Posets，graphs and algebras：

a case study for the fine－grained complexity of CSP＇s

Part 3：More Evidence：Graphs and Posets

Benoit Larose ${ }^{12}$
${ }^{1}$ Department of Mathematics and Statistics
Concordia University，Montréal
${ }^{2}$ Department of Mathematics
Champlain Regional College，St－Lambert

SSAOS，Slovakia，September 2009

Recap of Talk 2

- to each CSP we associate an idempotent algebra \mathbb{A};
- we conjecture that the typeset of $\mathcal{V}(\mathbb{A})$ "controls" the (descriptive and algorithmic) complexity of $\operatorname{CSP}(\mathbf{H})$;
- there is some good evidence supporting these conjectures.

Overview of Talk 3

- We investigate CSP's whose target structures are related to digraphs, graphs and posets:
- Feder-Vardi have shown that the Dichotomy Conjecture can settled by looking only at these special cases;
- a natural setting;
- a good testing ground for the conjectures;
- we can use tools from graph theory and topology to investigate some of these problems;

Overview of Talk 3, cont'd

- We present a complete classification in the cases of:
- list homomorphisms of graphs;
- series-parallel posets.
- more generally, we address the problem: what graphs, digraphs, posets admit (no) nice identities ?
- we give several open problems as we go along.

Preliminaries

Definition

A digraph is a structure $\mathbf{H}=\langle H ; \theta\rangle$ with a single binary relation θ. We say \mathbf{H} is a

- graph, if θ is symmetric: $(a, b) \in \theta$ iff $(b, a) \in \theta$;
- a poset, if θ is
- reflexive: $(x, x) \in \theta$ for all x;
- antisymmetric: $(a, b),(b, a) \in \theta \Rightarrow a=b$;
- transitive: $(a, b),(b, c) \in \theta \Rightarrow(a, c) \in \theta$.

Remark: Our graphs may have loops on certain vertices.

Pictures of digraphs

Some graphs and digraphs:

Pictures of posets

We depict posets by their Hasse diagrams:

List Homomorphism Problems

Given a structure \mathbf{H}, the list homomorphism problem for \mathbf{H} is $\operatorname{CSP}\left(\mathbf{H}^{\prime}\right)$ where \mathbf{H}^{\prime} is the structure obtained from \mathbf{H} by adding ALL subsets of H as unary relations. Formally: If $\mathbf{H}=\left\langle A ; \theta_{1}, \ldots, \theta_{r}\right\rangle$, let

$$
\mathbf{H}^{\prime}=\left\langle A ; \theta_{1}, \ldots, \theta_{r}, B(B \subseteq A)\right\rangle .
$$

Shorthand:

$$
\operatorname{CSP}\left(\mathbf{H}^{\prime}\right)=\operatorname{CSP}(\mathbf{H}+\text { lists }) .
$$

List Homomorphism Problems, cont'd

$\{0,1\}$

Motivation for CSP($\mathbf{H}+$ lists $)$

- natural, well-studied for graphs;
- algebraic dichotomy holds (Bulatov);
- easier to handle because of forbidden induced substructures;
- algebraically easier: 2-element divisors must appear as subalgebras.

Retraction Problems

Given a structure \mathbf{H}, the retraction problem for \mathbf{H} is $\operatorname{CSP}\left(\mathbf{H}^{\prime}\right)$ where \mathbf{H}^{\prime} is the structure obtained from \mathbf{H} by adding all one-element subsets of H as unary relations. Formally: if $\mathbf{H}=\left\langle A ; \theta_{1}, \ldots, \theta_{r}\right\rangle$, let

$$
\mathbf{H}^{\prime}=\left\langle A ; \theta_{1}, \ldots, \theta_{r},\{a\}(a \in A)\right\rangle .
$$

Shorthand:

$$
\operatorname{CSP}(\mathbf{H}+\text { csts })
$$

Note: aka the one-or-all list homomorphism problem.

Retraction Problems, cont'd

\{1\}

Why "Retraction"?

Motivation for CSP $(\mathbf{H}+$ csts $)$

- natural problem;
- when target has a loop, CSP is trivial;
- target $\mathbf{H}+$ csts is automatically a core;
- algebraically: corresponds to finding idempotent polymorphisms of the structure \mathbf{H};
- and see next result.

Note: Not as well-understood as the list case, as the next result shows.

