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STANDARD VISCOELASTIC FLUID MODELS

For an unknown divergence-free velocity v : Q — RY, pressure p : Q — R and extra stress
tensor B : Q — R9x9, consider the system

Sym?
Ov+Vv-Vv—vAv+ Vp =div(uB), v,pu>0,
OB V- VB+ (B —B ") = (VV)BLB(VW), >0, a>1. (8)
i

m o = 1is the Oldroyd-B model (1950) and « = 2 is the Giesekus model (1962).
m Equation (B) can be written as

B+ L(B® —B* ") =0
where T o

B:=0B+v VB (Vv)B—B(Vv)
—9%B+v-VB+BW - WB—(BD+DB)=B— (BD+DB)

o
B Jaumann-Zaremba

is the upper convected (Oldroyd) derivative and

D:— %(Vv—&— V)), W= %(Vv— (Vv)").



(DIS)ADVANTAGES OF THE OLDROYD-B/GIESEKUS MODELS

There are compelling arguments for considering equation (B) with B:

> Bisan objective derivative (rate), i.e.
v v
B*(t,x") = Q(1)B(t, x)Q(t)" if B*(t,x") = Q(t)B(t, x)Q(t)"
for any (non-stationary) rotation Q(t) of the observer.

When B = FF", F = dxx(t, X) (solid mechanics) then E =0.

v . . . .
B arises by downscaling certain microscopic models.

Established in applications (polymeric fluids, rod climbing etc.).

vVvyVvyy

The Giesekus case a = 2 (remarkably) admits a three-dimensional
global weak solution for any initial data due to the recent result
(Los et al. 2024).

E| However, there are also drawbacks:

v
> B is just one of really many objective derivatives.

v . . . . . . . . .
> B is not corotational. Cor. derivatives are superior in physics, analysis and numerics.
> In the Oldroyd-B case o = 1, the apriori estimates are not sufficient for (Vv)B + B(Vv)".
» The equation is on the verge of being “ill-posed”, comparing just with u’ + u* = gu, g € L.



THE EQUIVALENCE RESULT

If done properly, the idea of multiplying the equation (B) by B~ leads to the following:

Theorem

Letv:Q — RY H: Q — RI*9 be smooth and set

sym
B=e, sothat H= % logB s the logarithmic (Hencky) strain.
Then B solves the Oldroyd-B/Giesekus equation (B) if and only if H solves

1
OH+v-VH — (2@~ _g2a—2H) _p_ Qo | QI°eH, (H)
where: 27
Q'8 .= W — o(ady)D is the logaritmic spin,
adyX =HX — XH, Xe R is the commutator,
1 . ;
o(X) == cothx — 5 X€ R. is an odd function.



DEFINING o(ady)

m The power series approach is problematic since coth has poles on the imaginary axis,
and so the formal power series of o(ady) may not converge.

m Instead, one can proceed more directly, using (pointwise) the Schur diagonalization

h=Q'HQ, h=diag(h)’., Q'=qQ".

i=1
m Then, for any function f : R — R we can put
f(adw)X = Q((f(h; — h;)); © (Q"XQ))Q", X € R¥*7.
m This resembles the Dalecki-Krein formula, but is not quite. In fact, the differences

h; — h; arise here as the eigenvalues of ady.

m One can verify that this definition is in alignment with the expected calculus (e.g. if f is
is holomorphic), in particular, that it is independent of the choice of Q. Moreover, there
holds

f(adu)g(adu) = g(adw)f (adu) = (fg)(adn)
which is a key property in subsequent computations.



EXPLICIT FORMULAS

One may object that we still do not know how to calculate o(ady)D. To this end, thanks to
the Caley-Hamilton theorem, we can prove the following explicit representation formulas:
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One may object that we still do not know how to calculate o(ady)D. To this end, thanks to
the Caley-Hamilton theorem, we can prove the following explicit representation formulas:

Lemma

o(Vtr’H — ,detH)
Vitr?H — 4detH

o(ady)D = (HD — DH) ifd =2,

and

| 7(ady)D = —P(HD — DH) + P,(H*D — DH*) — P,(H*DH — HDH?) ifd =3, |

where Py, are invariants of H defined by

p . Moths = hs) + ho(hs — hy) + hlo(h, — ha)
" (hy = h3)(h2 — h3)(hs — hy) ’

n=o0,1,2.

In fact, this holds analogously for any (odd) function. One can also note already here that
o(ady) is a bounded continuous function of H.
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PROPERTIES OF THE MODEL (H)




The obtained logarithmic model has a number of remarkable properties.

OH+ V- VH + (g2~ _ g2o—2H) _ p _ HQe | QPsy,
27 (H)
Q8 = W — o(ady)D.
The logarithmic derivative (log-rate)
H¢ .= 0H +v-VH+ HQ"¢ — Q"eH (1)

is objective and corotational. It is interesting to compare our approach with the theory of
Xiao et al. (1998) for corotational derivatives (in context of the finite elastoplasticity), see

@Xiao, H.; Bruhns, O. T. & Meyers, A. T. M.: Strain rates and material spins,
Journal of Elasticity, 1998, 52, 1-41.

They argue that every objective corotational derivative arises through (1), where the spin
tensor is
Q=W-+Tr(B,D) forsome isotropic antisymmetric function T.

]



ADMISSIBLE SPIN TENSORS

Xiao et al. further conclude that the spin tensor should be determined by a single spin
function h and provide the representation in eigenprojections B; of the form

Q=W+ Z’ o —)B;DB; for a continuous h satisfying h(z ") = —h(2).

