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Standard viscoelastic fluid models

For an unknown divergence-free velocity v : Q → Rd, pressure p : Q → R and extra stress
tensor B : Q → Rd×d

sym , consider the system

∂tv + v · ∇v − ν∆v +∇p = div(µB), ν, µ > 0,

∂tB + v · ∇B +
1
τ
(Bα − Bα−1) = (∇v)B + B (∇v)T , τ > 0, α ≥ 1. (B)

α = 1 is the Oldroyd-B model (1950) and α = 2 is the Giesekus model (1962).
Equation (B) can be written as

∇
B +

1
τ
(Bα − Bα−1) = 0,where

∇
B := ∂tB + v · ∇B − (∇v)B − B (∇v)T

= ∂tB + v · ∇B + BW −W B︸ ︷︷ ︸
◦
B Jaumann-Zaremba

−(BD+ DB) =
◦
B − (BD+ DB)

is the upper convected (Oldroyd) derivative and

D :=
1
2 (∇v + (∇v)T), W :=

1
2 (∇v − (∇v)T).
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(Dis)advantages of the Oldroyd-B/Giesekus models

+ There are compelling arguments for considering equation (B) with
∇
B:

▶
∇
B is an objective derivative (rate), i.e.
∇
B∗(t, x∗) = Q(t)

∇
B(t, x)Q(t)T if B∗(t, x∗) = Q(t)B(t, x)Q(t)T

for any (non-stationary) rotation Q(t) of the observer.

▶ When B = FFT , F = ∂Xχ(t, X) (solid mechanics) then
∇
B = 0.

▶
∇
B arises by downscaling certain microscopic models.

▶ Established in applications (polymeric fluids, rod climbing etc.).
▶ The Giesekus case α = 2 (remarkably) admits a three-dimensional

global weak solution for any initial data due to the recent result
(Los et al. 2024).

− However, there are also drawbacks:
▶

∇
B is just one of really many objective derivatives.

▶
∇
B is not corotational. Cor. derivatives are superior in physics, analysis and numerics.

▶ In the Oldroyd-B case α = 1, the apriori estimates are not sufficient for (∇v)B + B(∇v)T .
▶ The equation is on the verge of being “ill-posed”, comparing just with u′ + uα = gu, g ∈ L2.
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The equivalence result

If done properly, the idea of multiplying the equation (B) by B−1 leads to the following:

Theorem
Let v : Q → Rd, H : Q → Rd×d

sym be smooth and set

B = e2H, so that H =
1
2 logB is the logarithmic (Hencky) strain.

Then B solves the Oldroyd-B/Giesekus equation (B) if and only if H solves

∂tH+ v · ∇H+
1

2τ (e
2(α−1)H − e2(α−2)H) = D− HΩlog +ΩlogH, (H)

where:

Ωlog := W − σ(adH)D is the logaritmic spin,
adH X := H X − X H, X ∈ Rd×d, is the commutator,

σ(x) := coth x − 1
x , x ∈ R. is an odd function.
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Defining σ(adH)

The power series approach is problematic since coth has poles on the imaginary axis,
and so the formal power series of σ(adH) may not converge.
Instead, one can proceed more directly, using (pointwise) the Schur diagonalization

h = QTHQ, h = diag (hi)
d
i=1, Q−1 = QT .

Then, for any function f : R → R we can put

f (adH)X := Q
(
(f (hi − hj))ij ⊙ (QTXQ)

)
QT , X ∈ Rd×d.

