

A NEW PERSPECTIVE ON THE STANDARD MODELS OF VISCOELASTIC FLUIDS (W.I.P.)

MICHAL BATHORY

FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY

XI'AN
JANUARY 16 2025

STANDARD VISCOELASTIC FLUID MODELS

For an unknown divergence-free velocity $\mathbf{v} : Q \rightarrow \mathbb{R}^d$, pressure $p : Q \rightarrow \mathbb{R}$ and extra stress tensor $\mathbf{B} : Q \rightarrow \mathbb{R}_{\text{sym}}^{d \times d}$, consider the system

$$\begin{aligned} \partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \nu \Delta \mathbf{v} + \nabla p &= \operatorname{div}(\mu \mathbf{B}), \quad \nu, \mu > 0, \\ \partial_t \mathbf{B} + \mathbf{v} \cdot \nabla \mathbf{B} + \frac{1}{\tau} (\mathbf{B}^\alpha - \mathbf{B}^{\alpha-1}) &= (\nabla \mathbf{v}) \mathbf{B} + \mathbf{B} (\nabla \mathbf{v})^T, \quad \tau > 0, \alpha \geq 1. \end{aligned} \quad (\text{B})$$

- $\alpha = 1$ is the Oldroyd-B model (1950) and $\alpha = 2$ is the Giesekus model (1962).
- Equation (B) can be written as

$$\nabla \mathbf{B} + \frac{1}{\tau} (\mathbf{B}^\alpha - \mathbf{B}^{\alpha-1}) = 0,$$

where

$$\begin{aligned} \nabla \mathbf{B} &:= \partial_t \mathbf{B} + \mathbf{v} \cdot \nabla \mathbf{B} - (\nabla \mathbf{v}) \mathbf{B} - \mathbf{B} (\nabla \mathbf{v})^T \\ &= \underbrace{\partial_t \mathbf{B} + \mathbf{v} \cdot \nabla \mathbf{B} + \mathbf{B} \mathbf{W} - \mathbf{W} \mathbf{B}}_{\overset{\circ}{\mathbf{B}} \text{ Jaumann-Zaremba}} - (\mathbf{B} \mathbf{D} + \mathbf{D} \mathbf{B}) = \overset{\circ}{\mathbf{B}} - (\mathbf{B} \mathbf{D} + \mathbf{D} \mathbf{B}) \end{aligned}$$

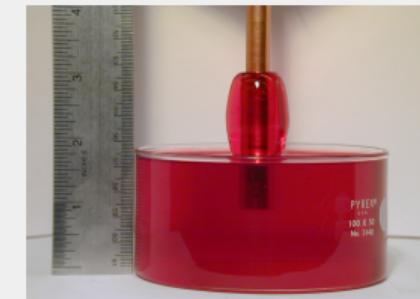
is the upper convected (Oldroyd) derivative and

$$\mathbf{D} := \frac{1}{2} (\nabla \mathbf{v} + (\nabla \mathbf{v})^T), \quad \mathbf{W} := \frac{1}{2} (\nabla \mathbf{v} - (\nabla \mathbf{v})^T).$$

(DIS)ADVANTAGES OF THE OLDROYD-B/GIESEKUS MODELS

+ There are compelling arguments for considering equation (B) with $\overset{\nabla}{\mathbf{B}}$:

- ▶ $\overset{\nabla}{\mathbf{B}}$ is an objective derivative (rate), i.e.
$$\overset{\nabla}{\mathbf{B}}^*(t, x^*) = Q(t) \overset{\nabla}{\mathbf{B}}(t, x) Q(t)^T$$
 if $\overset{\nabla}{\mathbf{B}}^*(t, x^*) = Q(t) \mathbf{B}(t, x) Q(t)^T$
for any (non-stationary) rotation $Q(t)$ of the observer.
- ▶ When $\mathbf{B} = \mathbf{F}\mathbf{F}^T$, $\mathbf{F} = \partial_{\mathbf{x}}\chi(t, \mathbf{X})$ (solid mechanics) then $\overset{\nabla}{\mathbf{B}} = 0$.
- ▶ $\overset{\nabla}{\mathbf{B}}$ arises by downscaling certain microscopic models.
- ▶ Established in applications (polymeric fluids, rod climbing etc.).
- ▶ The Giesekus case $\alpha = 2$ (remarkably) admits a three-dimensional global weak solution for any initial data due to the recent result (Los et al. 2024).



