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Preface

This is the collection of notes on the Constraint Satisfaction Problem as it was taught at
MFF UK in Autumn 2007 by Miklós Máróti. It is still work in progress. The authors
would be grateful for any pointers regarding the origins of various theorems and lemmas.

While the constraint satisfaction problem (CSP) can be stated entirely in the language
of graph theory, it turns out that algebraic approach has numerous advantages. The goal
of these notes is to present the basics of the algebraic view of CSP, enabling the reader to
understand modern articles on CSP and independently work in this area of mathematics.
However, the ideas and constructions presented here can be useful even if the reader does
not intend to become a CSP specialist: CSP brings together graph theory, complexity
theory and universal algebra and can be used as a good motivation for study of either of
these disciplines.

We assume that the reader has a general mathematical background, but there are
no explicite prerequisites, as the text aims at self-containment. We will often be using
algebraic tools and objects, mostly from universal algebra. Previous knowledge of this
subject is beneficial, although not necessary.

For typesetting, the authors used the csplain TEX with AMS and MatfyzPress macro
packages, the latter being the work of Michal Kubeček. Images were produced in the Ipe
editor.

2 [22.2.2008, 20:45]



Basics of complexity theory 1.

1. Basics of complexity theory

In this section we shall formally define what a problem is, introduce the P and NP classes
of problems and give examples of NP-complete problems.

Our universe shall be the set I of all binary words f0, 1g∗ = S∞
n=0f0, 1gn. For our

purposes will be sufficient to use the intuitive meaning of the word “algorithm”1.

1.1 Definition. A function f : I ! I is computable in polynomial time (we say that f
is in the class P) if there exists an algorithm A and constants c and d such that for any
x 2 I the algorithm A stops in at most jxjd + c steps and computes f(x).
There are many ways how to encode various objects or finite tuples of objects as

words from f0, 1g∗. As a most obvious example, we can use binary representation to
encode numbers.

1.2 Note. Thanks to the polynomial boundary, we don’t have to concern ourselves with
the details about encodings – even suboptimal encodings are fine, as long as they run in
polynomial time.

1.3 Examples. The following functions and algorithms are in P:

(i) Basic arithmetic functions

(ii) Euclid’s algorithm

(iii) Primality testing (algorithm known since 2004)

(iv) Factoring polynomials in Q[x]

(v) Hereditary graph properties (i.e. the ones closed under vertex removal and edge
contraction)

In a classification problem C we are given an object x and are to decide whether
x 2 C. Here C � I describes the problem. In complexity theory, our aim is to measure
the complexity of the characteristic function of the set C for various C’s. Obviously, the
set of all classification problems is P (I) = 2I .

1.4 Definition. A set C � I of objects is in P if its characteristic function is in P.

1.5 Definition. A set C � I is in NP (i.e. decidable in nondeterministic polynomial
time) if there exists a function f in P and a constants k, l such that:

(i) If x 2 C then there exits a y 2 I, jyj � jxjk + l such that f(x, y) = 1.
(ii) If x 62 C then 8y 2 I it is f(x, y) = 0.
Here y is called a short proof and f is the verifier .

This definition says that C is in NP if for any x 2 C there is a witness for a short
proof of x 2 C and that such witness never lies. Obviously, P � NP .

1If we wanted to be precise we can say that an algorithm is a computer program (that can use infinite amount
of memory) or a Turing machine, but any reasonable formal definition will do.
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1.6 Examples. The following problems belong to NP (along with a great number of
others):

(i) Composite number test (also in P because primality testing is in P).

(ii) Solving Ax2+By+C = 0 in N. (This equation has a solution iff it has a solution
whose length is small in the lengths of A,B and C.)

(iii) 3-colourability of a given graph.

(iv) Graph isomorphism problem: are two given graphs isomorphic?

(v) The set of all theorems whose proofs (in an appropriate formal notation) are at
most ten thousand times as long as the theorem itself.

The following conjecture corresponds to experience of several generations of computer
scientists and makes study of the relationship between P and NP classes meaningful.
However, no proof of this statement has been found yet.

1.7 Conjecture. It is P 6= NP .
1.8 Definition. Let C,D � I. Then C is poly-time reducible toD (denoted by C � D) iff
there exists a poly-time computable function f : I ! I such that x 2 C () f(x) 2 D.
Two problems C,D are poly-time equivalent (denoted by C � D) if C � D,D � C.

1.9 Proposition. The relation � is a quasi-order on P (I). It is transitive and reflexive
but it is possible that C � D,D � C and C 6= D.
1.10 Example. In P there are three classes of poly-time equivalent problems ;, I and
P n f;, Ig.
1.11 Definition. Let C � P (I) be a class of problems and D � I a problem. Then D isC-hard if 8C 2 C C � D.

Obviously, if D is C-hard, then D is at least as hard as any problem in C. We say
that a problem D is NP-complete if it is NP-hard and in NP. There exist numerous
NP-complete problems, we present here the famous SAT.

1.12 Definition. The SAT problem consists of all satisfiable Boolean formulas (i.e. for-
mulas using the language ^,_,: and variable symbols).
1.13 Theorem. (Cook, Levin 1971–73) SAT is NP-complete.

Proof. (sketch of) In the proof we will have to use the Turing machine model of computa-
tion. Turing machine is an automaton with finitely many internal states that is equipped
with a head. This head can read and write numbers on an (infinite) input tape. In each
step a Turing machine reads the symbol under its head and then decides what to write
on the tape, into which internal state to change and whether it should move the head to
the left or right. While this model might seem simple, it is powerful enough to emulate
any computer program.
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Let C 2 NP , let f be its verifier and x be an object. We want some g such that
g(x) 2 SAT iff x 2 C. When f(x, y) is computed, the Turing machineM for f(x, y) stops
in less than jxjk + l steps, where l, k depend only on f . Thus we can assume that there
are at most m = jxjk + l states of the system “M plus tape”. We can encode these states
by binary words s1, . . . , sm.
Now si+1 clearly depends only on si and x, y. If we encode states in a suitable way

then there exists a (poly-length) Boolean formula g(z) that, given z encoding of y (wherejyj � m) and s1, . . . , sm, checks whether s1, . . . , sm is a valid computation and f(x, y) =
= 1 was reached. Thus g(z) is satisfiable iff there exists y such that f(x, y) = 1 for somejyj � m. But this is precisely the condition for x 2 C and the reduction is complete. �

1.14 Examples. Other NP-complete problems.

(i) 3-SAT the set of all satisfiable formulas of the form
Vk

i=1Ci where Ci is a disjunc-
tion of three variables or negations of variables (e.g. Ci = :xα _ xβ _ :xγ).

(ii) The set of all 3-colourable graphs.

1.15 Definition. SysEq(L) is the class of systems of equations over some fixed languageL that are simultaneously satisfied.
1.16 Proposition. Every SysEq(L) is poly-time equivalent to a SysEq(L′) in which every
equation contains exactly one operation symbol.

Proof. Let us first provide an example showing the idea of the proof.

1.17 Example. Consider the equation (x^ y)_ z = u. Putting x^ y = t, we can rewrite
the equation as:

x ^ y = t
t _ z = u.

In the general case, each equation is of the form l = r where l, r are terms – expres-
sions formed by applying (finitely many times) operation symbols from L on some set of
variables. For example x, :x, (y ^ x)_:z are terms in the language of Boolean algebras.
The equation l = r can be rewritten as a system of two equations l = y, r = y, where

y is a new variable. We can thus assume that the equation system contains only equations
of the form l = y where l is a term and y a variable.
For each equation, we use induction to simplify the term. If l itself is an operation or

a variable then we are done. Otherwise, l = t(s1, . . . , sm) where t is an m-ary operation
and s1, . . . , sm are terms. But then we can rewrite our equation as

l = t(x1, . . . , xm)

x1 = s1

x2 = s2
...

xm = sm,
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where xi’s are new variables. We can now simplify the terms s1, . . . , sm in the same way
and because each term consists of only finitely many operation symbols, we will end up
with a system of equations that each contain at most one operation symbol. �

As a corollary, we get that SAT can be reduced to a system of equations of the form
x _ y = z or x ^ y = z resp. :x = y. The first equation can be represented by a set of
disjunctions

x _ y _ :z:x _ z:y _ z,
the second one by :x _ :y _ z

x _ :z
y _ :z

and the third one as

x _ y:x _ :y.
We obtain that SAT can be reduced (in polynomial time, as the algorithms used are quite
fast) to 3-SAT2 and 3-SAT is thus NP-complete.

1.18 Theorem. 3-colourability of graphs is NP-complete.

Proof. We reduce 3-SAT to 3-colouring of a suitable graph. Let us have a 3-SAT formula
with variables x1, . . . , xn. First draw the following graph:

. . .

x1 x2 xn−1 xn

¬x1 ¬x2 ¬xn−1 ¬xn

0 1

2

Now for each x _ y _ z glue to our graph the graph:
2To satisfy the formal requirement, we can rewrite two variable disjunction to three variables as for example

x ∨ x ∨ y.
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x

y

z

0

0

Here the inner five vertices are new and we glue the vertices marked x, y, z, 0 to the
vertices x, y, z, 0 of the original graph (notice that it can be x = :xi). If we do this for
every x_ y _ z, we obtain a graph that is 3-colourable iff our formula is satisfiable. �

1.19 Exercise. Verify the last sentence of the above proof.

1.20 Theorem. (Ladner, 1975) If P 6= NP then the NP problem class factored by poly-
time equivalence has infinitely many blocks between P and NP.

2. CSP for relational structures

A relation R on the set A is a subset R � An. We call n the arity of R.

2.1 Definition. Let Rbe a finite set of relation symbols with associated arities of these
symbols. Then call Ra similarity type and A = (A;R) is a relational structure of typeRif A is a set and for each R 2 R symbol of arity n 2 N there exists an associated relation
RA � An. We shall sometimes use the notation A = (A;RA) to avoid confusion as to
which relations are we talking about.

2.2 Examples.

(i) Directed graphs (V ;E) with E � V � V .
(ii) 4-coloured set (A;B, Y ) with B, Y � A.

2.3 Definition. Two relational structures A,B are similar if they have the same set of
symbols and arities (ie. the same type). If A,B are similar relational structures then
f : A! B is a homomorphism if 8R 2 R, (a1, . . . , an) 2 RA ) (f(a1), . . . , f(an)) 2 RB.

If A = (A,RA) is a relational structure, then B = (B,RB) is called a substructure of
A if B � A and the inclusion mapping B ! A is a homomorphism. If for all k-ary R’s it
is RB = RA \ Bk then we call B the substructure of A induced by the set B. In the case
of graphs, we obtain the familiar notions of subgraph and subgraph induced by a set of
vertices.
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2.4 Definition. A homomorphism f : A ! B is called

(i) isomorphism if there exists an inverse homomorphism B ! A

(ii) endomorphism if A = B

(iii) automorphism if it is an endomorphism and isomorphism.

2.5 Definition. Let B = (B,R) be a relational structure. Then define the constraint
satisfaction problem of B as the set of relational structures

CSP(B) = fAjA is similar to B and there exists a homomorphism f : A ! Bg.
In usual encodings, it is easy to check whether given string encodes a relational struc-

ture similar to B. The hard question is whether there exists a homomorphism A ! B.