Reductions

Theorem (FV 98; Feder, Hell 98)

Let \mathbf{H} be a structure. Then there exist a poset \mathbf{P}, a bipartite graph \mathbf{Q}, a reflexive graph \mathbf{R} and a digraph \mathbf{S} such that the following problems are poly-time equivalent:

- $\operatorname{CSP}(\mathbf{H})$;
- $\operatorname{CSP}(\mathbf{P}+c s t s)$;
- $\operatorname{CSP}(\mathbf{Q}+$ csts $)$;
- $\operatorname{CSP}(\mathbf{R}+c s t s)$;
- $\operatorname{CSP}(\mathbf{S})$.

Reductions, cont'd

Some drawbacks of these reductions:

- not known to be logspace reductions (not fine enough to see what's in $\mathcal{L}, \mathcal{N} \mathcal{L}$, etc.)
- do not behave so well with respect to the associated algebras.

Reductions, cont'd

However: for each structure \mathbf{H} one may construct a structure \mathbf{H}^{\prime} with only unary and binary relations such that

- $\operatorname{CSP}(\mathbf{H})$ and $\operatorname{CSP}\left(\mathbf{H}^{\prime}\right)$ are equivalent under logspace reductions;
- the reduction respects expressibility in (linear, symmetric) Datalog;
- the binary relations are graphs of permutations and equivalence relations (McKenzie).

We shall not require this result in what follows.

Results on digraphs: $\operatorname{CSP}(\mathbf{H})$

- Let \mathbf{H} be a digraph.
- By FV classifying the complexity of $\operatorname{CSP}(\mathbf{H})$ is as hard as the general case. But some special cases have been determined:
- A vertex in a digraph is a source (sink) if it has no incoming (outgoing) edges.

Theorem (Barto, Kozik, Niven (2009))

Let \mathbf{H} be a digraph with no sources and no sinks. Then $\operatorname{CSP}(\mathbf{H})$ is in \mathcal{P} if the core of \mathbf{H} is a disjoint union of directed cycles, and it is $\mathcal{N} \mathcal{P}$-complete otherwise.

Results on digraphs: $\operatorname{CSP}(\mathbf{H})$, cont'd

- first conjectured by Bang-Jensen and Hell in 1990;
- proof uses algebraic methods: if \mathbf{H} is invariant under a weak NU operation then its core is a disjoint union of cycles;
- if \mathbf{H} is a disjoint union of cycles, then its binary relation is the graph of a permutation; consequently $\neg \operatorname{CSP}(\mathbf{H})$ is in symmetric Datalog and $\operatorname{CSP}(\mathbf{H})$ is \mathcal{L}-complete (ELT 07).

Results on digraphs: $\operatorname{CSP}(\mathbf{H})$, cont'd

Definition

Let $n \geq 2$. An n-ary operation t is totally symmetric (TSI) if it is idempotent and $t\left(x_{1}, \ldots, x_{n}\right)=t\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\}$.

Example

Let \wedge be a semilattice operation (idempotent, commutative, associative.) For any $n \geq 2$, the operation

$$
t\left(x_{1}, \ldots, x_{n}\right)=x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}
$$

is a TSI operation.

Results on digraphs: $\operatorname{CSP}(\mathbf{H})$, cont'd

- $\neg \operatorname{CSP}(\mathbf{H})$ is in $(1, k)$-Datalog for some k (aka tree duality) iff \mathbf{H} is invariant under TSI operations of all arities $n \geq 2$ (Dalmau, Pearson, 1999);
- Barto, Kozik, Maroti and Niven (2009) have proved dichotomy for "special triads"; the tractable cases either admit TSI's of all arities or a majority operation.
- Result extended by Bulín (2009) to "special polyads":
- proof invokes the BW Theorem: if polyad admits a weak NU then it admits weak NU's for all but finitely many arities;
- hence $\neg \operatorname{CSP}(\mathbf{H})$ is in Datalog.
- refined complexity for triads is being investigated (A. Lemaître)

Results on digraphs: $\operatorname{CSP}(\mathbf{H}+$ lists $)$

- Let \mathbf{H} be a digraph; consider the problem $\operatorname{CSP}(\mathbf{H}+$ lists $)$.
- We know that dichotomy holds in the list case;
- but can we find a "nice" (graph-theoretic ?) description of the tractable cases ? This should help to understand the refined complexity.
- The case of reflexive digraphs is nice:

List homomorphisms on reflexive digraphs

Theorem (Carvalho, Feder, Hell, Huang, Rafiey (TBA))

Let \mathbf{H} be a reflexive digraph. If \mathbf{H} admits a weak $N U$, then it admits a semilattice polymorphism, and $\operatorname{CSP}(\mathbf{H})$ is in \mathcal{P}; otherwise it is $\mathcal{N} \mathcal{P}$-complete.

