cusp to the point of intersection with the parabola
5y = 2 to an accuracy of 0-0001.

2948. Evaluate the length of one half wave of the sine
wave y = sin x to an accuracy of 0-001.

2949. The figure bounded by the curve y = arctan z,

the axis of abscissae and the straight line z = %, revolves

about the axis of abscissae. Find the volume of the solid
of revolution to an accuracy of 0-001.

2950. The figure bounded by the curves y*® — 2% =1,
4y + 2® = 0, the straight line y = % and the axis of ordinates,
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revolves about the axis of ordinates. Find the volume of the
solid of revolution to an accuracy of 0-001.

2951. Tind the coordinates of the centre of gravity of the
arc of the hyperbola y = %, bounded by the points with

. 1 1
abscissae z, = y and x, = 3’ to an accuracy of 0.001.

29562. Find the coordinates of the centre of gravity of the
1
Ina’
the straight lines x = 1'5 and # = 2 and the axis of abscissae,

to an accuracy of 0-01.

curvilinear trapezium, bounded by the curve y =



CHAPTER X

FUNCTIONS OF SEVERAL
VARTIABLES.
DIFFERENTIAL CALCULUS

1. Funections of Several Variables

2953. Express the volume z of a cone as a function of its
generator  and height y.

2954. Express the area S of a triangle as a function of its
three sides z, ¥, z.

2955. Form a table of the values of function z = 2x —
— 3y + 1 by giving the independent variables integral
values from 0 to 5.

2956. Form a table of values of the function
z=Va? + o2,

by giving the independent variables values spaced 0'1 apart
from 0 to 1. Calculate the values of the function to an accu-
racy of 0-01.

2957. Find the particular value of the function:

. arctan (z + y)\’ _1+V§ _1——]/5_
mz—(amﬁa:a)ﬁfx— g Y=g

(2) z = esintx+y) for x:y:%;

(3) z = y*~1 4 ay*-1 forx =2, y=2; z=1, y=2;
=2, y= 1.
2958. Given the function

_o@) p(y) — v(=) ¢ly)
P y) = gy viay)

254

3
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1 .
find F(a, 5) . In particular, put ¢(u) = «? yp(u) = 4? and
work out F(a, é) .

2959. Given the function F(z, y) = y* — % x¥; if z and g

have the same rate of change, which function increases the
more rapidly for x = 3, y = 2: the function obtained from
F with fixed y (z only varies), or that obtained with fixed
z (y only varies) ?
2960. Given the function
ytz
p(x, y,2) = y*> — (ycosz + zcos y) x 4 2/ 7%,

let variables y and z preserve fixed values y, and z,, where
Yo = 32,. What is the graph of the function v = ¢(x, ¥, 2,) ?
Is ¢z, y,2): (1) a rational function of y? of 2? (2) an in-
tegral function of x?

2961*. A function z = f(x, y), satisfying identically the
relationship

f(mz, my) = m*(z, y) for any m,

is called a homogeneous function of the kth degree. Show that
the homogeneous function of the kth degree z = f(x, y) can

always be written as
2= x"F(g) .
X

2962, The homogeneity of a function of any number of
independent variables is defined in the same way as for a
function of two variables: for instance, f(z, ¥, ) is a homo-
geneous function of the kth degree if

f(mz, my, mz) = mkf(z, y, z) for any m.

The property
f(x, y, 2) = akF (g, i)

xr X

also holds. Prove this.
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2963. Prove that the function z = F(z, y) = xy satisfies
the functional equation

Flax -+ bu, cy - dv) = acF(x, y) 4 beF(u, y) +
+ adF(z, v) + bdF(u, v).

2964. Prove that the function z= F(z,y) =Inzlny
satisfies the functional equation

Flay, wo) = F(z, u) + F(z,v) + F(y, w) + F(y, v)
{(x, ¥, u, v are positive).

2965. Find z as an explicit function of z and y from the

Lot oy 2P .
equation po + e + = 1. Is this function single-valued ?

2966, Given the function of a funection z = w¥, where
%=z + Yy, v =2 — y, find the particular value of the func-
tion: (1) when =0, y=1; (2) when =1, y=1;
(3) when x =2, y = 3; (4) when x =0, y = 0; (5) when
z=—1 y=—1.

2967.z=u2;v; u=w; v=w';, w=Vr+y;

{ = 2(x — y). Express z directly as a function of z and y.
Is z a rational function of v and v? of w and {? of z and y?

2968. Given the function of a function 2z = w¥ + w4tV
where u =2 + y, v =2 — y, w = 2y, express z directly as
a funection of x and y.

2969, u = (& + n)? — & — 7’ £=f; n =
ev - e?
———2—;w=ln(x2+y2+z2); p=2In(x+ y + 2). Ex-

press » directly as a function of z, ¥ and 2. Is » an integral
rational function of £ and 7? ofw and ¢? of z, y, 2?7

2970. Write the function of a function

_ (P tay+
A\ -yt

by means of a two-link chain of relationships.

xy
)+ﬁ+¢
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2971. Investigate by the method of sections the “graph’ of
the function z = % (x? — y?). What are the sections by the

planes x = const? y = const? 2z = const?

2972, Investigate by the method of sections the “graph”
of the function z = xy. What are the sections by the planes
z = const? y = const? z = const?

2973. Investigate by the method of sections the “graph”
of the function 2z = y2 — °.

2974. Investigate by the method of sections the “graph”
of the function
22 =ax? 1+ by’ (a>0,b > 0).

2. Elementary Investigation of a Funetion

Domain of Definition

2975. A domain is bounded by the parallelogram with sides
y=0,y=2, 9 =%w, Yy = éx — 1; the boundary itself is
excluded. Give this domain by means of inequalities.

2976. A domain consists of the figure bounded by the
parabolas y = 2% and z = y? (including the boundary).
Specify this domain by inequalities.

2977. Write with the aid of inequalities the open domain
consisting of the equilateral triangle with a vertex at the

origin and side a, one of the sides being in the direction of
positive z.

2978. A domain is bounded by an infinite circular cylinder
of radius B (excluding the boundary) with axis parallel to Oz
and passing through the point (a, b, ¢). Specify this domain
with the aid of inequalities.

2979. Write with the aid of inequalities the domain bound-

ed by the sphere of radius R with centre at the point (a, b, ¢)
(the boundary included).
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2980. The vertices of a right-angled triangle lie inside
a circle of radius B. The area § of the triangle is a function
of its adjacent sides z and y: 8 = ¢(x, y). (a) What is the
domain of definition of function ¢? (b) What is the
domain of definiteness of the corresponding analytic
expression ?

2981. A pyramid with a rectangular base, the vertex of
which projects orthogonally into the point of intersection of
the base diagonals, is inscribed in a sphere of radius B. The
volume V of the pyramid is a function of sides x and y of its
base. Is this function single-valued? Form the analytic
expression for it. Find the domain of definition of the function
and the domain of definiteness of the corresponding analytic
expression.

2982. A square board consists of four square chequers, two
black and two white, as shown in Fig. 57; the side of each of

Fia. 57.

them is equal to unit length. We take the rectangle whose
sides « and y are parallel to the sides of the board and one of
the corners of which coincides with a black corner. The area of
the black part of this rectangle will be a function of z and y.
What is the domain of definition of this function ? Express this
function analytically.