2.6 Proposition. CSP(B) is in NP for all B.

Proof. Any mapping A ! B can be encoded by a string whose length is linear in jAj
and verifying that given f : A ! B is a homomorphism can be done in polynomial time.
Thus CSP(B) is in NP. �

One of main topics of this course will be various approaches used to prove (or disprove)
the following conjecture about dichotomy of CSP:

2.7 Conjecture. (Feder, Vardi, 1998) For every B relational structure, the problem
CSP(B) either lies in P or is NP-complete.

2.8 Example. CSP(B) for B being a triangle (B = f1, 2, 3g, E = B2 n f(i, i) : i 2 V g) is
precisely the 3-colouring problem and thus is NP-complete.

2.9 Example. The 3-SAT can be refolmulated in the language of CSP, just let B =
= f0, 1g and R = fSαβγjα, β, γ 2 f0, 1gg where Sαβγ = f0, 1g3 n fα, β, γg.
2.10 Definition. Define a partial ordering “!” on the class of all similar relational
structures by A ! B iff there exists a homomorphism from A to B.

Obviously, “!” induces an equivalence on the set of all relational structures. Denote
this equivalence by $.
2.11 Theorem. Let C,D be similar relational structures and C $ D. Then CSP(C) =
= CSP(D). Moreover B1 = (A, full relations) is the maximal and B0 = (A, ;) is the
minimal element in this ordering (see figure).
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C

D

B1 = ({1}, full relations)

B0 = ({1}, empty relations)

Proof. If we have a homomorphism A ! C then we can compose it with a homomorphism
C ! D to obtain a homomorphism A ! D and vice versa.

The second part of the theorem is an easy exercise. �

2.12 Remark. If there is a homomorphism f : B ! C such that C � B (we call such C

a retract of B) then CSP(B) = CSP(C). This follows from the previous theorem because
inclusion is a homomorphism.

It is natural to ask what is the smallest substructure of B that still has interesting
CSP. In the following, we introduce the notion of a core that is precisely such structure.

2.13 Definition. A relational structure B is a core if all of is endomorphisms are auto-
morphisms.

2.14 Theorem. Every$ block in the set F of all finite structures of the same similarity
type contains (up to isomorphism) a uniquely determined core.

Proof. Take a structure B in F of minimal jBj = jBj. We claim that B is a core. Let
f : B ! B be an endomorphism, denote by B′ the image f(B) of B. Because B′ � B, we
have B $ B′ as in the above remark and so B′ 2 F . Thus jB′j = jBj and f must be both
injective and surjective. As we have only a finite number of tuples (b1, b2, . . . , bn) and f
induces a bijection of tuples, f−1 must be a homomorphism and so f is an isomorphism.

If now B,B′ are both cores, then obviously jBj = jB′j are minimal. And thus any
f : B ! B′ is a bijection. By the same argument as above, f must be also an isomorphism.

�
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2.1 Basic constructions

2.15 Lemma. Let A be a finite set. Then there exists a k 2 N such that for all f
mappings A! A it is f 2k = fk.

Proof. Fix x 2 A. Then the elements of the sequence x, f(x), f 2(x), . . . will eventually
start to repeat themselves: It is f t(x) = f s(x) for some 0 � t < s � jAj and thus
f t+v(x) = f s+v(x) for all v 2 N. Denote by p the period s � t and by q the preperiod t.
Notice that it is 0 � p, q � jAj.
Let now k = jAj!. Obviously, k � q and pjk. Putting l = k

p we can write

f 2k(x) = fk+k(x) = fk+lp(x) = fk(x),

proving the lemma. �

2.16 Theorem. (“We can add equalities.”) Let B = (B,R) and B′ = (B;R [ f=Bg)
where =B is the relation f(b, b)jb 2 Bg. Then CSP(B) and CSP(B′) are poly-time equiv-
alent.

Proof. We need to find two reductions. The easy one is CSP(B) to CSP(B′): Given
A similar to B, we produce A′ = (A;RA [ f=Ag) where =A is empty. Then A ! B iff
A′ ! B′ and so we have a reduction.
The other direction takes a little bit of effort: Take A′ = (A′,RA [ =A′) where =A′

is any binary relation on A′ (it need not be an equivalence). Let S be the equivalence
relation generated by =A′ (the transitive, reflexive and symmetric closure of =A′).
For each equivalence class [c] of S take one representative element c and let A � A′ be

the set of these representative elements. Put (c1, . . . , cn) 2 RA iff there exists (a1, . . . , an) 2
RA′

such that 8i, ai 2 [ci]. We claim that then there exists a homomorphism f : A′ ! B′

iff there exists a homomorphism g : A ! B. We prove both implications separately:

“)” It is easy to see that if ai 2 [ci] then (f(ai), f(ci)) 2 =B and so f(ai) = f(ci).
So the set f([c]) has one element and it makes sense to let g(c) = f([c]). If now
(a1, . . . , an) 2 RA′

then (f(c1), . . . , f(cn)) = (f(a1), . . . , f(an)) 2 RB′

= RB and so
g is a homomorphism A ! B.

“(” If there exists a g : A ! B homomorphism we can extend g to A′ as f(a) = g(c) for
all a 2 [c]. If (a1, . . . , an) 2 RA then (c1, . . . , cn) 2 RA′

and so (f(a1), . . . , f(an)) =
= (g(c1), . . . , g(cn)) 2 RB.

�

In the following we will use the notion of primitive positive formula. Given a class Ω of
formulas we can produce a formula 9α1 . . . 9αn, φ1(�, . . . , �)^ � � � ^φn(�, . . . , �) where the
stars are either free variables (say, x1, . . . , xm) or the variables α1, . . . , αn. The formulas
φi all belong to the class Ω.

2.17 Example. An example of a primitive positive formula using Ω = f<g is the formula
ψ(y, z) = 9x, x < y ^ z < x.
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2.18 Motivation. When reducing SAT to 3-colourability we have used a certain sub-
graph as a tool for expressing logical statements in terms of colours. In that case, we have
used the relation “u and v have different colours” to produce more complicated relations,
such as x _ y _ z. We shall now use primitive positive formulas to perform similar feats
with general relational structures.

2.19 Definition. For a set Γ of finitary3 relations on a set A, define hΓi as the set of all
relations that can be expressed by primitive positive formulas using only Γ and “=”. We
say that Γ is a relational clone if Γ = hΓi.
Given a set X, a closure operator on X is a mapping c : 2X ! 2X such that:
(i) Y � c(Y ) for all Y � X.

(ii) c2 = c.

(iii) Y � Z ) c(Y ) � c(Z) for all Y,Z � X.

A lattice is any partially ordered set L such that for each x, y 2 L there exists x ^ y
infimum and x_ y supremum of the pair. A lattice is complete if every set of its elements
has both the supremum and the infimum.

2.20 Exercise. Let X be a set and c a closure operator on X. Then X ordered by
inclusion is a complete lattice. The supremum of a set Y can be computed as c(SY ∈Y Y )
and the infimum as

T
Y ∈Y c(Y ).

2.21 Proposition. h�i is a closure operator on the set of sets of relations. Thus the set
of relational clones is a complete lattice (with ordering given by inclusion).

Proof. It is an easy exercise to check that the conditions (i)–(iii) all hold for h�i. �

The following theorem allows us to easily find reductions between many kinds ofprob-
lems.

2.22 Theorem. If hR1i � hR2i then CSP(B,R1) is poly-time reducible to CSP(B,R2).
Proof. All we actually need is that R1 � hR2i. That means that for every R 2 R1 we
have a primitive positive formula ψR using R2 equivalent to R. Each ψR can be written
in the form:

ψR(x1, . . . , xn) = 9u1, . . . uk, S1(xπ1,1 , . . . , xπ1,n1
, uρ1,1 , . . . , uρ1,k1

) ^ S2(� � � ) ^ � � � ^ Sm(� � � )
for some Si 2 R2 and ni � n, ki � k (this models the fact that all variables need not be
present in all relations) and a suitable set of numbers πi,j 2 f1, . . . , ng. Do not fear triple
indices; they are here only to show how we choose of variables from the set fx1, . . . , xng.
Assume for now that all Si’s are mutually different.

3A relation is finitary if it has finite arity.
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Consider the relational structure G of signature R with the underlying set G =
= fa1, . . . , an, b1, . . . , bkg. The relations of G are trivial iff they are not one of Si’s,
otherwise it is SG

i = f(aπi,1
, . . . , aπi,ni

, bρi,1
, . . . , bρi,ki

)g.
Observe now that any mapping f : G ! B maps (a1, . . . , an) to an element in R iff

f : G ! (B,R2) is a homomorphism: The right side is true iff for all i = 1, . . . ,m
it is (f(aπi,1

), . . . , f(aπi,ni
), f(bρi,1

), . . . , f(bρi,ni
)) 2 Si which is precisely the condition

ψR(f(a1), . . . , f(an)).

Now return to our assumption that Si’s are mutually different. If this is not true, we
can recover by taking SG

i as the set of all tuples (aπj,1
, . . . , aπj,nj

, bρj,1
, . . . , bρj,kj

) for j such

that Sj = Si. Now again f will be a homomorphism iff (f(a1), . . . , f(an)) 2 R.
For all R 2 R1 we construct such structures GR. While such construction might in

general take a long time, this time is not dependant upon the size of the input and thus
adds only a constant to the time complexity of the algorithm.

Let us now have an instance A = (A,RA
1 ) of CSP(B,R1). We want to produce a

reduction to an instance A′ of CSP(B,R2).
The underlying set of A′ will be A[B where B is the set of additional elements. For

every (a1, . . . , an) 2 RA 2 RA
1 , we add the corresponding b1, . . . , bk and use the elementsfa1, . . . , an, b1, . . . , bkg to embed a copy of GR into A′. While elemnts of A might be shared

among differenct GR’s, each time we find a new tuple (a1, . . . , an) 2 RA, we add brand
new b1, . . . , bk. All this can be done in polynomial time, as we have only polynomially
many n-tuples (and finitely many relations in R1).
It remains to observe that f : A′ ! (B,R2) iff f restricted to each copy of GR is a

homomorphism iff 8RA 2 RA
1 ,8(a1, . . . , an) 2 R it is (f(a1), . . . , f(an)) 2 R iff f restricted

to A is a homomorphism A ! (B,R1). �

2.23 Example. We shall clarify the main points of the above construction by performing
it for one concrete case. Consider two structures on B = f1, 2, 3g given by R1 = fRg andR2 = f6=g with R = f(x, y, z) : x = y ) z = xg. Obviously, CSP(B,R2) is the problem
of existence of a graph homomorphism to K3. We want to show that CSP(B,R1) is
poly-time reducible to CSP(B,R2). First notice that R can be rewritten as ψR(x, y, z) =
= 9u, v, x 6= u^ u 6= v ^ y 6= v ^ z 6= u^ z 6= v which is in h6=i. So, by the above theorem,
there is a reduction.

The graph GR from the previous proof is depicted below:
a1 a3 a2

b1 b2

To show how the reduction works, we shall transform the instance A = (fα, β, γ, δ, ǫg,f(α, β, γ), (γ, δ, ǫ)g) of CSP(B,R1) to an instance of CSP(B,R2). Consider the following
graph created by joining together two copies of GR:
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α γ β

b1 b2

ε δ

b′
1

b′
2

It is not hard to see that homomorphisms from this graph to K3 correspond to ho-
momorphisms A! (B,R1) so we have the desired reduction.
2.24 Problem. Given two finite sets R1,R2, is it decidable whether hR1i � hR2i?
It is obviously enough to decide for all R 2 R1 whether R belongs to R2. Let n be the

arity of R. We shall show that R 2 R1 can checked in finite (albeit long) time by checking
all the primitive positive formulas from R2 that contain at most An new variables. Before
we do that, however, let us dwelve a bit deeper into universal algebra.