List homomorphisms on reflexive digraphs, cont'd

- Notice: if $\mathbf{H}+$ lists admits a semilattice operation \wedge, it preserves every subset of \mathbf{H};
- hence $a \wedge b \in\{a, b\}$ for all a, b;
- i.e. there exists some ordering of the vertices such that $a \wedge b=\min (a, b)$ for all $a, b, \in H$.

An aside on reflexive digraphs

- the category of reflexive digraphs is equipped with a nice homotopy theory (BL, Tardif, 2004);
- coincides with the usual homotopy for posets;
- the nature of the homotopy groups of \mathbf{H} is closely related to the algebra $\mathbb{A}(\mathbf{H})$:

Theorem (BL, 2006)

Let \mathbf{H} be a connected, reflexive digraph and let $\mathbb{A}=\mathbb{A}(\mathbf{H})$.
If \mathbb{A} admits a weak $N U$ operation then every homotopy group of \mathbf{H} is trivial.

- a useful tool to prove hardness results;
- some evidence that perhaps there is more to this story (see Posets);

Results on graphs: $\operatorname{CSP}(\mathbf{H})$

Theorem (Hell, Nešetřil, 1990)

Let \mathbf{H} be a graph. If \mathbf{H} has a loop or is bipartite, then $\operatorname{CSP}(\mathbf{H})$ is in \mathcal{P}; otherwise it is $\mathcal{N} \mathcal{P}$-complete.

- Notice: this is a special case of the Barto et al. result on digraphs without sources and sinks;
- result has been refined independently by Bulatov (05), Kún \& Szegedy (09), Siggers (09):

Theorem

If a graph \mathbf{H} is non-bipartite and has no loops then it admits no weak NU polymorphism.

Results on graphs: $\operatorname{CSP}(\mathbf{H}+$ lists $)$

- Let \mathbf{H} be a graph.
- there is a complete classification of the complexity of $\operatorname{CSP}(\mathbf{H}+$ lists $)$;
- our starting point is the following dichotomy result:

Theorem (Feder, Hell, Huang, 1999)

Let \mathbf{H} be a graph. Then t.f.a.e.:
(1) $\mathbf{H}+$ lists admits a majority operation;
(2) \mathbf{H} is a bi-arc graph.

If this condition is satisfied then $\operatorname{CSP}(\mathbf{H}+$ lists $)$ is in \mathcal{P}, otherwise it is $\mathcal{N P}$-complete.

Classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$

- (FHH) a graph \mathbf{H} is bi-arc iff $\mathbf{H} \times \mathbf{K}_{2}$ is the complement of a circular arc graph:
- vertices are arcs; vertices are adjacent if the corresponding arcs intersect.

- odd cycles, 6-cycle are NOT bi-arc graphs.

Classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$, cont'd

First we confirm the algebraic dichotomy conjecture:

Lemma (Egri, Krokhin, BL, Tesson, 2009)

Let \mathbf{H} be a graph. If $\mathbf{H}+$ lists admits a weak $N U$ then it admits a majority operation.

- it follows that $\operatorname{CSP}(\mathbf{H}+$ lists $)$ is either $\mathcal{N} \mathcal{P}$-complete, else $\neg \operatorname{CSP}(\mathbf{H}+$ lists $)$ is in linear Datalog.
- it remains to determine for which graphs the problem is in symmetric Datalog (and which are FO).

Classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$, cont'd

Let \mathbf{H} be a graph, let \mathbb{A} be the algebra associated to $\mathbf{H}+$ lists.

- Strategy: to characterize graphs \mathbf{H} such that $\mathcal{V}(\mathbb{A})$ omits types 1, 2, 4, 5 (i.e. pure type 3);
- we sieve to eliminate as much "bad guys" as possible;
- hopefully we can get a nice description of the remaining graphs to show the corresponding problem is in symmetric Datalog.

Classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$, cont'd

To illustrate we consider the irreflexive case (graphs with no loops):

- the bad guys are: odd cycles, the 6-cycle, and the 5-path;

Classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$, cont'd

An illustration: Why the 5-path is bad:

- the 5-path is a bi-arc graph, so admits a majority operation and hence $\mathcal{V}(\mathbb{A})$ omits types 1,2 and 5 ;
- we produce (by pp-definability) a 2-element subalgebra with monotone terms;
- hence this divisor is of type 4.

Classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$, cont'd

- Let Good, be the family of irreflexive graphs \mathbf{H} that have no induced 6-cycle, odd cycle or 5-path.
- We give an inductive definition of this family:
- define the special sum of two bipartite graphs \mathbf{H}_{1} and \mathbf{H}_{2} as follows: connect every vertex of one colour class of \mathbf{H}_{1} to every vertex of one colour class of \mathbf{H}_{2} :

\mathbf{H}_{1}
H_{2}

Classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$, cont'd

Lemma

Good, is the smallest class of irreflexive graphs containing the one-element graph and closed under disjoint union and special sum.

- The general case is handled in a similar way;
- the inductive definition is only slightly more involved;
- let Good denote the class of graphs that avoid the following forbidden subgraphs:
- the irreflexive 6-cycle, odd cycles and 5-path;
- the reflexive 4-cycle and 4-path;
- and the following "mixed" graphs:

Classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$, cont'd

Classification of $\operatorname{CSP}(\mathbf{H}+$ lists $)$, cont'd

Theorem (E,K,BL,T)

Let \mathbf{H} be a graph, and let \mathbb{A} be the algebra associated to $\mathbf{H}+$ lists. Then t.f.a.e.:
(1) $\mathbf{H} \in$ Good;
(2) $\mathcal{V}(\mathbb{A})$ is pure type 3 ;
(3) $\mathcal{V}(\mathbb{A})$ is 4-permutable;
(9) $\neg \operatorname{CSP}(\mathbf{H}+$ lists $)$ is expressible in symmetric Datalog.

If these conditions hold then $\operatorname{CSP}(\mathbf{H}+$ lists $)$ is in \mathcal{L}; otherwise it is $\mathcal{N} \mathcal{L}$-complete (and $\neg \operatorname{CSP}(\mathbf{H}+$ lists $)$ is expressible in linear Datalog) or it is $\mathcal{N P}$-complete.

Results on Posets: $\operatorname{CSP}(\mathbf{Q}+$ csts $)$

- Let \mathbf{Q} be a poset.
- Since \mathbf{Q} is reflexive, the problem $\operatorname{CSP}(\mathbf{Q})$ is trivial, hence we consider the problem $\operatorname{CSP}(\mathbf{Q}+c s t s)$;
- by FV this problem is as hard as the general case;
- several special cases are of interest (e.g. only family of maximal clones whose complexity is not classified);
- $\operatorname{CSP}(\mathbf{Q}+$ lists $)$ is a special case of the reflexive digraph problem (already under investigation!)

Results on Posets: $\operatorname{CSP}(\mathbf{Q}+$ csts $)$, cont'd

- Remarks on the preprimal algebra (maximal clone) 6th case:
- for any bounded poset \mathbf{Q}, the variety admits type 4 , hence $\operatorname{CSP}(\mathbf{Q}+$ csts $)$ is $\mathcal{N} \mathcal{L}$-hard (and not expressible in symmetric Datalog);
- one can construct various examples of bounded posets \mathbf{Q} such that $\operatorname{CSP}(\mathbf{Q}+$ csts $)$ is in \mathcal{P} but the variety admits type 2 , or type 5, etc.
- hence even the special case of bounded posets appears to be quite complicated.
- Now back to general posets:

Results on Posets: $\operatorname{CSP}(\mathbf{Q}+$ csts $)$, cont' d

- Consider for a moment the special subproblem \mathcal{S} of $\operatorname{CSP}(\mathbf{Q}+$ csts $)$, where the inputs are themselves posets;
- (Zádori) A \mathbf{Q}-zigzag is an input \mathbf{P} to the problem \mathcal{S} such that
- there is no homomorphism from \mathbf{P} to \mathbf{Q};
- every proper substructure of \mathbf{P} (in \mathcal{S}) admits a homomorphism to \mathbf{Q};

P
Q

Results on Posets: $\operatorname{CSP}(\mathbf{Q}+$ csts $)$, cont'd

Theorem (Zádori, 1993)

Let \mathbf{Q} be a connected poset. Then t.f.a.e.:
(1) \mathbf{Q} admits an NU operation;
(2) there are only finitely many Q-zigzags.

It will follow from this result that in the case of posets, presence of an NU operation implies expressibility in linear Datalog:

Results on Posets: NU implies linear Datalog

Theorem

Let \mathbf{Q} be a connected poset. If \mathbf{Q} admits an $N U$ operation then $\neg \operatorname{CSP}(\mathbf{Q}+$ csts $)$ is expressible in linear Datalog.