X. FUNCTIONS OF SEVERAL VARIABLES 259

Find the domains of definition of the functions of problems
2983-3002:

2983, z = |[1 -5 — ¥ 298k 2 =In(y2 — 4z + §).

a® b

1 -
2985-z=m- 2986. z=Vx +y+ Vo —y.

1 1
2987, z = + .
Ve+y Vz—y
2088, 7 = arosinL_ 1 2989 z —lnay.
2990. z — Vx — V.
2 2

2991. z — arcsin 1_ y + arc sec (x% 4 ¥2).

. Vizx —y? A+ 22 4y
2992- 2= m:m‘) . 2993. 2 = m .
— R* 2 2 2

2995. z = cot n(x + ¥). 2996. z = Vsin w(x? + y?)
2997, z = Yxsiny. 2998. z=Inz — Insiny.
2999. z = In{zIn(y — =)].

3000. z = arcsin [2y(1 4 2%) — 1].

3001, v — 4 L 4 L

Vo Vy Ve

3002.M=VR2—x2_y2_z2+ 1

Vx2_|_ y2+ 22 42

(R >r).

Limits. Continuity of a Function

Work out the limits of the functions of problems 3003-3008
on the assumption that the independent variables approach
their limiting values in an arbitrary manner:

2 2
3003. lim 1y

0V g2 1—1

y=0
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2,2 _ 8 3
3004, lim V¥ L =1 go0s g S0E L8

x~0 x? 4y ) “yeo Y
y—~0 y—~0
1
.1 — cos (22 + y?) e ¥+
3006. lim . 3007. 1
x1—>0 (2% + y?) 2%y° xlflg x4yt
y--0 y-

1

3008. lim (1 + a2y2) @+
x—+0
y—0

3009. Verify that the function u = 2ty can tend to

any limit as  — 0, y — 0 (depending on how z and y tend
to zero). Give examples of variations of  and y such that:
(a)limu =1, (b) limu = 2.
3010. Find the point of discontinuity of the function
2 . . .
2= I How does the function behave in the neigh-
bourhood of the point of discontinuity ?

3011. Find the point of discontinuity of the function
1
T sinZax + sinay

3012. Where is the function z = —1— discontinuous ?

(x—y)

. . 1
3013. Where is the function z = — -
sinmz ~ sin wy
tinuous ?

3014. Where is the function z = %y 3 i %% ; discontinuous ?

3015*. Investigate the continuity of the functions at =0,
y = 0:

(1) =z, y) =

discon-

x2+y2, 10, 0) = 0.

(2) f@y) = L5 £0,0) = 0.

x2+y

O) fe.9) = Lo 10, 0) = 0.

¥’
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(4) fo,9) = ———z5 }0,0) =0
] ?/ - xz + yg ’ ] - .

(8) f(z, y) = _:;;_w; (0, 0) = 0.

(6) o) = ot i f(0,0) = 0.

Level Lines and Surfaces

3016. Given the function z = f(z, y) = n-

1

struct a uniform net of curves of it for z =1, 2, 3, 4.

3017. The function z = f(z, y) is given as follows: at the
point P(x, y) its value is equal to the angle subtended at this
point by a segment AB given in the 2Oy plane. Find the
level lines of function f(x, ).

Trace the level lines of the functions of problems 3018-3021
by assigning to z values 1 apart from —5 to 45:

3018, z = xy. 3019. (2762). z = z% + =.
3020. z — y(a® + 1). 3021, (2764). z = ¥ — 1

x2

3022. Draw the level lines of the function z = (2 4 %) —
— 2(x® — y?), by assigning to z values every% from —1 to g .

3023. Draw the level lines of the function z given implicitly

z

by the equation (;) (@ — 5% + 2] = (;) [ + 57 + 37,
by giving z values unity apart from —4 to 4.

3024. Draw the level lines of the function z given implicitly
by the equation y? = 2-%(z — z), by giving z values % apart
from —3 to 3.

3025. Find the level lines of the function z given implicitly
by the equation z + zlnz 4 y = 0.

3026. A point 4 is given in space. The distance of a vari-
able point M from point 4 is a function of the coordinates
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of M. Find the level surfaces of this function, correspond-
ing to distances equal to 1, 2, 3, 4.

3027. A function u = f(x, y, 2) is specified as follows: its
value at the point P(z, y, z) is equal to the sum of the distan-
ces of this point from two given points: A(x,, ¥y, 2;), B(X,, ¥, 25).
Find the level surfaces of function f(x, y, z).

3028. Find the level surfaces of the function

RS CE T,

1— Vo + g2+ 22
3029. Find the level surfaces of the function
x® + y?

P

U =1

U =

3030. Find the level surfaces of the functions:
(1) w=5%t3y-2  (2) u = tan (x* + y*> — 222).

3031. Figure 58 illustrates the level lines of a function
z = f(z, y). Construct the graph of the functions:

(1) z2=fx, 0); (2)z=flx,4); () z2=/Ly);
(4) 2 =f(=5,9); (5) z={f(z, 32); (B) z = f(z, %)

o ’
\Q =
53\%7/’/;
2 A/A S

10 I 1 248i6
Fia. 58.
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3. Derivatives and Differentials of Functions of Several Variables

Partial Derivatives

3032. The volume v of a gas is a function of its temperature
and pressure: v = f(p, T'). The mean coefficient of expansion
of the gas at constant pressure, for a temperature variation

Vg — ©
from 7T, to T,, is defined as — 2 L
2 (T, —1T,)"

fine the coefficient of expansion at constant pressure at a
given temperature 7', ?

How should we de-

3033. The temperature of a given point 4 of a rod Ox is
a function of the abscissa  of 4 and time ¢: 0 = f(, t).
What are the physical significances of partial derivatives
a0 and %
at

3034. The area S of a rectangle is given in terms of the

base b and height 2 by the formula § = bh. Find 2’? 86'21
and explain the geometrical meaning of the results.

3035. Given the two functions % = Ja® — 22 (a is constant)

and z = Jy? — x2, ﬁndg—z a,nd Compare the results.
Find the partial derivatives W1th respect to each of the
independent variables of the functions of problems 3036-3084

(@, ¥, 2 u,v,t, ¢ and p are variables):

3036, z =2z — y. 3037. z = 2y — 9.

3038. 0 = axe~! + bt (a, b constants).

¥, _B+y

3039'z_v+u' 3040. 2 Ry

3041, z = (ba2y — 33 4+ 7). 3042, z ==z )y + 3—.
L Va
3043. z =In (z 4+ ¥V 2% + ).

1

3044, z — arctan g i 3045, z = —— .

arc tan Y
x
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3046.

3048.

3050,

3062.

3064.

3056.
3058.

3060.
3062.
3063.
3064.

3066.
3068.
3069.

3070.

3072.

3074.

3075.
3077,

3078.

3079.

z = av. 3047. z = In (2? 4 ¢?).
2 _ 2 — 2
z—lnhiy—-x 3049.z=arcsinvx ¥ .
Vot + 32 + = Va* + ¢
x X
z:lntanz—/. 3061, z =¢ 7.
z=In (x 4+ Iny). 3053.u=arctan:iw .
1 B4
z = sin " cos? . 3055, 2z = (—)x.
Y z 3
z= (1 + zy). 3067, 2 =y In (x + y).
z = 2, 3069, u = zy=.
u=xy + yz + 2. 3061. u = V% + o2 + 22

u=2a%+ y22 + 3yx — x + =
w= xyz + yzv |+ 2vx + vxy.