This resembles the Daleckı̆-Kreı̆n formula, but is not quite. In fact, the differences
hi − hj arise here as the eigenvalues of adH.
One can verify that this definition is in alignment with the expected calculus (e.g. if f is
is holomorphic), in particular, that it is independent of the choice of Q. Moreover, there
holds

f (adH)g(adH) = g(adH)f (adH) = (fg)(adH)
which is a key property in subsequent computations.
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Explicit formulas

One may object that we still do not know how to calculate σ(adH)D. To this end, thanks to
the Caley-Hamilton theorem, we can prove the following explicit representation formulas:

Lemma

σ(adH)D =
σ
(√

tr2 H− 4 detH
)

√
tr2 H− 4 detH

(HD− DH) if d = 2,

and
σ(adH)D = −P2(HD− DH) + P1(H2D− DH2)− P0(H2DH− HDH2) if d = 3,

where Pn are invariants of H defined by

Pn :=
hn

1σ(h2 − h3) + hn
2σ(h3 − h1) + hn

3σ(h1 − h2)

(h1 − h2)(h2 − h3)(h3 − h1)
, n = 0, 1, 2.

In fact, this holds analogously for any (odd) function. One can also note already here that
σ(adH) is a bounded continuous function of H.
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Properties of the model (H)



The obtained logarithmic model has a number of remarkable properties.

∂tH+ v · ∇H+
1

2τ (e
2(α−1)H − e2(α−2)H) = D− HΩlog +ΩlogH,

Ωlog = W − σ(adH)D.
(H)

The logarithmic derivative (log-rate)
◦
Hlog := ∂tH+ v · ∇H+ HΩlog −ΩlogH (1)

is objective and corotational. It is interesting to compare our approach with the theory of
Xiao et al. (1998) for corotational derivatives (in context of the finite elastoplasticity), see

Xiao, H.; Bruhns, O. T. & Meyers, A. T. M.: Strain rates and material spins,
Journal of Elasticity, 1998, 52, 1-41.

They argue that every objective corotational derivative arises through (1), where the spin
tensor is

Ω = W + Γ(B,D) for some isotropic antisymmetric function Γ.
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Admissible spin tensors

Xiao et al. further conclude that the spin tensor should be determined by a single spin
function h̃ and provide the representation in eigenprojections Bi of the form

Ω = W +
∑d

i ̸=j
h̃
(bi

bj

)
BiDBj for a continuous h̃ satisfying h̃(z−1) = −h̃(z).

We note that h̃(bi
bj
) = h̃(e2(hi−hj)) = −f (hi − hj) for an odd function f . Thus, my approach

gives an equivalent characterization of these admissible corotational derivatives via
Ω = W − f (adH)D for a continuous f satisfying f (−x) = −f (x).

Virtually all the spin tensors encountered in practice can be recovered in this way:
0 W Jaumann-Zaremba

tanh x
2 ΩR =

•
RRT angular velocity

csch x ΩL Lagrangian twirl
coth x ΩE Eulerian twirl

coth x − x−1︸ ︷︷ ︸
σ(x)

Ωlog Logarithmic spin
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Unique position of H and Ωlog

Within the solid mechanics, the dependence

d

dtH ≈ D (2)

had long been foreseen, but the fact that one has to take precisely d
dtH ≡

◦
Hlog was

shown only in 1991 (Th. Lehmann, Z.H. Guo and H.Y. Liang).
In fact, in order to have only D on the right-hand side of (2), one has to select the
stress measure H and the rate

◦
Hlog among all possible stress measures and objective

corotational rates. (Xiao et al. 1998)
This shows that the choice of H = 1

2 logB as the stress measure and the choice of
◦
Hlog

as the objective derivative is quite special.
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Back to fluids

In our viscoelastic case, there is an additional damping term in the equation
◦
Hlog +

1
2τ (e

2(α−1)H − e2(α−2)H) = D

We have basically two ways how to deal with it:
1) Use the Caley-Hamilton theorem for the matrix exponential: e2H = α0I + α1H+ α2H2, where

αi are exponential-like functions of invariants of H. Then deal with such nonlinearities.
2) Linearize.

Linearization merges the Oldroyd-B and Giesekus cases together, since

1
2τ (e

2(α−1)H − e2(α−1)H) =
1
τ
H+ O(|H|2), H→ 0.

Hence, the linearized model becomes simply

◦
Hlog +

1
τ
H = D
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Some arguments in favour of the linearized model

Recently, Alrashdi & Giusteri (2024) provided a physical derivation of the model:
∇
B +

1
τ

B logB = 0.