2.25 Definition. Let R be a k-ary relation on the set A and f an n-ary operation on A.
We say that R is an invariant relation under f or that f is a polymorphism of R if for
every n-tuple of k-tuples fr1, . . . , rng (where ri = (a1i, . . . , aki)) 2 R we have

(f(a11, . . . , an1), . . . , f(ak1, . . . , akn)) 2 R.
In the above situation, we will often use shorthand notation:

(f(r1), . . . , f(rn)) = (f(a11, . . . , an1), . . . , f(ak1, . . . , akn))

While this notation might be slightly unclear at first, it helps us avoid drowning in vari-
ables and indices. We will also sometimes write the above condition in the form of a table
such a this one:

(a11, . . . , a1k) 2 R
...

...
...

(an1, . . . , ank) 2 R
(f(a11, . . . , an1), . . . ,f(ak1, . . . , akn))2 R
Remember that in universal algebra, an algebra consists of the nonempty support set

A together with a set F of finitary (ie. of finite arity) operations on A. We say that
an algebra is nontrivial if jAj � 2. Groups, fields, boolean algebras and lattices are all
examples of algebras. The k-th power of algebra A (denoted by An) is an algebra with
the support set Ak and all operations retained from A, only acting coordinatewise.

2.26 Observation. The k-ary relationR is a subalgebra of (A, f)k iff f is a polymorphism
of R.
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2.27 Exercise. Show that any unary mapping f is a polymorphism of (A,R) iff it is an
endomorphism of (A,R).

2.28 Exercise. What are the polymorphisms of the structure (f1, 2, 3g, f6=g)?
2.29 Definition. Let Γ be a set of relations on A, let

Pol(Γ) = ff : An ! Ajf is a polymorphism of all R 2 Γg.
2.30 Definition. If Φ is a set of operations on A, let

Inv(Φ) = fR 2 AnjR is invariant under all operations f 2 Φg.
2.31 Remark. We know that an n-ary relation R is an invariant relation of an algebra
A iff R is a subalgebra of An. Using a notation common in universal algebra tools, we
can write Inv(A) = SPfinA where the operator S stands for “subalgebras” and Pfin for
“finite powers” of the given algebra or a set of algebras.

The operations Inv,Pol provide a connection between the lattice of sets of relations
on A and the lattice of sets of finitary functions from A to A.

∅ only projections

all functions
∞⋃

n=1

P (An)

Γ

Inv (Pol(Γ))

Pol(Γ)

The following observation formalises this notion of connection.

2.32 Observation. The operations Pol, Inv form a Galois connection, that is:

(i) Γ � Γ′ ) Pol(Γ′) � Pol(Γ)
(ii) Φ � Φ′ ) Inv(Φ′) � Inv(Φ)
(iii) Γ � Inv(Pol(Γ))
(iv) Φ � Pol(Inv(Γ))

2.33 Exercise. Prove using (i)–(iv) that Pol(Γ) = Pol(Inv(Pol(Γ))) and Inv(Φ) =
= Inv(Pol(Inv(Φ))).
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2.34 Definition. A mapping f : An ! A is a projection if 9i such that f(a1, . . . , an) = ai

for all tuples (a1, . . . , an) 2 An.

2.35 Definition. A set Φ of finitary operations on A is a functional clone iff it is closed
under composition of operations and contains all projections π : An ! A. Any function
formed by composing operations from Φ is called a term.

2.36 Theorem. Let A,Γ be finite. Then Pol(Γ) is always a functional clone and Inv(Φ)
is always a relational clone.

Proof. The first claim is trivial: All projections are polymorphisms and a composition
of two polymorphisms is a polymorphism.

To prove the second claim, we prove that Inv(Pol(Γ)) = hΓi. This means that
Inv(Φ) = Inv(Pol(Inv(Φ))) = hInv(Φ)i, proving our proposition.
First notice that Pol(Γ) = Pol(hΓi). The � inclusion is obvious. To prove �, consider

f 2 Pol(Γ) and a relation ψ(a1, . . . , ak) = 9b1, . . . , 9bm, φ(a1, a2, . . . , ak, b1, . . . , bm) where
φ is a conjuction of relations from Γ. If now r1, . . . , rn are k-tuples such that ψ(ri) holds
for each i then there exist s1, . . . , sn m-tuples such that φ(ri, si) holds for each i. But
because φ is a simple conjunction of relations from Γ and f is a polymorphism in Γ, we
see that φ(f(r1, . . . , rn), f(s1, . . . , sn)) holds. But then also ψ(f(r1, . . . , rn)) and so f is a
polymorphism in hΓi. This means that Inv(Pol(Γ)) = Inv(Pol(hΓi) � hΓi
Using the fact that jAj is finite we prove that Inv(Pol(Γ)) � hΓi.
Consider Fn the set of functions ff(π1, . . . , πn) : f polymorphism of Γg. Here πi are

projections An ! A to the i-th element. Universal algebra students notice that this is
the n-generated free algebra in the variety generated by A, although we will not need this
fact in our proof. Obviously, Fn � AAn

so we can fix the order of elements in An and
understand Fn as an jAjn-ary relation. It is (x1, . . . , x|A|n) 2 Fn iff there exists f 2 Fn

such that xi is the i-th value of f . We will now prove that in this sense it is Fn 2 hΓi.
The condition “f is an n-ary polymorphism of Γ” can be rewritten as: “For all R 2 Γ

k-ary relations and for all M 2 An×k with rows in R it is f(M) 2 R.” (Notice the
abuse of notation.) When A,Γ are finite, there exists a finite primitive positive formula
that checks whether the function given by (x1, . . . , x|A|n) is a polymorphism: If n-tuples
number i1, i2, . . . , ik form a matrix M from the above condition, we ask whether f(M) =
= (xi1 , . . . , xik) 2 R. There are only finitely many such relations and sets of n-tuples so
we can conjunct all these conditions into a primitve positive formula ψ(x1, . . . , x|A|n).

Let now R 2 Inv(Pol(Γ)) be a k-ary relation. Then we can write R = fr1, r2, . . . , rmg
where ri are k-tuples. We now claim that R is basically just Fm restricted to certain
coordinates.

Let us now for each i write ri = (ri,1, . . . , ri,k) and let j1, j2, . . . , jk be indices such
that for each f = (x1, . . . , x|A|m) it is f(r1,l, . . . , rm,l) = xjl

. Then it is also f(r1, . . . , rm) =
= (xj1 , xj2 , . . . , xjk

). Observe that for f = πi this means (xj1 , . . . , xjk
) = ri. If now

f = (x1, . . . , x|A|m) 2 Fm then because f is an R-polymorphism it is (xj1 , xj2 , . . . , xjk
) =

f(r1, . . . , rm) 2 R. We conclude that the set of homomorphisms Fm limited to coordinates
j1, . . . , jk is precisely R (because limited Fm contains all the elements ri and nothing else).
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We can easily describe the coordinate limitation using a primitve positive formula: Let ψ
be a formula for Fm. For the sake of readability (and without loss of generality) let jl = l
for l = 1, 2, . . . , k. Then the formula for R will be

φ(a1, . . . , ak) = 9u1, . . . , 9um−kψ(a1, . . . , ak, u1, . . . , um−k).

This means that R 2 hΓi and so the proof is complete.
The following picture might help us better understand the last step of the proof:

π1 πm. . .

r1 rm

j1

jk

Nothing new here, just
f(r1, . . . , rm).

�

2.37 Remark. The proof of the previous theorem also shows that we need at most jAjm
new variables to rewrite a k-ary relation satisfied by m tuples.

2.38 Theorem. (“We can add constants.”) Let B = (B,R) be a core. Then CSP(B)
is polynomial-time equivalent to CSP(B,RB [ fconst(b)B : b 2 Bg) where “const(b)B” is
the unary relation f(b)g.
Proof. Call the second relational structure B′. We need reductions CSP(B)! CSP(B′)
and CSP(B′)! CSP(B).
The first reduction is easy: We just need to add empty relations, turning A = (A,RA)

into A′ = (A,RA [ fconst(b)A : b 2 Bg) where const(b)A = ;. Now any homomorphism
A′ ! B′ need only satisfy the relations from R and thus exists iff exists a homomorphism
A ! B.

The other reduction is slightly more difficult. Let B = fb1, . . . , bng and let R =
= f(f(b1), . . . , f(bn))jf : B ! B is an automorphism of Bg. Then R 2 hRi because we
can check whether (f(b1), . . . , f(bn)) is a set of values of an automorphism using a finite
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set of conditions like in the proof of Theorem 2.36. For example, if S is a binary relation
and (b1, b2) 2 S then we add the condition (f(b1), f(b2)) 2 S into the description of R.
Denote B′′ = (B,R [ fR,=g). We know that R 2 hRi and so, using theorems 2.16 and
2.22 we can reduce CSP(B,R[fR,=gg to CSP(B,R) and to complete the proof we only
need the reduction of CSP(B′) to CSP(B′′).

Given an input A = (A,R [ fconst(b)A : b 2 Bg), consider A′ = (A[̇fb1, . . . , bng,R [ fR,=A′g) where [̇ denotes disjoint union. For all s 2 R we let sA′

= sA. We define
the equivalence relation =A′ so that =A′ is identity relation on A and for b 2 B, a 2 A it
is b=A’ a iff a 2 const(b).
We want to show that this is a reduction from CSP(B′) to CSP(B′′). If there exists a

homomorphism f : A ! B′ then we obtain a homomorphism g : A′ ! B′′ by letting g|A =
= f and g(bi) = bi for i = 1, . . . , n. On the other hand, if g : A

′ ! B′′ is a homomorphism
then h = g|B : B ! B is an automorphism of B′′ because (g(b1), . . . , g(bn)) 2 R. Then
f = h−1g is a homomorphism A′ ! B′′ such that f(bi) = bi and f|A is the needed
homomorphism A ! B′. �

2.39 Theorem. If CSP(B) is in P then there exists a polynomial algoritm that, for a
given A, finds a homomorphism f : A ! B or proves that no such homomorphism exists.

Proof. The idea of the proof is quite simple: We keep adding constraints and use our
poly-time oracle (CSP algorithm) to check that these constraints still allow a homomor-
phism to exist. In the end, we either run out of possibilities or our constraints specify an
unique homomorphism. The following proof formalises this idea.

First of all, we show that it is enough to prove the theorem for cores with constants.
Let B be a general relational structure. Because the size of B is not a part of the input, we
can find the core C = (C,R) of B in constant time. Let D = (C,R [ fconst(c) : c 2 Cg)
be the core with constants, const(c) = f(c)g for all c 2 C.
We know that CSP(B) is poly-time equivalent to CSP(D). Because CSP(B) is in

P, there is a polynomial time algorithm p deciding whether a given A is in CSP(D).
Moreover, if f : A ! D is a homomorphism and we let A′ be A stripped of all const(c)
relations then f is also a homomorphism from A′ to B.

Take now any instance A = (A,R [ fconstA(c) : c 2 Cg) of CSP(D). (If A is similar
to B, we can let constA(c) be empty for all c.) Let A = fa1, a2, . . . , ang. If p(A) outputs
that A 62 CSP(D) we are done and answer in negative. We shall define by induction a
sequence f(a1), f(a2), . . . , f(an) 2 B describing a homomorphism f : A ! D.