% = eX(x+yi+a), 3065. u = sin (2? + y2? 1 22%).
Y
#==1In (x4 y + 2). 3067, u=ux2 .
u=a".
fle,y) =z +y — Va2 + o2
z=1In (a: + %) . 3071 2 = (20 + y)>+.
z=(1+4 logyx)". 3073, z = xyesinmy,
—VFTE

2= @+

14 Va2 g

— 1
z = arc tan | 2V, 3076. z = 21 .

+V~

z = In[xzy? + y2? + V1 + (vy® + y2?)2].

z—v )x+y)+arcsm —i?—/y

arctan y_
x

z= arctan(arctang) —_——  —arctan=.
arctang 41
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3080. v = __k 3081. w = arctan (x — y)=.

(x2 + yz _|_ z2)2 *
pA
3082, u=z2 .

3083, u—m L= VE TP+
14 Va2 4 2 + 22

3084. w = %tan2 (x%y? 4 220% — ayzv) + In cos (x2y? -

+ 2%? — xyvz).

cos (p — 2p) . ou
3085. u = — % ¥/ Pind [~
> "7 Cos (p + 2y) o)y

n

p=n

3086. u = Vaz3 — b3, Find % and a_u at 2 =0, t = a.
0z ot
__xCcosy — ycosx

3087. z = 1 4 sinz 4 sin y

. .02 0z
. Flnd% and @atx_y= 0.

3088. u = }/sin?x + sin? y + sin? z. Find (g;f)x—o
y=0

=7

3089. u=In(1+4+ 2z + y*+2%). Find w4 uy+ u; at

r=y=z=1

o Lo
3090. f(z, y) = 2% — y*x. Find | 2% %Y
’ of . of
8z 8y )}
3091. What angle does the tangent to the curve
_ 4yt
T Ta o,
y=+4

at the point (2, 4, 5) form with the positive direction of the
axis of abscissae?

3092. What angle does the tangent to the curve

P =T F R T

x=1
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at the point (1, 1, ' 3) form with the positive direction of the
axis of ordinates?

3093. What is the angle of intersection of the plane curves
obtained as a result of the intersection of the surfaces

y2 x2 + y2

— g2 7 —
z_x—|—6andz 3

with the plane y = 2?

Differentials. Approximations

Find the partial differentials with respect to each of the
independent variables of the functions of problems 3094-
3097:

3094. z = xy® — 2% + 24
3095. z = Y% + y2
.y
3096. z = A
3097. w=In (23 + 2¢3 — 2°).
3

3098. z =}z + y®. Find dyz for x = 2, y = 5, 4y = 0°01.
3099. 2 = VInxy. Find d,z forx = 1, y = 1°2, 4z = 0-016.
3100. u=p—q—;+}/p—{—q—fj. Find du for p=1,

qg=3,r=25, dp = 00l
Find the total differentials of the functions of problems
3101-3109:

3101, z = 2%yt — 23y + 2ty2 3102, z = —;— In (2% + ¥?).

3103. z = rry . 3104. z — arcsin > .
rT—y Y
3105. 2 — sin (zy). 3106. z — arc tan > 2
1 —xy
2t + y?
3107. z = g 3108. z = arctan (xy).

3109. u = a2,
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Applications to Computations

3110. Find the value of the total differential of the function
z=x+y—Va2fy? forx=3,y=4, Jx=01,Jdy = 02.

3111. Find the value of the total differential of the function
z=eYforax=1 y=1, dx =015 Ay = 01.

3112. Find the value of the total differential of the function

x
z=x2—?{y2 for x =2, y=1, 4z = 001, dy = 0-03.

3113. Work out approximately the variation of the function
x4 3y
Ty — 3
from y, = 4 to y, = 3°5.

when z varies from z; =2 to z,=2'5 and y

3114. Evaluate approximately

3 4
In (Y1:03 4 }/0-98 — 1).

3115. Work out approximately 1-042:02,

3116. Find the length of the segment of the straight line
x = 2, y = 3 lying between the surface z = 2% 4 y? and its
tangent plane at the point (1, 1, 2).

3117. A body weighs (4'1 4- 0'1) g in air and (1'8 - 0-2) g
in water. Find the specific weight of the body and indicate
the error in the working.

3118, The base radius of a cone is equal to 10-2 4- 0’1 em,
the generator is equal to 446 4 0'1 cm. Find the volume of
the cone and indicate the error in the working.

3119. The formula

1 _sin BsinC
S =3 S BLO)

is used for calculating the area S of a triangle with side a
and angles B, C. Find the relative error 65 in calculating 8
if the relative errors of the given elements are respectively
0;, 0%, Oc.

3120. One side of a triangle has a length of 24 m and
increases at a rate of 10 cm/sec; the second side, of length
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1'5 m, diminishes at a rate of 5 cm/sec. The angle included
between these sides is equal to 60° and increases at a rate of
2° per sec. How, and at what rate, does the area of the tri-
angle vary?

3121. The frustum of a cone has base radii B = 30 cm,
r = 20 cm, and height A = 40 cm. How does the volume of
the frustum vary if R increases by 3 mm, r by 4 mm, A
by 2 mm?

3122, Show that, when calculating the period 7' of vibra-
tion of a pendulum in accordance with the formula 7 =

=7 Vlé (I is the length of the pendulum, g the acceleration

due to gravity), the relative error is equal to half the sum of
the relative errors in the determination of I and g (all the
errors are assumed sufficiently small).

3123. Express the maximum error when evaluating the
radius r of arc AB (Fig. 59) of a circle in terms of the errors
ds and dp in measuring chord 2s and length p. Work out dr
when 2s = 1945 cm 405 mm, p = 362 cm 403 mm.

S

o]
Fra. 59.
4. Differentiation of Functions
Functions of a Functiont
3124, u = e*~%, where z =sin{, y = 13; g—? = 1
. du
3126, w =22 4 y2 4 zy, 2 =sint, y = ef; T = ?

t The numbering of the problems in this edition differs from that
of the previous editions as from this article to the end of Chap. X.
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dz

3126, z = arcsin (x — ¥), x = 3t, y = 483 Fri ?
3127, z = x®y — y*r, where x = u cos v, y = u sin v; 7 =1
% _ 4
ov

— 22 % g2 B2,
3128, z =« lny,x—v,y_3u 2v; T
3129. v = In (ex 4 eY); 8_u= ? Find du if y = a.

> ox dx’

3130. z = arctan (zy); find g—:&-, if y = ex.

— in® — V2 . du
3131. u arcsmz, where z = Va? 4 1; I ?

1 dz

3132. z = tan (3¢ + 222 — y), z = y=Vt; &=?

_eax(y—z) . . _ . _d_u_ ?
3133. u_—az_l_—l—, y=asinz, z=cosz; - =1
3134, , — Y Actan @y +z+y) % _, % _, 4,

z+y or oy
2 92

— (22 2 s =7 2 1 = ?

3136. 2= (22 + y¥)e ¥ ; s~ By tdz= ¢
0z 9z

— fz? — 2 A B ]

3136, z = f(x? — 32, e%Y); e oy

3137. Verify that the function 2z = arctan where
r=u-+ v, y=u — v, satisfies the relationship
0z 0z U — v
5u T
3138. Verify that the function 2z = @(x? + ¥2), where ¢
is a differentiable function, satisfies the relationship

0z 0z 0
Yo xa—y = 0.
3139. u = sin x + F(sin y — sin z); verify that 2—Zcosx—{—

0
+ % cos y == cos x cos ¥, whatever the differentiable function F.
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. ) 0z 1)\ {06z 2z
B140. 2 — o5 verify that ( )( ax) + (5)(@) -2,

whatever the differentiable function f.
3141. Show that a homogeneous differentiable function of

zero degree z = F(g) (see problem 2961) satisfies the rela-
oz oz
tionship ( J + (y @) 0.
3142. Show that the homogeneous function of the kth
degree u = a*F, 2, g) , where F is a differentiable function,

satisfies the relationship

ou

ou ou ;
x%—i—yég—/—}—zé—;:ku.