- However, there are also drawbacks:

- ▶ $\overset{\nabla}{\mathbf{B}}$ is just one of really **many** objective derivatives.
- ▶ $\overset{\nabla}{\mathbf{B}}$ is **not corotational**. Cor. derivatives are **superior** in physics, analysis and numerics.
- ▶ In the Oldroyd-B case $\alpha = 1$, the a priori estimates are not sufficient for $(\nabla \mathbf{v})\mathbf{B} + \mathbf{B}(\nabla \mathbf{v})^T$.
- ▶ The equation is on the verge of being “ill-posed”, comparing just with $u' + u^\alpha = gu$, $g \in L^2$.

THE EQUIVALENCE RESULT

If done **properly**, the idea of multiplying the equation (B) by \mathbf{B}^{-1} leads to the following:

Theorem

Let $\mathbf{v} : Q \rightarrow \mathbb{R}^d$, $\mathbf{H} : Q \rightarrow \mathbb{R}_{\text{sym}}^{d \times d}$ be smooth and set

$\mathbf{B} = e^{2\mathbf{H}}$, so that $\mathbf{H} = \frac{1}{2} \log \mathbf{B}$ is the logarithmic (Hencky) strain.

Then \mathbf{B} solves the Oldroyd-B/Giesekus equation (B) if and only if \mathbf{H} solves

$$\partial_t \mathbf{H} + \mathbf{v} \cdot \nabla \mathbf{H} + \frac{1}{2\tau} (e^{2(\alpha-1)\mathbf{H}} - e^{2(\alpha-2)\mathbf{H}}) = \mathbf{D} - \mathbf{H} \Omega^{\log} + \Omega^{\log} \mathbf{H}, \quad (\mathbf{H})$$

where:

$\Omega^{\log} := \mathbf{W} - \sigma(\text{ad}_{\mathbf{H}})\mathbf{D}$ is the logarithmic spin,

$\text{ad}_{\mathbf{H}} X := \mathbf{H}X - X\mathbf{H}$, $X \in \mathbb{R}^{d \times d}$, is the commutator,

$\sigma(x) := \coth x - \frac{1}{x}$, $x \in \mathbb{R}$. is an odd function.

DEFINING $\sigma(\text{ad}_H)$

- The power series approach is problematic since \coth has poles on the imaginary axis, and so the formal power series of $\sigma(\text{ad}_H)$ may not converge.
- Instead, one can proceed more directly, using (pointwise) the Schur diagonalization

$$\mathbf{h} = Q^T \mathbf{H} Q, \quad \mathbf{h} = \text{diag}(h_i)_{i=1}^d, \quad Q^{-1} = Q^T.$$

- Then, for any function $f : \mathbb{R} \rightarrow \mathbb{R}$ we can put

$$f(\text{ad}_H)X := Q((f(h_i - h_j))_{ij} \odot (Q^T X Q)) Q^T, \quad X \in \mathbb{R}^{d \times d}.$$

- This resembles the Dalecki-Krein formula, but is not quite. In fact, the differences $h_i - h_j$ arise here as the eigenvalues of ad_H .
- One can verify that this definition is in alignment with the expected calculus (e.g. if f is holomorphic), in particular, that it is independent of the choice of Q . Moreover, there holds

$$f(\text{ad}_H)g(\text{ad}_H) = g(\text{ad}_H)f(\text{ad}_H) = (fg)(\text{ad}_H)$$

which is a key property in subsequent computations.

EXPLICIT FORMULAS

One may object that we still do not know **how to calculate** $\sigma(\text{ad}_H)\mathbf{D}$. To this end, thanks to the Caley-Hamilton theorem, we can prove the following **explicit** representation formulas:

EXPLICIT FORMULAS

One may object that we still do not know **how to calculate** $\sigma(\text{ad}_H)\mathbf{D}$. To this end, thanks to the Caley-Hamilton theorem, we can prove the following **explicit** representation formulas:

Lemma

$$\sigma(\text{ad}_H)\mathbf{D} = \frac{\sigma(\sqrt{\text{tr}^2 \mathbf{H} - 4 \det \mathbf{H}})}{\sqrt{\text{tr}^2 \mathbf{H} - 4 \det \mathbf{H}}} (\mathbf{H}\mathbf{D} - \mathbf{D}\mathbf{H}) \quad \text{if } d = 2,$$

and

$$\sigma(\text{ad}_H)\mathbf{D} = -P_2(\mathbf{H}\mathbf{D} - \mathbf{D}\mathbf{H}) + P_1(\mathbf{H}^2\mathbf{D} - \mathbf{D}\mathbf{H}^2) - P_0(\mathbf{H}^2\mathbf{D}\mathbf{H} - \mathbf{H}\mathbf{D}\mathbf{H}^2) \quad \text{if } d = 3,$$

where P_n are invariants of \mathbf{H} defined by

$$P_n := \frac{h_1^n \sigma(h_2 - h_3) + h_2^n \sigma(h_3 - h_1) + h_3^n \sigma(h_1 - h_2)}{(h_1 - h_2)(h_2 - h_3)(h_3 - h_1)}, \quad n = 0, 1, 2.$$

In fact, this holds analogously for any (odd) function. One can also note already here that $\sigma(\text{ad}_H)$ is a **bounded continuous** function of \mathbf{H} .

PROPERTIES OF THE MODEL (H)

The obtained logarithmic model has a number of remarkable properties.

$$\boxed{\begin{aligned}\partial_t \mathbf{H} + \mathbf{v} \cdot \nabla \mathbf{H} + \frac{1}{2\tau} (e^{2(\alpha-1)\mathbf{H}} - e^{2(\alpha-2)\mathbf{H}}) &= \mathbf{D} - \mathbf{H} \boldsymbol{\Omega}^{\log} + \boldsymbol{\Omega}^{\log} \mathbf{H}, \\ \boldsymbol{\Omega}^{\log} &= \mathbf{W} - \sigma(\text{ad}_{\mathbf{H}}) \mathbf{D}.\end{aligned}} \quad (\text{H})$$

The logarithmic derivative (*log*-rate)

$$\overset{\circ}{\mathbf{H}}{}^{\log} := \partial_t \mathbf{H} + \mathbf{v} \cdot \nabla \mathbf{H} + \mathbf{H} \boldsymbol{\Omega}^{\log} - \boldsymbol{\Omega}^{\log} \mathbf{H} \quad (1)$$

is objective and **corotational**. It is interesting to compare our approach with the theory of Xiao et al. (1998) for corotational derivatives (in context of the finite elastoplasticity), see

Xiao, H.; Bruhns, O. T. & Meyers, A. T. M.: *Strain rates and material spins*, Journal of Elasticity, 1998, 52, 1-41.

They argue that **every** objective corotational derivative arises through (1), where the spin tensor is

$$\boldsymbol{\Omega} = \mathbf{W} + \boldsymbol{\Gamma}(\mathbf{B}, \mathbf{D}) \quad \text{for some isotropic antisymmetric function } \boldsymbol{\Gamma}.$$

ADMISSIBLE SPIN TENSORS

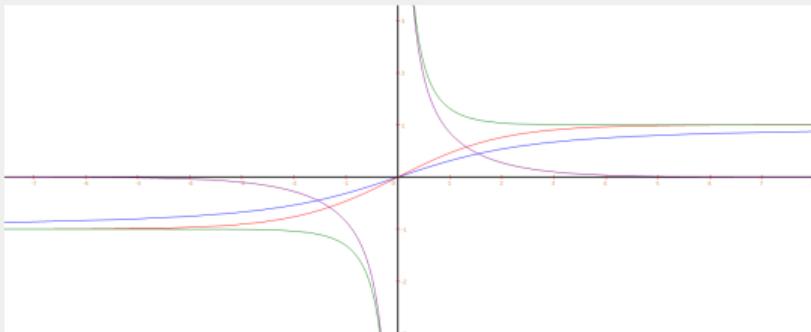
Xiao et al. further conclude that the spin tensor should be determined by a single **spin function** \tilde{h} and provide the representation in eigenprojections \mathbf{B}_i of the form

$$\Omega = \mathbf{W} + \sum_{i \neq j}^d \tilde{h}\left(\frac{b_i}{b_j}\right) \mathbf{B}_i \mathbf{D} \mathbf{B}_j \quad \text{for a continuous } \tilde{h} \text{ satisfying } \tilde{h}(z^{-1}) = -\tilde{h}(z).$$

