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Overview: some history

In the mid 90’s, an important connection was made
(Feder & Vardi, Jeavons) relating

the complexity of Constraint Satisfaction Problems
the nature of the operations that preserve the constraint
relations

early 21st century: the connection between algebra and
complexity is made clearer by Bulatov, Jeavons, Krokhin

this has led in the last few years to major advances in our
understanding of CSP’s
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Overview: what’s a CSP ?

A Constraint Satisfaction Problem consists of:

a finite set of variables,
a set of constraints on these variables,
a set of possible values for the variables;

the problem is to decide whether we can assign values to the
variables so as to satisfy all the constraints.

typical examples from “real life” are:

Sudoku and crossword puzzles,
database queries, scheduling problems, etc.

not so real-life examples are:

graph colouring,
graph reachability,
3-SAT, Horn SAT, 2-SAT, etc.
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Overview: Dichotomy Conjectures

Dichotomy Conjecture (Feder & Vardi, 1994): every (fixed
target) CSP is either solvable in poly-time, or is NP-complete;

in 2000, BJK refined the conjecture in algebraic terms: to
each CSP, one associates an algebra A; the identities satisfied
by the algebra should control the tractability of the CSP:

Algebraic Dichotomy Conjecture: if the variety generated
by A omits type 1, then the CSP is tractable, otherwise it is
NP-complete.
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Overview: some evidence

the conjecture has been verified in many special cases, in
particular:

2 elements (Schaefer, 1978)
3 elements (Bulatov, 2002)
list homomorphism problems (Bulatov, 2003)
various other special cases (graphs, etc.)
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Overview: refining the Boolean case

In 2005, Allender, Bauland, Immerman, Schnoor, Vollmer
obtain a complete classification of the complexity of Boolean
CSP’s;

all Boolean CSP’s satisfy one of the following conditions:

in AC 0;
L-complete;
NL-complete;
⊕L-complete;
P-complete;
NP-complete.

the above are all standard complexity classes.
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Overview: Fine-grained Complexity Conjectures

Remarkably, the classification of the complexity of Boolean
CSP’s lines up perfectly with

the typeset of the variety of the associated algebra
the (non-)expressibility of the CSP in various logics

It appears that the algebra not only predicts which CSP’s are
easy or hard, but in fact the “exact” complexity of the CSP;

precise conjectures have been formulated that relate the
complexity (both descriptive and algorithmic) with the nature
of the identities of the associated algebra
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Outline of the talks

Part 1: Preliminaries on Complexity and CSP’s

Part 2a: Preliminaries on Algebra and
Statement of the Conjectures

Part 2b: Some Evidence: General Results

Part 3: More Evidence: Graphs and Posets
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Homework ?!?

take a glance at last year’s talks by

A. Krokhin (Algebraic approach to CSP’s)
R. Willard (Computational complexity)
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Relational Structures

a k-ary relation on a set H is a subset of Hk , i.e. a set of
k-tuples;

a relational structure

H = 〈H; θ1, θ2, . . . , θr 〉

consists of a non-empty set H (its universe) and some
relations θi on H.

for instance, (di)graphs are relational structures H = 〈H; θ〉
with a single binary relation (the edges.)
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Homomorphisms

Let G = 〈G ; ρ1, ρ2, . . . , ρs〉 and H = 〈H; θ1, θ2, . . . , θr 〉 be
relational structures.