3143. Verify the proposition of problem 3142 for the
function

% = 2% sin

22 g
xz2

3144. Given the differentiable function f(z, y), prove that,
if variables «, y are replaced by linear homogeneous functions
of X, Y, the function F(X, Y) obtained is connected with
the given function by the relationship

8f of 8F 6F
%o TV = Xax T Y57

Functions Qiven Implicitly and Parametrically

In problems 3145-3155, find the derivative (-i—q of the

dz
functions given implicitly by the equations indicated:
3145. 2%y — yx = at. 3146. 2%y>— 2t — y* = at.

3147, xey + yex — ¥ = 0.
3148. (22 + y?)? — a*(2® — y?) = 0.

3149. sm (xy) — exy — 22y = 0.
2

3150. x3 +y3 = 3 . 3151. zy —Iny = a.
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3162, arc tanx——:—y — % = 0. 3153. ya? = ev.

3154, ye* + ¥ = 0. 3165, y* = av.

31566. F(x,y) = F(y, ). Show that the derivative of y
with respect to  can be expressed with the aid of a fraction
whose numerator is obtained from the denominator by inter-
changing the letters y and .

3157, 2% 42 — 4 — 10y + 4 = 0; ﬁndg—‘z for x = 6,

y = 2 and for 2 = 6, y = 8. Give a geometrical interpretation
of the results.

3158, 2ty + xy* — ax®y? = ab; find g—z forx =y =a.

3159. Show that it follows from 2?42 + 22 4- 42 —1=10

that
dz dy

T2 Ji-g

3160. Show that it follows from a -+ b(x + y) + cxy =
= m(x — y) that

dx _ dy
a -+ 2bx + cx® a4 2by + cy?’
2  yr 2 9z oz
J— — _— . _— == ? -_— = ?
3161.(12—1—1)24—62 1; = oy
3162, 2 — 22 + 2 —dw + 2 — 5= 0; 22— 1 %%
Cox oy
oz 9z
3 = q3: T =17 =17
3163. 2® 4+ 3xyz = a3; % ' 3y 2
9z 9z
z — i _— = 2 _— 2
3164, e — zyz = 0; m = oy

3165. Show that, whatever the differentiable function ¢,
it follows from ¢(cx — az, cy — bz) = 0 that

oz oz

a-a—i—l—bgg;:(h
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3166. F(z, y, z) = 0. Prove that
dy oz Ox

ox %y _ .. : 1
9y ox ' 0z ox oy

(see Course, sec. 151).

3167. Find the total differential of the function z defined by
the equation cos?z -+ cos*y -4 cos?z = 1.

3168. The function z is given parametrically: x = u + v,
¥y =u — v, z=uv. Express z as an explicit function of z
and y.

3169. x=u + v, y=u?>+ 0% z=u® 4 v Express z
as an explicit function of z and y.

3170, x = ucosv, y=usinv, 2= kv. Express z as an
explicit function of = and y.

0z 0z

Find 2’ By and dz for the functions of problems 3171-
3174:
2 2 2 __ pn2
3171.x=u+v,y=u v,z:uv.

2 2

3172. x = Va(sin u + cosv), y =) a (cos u — sin v),
2 =1 sin (v — v).
3173, x=u+v, y=u—v, 2 =ul?
3174, x = e¥cos v, y = e¥sin v, z = uv.
3175. The relationships # = f(z, y), v = F(x, y), where f

and F are differentiable functions of x and y, define x and ¥
as differentiable functions of # and v». Show that

(a_u'av ou 80) (ax oy ox ay)

or dy oy Ox)\du dv Ov Su

Find the total differentials of the functions of problems
3176-3177:

3176. zx = ucosv, y = usinv, z = 4

3177. x =vcosu —ucosu 4+ sinu, y =wvsinu —
—usinu — cosu, 2 = (u — v)2
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3178. w and v are functions of z, y, 2 satisfying the rela-
tionships wv = 3z — 2y + 2, v? = 22 4 y? - 22. Show that

ou ou ou

3179, Let y = f(z, t), F(z,y,t) = 0. Show that
of oF of oF

d_y_ ax of ol ox
M“gyw or

ot oy ' ot
3180. Let f(x,y,2) =0, F(z,y,2) = 0. Show that
of aF oF of

dy ox 0z dox 0z

dw = "o oF _oF of°
oy oz Jy oz

5. Repeated Differentiation

3181. z = 2% | ay® — Bay® 4 5. Verify that
9% %
drdy oyox’

3182. z = av. Verify that ai%/ = 8?/2;95 .
3183. z = ex (cos y 4 x sin y). Verify that
o _ o
oxdy  oyodx '
8% 9%

3184. z = arc tang . Verify that

oyPoxr  owdy® "
2 2 2
Find 27'22, ai—azy and 272 for the functions of problems
3185-3192:

3185. = = 3 V(@ T o7F. 3186. z = In (v + V2% + ).
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3187. z = arctan lxj—:};?; . 3188. 2z = sin? (ax + by).
3189, z = e’ 3190, r=2"Y
r+y
3191. z = ginx, 3192. 2z = arcsin (zy).
3193, u = Va? + 42 + 2> — 2az2; ~8—2£= ?
’ dyoz
9%z

ot 2. — p—y ?

3194, z = ¥, seioy 2
9%z

——t 2 3) - _— = 2
3195. z = In (22 4 %3); oo
‘ . %2
3196. z = sin XY, 8:1:—8‘1/2 = ¢

Pw

= ; = 1

3197, w = ez, 520y 07 ?
v

— Nayp e — ?

3198. v = amy"zp,; ooy R
3]

% _ 1 and that

: . oz
3199. z = In (e* + eY); verify that P + 5

9% 9% 0%z \?
9z? oy? ox oy

. . o%u 0%
3200. u = e*(x cosy — ysin y). Show that Pyl + o 0.

2 2
3201. u =ln; ; show that o -} o 0.
Va? 4 4 oz* ' oy
2 2 2
3202. u = —— - show that oo 1 2% ¥ _
Va2 £ o2+ 22 ox? ' oy® = 0z2?
(see Course, sec. 153).
3203. r = V22 + y% 4 22; show that
a%r 8% o 2  9%Inr) , o%Inr) 8% Inr) 1

= 4 + =5

ox? ' 9y ' 922 r’  oa? oy? 022 72
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3204. For what value of the constant a does the function
v = 2% 4 axy?® satisfy the equation
9% | 0%

Y L 7Y% o
oz ' oy? 0t
0% 0%z
= —m _— = 2"
3205. 2 g show that 7 =Y R
3206. v— — 4+ — 4+ 1 show that
v=a—te— S — > Show tha
0% 0% % 0% o 0%
of T oE T T 2(8x8y T agan T azax) -
3207. 2 = f(x,y), E =24y, n==x — y. Verify that
0% 0% 0%

ox? B2 okom
3208. v = 2 In (x 4 7) — r, where 72 = 22 4 y2. Show that

0% | 0% 1
ox2 ' By x--r’

3209, Find the expression for the second derivative

2
%yz of the function y given implicitly by the equation
f(@, y) = 0.
3210. y = ¢(x — at) + p(z + at). Show that
_aﬁ = q2 @
a2 ox?’

whatever the twice differentiable functions ¢ and 4.