Sketch of proof:

- let \mathbf{R} be an input structure; one may (easily) construct a poset \mathbf{R}^{\prime} from \mathbf{R} using pp-definitions and transitive closure, such that \mathbf{R}^{\prime} admits a homomorphism to \mathbf{Q} iff \mathbf{R} does;
- hence \mathbf{R} does not map to \mathbf{Q} iff some \mathbf{Q}-zigzag \mathbf{P} maps to \mathbf{R}^{\prime};
- the existence of the map from \mathbf{P} to \mathbf{R}^{\prime} is easily encoded as a sentence in positive FO with transitive closure;
- since there are finitely many zigzags, $\neg \operatorname{CSP}(\mathbf{Q}+c s t s)$ is in $\operatorname{pos}(F O+T C)$, and hence in linear Datalog (Dalmau, Krokhin, BL).

Results on Posets: linear Datalog, cont'd

Corollary

Let \mathbf{Q} be a connected poset, and let $\mathbb{A}=\mathbb{A}(\mathbf{Q}+$ csts $)$. If $\mathcal{V}(\mathbb{A})$ is congruence-modular then $\neg \operatorname{CSP}(\mathbf{Q}+$ csts $)$ is expressible in linear Datalog, and $\operatorname{CSP}(\mathbf{Q}+$ csts $)$ is in $\mathcal{N} \mathcal{L}$. If \mathbf{Q} is bounded, then $\operatorname{CSP}(\mathbf{Q}+$ csts $)$ is $\mathcal{N} \mathcal{L}$-complete.

- it is known that congruence-modularity, congruence-distributivity and NU are equivalent conditions for posets (BL, Zádori, 1997);
- bounded case: follows from earlier remark;
- there are cases in linear Datalog that are not congruence-modular (see 5 element poset 3 slides ago).

Results on Posets: The Series-Parallel Case

Definition

Let \mathbf{Q}_{1} and \mathbf{Q}_{2} be two posets; the (ordinal) sum $\mathbf{Q}_{1} \bigoplus \mathbf{Q}_{2}$ of \mathbf{Q}_{1} and \mathbf{Q}_{2} is the poset obtained from their disjoint union by making every element of \mathbf{Q}_{1} smaller than every element of \mathbf{Q}_{2}.

Results on Posets: The Series-Parallel Case, cont'd

Definition

The class of series-parallel posets is the smallest containing the one-element poset and closed under disjoint union and ordinal sum.

Remark: these are also known as " N -free" posets: they are precisely the posets that do not contain an induced poset isomorphic to N .

Results on Posets: The Series-Parallel Case, cont'd

- we say a (induced) subposet \mathbf{P} of \mathbf{Q} is a subalgebra of \mathbf{Q} if its universe is a subuniverse of the algebra $\mathbb{A}=\mathbb{A}(\mathbf{Q}+$ csts $)$.
- it is easy to see that every covering pair is a 2-element subalgebra of \mathbf{Q}; in particular $\mathcal{V}(\mathbb{A})$ admits type 1,4 or 5 ;

Results on Posets: The Series-Parallel Case, cont'd

- we say that \mathbf{Q} retracts onto \mathbf{P} if there exist maps $R: \mathbf{Q} \rightarrow \mathbf{P}$ and $e: \mathbf{P} \rightarrow \mathbf{Q}$ such that $r \circ e=i d_{P}$;
- the posets below turn out to characterise the "bad" series-parallel posets (via retractions):

Results on Posets: The Series-Parallel Case, cont'd

Theorem (Dalmau, Krokhin, BL, 2008)

Let \mathbf{Q} be a connected series-parallel poset. Then t.f.a.e:
(1) \mathbf{Q} admits a weak NU operation;
(2) \mathbf{Q} admits TSI operations of all arities;
(3) every connected subalgebra of \mathbf{Q} has a trivial fundamental group;
(9) Q does not retract on any of the posets pictured above.

If any of these conditions hold then $\operatorname{CSP}(\mathbf{Q})$ is in \mathcal{P}; otherwise it is $\mathcal{N} \mathcal{P}$-complete.

Results on Posets: The Series-Parallel Case, cont'd

- for series-parallel posets, we can say a bit more in the tractable case:
- it turns out one can express the condition that a poset \mathbf{P} does NOT retract to \mathbf{Q} in $\operatorname{pos}(\mathrm{FO}+\mathrm{TC})$;
- we can conclude as before that $\neg \operatorname{CSP}(\mathbf{Q}+$ csts $)$ is in linear Datalog;
- since posets will always admit type 1,4 or 5 , this is the best we can hope for and the classification is complete.

