
Posets, graphs and algebras:
a case study for the fine-grained complexity of

CSP’s
Part 3: More Evidence: Graphs and Posets

Benoit Larose 1 2

1Department of Mathematics and Statistics

Concordia University, Montréal
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Recap of Talk 2

to each CSP we associate an idempotent algebra A;

we conjecture that the typeset of V(A) “controls” the
(descriptive and algorithmic) complexity of CSP(H);

there is some good evidence supporting these conjectures.
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Overview of Talk 3

We investigate CSP’s whose target structures are related to
digraphs, graphs and posets:

Feder-Vardi have shown that the Dichotomy Conjecture can
settled by looking only at these special cases;

a natural setting;

a good testing ground for the conjectures;

we can use tools from graph theory and topology to
investigate some of these problems;
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Overview of Talk 3, cont’d

We present a complete classification in the cases of:

list homomorphisms of graphs;
series-parallel posets.

more generally, we address the problem: what graphs,
digraphs, posets admit (no) nice identities ?

we give several open problems as we go along.
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Preliminaries

Definition

A digraph is a structure H = 〈H; θ〉 with a single binary relation θ.
We say H is a

graph, if θ is symmetric: (a, b) ∈ θ iff (b, a) ∈ θ;

a poset, if θ is

reflexive: (x , x) ∈ θ for all x ;
antisymmetric: (a, b), (b, a) ∈ θ ⇒ a = b;
transitive: (a, b), (b, c) ∈ θ ⇒ (a, c) ∈ θ.

Remark: Our graphs may have loops on certain vertices.
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Pictures of digraphs

Some graphs and digraphs:
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Pictures of posets

We depict posets by their Hasse diagrams:
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List Homomorphism Problems

Given a structure H, the list homomorphism problem for H is
CSP(H′) where H′ is the structure obtained from H by adding
ALL subsets of H as unary relations. Formally: If
H = 〈A; θ1, . . . , θr 〉, let

H
′ = 〈A; θ1, . . . , θr , B(B ⊆ A)〉.

Shorthand:

CSP(H′) = CSP(H + lists).
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List Homomorphism Problems, cont’d
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Motivation for CSP(H + lists)

natural, well-studied for graphs;

algebraic dichotomy holds (Bulatov);

easier to handle because of forbidden induced substructures;

algebraically easier: 2-element divisors must appear as
subalgebras.
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Retraction Problems

Given a structure H, the retraction problem for H is CSP(H′)
where H′ is the structure obtained from H by adding all
one-element subsets of H as unary relations. Formally: if
H = 〈A; θ1, . . . , θr 〉, let

H
′ = 〈A; θ1, . . . , θr , {a}(a ∈ A)〉.

Shorthand:

CSP(H + csts)

Note: aka the one-or-all list homomorphism problem.



Preliminaries Digraphs Graphs Posets

Retraction Problems, cont’d
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Why “Retraction” ?
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Motivation for CSP(H + csts)

natural problem;

when target has a loop, CSP is trivial;

target H + csts is automatically a core;

algebraically: corresponds to finding idempotent
polymorphisms of the structure H;

and see next result.

Note: Not as well-understood as the list case, as the next result
shows.
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Reductions

Theorem (FV 98; Feder, Hell 98)

Let H be a structure. Then there exist a poset P, a bipartite graph
Q, a reflexive graph R and a digraph S such that the following
problems are poly-time equivalent:

CSP(H);

CSP(P + csts);

CSP(Q + csts);

CSP(R + csts);

CSP(S).
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Reductions, cont’d

Some drawbacks of these reductions:

not known to be logspace reductions
(not fine enough to see what’s in L, NL, etc.)

do not behave so well with respect to the associated algebras.
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Reductions, cont’d

However: for each structure H one may construct a structure H′

with only unary and binary relations such that

CSP(H) and CSP(H′) are equivalent under logspace
reductions;

the reduction respects expressibility in (linear, symmetric)
Datalog;

the binary relations are graphs of permutations and
equivalence relations (McKenzie).

We shall not require this result in what follows.
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Results on digraphs: CSP(H)

Let H be a digraph.