3211. v = ¢(x) + w(y) + (x — y) v'(y). Show that
( %u  ou
* YV aay "oy

(p and y are twice differentiable functions).
3212, 2z = yp(x® — y?). Show that

(¢ is a differentiable funection).



276 PROBLEMS ON A COURSE OF MATHEMATICAL ANALYSIS

3213, r = zp(x 4+ y) + yy(xr + y). Show that

o%r o%r o%r
— — 2 4+ — =
ox ox 0y oy

(p and y are twice differentiable functions).
3214, u = ; [plax 4 y) -+ wlax — y)]. Show that

0%u a? 6(26?1,)

o ~ y* oy\” dy)

3215, v =2z"9 (g) + 2"y (g) Show that

x2@+2 + ¥ 2 n(n — 1) u.
dx? axay =

3216. u = zeY 4 ye*. Show that

Ou , Ow _ Ow ,  Ou
o "o Jowoyr ' Y aatoy

3217. u = % Show that

_Pu = eXV¥(x2y%2? + 3zyz + 1).
ox oy 0z
x2 . yZ
3218. u =In . Show that
9*u Pu O BPu 9 1 1
9z ' O9x20y owoy: oy* |y ad)’

Find the second-order differentials of the functions of
problems 3219-3223:

3219. 2z = xy® — z%. 3220. z =In (x — y).
1
— ] — In2
3221, z = ) 3222, z = xsin?y.
3223, z = ew. 3224, w = ayz; d%u =1

3225, z = sin (2z 4+ y). Find d% at the points (0, w);

13)
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3226. u=sin(x+y—|—z); d?y = ¢

22

3227. 2+b2+— 1; Q%=

3228, 2% — 3xyz = a®; d% = ?

3229, 3x%y? 4 2%y — 220° + 42y® — 4 = 0. Find d*% at
the point (2, 1, 2).
Change of Vartables

3230. Transform the differential expression
@y | 9,3
at a2 T 2 iz +y
to a new independent variable by putting z = il- .

3231. Transform the differential expression

" — day +y
to a new independent variable by putting x = e2.
3232. Transform the differential expression

d
(1 )——x L +ay,

by putting x = sin ¢.
3233. Transform the differential expression

g?j—,3+y,

by regarding y as the independent variable and x as a function
of y.
3234. Transform the expression
ylylll . 3?/,,2,
by taking y as the independent variable.
3235. Transform the expression
vy = 2(y* + ¥

to a new function v by putting y = —11; .
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3236. Transform to polar coordinates the equation

dy _z+y
dx  z—y’

3237, Transform the expression

b=

14997
to polar coordinates p, ¢, bearing in mind that x = g cos ¢,
y = psin ¢.
3238. The function z depends on z, y. Carry out a change
of independent variables in the expression
oz . 0z
Y ou oYy
with the aid of the formulae x = % cos v, ¥y = % sin v.
3239, Transform Laplace’s operator
ox®  oy?
to polar coordinates.
3240. Transform the expression
9% | 0%
5 T o TR
to a new function w on condition that z = w(Ya?® 4 ¢2) or
z = w(r), where r = Va2 + y2
3241, In the expression

0%z 0%z 0%
ar T2 oxdy + ?y?
replace the independent variables x and y by variables
and v, and the function z by the variable w, taking these
u -+ v
2 3

variables to be connected by the relationships x =
U — U, u? — v*

Y=g FT T "




CHAPTER XI

APPLICATIONS OF THE
DIFFERENTIAL CALCULUS
FOR FUNCTIONS OF SEVERAL
VARIABLES

1. Taylor’s Formula. Extrema of Funetions of Several
Variables

Taylor’s Formula

3242. f(z, y) = a® + 2y® — xy; expand the function f(x +
+ &, y -+ k) in powers of  and k.

3243. f(x, y) = 2® + y?® — 6axy — 392 4 18y + 4; find the
increment received by the function when the independent
variables change from the values x = 5, y = 6 to the values
t=5+h y==6-+k.

3 2972

3244. f(x, y) = x%_ — ya® + % — 2z 4 3y — 4; find the
increment taken by the function when the independent
variables pass from the values z = 1, y = 2 to the values
z=1+4h, y=2+4 k. Evaluate f(10-2, 2:03), taking into
account terms up to and including the second order.

3245, f(z, y, z) = Ax? + By?® + C2% 4 Dzxy + Eyz 4 Fzx;
expand f(x + &, y + k, 2 + I) in powers of &, k and I.

3246. Expand z = sinz sin y in powers of ( — g) and

(y — g) Find the terms of the first and second order and

R, (the second-order remainder term).

3247. Expand the function z = z¥ in powers of (z — 1)
and (y — 1), finding the terms up to and including the third
order. Use the result to evaluate (without tables!) 1-11'02,

279
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3248, f(z, y) = e*siny; expand f(x + h, y + k) in powers
of k and k, taking terms up to and including the third order
in A and k. Use the result to evaluate %! sin 0-49z.

3249, Find the first few terms of the expansion of the
function e* sin y in a Taylor series in the neighbourhood of
of the point (0, 0).

3250. Find the first few terms of the expansion of the
function e* In(1 + y) in a Taylor series in the neighbourhood
of the point (0, 0).

Expand the functions of problems 3251-3256 in Taylor
series for z, = 0, y, = 0:

1 T —y
14 — % — .
3251, z = I —e—y+a 3252*, z = arc tan [T ay

3253. : =In(1 —2)In {1 — y).

l—2z—y+ay
l—z—y °

3255. z = sin (x? + ¥?).
32566. z = eX cos y.

3264. z =1In

3257, Find the first few terms of the expansion on powers of
z — 1, y — 1 of the function z, given implicitly by the equa-
tion
Blyz—ay?—a*=0
and equal to unity forx =1, y = 1.
3258. Obtain the approximation

cos x 1
gl — (g2 — 2
cos ¥y 2(9: ¥

for sufficiently small values of |z|, |y|.

Extremals

Find the stationary points of the functions of problems
3259-3267:

3259, z = 2% + xy? + 5a® + Y2
3260. z = e*(x 4+ ¥ 4+ 2y). 326l. z =2y(a — x — ¥).
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3262. z = (2ax — 2?) (2by — ¥?).
3263. z =sinz + siny + cos (x + ¥) (O§x§§, 0

IIA

IIA

Y=

Ll

a -+ bx + cy )
3264. sz—lT—z‘z—-l-—?.
3265. z=yVl+z+xzVl+y.
3266, v = 222 + 2 + 22 — xy — =
3267. u=3Inz+2Iny+5nz+In(22 —x — y — 2).

3268. Figure 60 illustrates the level lines of the function
z = f(z, y). What special features has the function at the
points 4, B, C, D and on the curve EF?

3269. A function z is given implicitly:
202 + 22+ 22+ 82z — 2+ 8= 0.
Find its stationary points.

3270. A function z is given implicitly:
5x% + 5y% + 522 — 22y — 222z — 2yz — 72 = 0.
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Find its stationary points.
3271*, Find the extremal points of the function

z = 2xy — 3x% — 2y 4 10.
3272, Find the extremal points of the function
z2 = 4(x — y) — 2% — Y2
3273. Find the extremal points of the function
=22ty t+y+e—y+ 1L
3274. Show that the functionz = 22 + zy + 32 + (}; + %3

has a minimum at the point = y = si .