We note that h(gj{) = h(e2( i=M)) = —f(h; — h;) for an odd function f. Thus, my approach
gives an equivalent characterization of these admissible corotational derivatives via

Q =W — f(ady)D for a continuous f satisfying f(—x) = —f(x).
Virtually all the spin tensors encountered in practice can be recovered in this way:

\ 0 w Jaumann-Zaremba
“ - tanh % Qf =RR"  angular velocity
N = csch x ot Lagrangian twirl
— coth x Qf Eulerian twirl
cothx — x~" Qlos Logarithmic spin
—_———

o (x)



UNIQUE POSITION OF H AND Qs

m Within the solid mechanics, the dependence

d
—H~D 2
= (2

had long been foreseen, but the fact that one has to take precisely %H = H"& was
shown only in 1991 (Th. Lehmann, Z.H. Guo and H.Y. Liang).

m In fact, in order to have only D on the right-hand side of (2), one has to select the

stress measure H and the rate H'°¢ among all possible stress measures and objective
corotational rates. (Xiao et al. 1998)

m This shows that the choice of H = ] log B as the stress measure and the choice of H'°&
as the objective derivative is quite special.

)



BACK TO FLUIDS

m In our viscoelastic case, there is an additional damping term in the equation

o 1
Hlog + ;(ez(afﬂH - ez(a—z)H) —D

m We have basically two ways how to deal with it:
1) Use the Caley-Hamilton theorem for the matrix exponential: ¥ = aol + oyH + a,H?, where
«; are exponential-like functions of invariants of H. Then deal with such nonlinearities.
2) Linearize.
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m We have basically two ways how to deal with it:

1) Use the Caley-Hamilton theorem for the matrix exponential: ¥ = aol + oyH + a,H?, where
«; are exponential-like functions of invariants of H. Then deal with such nonlinearities.
2) Linearize.

m Linearization merges the Oldroyd-B and Giesekus cases together, since

1

1
7(e2(o¢—1)H _ e2(rx—1)H) = —H+ O(|H‘2), H— 0.
27 T
m Hence, the linearized model becomes simply
A+ 'H—p
T

T,



SOME ARGUMENTS IN FAVOUR OF THE LINEARIZED MODEL

m Recently, Alrashdi & Giusteri (2024) provided a physical derivation of the model:
B+ BlogB 0.
T

m Now we know that its logarithmic counterpart is precisely H°s + IH=D!
m Note that
BlogB=_(B— 1)+ _(B"~B)+0(B—IP) as Bl
m Moreover, Alrashdi & Giusteri provide convincing arguments in favor of including H into
the Cauchy stress tensor, instead of B.
m The underlying Helmholtz free energies then are

Yy = g|H|2 Linearized model; g = %tr(ez” —1—2H) Oldroyd-B.

The choice vy is somehow favoured and extensively studied in the works by Neff, using
more specifically the decomposition

2u|dev H)? + k| tr H]?.



EXISTENCE OF WEAK SOLUTIONS

OV + V- VV —vAV + Vp = div(uH).

OH+V-VH+ “H — \AH = D + adu(c(adw)D — W). (3)
T
m The energy identity is

1 1
Lo / (VP + ulHP) + / (VIVVE + 1P + A[VHP) = 0.
2 Q Q T

which provides sufficiently strong estimates to define everything in (3).
m Indeed, the only problematic term could be o(ady)D, but we have |o| < 1 everywhere,
and hence also o(ady) is bounded and continuous w.r.t. to H (thanks to C.H. formulas).
m Moreover, if A > 0, then an approximation H, converges pointwise a.e., and thanks to
the explicit formulas, we conclude that the right-hand side of (3) is weakly compact.

m )\ = 0: Arguments by Lions & Masmoudi (2000) show that H,, Y Hifo=o0.

The crucial ingredient in their proof is testing with ﬁ, which works regardless of o.

m Note that the positive definiteness of B is for granted; it follows from B = ¢!,



PROOF OF (B) < (H)



PROOF OF THE EQUIVALENCE, PT. |

In order to pass from 0;H to ;B = 0,e?", for instance, one has to apply the operator
48— dde;" : R9%d _, RIxd which can be given by the integral (Wilcox 1967):

1
dB X = / e2(1—s)HXest ds.
dH o

Since
dB

;
7X . Y — e(1—S)HXeSH . e(‘I—S)HYeSH dS
dH /O

(hereU -V = Z;{j U;Vij, |U| == VU - U), the operator % is symmetric and positive definite, in
particular its inverse (48)~" exists. This we want to apply to the Oldroyd-B equation, but
how to do it explicitly?



PROOF OF THE EQUIVALENCE, PT. |l

There is also an alternative formula, well known in the theory of Lie groups:

%X: B(“aed:ad"x) or %xz (eza:;fx)s.

Using our calculus for f(ady), it is now easy to express the inverse:

dB\~'_  ady o, dB\~'_ ady »
(Gr) Y=o ®™) o (G) Y= g (VBT

We take advantage of this dichotomy to calculate what is

(%)_1(BD +DB) and (%)_1(BW - WB).



PROOF OF THE EQUIVALENCE, PT. Il

As a consequence of the elementary identities

X X X X X
— =x and — + —— = Xxcoth -,
1—e X eX—1 1—e* eX—1 2

and the aforementioned calculus, we easily get

<$)71(BW—WB):adHW, and (%)71(BD+DB):(adHcothadH)D.

Finally, noting that
(ady coth ady )D = D + ady o(adw)D,

we see that indeed
dBy\ 1 . ) )
(@) (VVB + B(VV)") = D + ady(W + o(ady)D) = D + HQ'°E — Q°¢H,

and hence we arrive at (H). O
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