By FV classifying the complexity of CSP(H) is as hard as the
general case. But some special cases have been determined:

A vertex in a digraph is a source (sink) if it has no incoming
(outgoing) edges.

Theorem (Barto, Kozik, Niven (2009))

Let H be a digraph with no sources and no sinks. Then CSP(H) is
in P if the core of H is a disjoint union of directed cycles, and it is
NP-complete otherwise.
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Results on digraphs: CSP(H), cont’d

first conjectured by Bang-Jensen and Hell in 1990;

proof uses algebraic methods: if H is invariant under a weak
NU operation then its core is a disjoint union of cycles;

if H is a disjoint union of cycles, then its binary relation is the
graph of a permutation; consequently ¬CSP(H) is in
symmetric Datalog and CSP(H) is L-complete (ELT 07).
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Results on digraphs: CSP(H), cont’d

Definition

Let n ≥ 2. An n-ary operation t is totally symmetric (TSI) if it is
idempotent and t(x1, . . . , xn) = t(y1, . . . , yn) whenever
{x1, . . . , xn} = {y1, . . . , yn}.

Example

Let ∧ be a semilattice operation (idempotent, commutative,
associative.) For any n ≥ 2, the operation

t(x1, . . . , xn) = x1 ∧ x2 ∧ · · · ∧ xn

is a TSI operation.
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Results on digraphs: CSP(H), cont’d

¬CSP(H) is in (1, k)-Datalog for some k (aka tree duality) iff
H is invariant under TSI operations of all arities n ≥ 2
(Dalmau, Pearson, 1999);

Barto, Kozik, Maroti and Niven (2009) have proved
dichotomy for “special triads”; the tractable cases either
admit TSI’s of all arities or a majority operation.

Result extended by Buĺın (2009) to “special polyads”:

proof invokes the BW Theorem: if polyad admits a weak NU
then it admits weak NU’s for all but finitely many arities;
hence ¬CSP(H) is in Datalog.

refined complexity for triads is being investigated
(A. Lemâıtre)
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Results on digraphs: CSP(H + lists)

Let H be a digraph; consider the problem CSP(H + lists).

We know that dichotomy holds in the list case;

but can we find a “nice” (graph-theoretic ?) description of
the tractable cases ? This should help to understand the
refined complexity.

The case of reflexive digraphs is nice:
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List homomorphisms on reflexive digraphs

Theorem (Carvalho, Feder, Hell, Huang, Rafiey (TBA))

Let H be a reflexive digraph. If H admits a weak NU, then it
admits a semilattice polymorphism, and CSP(H) is in P; otherwise
it is NP-complete.
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List homomorphisms on reflexive digraphs, cont’d

Notice: if H + lists admits a semilattice operation ∧, it
preserves every subset of H;

hence a ∧ b ∈ {a, b} for all a, b;

i.e. there exists some ordering of the vertices such that
a ∧ b = min(a, b) for all a, b,∈ H.
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An aside on reflexive digraphs

the category of reflexive digraphs is equipped with a nice
homotopy theory (BL, Tardif, 2004);

coincides with the usual homotopy for posets;

the nature of the homotopy groups of H is closely related to
the algebra A(H):

Theorem (BL, 2006)

Let H be a connected, reflexive digraph and let A = A(H).
If A admits a weak NU operation then every homotopy group of H

is trivial.

a useful tool to prove hardness results;

some evidence that perhaps there is more to this story (see
Posets);
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Results on graphs: CSP(H)

Theorem (Hell, Nešeťril, 1990)

Let H be a graph. If H has a loop or is bipartite, then CSP(H) is
in P; otherwise it is NP-complete.