V3
3275. Show that the function z = 2* + y* — 222 — 4oy —
— 2y has a minimum for z = V2, y =2 and forz = — 2,
y=—Y2
3276. Show that the function z = 2% 4 y? — 6xy — 39z 4-
+ 18y 4 20 has a minimum for z = 5, y = 6.

3277. Find the stationary points of the function
=212 —z — y),
satisfying the condition # > 0, y > 0, and examine their
nature.
3278. Find the stationary points of the function
2 =23} ¢y — 3xy

and examine their nature.

Greatest and Least Values

3279. Find the greatest and least values of the function
2z = 22 — 4?2 in the circular domain 22 4 % = 4.

3280. Find the greatest and least values of the function
2z = x? + 2xy — 4x + 8y in the rectangle bounded by the

straight lines
z=0,y=0,z=1 y=2.

3281. Find the greatest value of the function
= 24—z —y)
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in the triangle bounded by the straight lines x =0, y = 0,
x4+ y=6.
3282. Find the greatest and least values of the function

2z = e~ ¥ (222 4 3y?)
in the circle 22 4 y? = 4.

3283. Find the greatest and least values of the function
z=sinz -+ siny + sin (x + y)
intherectangleO§x§7—2t; O=y=-<.

3284. Write the positive number @ as the sum of three
positive terms such that their product is a maximum.

3285. Express the positive number ¢ as the product of
four positive factors such that their sum is a minimum.

3286. Find the point of the 20y plane such that the sum
of the squares of its distances from the straight lines z = 0,
y=0, 2+ 2y — 16 = 0 is a minimum.

3287. Draw the plane through the point (a, b, ¢) such that
the volume of the tetrahedron, cut out by it from the co-
ordinate trihedral, is a minimum.

3288. Given the n points A,(x, ¥, 2), « - oo Ao Yos 2,)
find the point of the Oy plane such that the sum of the
squares of its distances from all the given points is a minimum.

3289. Given the three points A(0, 0, 12), B(0, 0, 4) and
C(8, 0, 8), find the point D on the z0y plane such that the
sphere passing through 4, B, C, and D has minimum radius.

3290. Inscribe the rectangular parallelepiped of maximum
volume in a given sphere of diameter 2R.

Conditional Extrema

Investigate the extrema of the functions of problems 3291-
3296:

3201, z2=a2m +y" (m > 1) forx +y =2x =0,y = 0).
3292, z = xy for 22 4 ¥ = 2a%.
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1 1 1 1 1
3293. z=5+§for?+?=a_i'

3294. 2z = a cos®?x + b cos?y for y—x:%

1 1 1
329, u=x+y-+2 f01‘5+§+;=1-

x4+ y+2z=05,
(2) 2y + 2z 4 yz = 8.
3297*. Establish the relationship

3296. u = ayz for

n n

3208, f(x, y) = «® — 3ay? + 18y, where 3z%y — y® — 6z =
= 0. Prove that f(z, y) has extrema at the points x = y =
=+ V3.

3299. Find the minimum of the function az? 4 by? 4 c22,

where a, b, ¢ are positive constants, and =z, y, z are connected
by the relationship

r+ytz=1
3300, Find the extrema of the function
u = y*+ 422 — dyz — 2wz — 2xy
on condition that
22% 4+ 3y* + 622 = 1.

3301. Find the point on the plane 3z — 2z = 0 such that
the sum of the squares of its distances from the points
A(1,1,1) and B(2, 3, 4) is a minimum.

3302. Find the point on the plane = + y — 2z = 0 such
that the sum of the squares of its distances from the planes
z+ 32=06 and y + 32z = 2 is a minimum.

3303. Given the points A(4, 0, 4), B(4, 4, 4), C(4, 4, 0),
find the point § on the surface of the sphere 2% 4 y? + 2 = 4
such that the volume of pyramid S4BC is (a) a maximum,
(b) a minimum. Check the answer by elementary geometry.
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3304. Find the rectangular parallelepiped of given volume
V having the least surface area. )

3305. Find the rectangular parallelepiped of given surface
area S having the maximum volume.

3306. Find the volume of the greatest rectangular paral-
lelepiped that can be inscribed in an ellipsoid with semi-axes
a, b and c.

3307. A marquee is in the form of a cylinder with a conical
top over it. What are the relationships between the linear
dimensions of the marquee for the manufacture of it to require
the least amount of material for a given volume ?

3308. The section of a channel is an isosceles trapezoid
of given area. How must its dimensions be chosen for the
wetted area of the channel to be a minimum (Fig. 61)?

b
Fi1c. 61.

3309. Of all the rectangular parallelepipeds having a
given diagonal, find the one whose volume is a maximum.

3310. Find the external dimensions of an open box (without
a lid) in the form of a rectangular parallelepiped with given
wall-thickness « and volume V, such that the least amount of
material goes into it.

3311. Find the maximum volume of a parallelepiped, given
that the sum of all its ribs is equal to 12a.

3312. Circumseribe about a given ellipse the triangle with
base parallel to the major axis of the ellipse, such that the
area of the triangle is a minimum.

2 2
3313. Find the points on the elh'psexz 4 % = 1 nearest

to and furthest away from the straight line
3r —y—9=0.
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3314. Find the point on the parabola x? + 2xy 4 y* 4
4+ 4y = 0 closest to the straight line 3z — 6y 4+ 4 = 0.

3315. Find the point on the parabola 222 — 4xy 4+ 2¢y% —
— xz — y = 0 closest to the straight line 92 — 7y -+ 16 = 0.

3316. Find the greatest distance of points of the surface
ax? + by? + ¢z* + 2fyz + 2gxz + 2hay =1
from the plane z = 0.

3317. Find the sides of the right-angled triangle having the
least perimeter for a given area S.

3318. A prism with a rectangular base is inscribed in a
right elliptic cone of height H cm, the semi-axes of the base
of which are o and b cm; the prism is such that the sides of
its base are parallel to the axes, whilst the intersection of
the base diagonals lies at the centre of the ellipse. What must
be the sides of the base and the height of the prism for its
volume to be a maximum? What is this maximum volume ?

3319. Find the equilateral triangular pyramid of given
volume such that the sum of its ribs is a minimum.

3320. Given two points on an ellipse, find the third point
on the ellipse such that the triangle, the vertices of which
are at the given points, has the maximum area.

2 2
3321. Draw the normal to the ellipse :—6—2 Y~ — 1 which
a® ' b2

is furthest from the origin.
x2
96 +
+ y® + 22 = 1 closest to and furthest away from the plane
3z + 4y + 12z = 288.

3323. Given the plane curves f(z, y) = 0 and ¢(z, y) = 0,
show that the distance between points («, §) and (&, %), lying
on the respective curves, has an extremum when the follow-
ing condition is fulfilled:

of o
e (ool (e

T s G

3322. Find the points on the ellipsoid of revolution
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Use this to find the shortest distance between the ellipse
x? 4 2xy + 5y — 16y = 0 and the straight line = + y —
—8=0.

2. Plane Curves

Tangents and Normals
Write down the equations of the tangent and normal at
the point indicated to the curves of problems 3324-3327:
3324, 2%y -+ 9Pz = 3 — 2%? at the point (I, 1).
3325. a%zt + yt) — 2%y® = 9a® at the point (a, 2a).
3326. coszy = x + 2y at the point (1, 0).
3327, 2% — 2% | 322 - daxy — br — 3y + 6 =10 at its
point of intersection with the Oy axis.