We note that $\tilde{h}\left(\frac{b_i}{b_j}\right) = \tilde{h}(e^{2(h_i - h_j)}) = -f(h_i - h_j)$ for an **odd** function f . Thus, my approach gives an equivalent characterization of these admissible corotational derivatives via

$$\Omega = \mathbf{W} - f(\text{ad}_H)\mathbf{D} \quad \text{for a continuous } f \text{ satisfying } f(-x) = -f(x).$$

Virtually all the spin tensors encountered in practice can be recovered in this way:



0	\mathbf{W}	Jaumann-Zaremba
$\tanh \frac{x}{2}$	$\Omega^R = \dot{\mathbf{R}} \mathbf{R}^T$	angular velocity
$\text{csch } x$	Ω^L	Lagrangian twirl
$\coth x$	Ω^E	Eulerian twirl
$\underbrace{\coth x - x^{-1}}_{\sigma(x)}$	Ω^{\log}	Logarithmic spin

UNIQUE POSITION OF \mathbf{H} AND $\mathbf{\Omega}^{\log}$

- Within the solid mechanics, the dependence

$$\frac{d}{dt} \mathbf{H} \approx \mathbf{D} \quad (2)$$

had long been foreseen, but the fact that one has to take **precisely** $\frac{d}{dt} \mathbf{H} \equiv \mathbf{\dot{H}}^{\log}$ was shown only in 1991 (Th. Lehmann, Z.H. Guo and H.Y. Liang).

- In fact, in order to have only \mathbf{D} on the right-hand side of (2), one **has to select** the stress measure \mathbf{H} and the rate $\mathbf{\dot{H}}^{\log}$ **among all** possible stress measures **and** objective corotational rates. (Xiao et al. 1998)
- This shows that the choice of $\mathbf{H} = \frac{1}{2} \log \mathbf{B}$ as the stress measure and the choice of $\mathbf{\dot{H}}^{\log}$ as the objective derivative is quite special.

BACK TO FLUIDS

- In our **visco**elastic case, there is an additional damping term in the equation

$$\mathring{\mathbf{H}}^{\log} + \frac{1}{2\tau} (e^{2(\alpha-1)\mathbf{H}} - e^{2(\alpha-2)\mathbf{H}}) = \mathbf{D}$$

- We have basically two ways how to deal with it:

- 1) Use the Caley-Hamilton theorem for the matrix exponential: $e^{2\mathbf{H}} = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{H} + \alpha_2 \mathbf{H}^2$, where α_i are exponential-like functions of invariants of \mathbf{H} . Then deal with such nonlinearities.
- 2) **Linearize.**

BACK TO FLUIDS

- In our **viscoelastic** case, there is an additional damping term in the equation

$$\overset{\circ}{\mathbf{H}}^{\log} + \frac{1}{2\tau} (e^{2(\alpha-1)\mathbf{H}} - e^{2(\alpha-2)\mathbf{H}}) = \mathbf{D}$$

- We have basically two ways how to deal with it:

- 1) Use the Caley-Hamilton theorem for the matrix exponential: $e^{2\mathbf{H}} = \alpha_0 \mathbf{I} + \alpha_1 \mathbf{H} + \alpha_2 \mathbf{H}^2$, where α_i are exponential-like functions of invariants of \mathbf{H} . Then deal with such nonlinearities.
- 2) **Linearize.**

- Linearization merges the Oldroyd-B and Giesekus cases together, since

$$\frac{1}{2\tau} (e^{2(\alpha-1)\mathbf{H}} - e^{2(\alpha-1)\mathbf{H}}) = \frac{1}{\tau} \mathbf{H} + O(|\mathbf{H}|^2), \quad \mathbf{H} \rightarrow 0.$$

- Hence, the linearized model becomes simply

$$\overset{\circ}{\mathbf{H}}^{\log} + \frac{1}{\tau} \mathbf{H} = \mathbf{D}$$

SOME ARGUMENTS IN FAVOUR OF THE LINEARIZED MODEL

- Recently, Alrashdi & Giusteri (2024) provided a physical derivation of the model:

$$\nabla \mathbf{B} + \frac{1}{\tau} \mathbf{B} \log \mathbf{B} = 0.$$

- Now we know that its logarithmic counterpart is precisely $\mathbf{H}^{\log} + \frac{1}{\tau} \mathbf{H} = \mathbf{D}$!