Start with i = 1. Assume that f(a1), . . . , f(ai−1) are defined already and that they
are the values of some homomorphism f : A ! D. First, we guess the value of f(ai) (there
are only jCj possibilities). Then define Ai as a relational structure similar to A such that
RAi = RA for all R 2 R and constAi(c) = constA [f(aj) : j � i, f(aj) = cg. Notice that
in this notation it is A0 = A and that homomorphisms g : Ai ! D are precisely the
homomorphisms A ! D that satisfy g(aj) = f(aj) for j = 1, 2, . . . , i. In particular, our
hypothetical homomorphism f is also a homomorphism Ai ! D.

There are jCj possible values of f(ai) and thus jCj possible candidates for the structure
Ai. By running the algorithm p on each of these candidates, we obtain some c 2 C such
[22.2.2008, 20:45] 17
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that there exists a homomorphism A ! D with first i values f(a1), . . . , f(ai−1), c. But
that is precisely what we want, so we fix these values, increase i by one and continue.
In the end, we obtain a complete homomorphism f(a1), . . . , f(an). Notice that f is the
unique homomorphism An ! D. �

2.2 Binary relational structures

In this section we shall discuss the case where the relational structure B is binary, i.e.jBj = 2. In the binary case, we not only have dichotomy, but we can actually decide
whether CSP(B) is NP-complete or in P by looking at the set Pol(B).

Let B = f0, 1g. We begin by defining the following operations on B:
(i) Unary 0 and 1 constant operations given by 8x, 0(x) = 0, 1(x) = 1.
(ii) Unary negation defined as :x = x+ 1 (mod 2).
(iii) Binary and defined by x ^ y = 1 iff x = y = 1.
(iv) Binary or defined as x _ y = 1 iff x = 1 or y = 1.
(v) The plus operation p(x, y, z) = x+ y + z (mod 2).

(vi) The majority operation m(x, y, z) = 1 iff at least two of the numbers x, y, z are 1.

2.40 Definition. An operation f : An ! A is idempotent if f(a, a, . . . , a) = a for all
a 2 A.
2.41 Definition. An operation f : An ! A is a projection (to the i-th coordinate) if there
exists an i such that for all a1, . . . , an 2 A it is f(a1, . . . , an) = ai. When A = f0, 1g, we
say that an operation f negates projection if there exists i such that f(a1, . . . , an) = :ai.

2.42 Definition. An operation f : An ! A is a near unanimosity (often abbreviated as
“nu”) if

f(x, . . . , x, x, y) = f(x, . . . , x, y, x) = f(x, . . . , y, x, x) = � � � = f(y, x, . . . , x) = x.
2.43 Theorem. Let B = (f0, 1g,R). Then either B admits at least one of the polymor-
phisms 0, 1,^,_,p,m or all polymorphisms of B are projections or negate projections.
Proof. If B is not a core then it admits by definition an unary polymorphism 0 or 1.
Assume that B is a core. Then each unary polymorphism of B is an automorphism and
the group of automorphisms of B is a subgroup of S2.

For f 2 PolB, define σ(x) = f(x, . . . , x). It must be σ2 = id because σ is either
the identity or the negation. We claim that σ Æ f is idempotent. This means precisely
that σ Æ f(x, x, . . . , x) = x and we have just shown that x = σ2(x) = σ(f(x, . . . , x)). This
construction gives us a tool to turn any polymorphism f into an idempotent polymorphism
σ Æ f . Notice that σ Æ f = f or σ Æ f = :f .
It is therefore sufficient to prove that if a core B does not admit ^,_,p and m then

any idempotent polymorphism f of B is a projection. We shall prove this by an unusual
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induction on the arity q of f idempotent polymorphism of B – there will be several first
induction steps, as we have to do the the first few values of q by hand, getting some elbow
room to handle the general case.

q = 1 This case is trivial, as f = id.
q = 2 Write the values of f into a table:

f 0 1
0 0 ?
1 ? 1

There are only four possible ways of writing 0 or 1 in place of the question marks,
and the four resulting maps are the projection to first or second coordinate, _ and^, respectively. We conclude that the theorem holds for q = 2.

q = 3 First notice that f(:x,:y,:z) = :f(x, y, z). We can see this by noticing that
at least two of the variables x, y, z must be equal, without loss of generality let
x = y. Then g(x, z) = f(x, x, z) is, by induction assumption, a projection and so
f(:x,:x,:y) = :f(x, x, y).
Because we know that f(0, 0, 0) = 0, f(1, 1, 1) = 1, all we need to determine f

is to know the values of f(0, 0, 1) = a, f(0, 1, 0) = b and f(1, 0, 0) = c. If a = b =
= c = 1 resp. a = b = c = 0 we get f = p resp. f = m. There are only two more
cases left (up to permutation of variables):
(i) Let a = 1, b = c = 0. Here, it is f(x, y, z) = x and f is a projection.
(ii) Let a = b = 1, c = 0. In this case, let t(x, y, z) = f(x, y, f(x, y, z)). Then t
is also an idempotent polymorphism and t(:x,:y,:z) = :t(x, y, z). Directly
calculating the values, we see that it is t(1, 0, 0) = t(0, 1, 0) = t(0, 0, 1) = 0
and so t = m.

q � 4 We shall first prove that if f is not a projection then it is a near unanimosity (nu)
operation.
Assume that f(0, 0, . . . , 0, 1) = 1. Then, by induction assumption, we have

a set of projections: π1 = f(x, x, x3, x4, . . . , xq), π2 = f(x, x3, x, x4, . . . , xk), π3 =
= f(x3, x, x, x4, . . . , xq). We know that these are projections on the last coordinate
because f(0, . . . , 0, 1) = 1. Again, in the general case at least two of the first three
variables must be equal, so it is f(x1, . . . , xq) = xq, a projection. By a similar
argument, it must be f(1, . . . , 1, 0) = 1 and by premuting the variables, we get
that f(x, . . . , x, y, x, . . . , x) = x.
The nu property is quite powerful and quickly brings us to a contradiction. We

know that it is f(0, 1, . . . , 1) = 1, so f(0, x2, . . . , xq) is, by the induction hypothesis,
a projection to the i-th coordinate for some i 2 f2, . . . , qg. But then it would
be f(0, . . . , 0, 1, 0, . . . , 0) = 1 (with one in the i-th place), contradicting the nu
property.

�

Let us visualise the previous theorem: We have proven that anything strictly aboveh:i in the (functional) clone lattice of f0, 1g is also above at least one of h0i, h1i, h^i, h_i,hpi, hmi. The lattice of functional clones is sometimes called the Post’s lattice of clones .
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〈0〉〈1〉〈¬〉 〈m〉〈p〉〈∨〉〈∧〉

Let us say a few words about the properties of this lattice. First of all, notice that all
the above clones are atomic, ie. there is no nontrivial element of the Post’s lattice below,
say h0i. In case of h0i, it is an easy observation that h0i is the set of all projections and all
the maps f(x1, . . . , xn) = 0 (n-ary zeroes) and any n-ary zero generates the unary zero,
so any subclone of h0i is either trivial or h0i.
2.44 Exercise. Prove that h1i, h^i, h_i, hpi, hmi and h:i are also atomic clones.
From the Theorem 2.43 we obtain that any functional clone that does not contain

any of the clones h0i, h1i, h^i, h_i, hmi, hpi must be contained in h:i.
Our goal now is to prove that CSP(B) is in P iff B admits at least one of the operations

0, 1, ^, _, p, m and is NP-complete otherwise. The original proof of this result is due to
Shaefer from 1978.

For A general algebra, f is a permutation of a projection if f(x1, . . . , xn) = σ(xi) for a
fixed i and σ 2 Aut(B). For example, if B is a binary algebra admitting the automorphism: then negation of a projection is a permutation of a projection.
2.45 Lemma. Let A = (A,R) be a relational structure such that jAj � 2 and all
polymorphisms of A are projections or permutations of projections. Then CSP(A) is
NP-complete.

Proof. First notice that because all unary polymorphisms of A are automorphisms, A

is a core. Using Theorem 2.38 we obtain that CSP(A,R) is poly-time equivalent with
CSP(A,R [ fconst(a)ja 2 Ag) = CSP(C) where const(a) are the unary constants. Obvi-
ously, Aut(C) is trivial, as every automorphism has to preserve unary constants. Thus C

has only projections as its polymorphism. Intuitively, this means that the set of relations
of C is very rich.

We shall now reduce 3-SAT to CSP(C). Begin by choosing two distinct elements
of A and labeling them 0 and 1. Recall that the relations in 3-SAT can be written
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as Sαβγ = f0, 1g3 n f(α, β, γ)g where α, β, γ are one or zero. But because Pol(C) is the
smallest possible functional clone, using the Galois correspondence we obtain that hRCi =
= Inv(Pol(C)) = 2A and so Sαβγ 2 hRCi. Due to Theorem 2.22 we have that 3-SAT can
be poly-time reduced to CSP(C), concluding our proof. �

2.46 Remark. The previous theorem implies that if B does not admit 0, 1, ^, _, p, m
then CSP(B) is NP-complete.

2.47 Remark. Notice that the above theorem does not requie that B be binary, it works
for every nontrivial relational structure.

2.48 Lemma. If B admits a constant polymorphism (i.e. 0 or 1) then CSP(B) is in P.

Proof. In this case, B is very simple indeed. Denote by B0 the image of B under 0. Then
B0 is a retract of B and so CSP(B0) = CSP(B). Now if C is a relational structure, there is
only one candidate for a homomorphism; namely the map f(c) = 0 for each c 2 C which
is a homomorphism iff RB = ; ) RC = ;. �

2.49 Lemma. If B admits ^ or _ then CSP(B) is in P.
Proof. First note that by switching one and zero, we interchange ^ with _, as it is:(:x^:y) = x_ y. Thus it is enough to prove that whenever B admits ^ then B is in P.

Without loss of generality assume that B is a core (if not, we use the previous
lemma). Obviously, CSP(B,R) can be reduced to CSP(C) = CSP(B,R [ const(1))
where const(1) = f(1)g is the unary constant 1. In the following, the letter R can stand
for any relation R 2 RC with the exception of const(1).

Let now A be a relational structure similar to C. First note that by slightly abusing
notation, we can consider const(1)A to be identical with the set fa 2 A : (a) 2 const(1)Ag.
We want to iteratively construct a homomorphism f : A ! C. Obviously, if x 2 const(1)A
then f(x) = 1. This statement defines a map f1 : const(1)

A ! C. If this is not a
homomorphism then there obviously can be no f : A ! C and so we are done. Assume
thus that f1 is a homomorphism from the substructure of A induced by the set const(1)

A.
Such mappings are called partial homomorphisms and will play an important role later
in the bounded width theory. If const(1) = A then we are done, otherwise we want to
extend f1.

This extension has two steps. In the first step, we transform the problem so that
there is no (a1, . . . , ak) 2 RA such that for some i it is f1(ai) = 1. Assume that
a1, . . . , al 2 const(1)A for 0 < l < k (we can permute relations). The condition is
(1, . . . , 1, f(al+1), . . . , f(ak)) 2 RC. Consider the relation RC

l+1,...,k = f(cl+1, . . . , ck) :
(1, . . . , 1, cl+1, . . . , ck) 2 RCgOur condition is equivalent with (f(al+1), . . . , f(ak)) 2 RC

l+1,...,k.
Therefore, we can remove (a1, . . . , ak) from RA and add to the signature a new relation
Rl+1,...,k defined in A as RA

l+1,...,k = f(al, . . . , ak)g and in C as the above RC

l+1,...,k. We can
do this for every tuple (a1, . . . , ak) 2 RA, finally obtaining (in polynomial time) a situation
where no (a1, . . . , ak) 2 RA contains ai, f1(ai) = 1. We have modified both structures A,C
but it is easy to see that these changes can not turn a non-homomorphism f : A ! C to
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a homomorphism or vice versa.
In the second step of our extension procedure, we eliminate all nonempty RC such that

(0, . . . , 0) 62 RC. Let us have one such RC. Then we take r =
V
RC = r1^r2^� � �^rm wherefr1, . . . , rmg = RC. Because RC is ^-invariant (and ^ is associative), we know that r 2 RC.