Now we know that its logarithmic counterpart is precisely
◦
Hlog + 1

τ H = D !
Note that

B logB =
1
2 (B − I) + 1

2 (B
2 − B) + O(|B − I|3) as B → I.

Moreover, Alrashdi & Giusteri provide convincing arguments in favor of including H into
the Cauchy stress tensor, instead of B.
The underlying Helmholtz free energies then are

ψH =
µ

2 |H|
2 Linearized model; ψB =

µ

4 tr(e2H − I − 2H) Oldroyd-B.

The choice ψH is somehow favoured and extensively studied in the works by Neff, using
more specifically the decomposition

2µ|devH|2 + κ| trH|2.
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Existence of weak solutions

∂tv + v · ∇v − ν∆v +∇p = div(µH).

∂tH+ v · ∇H+
1
τ
H −λ∆H = D+ adH(σ(adH)D−W). (3)

The energy identity is

1
2∂t

∫
Ω

(|v|2 + µ|H|2) +
∫
Ω

(ν|∇v|2 + 1
τ
|H|2 + λ|∇H|2) = 0,

which provides sufficiently strong estimates to define everything in (3).
Indeed, the only problematic term could be σ(adH)D, but we have |σ| ≤ 1 everywhere,
and hence also σ(adH) is bounded and continuous w.r.t. to H (thanks to C.H. formulas).
Moreover, if λ > 0, then an approximation Hn converges pointwise a.e., and thanks to
the explicit formulas, we conclude that the right-hand side of (3) is weakly compact.

λ = 0: Arguments by Lions & Masmoudi (2000) show that Hn
L2
→ H if σ = 0.

The crucial ingredient in their proof is testing with H
1+δ|H|2 , which works regardless of σ.

Note that the positive definiteness of B is for granted; it follows from B = e2H.
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Proof of (B) ⇔ (H)



Proof of the equivalence, pt. I

In order to pass from ∂tH to ∂tB = ∂te2H, for instance, one has to apply the operator
dB
dD = de2H

dH : Rd×d → Rd×d, which can be given by the integral (Wilcox 1967):

dB
dH

X =

∫ 1

0
e2(1−s)HXe2sH

ds.

Since
dB
dH

X · Y =

∫ 1

0
e(1−s)HXesH · e(1−s)HYesH

ds

(here U · V :=
∑d

i,j UijVij, |U| :=
√

U · U), the operator dB
dH is symmetric and positive definite, in

particular its inverse ( dB
dH )

−1 exists. This we want to apply to the Oldroyd-B equation, but
how to do it explicitly?
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Proof of the equivalence, pt. II

There is also an alternative formula, well known in the theory of Lie groups:

dB
dH

X = B
(1 − e−2 adH

adH
X
)

or dB
dH

X =
(e2 adH − 1

adH
X
)

B.

Using our calculus for f (adH), it is now easy to express the inverse:(
dB
dH

)−1
Y =

adH
1 − e−2 adH

(B−1Y) or
(
dB
dH

)−1
Y =

adH
e2 adH − 1 (Y B−1).

We take advantage of this dichotomy to calculate what is(
dB
dH

)−1
(BD+ DB) and

(
dB
dH

)−1
(BW −W B).
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Proof of the equivalence, pt. III

As a consequence of the elementary identities

x
1 − e−x − x

ex − 1 = x and x
1 − e−x +

x
ex − 1 = x coth x

2 ,

and the aforementioned calculus, we easily get(
dB
dH

)−1
(BW −W B) = adHW, and

(
dB
dH

)−1
(BD+ DB) =

(
adH coth adH

)
D.

Finally, noting that
(adH coth adH

)
D = D+ adH σ(adH)D,

we see that indeed(
dB
dH

)−1
(∇v B + B(∇v)T) = D+ adH(W + σ(adH)D) = D+ HΩlog −ΩlogH,

and hence we arrive at (H).
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