G and H have the same signature if r = s and
arity of ρi = arity of θi for all 1 ≤ i ≤ r .

a map f : G → H is a homomorphism if f (ρi ) ⊆ θi for all i ;

if G and H are graphs, a homomorphism is just an
edge-preserving map, i.e.
(u, v) is an edge of G =⇒ (f (u), f (v)) is an edge of H.
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CSP(H)

fix a “target” structure H;

the problem CSP(H):
1 Instance: a structure G;
2 Question: is there a homomorphism G→ H ?

i.e. CSP(H) is the set of structures that admit
a homomorphism to H;

¬CSP(H) = structures that do NOT admit
a homomorphism to H.
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An Example: 2-Colouring

let G be a graph;

it is easy to see that
proper 2-colouring of G = homomorphism G→ edge;

In particular: 2-COL is the problem CSP(H) where
H = 〈{0, 1}; E 〉 with E = {(0, 1), (1, 0)}.
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Cores

If H and H0 admit homomorphisms to one another, then

CSP(H0) = CSP(H).

Hence we may always assume H is a core,
i.e.
H has no proper retracts,
i.e.
every homomorphism from H to H is onto,
i.e.
of all structures equivalent to H, H has smallest universe.
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Motivation

It is well-known that CSP(H) is:

poly-time solvable if H is the complete graph on 2 vertices;
NP-complete, if H is the complete graph on 3 vertices (or
more);
various other complexities for other targets H;

The Main Question: Given any finite structure H, can we
determine what the complexity of CSP(H) is ?
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Outline of this section:

We describe 5 important complexity classes

for each class we describe a problem that somehow captures
its essence (complete problems);

we give a CSP form of each problem:
these will be used as running examples.
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Reductions, hardness, completeness

Reductions

All reductions are first-order reductions

(unless otherwise specified)

A problem P is hard for the complexity class C if every
problem in C reduces to P;

the problem P is C-complete if it is hard for C and belongs to
the class C.
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The class NP

NP is the class of problems recognised by a polynomial time
bounded non-deterministic Turing machine

equivalently: NP is the class of polynomially verifiable
problems

for any structure H the problem CSP(H) is in NP:
given a solution to CSP(H), one may verify it in polynomial
time.
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A complete problem for NP

(positive) NOT ALL EQUAL 3-SAT

Input: Sets S1, . . . ,Sm with at most three elements;

Question: can one colour the elements so that no set gets
only one colour ?
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A complete problem for NP , CSP form

CSP form of positive NOT ALL EQUAL 3-SAT

CSP(H), where H is the structure H = 〈{0, 1}; θ〉 where

θ = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}.
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The class P

P is the class of problems recognised by a polynomial time
bounded (deterministic) Turing machine
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A complete problem for P

HORN-3-SAT

Input: A conjunction of Horn 3-clauses

Question: is there a satisfying assignment ?
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A complete problem for P , CSP form

CSP form of HORN-3-SAT

CSP(H), where H is the structure H = 〈{0, 1}; {0}, {1}, ρ〉 where

ρ = {(x , y , z) : (y ∧ z)→ x}

= {0, 1}3 \ {(0, 1, 1)}
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A complete problem for P , cont’d

An unsatisfiable instance:

1 1

1

1

0
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The class NL

NL is the class of problems recognised by a logarithmic space
bounded non-deterministic Turing machine
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A complete problem for NL

Directed Reachability

Input: a directed graph and two specified nodes s and t;

Question: is there a directed path from s to t ?
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A complete problem for NL, CSP form

CSP form of Directed Reachability

CSP(H), where H is the structure H = 〈{0, 1}; {0}, {1},≤〉

Note: this is actually Unreachability, but NL is closed under
complementation (Immerman 1988; Szelepcsényi 1987)
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A complete problem for NL, cont’d

An unsatisfiable instance (and target): there exists a directed path
from a node coloured 1 to a node coloured 0.

0

1

0

0

1

1
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The class L

L is the class of problems recognised by a logarithmic space
bounded (deterministic) Turing machine
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A complete problem for L

Undirected Reachability

Input: an undirected graph and specified nodes s and t;

Question: is there a path from s to t ?

The fact that this problem is in L follows from a deep result
of Reingold (2005)
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A complete problem for L, CSP form

CSP form of Undirected Reachability

CSP(H), where H is the structure H = 〈{0, 1}; {0}, {1}, =〉

Note: the CSP actually encodes Unreachability.
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A complete problem for L, cont’d

An unsatisfiable instance (and target): there exists an undirected
path from a node coloured 1 to a node coloured 0.