As r 6= (0, . . . , 0), it is for some index i true that (s1, . . . , sk) 2 RC ) si = 1. Observe now
that R-satisfaction can be emulated by putting all s 2 A such that Ai−1�fsg�Ak−i\RA 6=
= ; into const(1)A, replacing RC with RC

1,...,i−1,i+1,...,k, and replacing the relation R
A withf(s1, . . . , si−1, si+1, . . . , sk) : (s1, . . . , sk) 2 RAg. Thus we have enlarged the set const(1)A

and obtained a mapping f2 : const(1)
A ! C. After checking that f2 is indeed a partial

homomorphism, we can again extend const(1)A, obtaining f3, and so on.
Assuming that f1, f2, . . . are all partial homomorphisms, when can we no longer extend

const(1)A? This only happens if for all nonempty RC it is (0, . . . , 0) 2 RC. But thanks to
the first step we can assume that (a1, . . . , ak) 2 RA ) a1, . . . , ak 62 const(1)A. Thus we
can define f : A ! B as f(x) = 1 for x 2 const(1)A and f(x) = 0 otherwise. Because
for all nonempty RC it is (0, . . . , 0) 2 RC, f is a homomorphism iff for all R it is RC =
= ; ) RA = ;. But that is a necessary condition for the existence of any homomoprhim
A ! B. So A 2 CSP(B) iff f is a homomorphism and the problem is solved.
We shall leave to the reader to verify that the running time of all extension procedures

can be limited by some polynomial of jAj. Because we have done at most jAj extensions,
the whole algorithm is polynomial-time. �

2.50 Remark. The preceding proof might seem too complicated to the reader. This is
because we wanted to make sure that we know what is going on when solving CSP(B). As
we shall see, there is also a more general proof of this lemma stemming from the bounded
width theory. This later proof will have the advantage of being less technical while using
the same intuitive ideas.

2.51 Lemma. If B admits p then CSP(B) is in P.

Proof. Here, each nonempty R is an affine space over Z2. To see this, take a nonempty
R and fix r 2 R. Then for any s, t 2 R it is r + s+ t = p(r, s, t) 2 R where the addition
is the addition in Zk

2. Because we are operating over a field of characteristic two, we have

r + (s� r) + (t� r) = r + s+ t 2 R,
so R � r = fs � r : s 2 Rg is a subspace of Zk

2. This subspace can be described using
standard linear algebra methods: There exists a set of vectors u1, . . . , um (basis of the
space perpendicular to R � r) such that for x 2 Zk

2 it is x 2 R � r iff the product hx, uii
is zero for all i.
Now all homomorphisms f : A ! B have to satisfy the condition (a1, . . . , ak) 2 RA )) (f(a1), . . . , f(ak)) 2 RB. Every tuple (a1, . . . , ak) 2 RA then, by the above paragraph,

translates into a set of linear equations (over Z2) of the form h(f(a1), . . . , f(ak))� r, uii =
= 0. The CSP problem is then equivalent to solving a set of linear equations given by all
such tuples (a1, . . . , ak) 2 RA for all R. There are numerous methods (most basic being
the Gauss elimination) for solving such a set in polynomial time. �
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We will solve the case when B admits a majority operation by building the general
theory of bounded width. For now, we just claim that if B admits m then indeed CSP(B)
is in P, finishing the dichotomy proof.

2.52 Theorem. If B is a binary relational structure then CSP(B) is either NP-complete
or in P.

3. Bounded width theory

The basic idea of the bounded width theory is to transform CSP(B) into a simpler ques-
tion: Instead of one complete homomorphism we want a nice set of partial homomor-
phisms, called a (j, k)-strategy. If A 2 CSP(B) then there always exists a (j, k)-strategy,
but the converse implication is not true in general. However, for some B’s, these partial
homomorphisms are all that is needed to produce a full homomorphism.
Recall from the previous section that for A,B relational structures and C � A, f :

C ! B is a partial homomorphism if it is a homomorphism C ! B where C is the
substructure of A induced by the set C. If f, g are partial homomorphisms then we say
that g is an extension of f and f is a subfunction of g, writing f � g, if dom f � dom g
and g|dom f = f . We shall also often use the notation R|K , where R is an n-ary relation
and K � f1, 2, . . . , ng, jKj = k to mean the relation R|K = f(ri1, ri2 , . . . , rik)j(r1, . . . , rn) 2
Rg � Ak, where i1 < i2 < � � � < ik are the elements of K. This is consistent with treating
tuples as functions f1, . . . , ng ! A.

3.1 Definition. Let A,B be similar relational structures, 0 � j < k integers. A nonempty
set H of partial homomorphisms A ! B is a (j, k)-strategy if:

(i) H is closed under taking subfunctions
(ii) H has the (j, k)-forth property , that is 8f 2 H such that j dom(f)j � j and for all

K � A such that dom(f) � K and jKj � k there exists g 2 H, dom(g) = K, f � g.
That is, all “small” f ’s in H can be extended to g, j dom(g)j � k.

3.2 Observation. If A 2 CSP(B) then for any j, k there exists a (j, k) strategy for A

and B.

Proof. Let f : A ! B be a homomorphism. Then all we have to do is take H =
= ff|K jK � Ag and verify that (i) and (ii) hold. �

3.3 Definition. We say that B has relational width (j, k) if

CSP(B) = fAjThere exists a (j, k)-strategy for A and B.g.
3.4 Remark. If B has relational width (j, k) and k is smaller than the arity of the relation
R 2 RB, then we can effectively ignore this relation when making an (j, k) strategy. This
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means that R is not very important (for example, it can be the full relation), because the
condition A 2 CSP(B) does not depend on what RA looks like.

3.5 Definition. B has relational width j if 9k such that B has relational width (as
defined above) (j, k). We say that B has bounded width if there exists a finite j such that
B has relational width j.

The above definition introduces a slight inconsistency in terminology because we now
have two meanings for the term relational width. Fortunately, the two are usually easy
to tell apart.

3.6 Algorithm. (Local Consistency) For any A, B relational structures and 0 � j < k
integers we can in polynomial time (measured in the size of A, we consider j, k,B fixed)
construct a (j, k)-strategy or show that no such strategy exists (i.e. A 62 CSP(B)).
Proof. Let H = ff : A ! Bjf partial homomorphism, j dom(f)j � kg. This set can be
constructed by brute-force methods, as it has cardinality polynomial in the size of A (an
easy upper bound would be jAjk+1jBjk+1). It is easy to see that this H must contain a
(j, k)-strategy, if such a thing exists.

We shall now remove homomorphisms from H until it becomes a (j, k)-strategy or
there is nothing left: We search through H and for each f 2 H check whether H satisfies
first and second condition for (j, k)-strategy when checked at f . If not then we remove
this f and start searching anew.

The maximum run-time of all such checks can be bounded by a polynomial and as
we run at most polynomially many checks, the whole algorithm is polynomial. If at the
end it is H = ; then the program has shown that there can not be any (j, k)-strategy
(If S � H is a (j, k) strategy, then our program will never delete any member of S.),
otherwise H is a valid (j, k)-strategy. �

3.7 Remark. The existence of the above algorithm implies that if B has bounded width,
then CSP(B) is in P, because we just have to check for (j, k) strategies for some j, k.

Having established the general theory, let us look at the case when B admits a near-
unanimosity operation. We want to show that then B has bounded width.

3.8 Lemma. Let R be an n-ary relation invariant under a k-ary near-unanimosity op-
eration t. Then for all r 2 An we have r 2 R iff for all jKj < k,K � f1, 2, . . . , ng, it is
r|K 2 R|K .

Proof. Thorough the proof we will assume that K � f1, 2, . . . , ng. We shall proceed by
induction and show that if for a given r and for all jKj < l it is r|K 2 R|K then 8jKj � l
it is r|K 2 R|K , starting with l = k. When l = n, we will be done.

Assume that we have r such that 8jKj < l, r|K 2 R|K , let (without loss of general-
ity) K = f1, 2, . . . , lg. We need to show that r|K 2 R|K . Because r|{2,...,l} 2 R|{2,...,l},
we know that there exists s1 2 R such that s1 = (?, r2, r3, . . . , rl, ?, ?, . . . , ?) 2 R.
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Here the question marks denote unknown elements of A. In general, there exists si =
= (r1, . . . , ri−1, ?, ri+1, . . . , rl, ?, ?, . . . , ?) 2 R for each i � k. Let us take t(s1, . . . , sk):

(?, r2,r3,. . . ,rl,?, ?, . . . , ?)2 R
(r1, ?, r3,. . . ,rl,?, ?, . . . , ?)2 R
...
...
...

(r1,r2,r3,. . . ,?,?, ?, . . . , ?)2 R
(r1,r2,r3,. . . ,rl,?, ?, . . . , ?)2 R
Notice that t(s1, . . . , sk)|K = r|K and so r|K 2 R|K , concluding our proof. �

3.9 Corollary. Let Γ be a relational clone admitting a k-ary near-unanimosity polymor-
phism. Then Γ = hΓ|<ki, where Γ|<k consist of all relations of Γ whose arity is less than
k.

Proof. One inclusion is obvious. To see that Γ � hΓ|<ki, use the previous lemma. First
of all, for any n-ary relation R 2 Γ we can rewrite the relation (a1, . . . , ak−1) 2 R|{1,...,k−1g
using a primitive positive formula as 9ak, . . . , an, (a1, . . . , an) 2 R and the same can be
done for any R|K . Thus RK 2 Γ|<k for all jKj < k. We also have that (a1, . . . , an) 2 R iff
for all jKj < k it is (a1, . . . , an)|K 2 R|K , that there are only finitely many such K’s and
that R|K are in hΓ|<ki. Thus R is a conjunction of finitely many terms from hΓ|<ki and
so R 2 hΓ|<ki. �

3.10 Lemma. Let B be a relational structure with an r-ary near-unanimosity polymor-
phism t. Then B has relational width r � 1.
Proof. We want to proceed by induction, producing a (j+1, j+2)-strategy from (j, j+
+ 1)-strategy. At the beginning, let j = r � 1 and let H be a (j, j + 1)-strategy.
We shall now make two observations. First, we can assume that RB is a relational

clone and so, thanks to the above corollary, RB = hRB

|<ri. Thus all we have to worry
about are relations of arity less than r.
Our second observation is that instead of H we can take a closure H defined as:

H = ft(f1, . . . , fr)j8i, fi 2 H,8i, j,dom(fi) = dom(fj)g
Because t is a near-unanimosity polymorphism, H � H andH is a set of partial homomor-
phisms. It is also a (j, k)-strategy: If for all i it is gi � fi and dom(gi) = I,dom(fi) = J

then t(g1, . . . , gr) � t(f1, . . . , fr) and the domain of the first function is I and domain of
the second is J . This means that we can take subfunctions. Similarly, to get an exten-
sion, it is enough to extend each of the functions gi. Notice that this construction can be
generalised: If we wished, we could construct the closure of H under all polymorphisms
of B in similar fashion.
For each f 2 H and each aj+2 such that aj+2 62 dom f = fa1, . . . , aj+1g we want to

add to H a function h � f such that domh = fa1, . . . , aj+2g. Denote f(ai) = bi. From
the (j, j + 1)-forth property, we know that in H are also the following functions (the “–”
symbol means “undefined” and ci’s are unknown values):
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f : b1 b2 . . . br . . . bj+1 –
g1 : – b2 . . . br . . . bj+1 c1
g2 : b1 – . . . br . . . bj+1 c2
...