Notice: this is a special case of the Barto et al. result on
digraphs without sources and sinks;

result has been refined independently by Bulatov (05), Kún &
Szegedy (09), Siggers (09):

Theorem

If a graph H is non-bipartite and has no loops then it admits no
weak NU polymorphism.
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Results on graphs: CSP(H + lists)

Let H be a graph.

there is a complete classification of the complexity of
CSP(H + lists);

our starting point is the following dichotomy result:

Theorem (Feder, Hell, Huang, 1999)

Let H be a graph. Then t.f.a.e.:

1 H + lists admits a majority operation;

2 H is a bi-arc graph.

If this condition is satisfied then CSP(H + lists) is in P, otherwise
it is NP-complete.
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Classification of CSP(H + lists)

(FHH) a graph H is bi-arc iff H × K2 is the complement of a
circular arc graph:

vertices are arcs; vertices are adjacent if the corresponding
arcs intersect.

a

b

odd cycles, 6-cycle are NOT bi-arc graphs.
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Classification of CSP(H + lists), cont’d

First we confirm the algebraic dichotomy conjecture:

Lemma (Egri, Krokhin, BL, Tesson, 2009)

Let H be a graph. If H + lists admits a weak NU then it admits a
majority operation.

it follows that CSP(H + lists) is either NP-complete, else
¬CSP(H + lists) is in linear Datalog.

it remains to determine for which graphs the problem is in
symmetric Datalog (and which are FO).
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Classification of CSP(H + lists), cont’d

Let H be a graph, let A be the algebra associated to H + lists.

Strategy: to characterize graphs H such that V(A) omits
types 1, 2, 4, 5 (i.e. pure type 3);

we sieve to eliminate as much “bad guys” as possible;

hopefully we can get a nice description of the remaining
graphs to show the corresponding problem is in symmetric
Datalog.
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Classification of CSP(H + lists), cont’d

To illustrate we consider the irreflexive case (graphs with no loops):

the bad guys are: odd cycles, the 6-cycle, and the 5-path;

..
..
..
.
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Classification of CSP(H + lists), cont’d

An illustration: Why the 5-path is bad:

the 5-path is a bi-arc graph, so admits a majority operation
and hence V(A) omits types 1, 2 and 5;

we produce (by pp-definability) a 2-element subalgebra with
monotone terms;

hence this divisor is of type 4.

{0,4}

x

{1,3}

{0,4}

y

{2,4}

{1,5}

0 2 4

1 53
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Classification of CSP(H + lists), cont’d

Let GoodI be the family of irreflexive graphs H that have no
induced 6-cycle, odd cycle or 5-path.
We give an inductive definition of this family:
define the special sum of two bipartite graphs H1 and H2 as
follows: connect every vertex of one colour class of H1 to
every vertex of one colour class of H2:

H1 H2H2
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Classification of CSP(H + lists), cont’d

Lemma

GoodI is the smallest class of irreflexive graphs containing the
one-element graph and closed under disjoint union and special sum.

The general case is handled in a similar way;

the inductive definition is only slightly more involved;

let Good denote the class of graphs that avoid the following
forbidden subgraphs:

the irreflexive 6-cycle, odd cycles and 5-path;
the reflexive 4-cycle and 4-path;
and the following “mixed” graphs:
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Classification of CSP(H + lists), cont’d

B1 B2 B3 B4 B5 B6

c

b

a

c

b

a

d

c

b

a

e

d

c

b

a



Preliminaries Digraphs Graphs Posets

Classification of CSP(H + lists), cont’d

Theorem (E,K,BL,T)

Let H be a graph, and let A be the algebra associated to H + lists.
Then t.f.a.e.:

1 H ∈ Good;

2 V(A) is pure type 3;

3 V(A) is 4-permutable;

4 ¬CSP(H + lists) is expressible in symmetric Datalog.

If these conditions hold then CSP(H + lists) is in L; otherwise it is
NL-complete (and ¬CSP(H + lists) is expressible in linear
Datalog) or it is NP-complete.
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Results on Posets: CSP(Q + csts)

Let Q be a poset.

Since Q is reflexive, the problem CSP(Q) is trivial, hence we
consider the problem CSP(Q + csts);

by FV this problem is as hard as the general case;

several special cases are of interest (e.g. only family of
maximal clones whose complexity is not classified);

CSP(Q + lists) is a special case of the reflexive digraph
problem (already under investigation !)
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Results on Posets: CSP(Q + csts), cont’d

Remarks on the preprimal algebra (maximal clone) 6th case:

for any bounded poset Q, the variety admits type 4, hence
CSP(Q + csts) is NL-hard (and not expressible in symmetric
Datalog);

one can construct various examples of bounded posets Q such
that CSP(Q + csts) is in P but the variety admits type 2, or
type 5, etc.

hence even the special case of bounded posets appears to be
quite complicated.