- Note that

$$\mathbf{B} \log \mathbf{B} = \frac{1}{2}(\mathbf{B} - \mathbf{I}) + \frac{1}{2}(\mathbf{B}^2 - \mathbf{B}) + O(|\mathbf{B} - \mathbf{I}|^3) \quad \text{as} \quad \mathbf{B} \rightarrow \mathbf{I}.$$

- Moreover, Alrashdi & Giusteri provide convincing arguments in favor of including \mathbf{H} into the Cauchy stress tensor, instead of \mathbf{B} .
- The underlying Helmholtz free energies then are

$$\psi_{\mathbf{H}} = \frac{\mu}{2} |\mathbf{H}|^2 \quad \text{Linearized model;} \quad \psi_{\mathbf{B}} = \frac{\mu}{4} \text{tr}(e^{2\mathbf{H}} - \mathbf{I} - 2\mathbf{H}) \quad \text{Oldroyd-B.}$$

The choice $\psi_{\mathbf{H}}$ is somehow favoured and extensively studied in the works by Neff, using more specifically the decomposition

$$2\mu|\text{dev } \mathbf{H}|^2 + \kappa|\text{tr } \mathbf{H}|^2.$$

EXISTENCE OF WEAK SOLUTIONS

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} - \nu \Delta \mathbf{v} + \nabla p = \operatorname{div}(\mu \mathbf{H}).$$

$$\partial_t \mathbf{H} + \mathbf{v} \cdot \nabla \mathbf{H} + \frac{1}{\tau} \mathbf{H} - \lambda \Delta \mathbf{H} = \mathbf{D} + \operatorname{ad}_{\mathbf{H}}(\sigma(\operatorname{ad}_{\mathbf{H}}) \mathbf{D} - \mathbf{W}). \quad (3)$$

- The energy identity is

$$\frac{1}{2} \partial_t \int_{\Omega} (|\mathbf{v}|^2 + \mu |\mathbf{H}|^2) + \int_{\Omega} \left(\nu |\nabla \mathbf{v}|^2 + \frac{1}{\tau} |\mathbf{H}|^2 + \lambda |\nabla \mathbf{H}|^2 \right) = 0,$$

which provides sufficiently strong estimates to define everything in (3).

- Indeed, the only problematic term could be $\sigma(\operatorname{ad}_{\mathbf{H}}) \mathbf{D}$, but we have $|\sigma| \leq 1$ everywhere, and hence also $\sigma(\operatorname{ad}_{\mathbf{H}})$ is bounded and continuous w.r.t. to \mathbf{H} (thanks to C.H. formulas).
- Moreover, if $\lambda > 0$, then an approximation \mathbf{H}_n converges pointwise a.e., and thanks to the explicit formulas, we conclude that the right-hand side of (3) is weakly compact.
- $\lambda = 0$: Arguments by Lions & Masmoudi (2000) show that $\mathbf{H}_n \xrightarrow{L^2} \mathbf{H}$ if $\sigma = 0$. The crucial ingredient in their proof is testing with $\frac{\mathbf{H}}{1+\delta|\mathbf{H}|^2}$, which works regardless of σ .
- Note that the positive definiteness of \mathbf{B} is for granted; it follows from $\mathbf{B} = e^{2\mathbf{H}}$.

PROOF OF (B) \Leftrightarrow (H)

PROOF OF THE EQUIVALENCE, PT. I

In order to pass from $\partial_t \mathbf{H}$ to $\partial_t \mathbf{B} = \partial_t e^{2\mathbf{H}}$, for instance, one has to apply the operator $\frac{d\mathbf{B}}{d\mathbf{H}} = \frac{de^{2\mathbf{H}}}{d\mathbf{H}} : \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{d \times d}$, which can be given by the integral (Wilcox 1967):

$$\frac{d\mathbf{B}}{d\mathbf{H}} X = \int_0^1 e^{2(1-s)\mathbf{H}} X e^{2s\mathbf{H}} ds.$$