...
gr : b1 b2 . . . – . . . bj+1 cr

Let now h be a mapping defined on fa1, . . . , aj+2g by h(ai) = bi for i � j + 1 and
h(aj+2) = t(c1, . . . , cr). Obviously, f � h. We claim that all subfunctions of h are in
H and that h is a partial homomorphism. It is h|{a1,...,aj+1} = f so the interesting case
is removing ai, i � j + 1. Without loss of generality, let i = 1. From each gi we can
obtain a function g′i by removing a1 from the domain and replacing it with ai using the
(j, j + 1)-forth property. We then have the following functions in H:

g1 : – b2 . . . br . . . bj+1 c1
g′2 : – ? . . . br . . . bj+1 c2
...
g′r : – b2 . . . ? . . . bj+1 cr

t(g1, g
′
2, . . . , g

′
r) : – b2 . . . br . . . bj+1 t(c1, . . . , cr)

Again, we don’t have to care about the question marks because t is a near unanimosity
operation. We see that t(g1, g

′
2, . . . , g

′
r) = h|{a2,...,aj+2} and because H is closed under t we

have h|{a2,...,aj+2} 2 H.
Why is h a homomorphism? As we wrote above, it is enough to check relations of

arity at most r� 1 � j. Then h is a partial homomorphism iff all its restrictions to r� 1
elements are partial homomorphisms. But j domhj = j + 2 and all its restrictions are in
H, so h must be a homomorphism.

After adding h’s for all f 2 H such that j dom(f)j = j + 1 we obtain a set H ′ of
partial homomorphisms that is a (j + 1, j + 2)-strategy. We can close this H ′ under t to
obtain H ′ and continue. In the end, we get a (jAj � 1, jAj)-strategy that contains a full
homomorphism A ! B. �

Let us now return to the case of B binary relational structure. Obviously, m is a
near-unanimosity operation and so B admitting m has width 2 and CSP(B) is in P. We
can also again consider the case of binary ^ and provide a more compact proof of the fact
that CSP(B) is in P.

3.11 Theorem. (Binary ^ revisited) If B is a binary relational structure that admits
the polymorphism ^ then B has relational width 1.

Proof. Let k be the maximum arity of RB or 2, whichever is greater. Let H be a
(1, k)-strategy. As before, we can assume that H is closed under ^. Denote H{a} =
= ff 2 H : dom(f) = fagg where a 2 A. Now let f(a) =

V
H{a} for each a. We claim

that f is a homomorphism.

Let R be an n-ary relation. When (a1, . . . , an) 2 RA we want (f(a1), . . . , f(an)) 2 RB.
Obviously, the map defined only on faig as f(ai) is in H. Thus, using the (1, k)-forth
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property, we can for each i find the following set of maps (as usual, question marks are
unknown elements):

value at a1 a2 . . . an−1 an

g1 : f(a1) ? . . . ? ?
g2 : ? f(a2) . . . ? ?
gn : ? ? . . . ? f(an)

n̂

i=1

gi : f(a1) f(a2) . . . f(an−1) f(an)

Here we have used the fact that gi’s restrictions are all in Haj
and f(a) =

V
Hifag.

Because H is closed under ^, we have n̂

i=1

gi 2 H and so (f(a1), . . . , f(an)) 2 RB, conclud-

ing the proof. �

As a side note, it is not known whether there is a structure with relational width
strictly 3.

3.12 Exercise. Show that any binary B admitting one of 0, 1,_ has bounded width.
3.13 Exercise. Show that there is a binary B that admits p yet does not have bounded
width.

3.14 Exercise. Show that oriented paths (graphs as in the figure below) have bounded
width 1.

3.15 Exercise. Show that directed cycles (see figure) have bounded width strictly 2.
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4. CSP for algebras

In this section, we shall generalise the CSP, our goal is to strenghten the connection with
universal algebra. Let us begin be giving another definition of an instance of CSP. Our
new definiton shows where the name “constraint satisfaction” came from:

4.1 Definition. An instance of CSP is a triple (V,A, C), where:
(i) V is the set of variables
(ii) A is the domain set
(iii) C is the set of constraints : Each C 2 C is a pair C = (S,R) such that S � V is
the scope of C and R � AS is the constrain relation.

We also demand that all sets are finite. The solution of an instance of CSP is a map
f : V ! A such that 8(S,R) 2 C, f|S 2 R.
As we shall see, we can straightforwardly translate this definition into the language

of relational structures and back. We shall give the precise proof in a moment, for now
just notice that the constraints correspond to tuples than must be mapped in a suitable
relation.
This definition opens the way for another approach to CSP: Let Γ be a set of relations

on the set A. Then an instance of CSP(Γ) is any instance of CSP (from the above
definition) such that for all (S,R) 2 C it is R 2 Γ after a suitable ordering of elements of
S (ordering defines a bijection RS ! R|S|). The ordering part can be confusing, but it
is merely a technical problem. We usually demand that Γ be finitely defined, otherwise
CSP(Γ) is a relative decision problem, that is, we must trust that the input is acutally a
valid instance of CSP(Γ).

4.2 Proposition. If Γ is a finite set of relations on the set A then CSP(Γ) is poly-time
equivalent to CSP((A,Γ)), the latter being a CSP problem for relational structures.

Proof. Let A = (A,Γ). We show how translate instance of one problem to an instance
of another in polynomial time to the size of the instance.
Let us have an instance (V,A, C) of CSP(Γ). We want to find the corresponding

instance of CSP((A,Γ)). Let in the beginning B = (V,Γ), and all the relations in ΓB be
empty relations. Notice that every scope S of a constraint (S,R) has by definition an
ordering (such that after this ordering it is R 2 Γ) associated to it and we can view the
ordered set S � V as a tuple. For every (S,R) 2 C we add this tuple S into RB.
After we add all the constraints, we obtain some B such that f : B ! A is a homo-

morphism iff for every S scope of (S,R) it is f(S) 2 R (we again view S as a tuple and
R as a subset of A|S|). This condition is precisely the same as f|S 2 R, so we have a
polynomial-time reduction of CSP(Γ) to CSP((A,Γ)).
On the other hand, if B = (B,ΓB) is a relational structure, then for every (b1, . . . , bk) 2

RB we create a new constraint (fb1, . . . , bkg, R) where R is the subset of A{b1,...,bk} cor-
responding in the natural way to RA � Ak. It is easy to see that the resulting instance
(V,A, C) has a solution iff B 2 CSP((A,Γ)). �
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To make the above proof a bit easier to swallow, we now present an example of turning
an instance of CSP((A,Γ)) to an instance of CSP(Γ)

4.3 Example. Let Γ contain only one relation: the set EG of all edges of a graph G on
the vertex set A. Then G = (A,Γ) is a relational structure. Given a graph H = (V,EH),
we produce for each (u, v) 2 EH the new constraint Cuv with scope Suv = fu, vg and the
constraint relation (f(u), f(v)) 2 EG, obtaining an instance of CSP (V,A, C).

u

v

w

H G

We will now define CSP for a finite algebra A in two ways: For relational structures
and for CSP(Γ). Both notions are quite similar, only the language is different. Also, the
first set of definitions is more elementary and thus perhaps easier to understand..

4.4 Definition. Let A = (A,F) be an algebra. We say that a relational structure (A,R)
is compatible with A if it is R � Inv(F), i.e. F � Pol(R).
4.5 Definition. Let A be an algebra. Then

CSP(A) = f(A,B)jB is compatible with A and A 2 CSP(B)g.
We say that A is globally tractable if CSP(A) is in P and that A is locally tractable

if for every B compatible with A, CSP(B) is in P. It is not known whether there is an
algebra that is locally tractable but not globally tractable.

We now give the second definition of CSP for algebras. Strictly speaking, this problem
is different from the CSP(A) given above (it is not a subset of pairs of relational struc-
tures), but both notions are poly-time equivalent and we shall use them interchangingly.

4.6 Definition. If A is an algebra then CSP(A) = CSP(Inv(A)).

If Γ is a set of relations then we say that Γ is globally tractable if CSP(Γ) is in P. We
say that Γ is locally tractable if for every finite Γ0 � Γ, CSP(Γ0) is in P. An algebra A
is globally resp. locally tractable iff Inv(A) is globally resp. locally tractable. Thanks to
Proposition 4.2 we have the following observation:

4.7 Observation. An algebra A is locally resp. globally tractable according to the first
definition iff it is locally resp. globally tractable according to the second definition.
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We shall often reduce CSP of one algebra to CSP of another algebra. It is important
to notice that there are actually two kinds of reductions:

4.8 Definition. If for every A compatible with an algebra A exists a B compatible with
an algebra B such that CSP(A) is poly-time reducible to CSP(B), then we say that
CSP(A) is locally reducible to CSP(B).

Notice that the reducing algorithm need not be the same for each CSP(A).

4.9 Definition. If there exists a polynomial algorithm that for every instance of CSP(A)
produces an instance of CSP(B) such that the first instance has a solution iff the other
has a solution, then we say that CSP(A) is globally reducible to CSP(B).

We shall use local reduction in situations where the globall reduction algorithm pro-
vides us with a suitable B for any A but it is not polynomial. Notice that if there is A

compatible with A such that CSP(A) is hard (say, NP-complete) and A is locally reducible
to B then there is a B compatible with B then CSP(B) is also hard and so CSP(B) is at
least as hard as CSP(A).

4.10 Lemma. Let B = (B,R) be a relational structure, B = (B,Pol(R)) its algebra.
Then whenever A is compatible with B, CSP(A) is poly-time reducible to CSP(B).

Proof. Let A = (B,S). We know that S � Inv(Pol(R)) = hRi. Thus hSi � hRi and
the result follows from Theorem 2.22. �

One advantage of considering CSP for algebras is that it goes well together with our
previous results about structures admiting certain operations. For example, if A has a
k-ary near unanimosity operation then for all A compatible with A, CSP(A) has width
k � 1 (due to Lemma 3.10) and so A is locally tractable.
We are going to generalise the theory of bounded width for algebras and also show

that some algebras’ CSP is NP-complete. We shall also show that A from the above
paragraph is even globally tractable.

4.11 Definition. An instance (V,A, C) is k-minimal if
(i) 8K � V, jKj � k ) 9(S,R) 2 C such that K � S.

(ii) 8(S1, R1), (S2, R2) 2 C,K � S1 \ S2, jKj � k ) R1|K = R2|K .

The notion of k-minimal instance, while slightly more complicated, is quite similar to
the notion of (j; k)-strategy.

4.12 Definition. An algebra A has relational width k if every k-minimal instance of A
in which all constraint relations are non-empty has a solution.