Now back to general posets:
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Results on Posets: CSP(Q + csts), cont’d

Consider for a moment the special subproblem S of
CSP(Q + csts), where the inputs are themselves posets;
(Zádori) A Q-zigzag is an input P to the problem S such that

there is no homomorphism from P to Q;
every proper substructure of P (in S) admits a homomorphism
to Q;

{b}

{a}

{b'}

{a'}

1

b

a a'

b'

P Q
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Results on Posets: CSP(Q + csts), cont’d

Theorem (Zádori, 1993)

Let Q be a connected poset. Then t.f.a.e.:

1 Q admits an NU operation;

2 there are only finitely many Q-zigzags.

It will follow from this result that in the case of posets, presence of
an NU operation implies expressibility in linear Datalog:
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Results on Posets: NU implies linear Datalog

Theorem

Let Q be a connected poset. If Q admits an NU operation then
¬CSP(Q + csts) is expressible in linear Datalog.

Sketch of proof:

let R be an input structure; one may (easily) construct a
poset R′ from R using pp-definitions and transitive closure,
such that R′ admits a homomorphism to Q iff R does;

hence R does not map to Q iff some Q-zigzag P maps to R′;

the existence of the map from P to R′ is easily encoded as a
sentence in positive FO with transitive closure;

since there are finitely many zigzags, ¬CSP(Q + csts) is in
pos(FO + TC), and hence in linear Datalog (Dalmau,
Krokhin, BL).
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Results on Posets: linear Datalog, cont’d

Corollary

Let Q be a connected poset, and let A = A(Q + csts). If V(A) is
congruence-modular then ¬CSP(Q + csts) is expressible in linear
Datalog, and CSP(Q + csts) is in NL. If Q is bounded, then
CSP(Q + csts) is NL-complete.

it is known that congruence-modularity,
congruence-distributivity and NU are equivalent conditions for
posets (BL, Zádori, 1997);

bounded case: follows from earlier remark;

there are cases in linear Datalog that are not
congruence-modular (see 5 element poset 3 slides ago).
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Results on Posets: The Series-Parallel Case

Definition

Let Q1 and Q2 be two posets; the (ordinal) sum Q1

⊕
Q2 of Q1

and Q2 is the poset obtained from their disjoint union by making
every element of Q1 smaller than every element of Q2.

0

1

b

a a'

b'

1

b b'

0

a a'
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Results on Posets: The Series-Parallel Case, cont’d

Definition

The class of series-parallel posets is the smallest containing the
one-element poset and closed under disjoint union and ordinal sum.

Remark: these are also known as “N-free” posets: they are
precisely the posets that do not contain an induced poset
isomorphic to N.
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Results on Posets: The Series-Parallel Case, cont’d

we say a (induced) subposet P of Q is a subalgebra of Q if its
universe is a subuniverse of the algebra A = A(Q + csts).

it is easy to see that every covering pair is a 2-element
subalgebra of Q; in particular V(A) admits type 1, 4 or 5;

0

1

a'

b'b

a
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Results on Posets: The Series-Parallel Case, cont’d

we say that Q retracts onto P if there exist maps R : Q → P

and e : P → Q such that r ◦ e = idP ;

the posets below turn out to characterise the “bad”
series-parallel posets (via retractions):
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Results on Posets: The Series-Parallel Case, cont’d

Theorem (Dalmau, Krokhin, BL, 2008)

Let Q be a connected series-parallel poset. Then t.f.a.e:

1 Q admits a weak NU operation;

2 Q admits TSI operations of all arities;

3 every connected subalgebra of Q has a
trivial fundamental group;

4 Q does not retract on any of the posets pictured above.

If any of these conditions hold then CSP(Q) is in P; otherwise it is
NP-complete.
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Results on Posets: The Series-Parallel Case, cont’d

for series-parallel posets, we can say a bit more in the
tractable case:

it turns out one can express the condition that a poset P does
NOT retract to Q in pos(FO+TC);

we can conclude as before that ¬CSP(Q + csts) is in linear
Datalog;

since posets will always admit type 1, 4 or 5, this is the best
we can hope for and the classification is complete.
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