Since

$$\frac{d\mathbf{B}}{d\mathbf{H}} X \cdot Y = \int_0^1 e^{(1-s)\mathbf{H}} X e^{s\mathbf{H}} \cdot e^{(1-s)\mathbf{H}} Y e^{s\mathbf{H}} ds$$

(here $U \cdot V := \sum_{i,j}^d U_{ij} V_{ij}$, $|U| := \sqrt{U \cdot U}$), the operator $\frac{d\mathbf{B}}{d\mathbf{H}}$ is **symmetric and positive definite**, in particular its inverse $(\frac{d\mathbf{B}}{d\mathbf{H}})^{-1}$ exists. This we want to apply to the Oldroyd-B equation, but how to do it explicitly?

PROOF OF THE EQUIVALENCE, PT. II

There is also an alternative formula, well known in the theory of Lie groups:

$$\frac{d\mathbf{B}}{d\mathbf{H}} X = \mathbf{B} \left(\frac{1 - e^{-2 \operatorname{ad}_{\mathbf{H}}}}{\operatorname{ad}_{\mathbf{H}}} X \right) \quad \text{or} \quad \frac{d\mathbf{B}}{d\mathbf{H}} X = \left(\frac{e^{2 \operatorname{ad}_{\mathbf{H}}} - 1}{\operatorname{ad}_{\mathbf{H}}} X \right) \mathbf{B}.$$

Using our calculus for $f(\operatorname{ad}_{\mathbf{H}})$, it is now easy to express the inverse:

$$\left(\frac{d\mathbf{B}}{d\mathbf{H}} \right)^{-1} Y = \frac{\operatorname{ad}_{\mathbf{H}}}{1 - e^{-2 \operatorname{ad}_{\mathbf{H}}}} (\mathbf{B}^{-1} Y) \quad \text{or} \quad \left(\frac{d\mathbf{B}}{d\mathbf{H}} \right)^{-1} Y = \frac{\operatorname{ad}_{\mathbf{H}}}{e^{2 \operatorname{ad}_{\mathbf{H}}} - 1} (Y \mathbf{B}^{-1}).$$

We take advantage of this dichotomy to calculate what is

$$\left(\frac{d\mathbf{B}}{d\mathbf{H}} \right)^{-1} (\mathbf{B} \mathbf{D} + \mathbf{D} \mathbf{B}) \quad \text{and} \quad \left(\frac{d\mathbf{B}}{d\mathbf{H}} \right)^{-1} (\mathbf{B} \mathbf{W} - \mathbf{W} \mathbf{B}).$$

PROOF OF THE EQUIVALENCE, PT. III

As a consequence of the elementary identities

$$\frac{x}{1-e^{-x}} - \frac{x}{e^x-1} = x \quad \text{and} \quad \frac{x}{1-e^{-x}} + \frac{x}{e^x-1} = x \coth \frac{x}{2},$$

and the aforementioned calculus, we easily get

$$\left(\frac{d\mathbf{B}}{d\mathbf{H}} \right)^{-1} (\mathbf{B}\mathbf{W} - \mathbf{W}\mathbf{B}) = \text{ad}_{\mathbf{H}} \mathbf{W}, \quad \text{and} \quad \left(\frac{d\mathbf{B}}{d\mathbf{H}} \right)^{-1} (\mathbf{B}\mathbf{D} + \mathbf{D}\mathbf{B}) = (\text{ad}_{\mathbf{H}} \coth \text{ad}_{\mathbf{H}}) \mathbf{D}.$$

Finally, noting that

$$(\text{ad}_{\mathbf{H}} \coth \text{ad}_{\mathbf{H}}) \mathbf{D} = \mathbf{D} + \text{ad}_{\mathbf{H}} \sigma(\text{ad}_{\mathbf{H}}) \mathbf{D},$$

we see that indeed

$$\left(\frac{d\mathbf{B}}{d\mathbf{H}} \right)^{-1} (\nabla \mathbf{v} \mathbf{B} + \mathbf{B} (\nabla \mathbf{v})^T) = \mathbf{D} + \text{ad}_{\mathbf{H}} (\mathbf{W} + \sigma(\text{ad}_{\mathbf{H}}) \mathbf{D}) = \mathbf{D} + \mathbf{H} \Omega^{\log} - \Omega^{\log} \mathbf{H},$$

and hence we arrive at (H). □