4.13 Algorithm. (Local Consistency) Every instance of CSP can be reduced to a k-
minimal instance in polynomial time (for k fixed, i.e. not part of the input) so that
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the original has a solution iff the reduced instance has a solution. Also, if our original
instance’s relations were in Inv(A) for some algebra A then so are the relations of the
produced k-minimal instance.

Proof. First, for every K � V, jKj = k take (K,Ak) as new constraints. This is an easy
way to ensure that the first condition is met without changing the solution. Now we must
remove tuples from constraint relation so that we satisfy the second condition – we do
this by brute force checking all the possible (S1, R1), (S2, R2),K and removing from R1 all
the tuples r such that r|K 2 R1|K n R2|K . The number of checks necessary is polynomial
in the size of (V,A, C).
Observe that the added constraints do not limit the solution in any way and that when

we remove a tuple from a constraint relation then the tuple can not be used by a solution
anyway. So our new instance has a solution iff the original instance has a solution.

It remains to see that the new relations are all in Inv(A). The newly added constraints
(K,Ak) are certainly A-invariant, so it remains to check that we did not break anything
by removing tuples. Assume that l-th removal of tuples has violated the A-invariance and
that l is the smallest such number. Let, as above, (S1, R1), (S2, R2), K be the witness for
the removal. Then for some r1, . . . , rn 2 R1 and some n-ary operation f of the algebra
we have removed r = f(r1, . . . , rn) and kept ri’s. But that can only happen if r|K is
superfluous (i.e. r|K 62 R2|K) and ri|K ’s are not. But this means that ri|K 2 R2|K and
because of f -invariance of R2, it is r|K = f(r1|K , . . . , rn|K) 2 R2|K , a contradiction. �

4.14 Corollary. If A has relational width k then A is globally tractable (CSP(A) is in
P).

The above algorithm has strong similarity to the local consistency algorithm from
previous section, the one that produced a (j, k)-strategy for a given relational structure.
For example, in the proof of the next theorem we will produce a (j � 1, j)-strategy using
a j-minimal presentation. However, the precise relation between the relational width of
structures and algebras is as yet unclear:

4.15 Open Problem. Let A be a finite algebra such that every A compatible with A
has relational width k. Does it follow that A has relational width k?

4.16 Theorem. If A admits r-ary local unanimosity operation t then A has relational
width r.

Proof. Due to proof of Lemma 3.10 it is enough to show that any r-minimal nonempty
instance of CSP(A) admits a (r�1, r)-strategy. But that is easy: Take the setSfR|K jK �
S, (S,R) 2 C, jKj � rg. It is easy to verify that this is a (r � 1, r)-strategy which can be,
using the method from the proof of Theorem 3.10, extended to a (jV j � 1, jV j)-strategy.

�

4.17 Remark. Inspired by the case of relational width for relational structures, one
might hope to prove that A from the above theorem has relational width r � 1. That is,
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however, not true: Consider the algebra A = fa, b, c, d, e, fg with R1 = f(a, b)(c, d)g, R2 =
= f(e, b), (f, d)g and R3 = f(f, a), (e, c)g. These relations are invariant under any t(x, y, z)
near-unanimosity. Taking V = f1, 2, 3g and constraints ((2, 3), R1), ((1, 3), R2), ((1, 2), R3),
we have a nonempty 2-minimal instance that does not have a solution.

Our previous theorems about binary relational structures can be extended to binary
algebras as well:

4.18 Theorem. Let A be an algebra, jAj = 2. Then CSP(A) is NP-complete iff all
terms of A are projections or permutations of projections and CSP(A) is in P (globally
tractable) otherwise.

Proof. The first case is a direct consequence of Lemma 2.45. We also know that in the
other case CSP(A) is globally tractable: Depending on which of the terms 0, 1,_,^,p,m
are contained in A, we just run the correct (polynomial-time) algorithm to solve all the
instances of CSP(A). �

Recall that in universal algebra, if C is a class of algebras then S C is the class of all
subalgebras of algebras of C, P C the class of all the powers of algebras of C, Pfin C the
class of all the finite powers of algebras of C and H C is the class of all homomorphic
images of algebras of C. Then the variety of C is the class HSP C. It is the smallest class
of algebras containing C closed under homomorphic images, subalgebras and powers. This
is a very important construction in universal algebra.A variety is called locally finite if
every its finitely generated algebra is finite.

Now we want to show that if B is an algebra and A 2 HB[SB[PfinB then CSP(A)
is locally reducible to CSP(B). This will mean that CSP of all the algebras in HSPfinB
is locally reducible to CSP of B. We shall do so in three lemmas, some of which offer
even a global reduction.

4.19 Lemma. If A is a subalgebra of B then CSP(A) is globally poly-time reducible to
CSP(B).

Proof. Let us have A = (A,RA) compatible with A. By adding more elements to A, we
obtain the structure B = (B,RA). We claim that C 2 CSP(A) iff C 2 CSP(B).
Let f : C ! A be a homomorphism. Then by extending the range set we obtain a

homomorphism C ! B. If, on the other hand, f : C ! B is a homomorphism and f(c) 2
B nA then c can not lie in any relation (because f(c) does not lie in any relation). Choose
an element a 2 A (remember that algebra can not be empty) and consider g : C ! A

defined as g(c) = f(c) for f(c) 2 A and g(c) = a otherwise. Then g is a homomorphism
and we are done. �

4.20 Lemma. For any n 2 N, CSP(An) is globally poly-time reducible to CSP(A)

Proof. Let us have I = (V,An, C) instance of CSP(An). Take any (S,R) 2 C. For each
n, we have an isomorphism (An)S ' A[n]×S where [n] is the set f1, 2, . . . , ng; instead of
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r(s) = (r1(s), . . . , rn(s)) we can take r
′(i, s) = ri(s). For each R � (An)S, let R′ denote

the image of R under this isomorphism. Consider the set C ′ = f([n]� S,R′)j(S,R) 2 Cg
and the instance I ′ = ([n] � V,A, C ′). This is an instance of CSP(A), because if R is
An-invariant then R′ is A-invariant.
It remains to show that I has a solution iff I ′ has a solution. But that is easy:

A function f 2 (An)V is a solution of the first problem iff the corresponding function
f ′ 2 A[n]×V is a solution of the second problem. �

Before stating the third lemma, let us remember that B is a homomorphic image of
A iff B ' A/θ where θ is a congruence on A, that is a relation invariant under all the
operations of A. (We could also write θ 2 Inv(A) but the term congruence is used much
more often in this context.)

4.21 Lemma. Let A be an algebra, θ a congruence on A. Then CSP(A/θ) is locally
reducible to CSP(A)

Proof. Here, the degree of the polynomial bounding the run-time of the reduction will
depend on the arity of the relations involved, so we do not construct a global reduction.
Let A = (A/θ,RA) be a relational structure compatible with A/θ. We shall define

A′ = (A,RA′

) in the following way: For each n-ary R 2 R let
RA′

=
[�

a1/θ � � � � � an/θj(a1/θ, . . . , an/θ) 2 RA
	
.

Note that we understand a/θ as a set here, so RA′

is an n-ary relation on A. This is a set
of “θ-blocks” (see figure). Because RA was invariant under A/θ, each RA′

is a subalgebra
of An.

A

A

R′

We now claim that C 2 CSP(A) iff C 2 CSP(A′). Let first f : C ! A be a ho-
momorphism. Then we take a representative for each θ-block and construct a mapping
g : C ! A′ such that g(c) = a iff f(c) = a/θ. This is a homomorphism because when
(c1, . . . , cn) 2 RC then (f(c1), . . . , f(cn)) = ([a1], . . . , [an]) 2 RA and so (a1, . . . , an) 2 RA′

.
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On the other hand, if g : C ! A′ is a homomorphism then for each (c1, . . . , cn) 2 RC we
have ([g(c1)], . . . , [g(cn)]) 2 RA, so f(c) = [g(c)] defines a homomorphism f : C ! A and
the proof is complete.

Notice that this correspondence is only local because “unpacking” of the θ-blocks has
time complexity O(jAjn) (where n is the maximum arity of R) in the worst case. �

4.22 Exercise. Prove in detail that RA′

are A-invariant.

We now mention one more lemma here, because it is of a kind similar to the three
previous ones. An unary polynomial of an algebra A is any map f : A ! A such that
there exists t in the functional clone hAi of A (i.e. t is a composition of projections and
operations from A) such that p(x) = t(x, a1, . . . , an) for some constants a1, . . . , an 2 A. We
can then define the algebra p(A) as (p(A), fp(f(x1, . . . , xn))jf 2 hAig) and the following
lemma gives us a tool how to go down from A to p(A) and still maintain an upper bound
on complexity.

4.23 Lemma. CSP(p(A)) is locally poly-time reducible to CSP(A)

Proof. Let us take an instance I = (V, C) of CSP(p(A)). We want to produce an instance
I ′ = (V, C ′) of CSP(A).
For each C = (S,R) 2 C we define C ′ = (S,R′) where R′ is the subalgebra generated

by R in AS (this is the place where a global reduction would fail, however if the arity of
all R’s is bounded, this step still has polynomial time complexity). Obviously, R � R′.
We claim that p(R′) � R. Let r 2 R′. Then r = t(s1, . . . , sk) where t is an A-term and
si belong to R. But then p(r) = p(t(s1, . . . , sk)). We know that p Æ t is a term from p(A)
and so p(r) 2 R.
Now we want to show that I has a solution iff I ′ has a solution. Assume we have a

solution of I. Then because R � R′ it is also a solution of I ′. If now f is a solution of I ′,
we take p Æ f and claim that this is a solution of I. When C = (S,R) is a constraint in I
then f|S 2 R′ and so p Æ f|S 2 p(R′) � R meaning that we indeed have a solution.

If we are given a relational structure A = (p(A), RA) compatible with p(A) then we
obtain a reducion by taking A′ = (A, fR′jR 2 RAg). �

Recall that idempotent operations helped us to solve the case of binary relational
structures. We say that an algebra is idempotent if all its operations are idempotent.
We shall now use theorems from universal algebra to find a class of idempotent algebras
whose CSP is NP-complete.

4.24 Theorem. If every term of the nontrivial algebra A is a projection then there
exists A compatible with A such that CSP(A) is NP-complete.

Proof. We are more or less proving Lemma 2.45 again (under slightly different condi-
tions): A allows many relations so we can construct A so that CSP(A) is one of known
NP-complete problems.
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Assume first that jAj = 2. Then we produce A such that CSP(A) is exactly 3-SAT,
that is A = (A,R) where R consists of all the binary relations of arity three.
If now jAj � 3 then we produce A = (A,R) with R containing only one relation R =

= f(a, b)ja, b 2 A, a 6= bg, giving us the jAj-coloring problem which is also NP-complete.
�

4.25 Definition. We say that t(x1, . . . , xn) is a weak near-unanimosity operation if:

(i) n � 2
(ii) t(x, . . . , x) = x
(iii) t(y, x, . . . , x) = t(x, y, x, . . . , x) = � � � = t(x, . . . , x, y)
Observe that every near-unanimosity operation is also a weak near-unanimosity op-

eration but the converse need not be true.
We shall now without proof introduce and use two universal algebra theorems.
We say that a variety µ has a term t of certain properties (for example, a weak near-

unanimosity term) iff every algebra A 2 µ has such a term. For the purposes of this
lecture, Taylor term will be a little black box that either is present in a variety or not. A
type 1 will be a different kind of black box.