Singular Points

Find the singular points of the curves of problems 3328-
3340:

3328. % = 2%x — 1). 3329. a%? = (22 + ¥y
3330. 32 = aa? + basd. 3331, 2 = 2(x — a)2
2 2 2

3332. 23 + y3 =a% .

3333. 2t + 4t — 822 — 1042 + 16 = 0.

3334. 2% + 1223 — 613 + 3622 + 27y% — 81 = 0.

3335. 2® + 33 + 3axy = 0. 3336, 22 + 2 = 2t + oA

3337. y=2alnx. 3338. y? = sin® 2.
3339. 2 = (x — a)’. 3340. 25 = (y — x?)2,
Envelopes

3341. Find the equation of the envelope of the family of
straight lines ¥ = ax + f(a). In particular, put f(a) = cos a.

3342. Find the envelope of the family of straight lines
Yy = 2mx + mt
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3343. A pencil of straight lines is drawn through the point
A(a, 0). Find the envelope of the family of normals to the
lines of the pencil, drawn at the points of intersection of the
lines with Oy (see Course, sec. 45).

3344. Find the envelope of the family of parabolas y? =
= a(x — a).
3345. Find the envelope of the family of parabolas
ar® + a’y = 1.
3346. Find the envelope of the family of parabolas
y=a*(x — a)’

3347. TFind the envelope of the family of semicubical para-
bolas
(y —ap = (& —a)’

3348. Find the envelope of the family of curves
2% + ay? = a®.

3349. Find the envelope of the family of ellipses

x2 y2
a2t

with the condition that the sum of the semi-axes of each
ellipse is equal to d.

3350. The radii of a circle are projected on to two mutually
perpendicular diameters of the circle, and ellipses are con-
structed with the projections as semi-axes. Find the envelope
of this family of ellipses.

33561. Find the envelope of the family of circles having
their centres on the parabola y = bx? and passing through
its vertex.

3352. A straight line moves so that the sum of the lengths
of the segments that it cuts out on the coordinate axes
remains constant and equal to a. Find the envelope of the
family of straight lines thus obtained.

3353. Find the envelope of the diameters of a circle rolling
without slip on a given straight line (radius of circle = R).
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3354. Circles are drawn by taking as diameters the chords
of a circle (of radius R) parallel to a given direction. Find the
envelope of this family of circles.

3355. A straight line moves so that the product of the
segments that it cuts off on the coordinate axes is equal to
a constant a. Find the envelope of these straight lines.

33566. Show that every curve is the envelope of its tangents.

3357, Show that the evolute of a curve is the envelope of
the family of its normals. Find the evolute of the parabola
y? = 2px as the locus of the centres of curvature and as the
envelope of the family of normals. Compare the results.

3358. Prove the theorem: if curve (A) is the envelope of
the family of straight lines x cost¢ 4 ysint — f(f) = 0, the
evolute of curve (A4) is the envelope of the family of straight
lines —zsint + ycost — f(f) = 0.

3359. The radius vector OM of an arbitrary point M
of the rectangular hyperbola xy = 1 is projected on to the
asymptotes of the hyperbola. Find the envelope of the family
of ellipses constructed by taking the projections of OM as
semi-axes.

3. Vector Functions of a Scalar Argument. Curves in Space.
Surfaces

Vector Functions of a Scalar Argument

3360. Prove the differentiation formulae

du d

T (wo) = wly dt i at’

(uxv)_ux + dt

Here, u and v are vector functions of the scalar argument ¢.

3361. Given r = r(f), find the derivatives:

d d( d d d d
@ 5@ Og(rg) © g F) OF(Fa)
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3362. Given that vectors r(t) and ((11—: are collinear for

dxr d3r dmr

—— are also

all values of ¢, prove that vectors T aAB A

collinear with »(?).

3363. Show that, if the modulus || of function »(¢) remains

é. L r. (What is the
geometrical meaning of this fact ?) Does the converse theorem

hold ?

3364. Given: r = a coswt - bsinwt, where w, @, b are
constants, prove that

constant for all values of #, than

dr dr
(1) rX at‘=(uaxband(2)az‘+w2r = 0.

3365. Prove that, if e is the unit vector in the direction of
ExdE

i

3366. Prove that, if r = ae”! - be—*!, where @ and b

vector E, then e X de =

d2r
are constant vectors, then P w’r = 0.
3367, u = x(x, y, 2, 6) T + Plx, y, 2,t)J + y(x, v, 2 )k,
where z, y, z are functions of ¢. Prove that

du odu  oudr  dudy  oudz

F T T T i T T
3368. Given: r = r(u), u = ¢(x). Express the derivatives
dr d?r dir,. dr d%»r d3r

3’ dxt g mtermsof g, s qs

3369. Show that, if the relationship % = qr, where
« = const, holds for the vector function r = r{t), the hodo-

graph of the function »(u) is a straight line through the pole.

3370. Let the function r(f) be defined, continuous and
differentiable in the interval (¢,, #,), whilst »(,) = »(¢,). Apply
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Rolle’s theorem to the function @ - r, where @ is an arbitrary
constant vector. Explain the result geometrically.

3371. Given the radius vector r{a sint, —a cos?, bt?} (¢ is
time, @ and b are constants) of a particle moving in space,
find the hodographs of the velocity and acceleration.

3372. Find the trajectory of the motion for which the
radius vector of a moving point satisfies the condition

I _ axr
dt_ >

where @ is a constant vector.

3373. A material particle moves in accordance with the
law

1
r=vot+§gt2

(ris the radius vector of the particle at the instant ¢, v, and
g are given vectors). Show that (1) the momentum of the
particle is a quadratic function of time; (2) v, is the initial
velocity (i.e. the value of the velocity vector at the instant
t = 0); (3) the motion proceeds with constant acceleration,
equal to the vector g; (4) the motion proceeds along a para-
bola (provided that vectors v, and g are not collinear), the
axis of which is parallel to vector g.

3374. The law of motion of a material particle is given by
r=acost+ bsint | ¢,

where vectors @ and b are perpendicular to each other. Find
the trajectory of the motion. At what instants is the velocity
extremal? At what instants is the acceleration extremal?

3375. The formulae for transforming from Cartesian to
spherical coordinates are z = g sin 0 cos ¢, y = psin 0 sin ¢,
z = pcos 0, where p is the distance of the given point from
the pole, 0 is its latitude, and ¢ its azimuth or longitude (see
Course, sec. 152). Find the components of the velocity of a
moving particle in the directions of the orthogonal unit vec-
tors e, €, e,.
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Curves tn Space

Form the equations of the tangent line and normal plane
to the curves of problems 3376-3383 at the points indi-
cated:

[~ B . 2 2
3376.1‘(1, 3 5), ie. x = - y__g, z_§, at an

arbitrary point.
33779. x =acosp, y=asing, z= —2%% at the point
(a 2 aV2 k
2

g’ > g). Prove that the tangent at every point of

the curve forms the same angle with Oz (see Course, sec.
164).

1
3378, x =at, y = 3 at?, z = %at" at the point (6a, 18a,
72a).

t

3 at the point

3379. x =t —sint,y =1 — cost, z=4sin
i A —
(5— 1,1,21/2).