4.26 Theorem. If µ is an idempotent locally finite variety without a Taylor term, then9A 2 µ nontrivial algebra such that every term operation of A is a projection.
4.27 Theorem. Let µ be a locally finite variety. Then the following are equivalent:

(i) µ has a Taylor term.
(ii) µ has a weak near-unanimosity operation.
(iii) µ omits type 1.

Putting theorems 4.26 and 4.27 together we obtain the following theorem whose for-
mulation does not requie any universal algebra at all:

4.28 Theorem. If A is an idempotent algebra that has no weak near-unanimosity term
then there exists A compatible with A such that CSP(A) is NP-complete.

Proof. If A has no weak near-unanimosity term thenA generates a locally finite idepotent
variety µ = HSPfin(A) that has no weak near-unanimosity term. Now Theorem 4.27
gives us that µ has no Taylor term and using Theorem 4.26 we see that in µ there exists a
nontrivial algebra B such that every term operation of B is a projection. Using Theorem
4.24 we get that there exists B compatible with B such that CSP(B) is NP-complete.
Now we use the fact that CSP(B) is locally reducible to CSP(A) to see that there exists
A compatible with A such that CSP(A) is NP-complete and the proof is done. �

Note that it is not enough to demand that A does not contain a weak near-unanimosity
operation, because operations can be composed to form a term.
The following conjecture would give us dichotomy for all algebras. Unfortunately, the

proof is unknown.
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4.29 Conjecture. If the algebra A is not idempotent or it contains a weak near-unani-
mosity term then CSP(A) is in P.

5. Further topics

In this section we shall mention some more advanced results about CSP. It will be mostly
an overview with pointers to articles that dissect various problems in more detail. Most
of these articles are freely available online.

5.1 Mal’tsev term

5.1 Definition. We say that p(x, y, z) is a Mal’tsev term if

(i) p(x, x, y) = y

(ii) p(x, y, y) = x.

An example of a Mal’tsev term would be the p operation on binary algebras, in a
general group we could take p(x, y, z) = xy−1z.

5.2 Theorem. If A has a Mal’tsev term then CSP(A) is in P.

The construction of an algorithm that solves such CSP(A) can be found in the article
[3]. The main ingredient there is the use of compact representation of a relation – instead
of full R, we consider only its subset that in a certain sense generates R.

5.2 Congruence distributivity

A lattice is distributive if for all x, y, z 2 L it is x ^ (y _ z) = (x ^ y) _ (x ^ z).
5.3 Exercise. Show that a lattice is distributive iff 8x, y, z 2 L, x_(y^z) = (x_y)^(x_z).
We say that a variety µ is congruence distributive if for each A 2 µ the lattice of

congruences on A is distributive. Notice that for congruences α, β, it is α ^ β = α \ β
and (x, y) 2 α _ β if there exists a chain of pairs (x, z1), (z1, z2), . . . , (zn−1, y) such that
each pair is in α or β. This observation allows us to prove another characterisation of
congruence distributive varieties.

5.4 Theorem. (Jónsson) A variety µ is congurence distributive iff there exist ternary
terms p0, p1, . . . , pn, so-called Jónsson terms , satisfying the identities:

(i) p0(x, y, z) = x
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(ii) pi(x, y, x) = x for all i.

(iii) pi(x, x, y) = pi+1(x, x, y) for i even

(iv) pi(x, y, y) = pi+1(x, y, y) for i odd

(v) pn(x, y, z) = x.

Proof. Assume first that µ is congruence distributive. Let A be the 3-generated free
algebra in µ. That is, the set of all terms using three variables (say, x, y, z) such that the
only identities in A are the ones that hold in the whole variety µ.

We now define three congruences α = Cg(x, y), β = Cg(y, z), γ = Cg(x, z) as the con-
gruences defined by identifying the respective pairs of variables. For example, Cg(x, y) is
the congruence obtained by assuming x = y. From the congruence distributivity condi-
tion, we obtain that

(α _ β) ^ γ = (α ^ γ) _ (β ^ γ)
Because (x, z) 2 γ and (x, z) 2 α _ β (because from x = y and y = z follows that x = z),
we have that (x, z) 2 (α ^ γ) _ (β ^ γ). This means that there exists a chain of pairs
(x, p1), (p1, p2), . . . , (pn−1, z) such that without loss of generality (p2i, p2i+1) 2 α ^ γ and
(p2i+1, p2i+2) 2 β ^ γ, see figure.

...

x

z

p1(x, y, z)

p2(x, y, z)

pn−1(x, y, z)

pn−2(x, y, z)

α ∧ γ
β ∧ γ

p3(x, y, z)
α ∧ γ

As noted above, the elements of A are actually terms on three variables, so we can
write each pi(x, z, y) as a composition of operations in µ. Note that pi is not yet a function,
just a sequence of operation symbols. However, we claim that for each B 2 µ and each
choice of x, y, z 2 B, the terms x, p1(x, y, z), . . . , pn−1(x, y, z), z as evaluated in B are
Jónsson. (Note that we can identify x with the projection p0(x, y, z) = x.)

At this point, we should note that by selecting x, y, z 2 B, we obtain the obvious
homomorphism A ! B, where every p(x, y, z) 2 A gets mapped to its evaluation in
B. This means that all the identities in A are true in B and, moreover, if x = y and
(p, q) 2 Cg(x, y), it is p(x, y, z) = q(x, y, z) in B. Details of this construction can be found
in [1].

Conditions (i) and (v) are trivial. Also, all the pairs (pi, pi+1) are in the congruence
γ and so, by transitivity, for each i it is (pi, x) 2 γ, meaning that after identifying x and
z it is pi(x, y, x) = x, giving us (ii). When i is even, it is (pi, pi+1) 2 α and so pi(x, x, z) =
= pi+1(x, x, z), giving us (iii). Equality (iv) follows in similar way from (pi, pi+1) 2 β for
i odd.
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Conversely, let µ contain Jónsson terms p0, p1, . . . , pn for some n. Assume that we
have congruences τ, κ, σ on algebra A. We want to prove that then

(τ _ κ) ^ σ = (τ ^ σ) _ (κ ^ σ).
We shall prove two inclusions, one of which is an easy exercise: Whenever (a, b) 2 (τ ^
σ) _ (κ ^ σ), it is (a, b) 2 σ and (a, b) 2 τ _ κ, meaning that (a, b) 2 (τ _ κ) ^ σ.
The other inclusion is more difficult. First, we will prove a lemma:

5.5 Lemma. (τ Æ κ) ^ σ � (τ ^ σ) _ (κ ^ σ), where τ Æ κ is the relation defined by
(x, y) 2 τ Æ κ iff 9z, (x, z) 2 τ, (z, y) 2 κ.
Proof. Let (a, c) 2 σ and let there exist b such that (a, b) 2 τ, (b, c) 2 κ. Because σ is pi-
invariant relation and (a, a), (b, b), (a, c) 2 σ, for each i we have (pi(a, b, a), pi(a, b, c)) 2 σ.
But due to (ii), it is pi(a, b, a) = a, so (a, pi(a, b, c)) 2 σ. Because σ is a congruence, it
is symmetric and transitive and so (pi(a, b, c), pi+1(a, b, c)) 2 σ. Similarly, for all i it is
(pi(a, b, c), pi+1(a, a, c)) 2 θ and (pi(a, b, c), pi+1(a, c, c)) 2 κ.
If i is odd, it is pi(a, c, c) = pi+1(a, c, c) and so from transitivity we obtain that

(pi(a, b, c), pi+1(a, b, c)) 2 κ. Similarly, for i even, it is (pi(a, b, c), pi+1(a, b, c)) 2 θ. All in
all, we have a chain of elements pi(a, b, c) from a to pn(a, b, c) = c (see figure), proving
that (a, c) 2 (τ ^ σ) _ (κ ^ σ).

θ

κ

σ

a

c

b

pi(a, b, c)

pi+1(a, b, c)

pi(a, c, c) = pi+1(a, c, c)

σ

σ

κ

κ
κ ∧ σ

�

Observe now that
τ _ κ = τ Æ κ [ τ Æ κ Æ τ Æ κ [ . . .

and so it is enough to show that for each n it is (τ Æ κ)n ^ σ � (τ ^ σ) _ (κ ^ σ). We will
prove this by induction on n.
Let for ωn denote the relation ω Æ � � � Æ ω, where the number of ω’s is n. To prove the

theorem, we need to show that for each n positive integer it is

(κ Æ τ)n ^ σ � (κ Æ τ) ^ σ � (τ ^ σ) _ (κ ^ σ).
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Notice that the second inclusion is precisely Lemma 5.5, so we only have to prove the first
inclusion.
The statement clearly holds for n = 1. Assume that it holds for some n. Then for

n+ 1 it is:

(κ Æ τ)n+1 ^ σ = ((κ Æ τ)n Æ (κ Æ τ)) ^ σ � ((κ Æ τ)n ^ σ) _ ((κ Æ τ) ^ σ) � (κ Æ τ) ^ σ,
where the first inclusion follows from Lemma 5.5 and the second one follows from the
induction assumption. �

5.6 Exercise. Prove in detail that for each τ, κ congruences it is

τ _ κ = τ Æ κ [ τ Æ κ Æ τ Æ κ [ . . .
Theorem 5.4 allows us to say that a variety is CD(n) if it is congruence distributive

and the n is the minimum number of Jónsson terms from the above theorem.

5.7 Exercise. We say that a variety µ is congruence permutive if for all algebras A 2 µ
and all α, β congruences on A it is α Æ β = β Æ α. Prove that A is congruence permutive
iff A contains a Mal’tsev term.

5.8 Observation. If µ has a near-unanimosity term then µ is congruence distributive.

Proof. Let t be a near unanimosity term of algebra A 2 µ. Let
p0(x, y, z) = t(z, x, x, x, . . . , x) = x

p1(x, y, z) = t(z, y, x, x, . . . , x)

p2(x, y, z) = t(z, z, x, x, . . . , x)

p3(x, y, z) = t(z, z, y, x, . . . , x)

...

pn(x, y, z) = z.

We claim that this is a set of Jónsson terms. It is obvious that (i), (ii) and (v) hold.
Furthermore, it is

p2i(x, x, y) = t(y, . . . , y, x, . . . , x) = p2i+1(x, x, y),

proving (iii), and

p2i+1(x, y, y) = t(y, . . . , y, x, . . . , x) = p2i+2(x, y, y),

proving (iv). The reader can easily verify that the number of x and y variables is indeed
the same on both sides. �

5.9 Theorem. If B is an algebra in a CD(4) variety then every B compatible with B
has relational width at most the maximum arity of B.

For proof of this theorem, see article [2].
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5.3 CSP for graphs

The graph homomorphism problem is for some time a point of interest of combinato-
rians. For an overview of combinatorial results about graph homomorphisms and their
properties, see [4].
It turns out that there is not much more to CSP than graph homomorphisms, as the

following theorem shows:

5.10 Theorem. Balanced digraph homomorphism problem is poly-time equivalent to
CSP.

For proof, see
For some classes of graphs, we know precisely which CSP problems are in P and which

are NP-complete.

5.11 Theorem. (Nešetřil, Hell, 1990) For G symmetric graph, it is CSP(G) in P iff G
is bipartite. Otherwise, CSP(G) is NP-complete.

For proof, see . Note that the original proof of this theorem uses the combinatorial
approach to CSP.

5.12 Theorem. (Bang-Jensen,1990) If G is an oriented graph without sources and
sinks then CSP(G) is in P iff G retracts to a disjoint union of directed cycles. Otherwise,
CSP(G) is NP-complete.

For proof, see . This theorem was proved using algebraic methods.
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