3380. y? -+ 22 = 25, 224942 =10 at the point (1, 3, 4).

3381, 222 - 3y2 | 22 =47, 2?4 2y2 =2 at the point
(—2, 1, 6).

3382. 2% 4 y% = 22, x = y at the point (x,, ¥, 2o)-
3383, 2% 4+ 2 =a3, y® + 2> =b® at an arbitrary point.

3384. Find the point of the curve r{cost?,sint, e’} at
which the tangent is parallel to the plane

V3x +y — 4 =0.

Form the equations of the osculating plane, the principal
normal and the binormal to the curves of problems 3385-
3387 at the points indicated:

3386, y? =, 2% = z at the point (1,1, 1).
3386. 2% = 2az, ¥y = 2bz at an arbitrary point.
3387. r {ef, e, £ V2! at the point (e, e~1, }2).
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3388. Prove that the tangents, principal normals and
binormals of the curve r{e cos?, efsin ¢, e/} form constant
angles with Oz.

Form the equations of the tangent line, normal plane,
binormal, osculating plane, principal normal and rectifying
plane to the curves of problems 3389-3392 at the points
indicated:

3389. x =142 y=1—1, z=1> at the point (1,0, 1).

3390. 2% + 42 4 22 = 3, 22 + y% = 2 at the point (1, 1, 1).

3391. r{sin¢, cost, tant} at the point (V— V— ) .

3392, »{t* — * — 5, 312 + 1, 263 — 16} at the point corre-
sponding to the value of the parameter { = 2.
3393. Prove that the curve

r{2t4 3,3 —1,1}
has the same osculating plane at every point. Interpret this

fact geometrically.
3394. Prove that the curve

r{at® + bt + ¢, axf® + bt + ¢, aqt? 4 bt + c5}

is plane, and form the equation of the plane in which it is
situated.

3395. Find the radius of torsion of the curve r{cos ¢, sin ¢,
cosh }.

3396. Find the radius of curvature of the curve r{ln cos?,

Insin ¢, Y2¢}. Prove that the torsion at any point of it is
equal to the curvature at that point.

3397. Prove that the ratio of curvature to torsion remains
constant at every point of the curve r{e' cost, e'sin ¢, e!}
(see problem 3388).

3398. How can we express the curvature of a spatial curve
given by the equations y = ¢(z), 2 = p(z)?

3399. Express the vectors 7, »;, 8, in terms of the deriv-
atives of the radius vector of a point on the curve r = r(¢).
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3400. Express each of the vectors =, v,, 3, in terms of the
other two.

3401. Find the vector w(s) (Darboux vector) satisfying the
conditions

dr, Ldyy Ldg,
T = o X1; T = o XV rr o XB.

Length of Arc of a Spatial Curve
Find the length of arc of the curves of problems 3402-3409:
3402. r{2t,Int, 3}, from t =1 to ¢ = 10.
3403. r{a cost, asint, alncost} from the point (a, 0, 0)
to the point (a, 2 ?—»12{——, —% In 2)

3404. r{et cost, e'sint, e'} from the point (1, 0, 1) to the
point corresponding to the parameter &.

3405. 2? = 3y, 2xy = 92 from the point (0, 0, 0) to the
point (3, 3, 2).

3406. 2* = 2az, 9y? = 162z from the point (0, 0, 0) to the

point (2a, %, 2a) .
3407. 4ax = (y + 2)%, 42 + 3y® = 32% from the origin to
the point (z, y, 2).

3408. y = }2ax — a2, z=aln2 2

from the origin

to the point (z, y, 2).

3409. y = a arcsin E, 2= 1a In ate from the origin
a 4 a—x
a
to the point (2 e 4ln 3)
Surfaces

Find the equations of the tangent planes and normals to
the surfaces of problems 3410-3419 at the points indicated:

3410. z = 222 — 4y? at the point (2, 1, 4).
3411. z = xy at the point (1, 1, 1),
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3 __
3412, 2 = = 3‘;’”?/ + 9

3413. z = Ya? + y* — zy at the point (3,4, —17).

at the point (a, a, —a).

3414. z = arctan % at the point (1, I’Z) .

2 2 2
3415. 5+ 35+ 5 =1 at the point (“‘f Y3, ”f)
3416, 23 - 4 + 2% 4 xyz — 6 = 0 at the point (1, 2, —1).
3417, 32t — 4yPz + 4220y — 42°%¢ + 1 =0 at the point
(1,1, 1).
3418, (22 — 2?) a2yz — y5> = 5 at the point (1,1, 2).
3419. 4 4 Va2 + 42 + 22 = x +y + 2 at the point (2, 3, 6).
3420. Prove that the equation of the tangent plane at
2 2 2
any point Mo(zo, Yo, 2) of the ellipsoid :_2 T % T % — 1 has
the form

a2 + yDy _l___ 1.

3421. Draw the tangent plane to the ellipsoid a? |- 2y% -
-+ 22 = 1 parallel to the plane

r—y+22=0.
3422 Draw the tangent plane to the elhpsmd — —[—
+ 53 + = 1 such that it cuts off equal segments on the

pos1t1ve coordinate semi-axes.

3423. Prove that the surfaces x + 2y —Inz + 4 = 0 and
22 — 2y — 8« + 2 4 5 = 0 touch each other (i.e. have a
common tangent plane) at the point (2, —3, 1).

3424. Prove that all the planes tangential to the surface

2= xf(g) intersect in a single point.

3425. Write the equations of the tangent plane and nor-
mal to the sphere r}u cos v, wsin v, Ya? — u?{ at the point

ro{Zo, Yo %0)-
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3426. Write the equations of the tangent plane and nor-
mal to the hyperbolic paraboloid r{a(u 4- v), b(u — v), uv}
at the arbitrary point r{xy, o, 2o}

3427, Prove that the surfaces a2 -+ y* 4 2% = ax and
x? + 4% 4 22 = by are orthogonal o each other.

3428. Prove that the tangent plane to the surface xyz = a3
at any point of it forms a tetrahedron of constant volume
with the coordinate planes. Find this volume.

3429. Prove that the tangent planes to the surface }z -
+ Vy 4 V2 = Va cut off scgments on the coordinate axes
such that the sum of the segments is equal to a.

3430. Write the equation of the tangent plane to the sur-
face z = xy which is perpendicular to the straight line

z+2 y+2 z-—1
2 1 = -1

3431. Prove that, for the surface z® -} y% 4 22 =y, the
length of the segment of normal between the surface and the
20y plane is equal to the distance from the origin to the trace
of the normal on this plane.

3432. Prove that the normal to the surface of the ellipsoid
of revolution
x2 + 22 yZ .
g Ta=!

at any point of it P(x, y, z) forms equal angles with the straight
lines O0A and OB, if 4A(0, —4, 0) and B(0, 4, 0).
3433. Prove that all the normals to the surface of revo-

lution
2= [(VFF )

cut the axis of revolution.
3434. Draw the tangent plane to the surface 2% — y% —
— 3z = 0 that passes through the point A(0, 0, —1) and is
y 2z

parallel to the straight lineg =7=73"
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3435. Find the points on the surface x2 4 y? 4 22 — 6y 4
-+ 4z = 12 at which the tangent planes are parallel to the
coordinate planes.

3436. Find the tangent plane to the surface
z=u-+v, y=u*+ v z=1ud 4 03

at an arbitrary point:

(a) by taking the equation of the surface in the parametric
form;

(b) by writing the equation of the surface in the form
z = f(z, y).

3437. 