0

1

0

1
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The classes modpL

Let p ≥ 2 be a prime.

A language L is in modpL if there exists a logarithmic
space-bounded non-deterministic Turing machine M such that
w ∈ L precisely if the number of accepting paths on input w

is 0 mod p.

If p = 2, mod2L is denoted ⊕L and is called parity L.
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A complete problem for modpL

Linear equations mod p

Input: a system of linear equations mod p;

Question: is there a solution ?
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Some complete problems for modpL, CSP form

let A = 〈A; +, 0〉 be a finite Abelian group and let b be any
non-zero element of A such that pb = 0 for some prime p;

the following problem is modpL-complete

modpL-complete CSP form

CSP(H), where H is the structure 〈A; µ, {b}, {0}〉 with

µ = {(x , y , z) : x + y = z}.
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Containments of these complexity classes

AC0

L

mod L
p

NL

NC2

P

NP(positive NAE 3-SAT)

(Horn 3-SAT)

(directed reachability)

(linear equations mod p)

(undirected reachability)

...... ......
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Motivation

Descriptive Complexity

given a set of structures S, is there a sentence in some “nice”
logic that describes precisely the members of S ?

The nicer the logic, the easier it is to recognise the structures.
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Motivation, continued

For instance: if H is the 2-element directed edge 0→ 1, then

¬CSP(H) = {G : ∃a, b, c (a→ b) ∧ (b → c)};

It follows that CSP(H) is describable in first-order logic, and
hence has very low complexity (FO-definable, in AC 0)
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Why Datalog ?

Datalog is a well-studied database query language;

it turns out that a large number of natural CSP’s are
describable via Datalog (viewed as a “nice” logic)

this property provides simple poly-time algorithms for the
CSP;

in fact: we get a uniform template of algorithms (which allows
proofs of tractability)
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Outline of this section:

We define the notion of Datalog Program, a means of
describing certain sets of structures;

we define 2 fragments of Datalog, i.e. special restricted
versions;

we describe, for each fragment,
a CSP which is definable in it;

each of these CSP’s somehow captures the essence of each
fragment

We provide upper bounds on the complexity of CSP’s
describable in Datalog and fragments.
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Datalog

A Datalog Program consists of rules, and takes as input a
relational structure.

a typical Datalog rule might look like this one:

I (x , y)← J(w , u, x), K (x), θ1(x , y , z), θ2(x , w)

the relations θ1 and θ2 are basic relations of the input
structures (EDB’s);

the relations I , J, K are auxiliary relations used by the
program (IDB’s);

the rule stipulates that if the condition on the righthand side
(the body of the rule) holds, then the condition of the left
(the head) should also hold.
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An example

Recall:

HORN-3-SAT

CSP(H) where H = 〈{0, 1}; {0}, {1}, ρ〉 with

ρ = {(x , y , z) : (y ∧ z)→ x}

Here is a Datalog program that accepts precisely those
structures that are NOT in CSP(H), i.e. that do not admit a
homomorphism to H:
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A Datalog program for HORN-3-SAT

A Datalog program

W (x) ← 1(x)

W (x) ← W (y), W (z), ρ(x , y , z)

G ← W (x), 0(x)

the 0-ary relation G is the goal predicate of the program: it
”lights up” precisely if the input structure admits NO
homomorphism to the target structure H.
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Definition (Definability in Datalog)

We say that ¬CSP(H) is definable in Datalog if there exists a
Datalog program that accepts precisely those structures that do
not admit a homomorphism to H.

Theorem

If ¬CSP(H) is definable in Datalog then CSP(H) is in P.

Idea: IDB’s have bounded arity, so the program can do only
polynomially many steps before stabilising
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A first fragment: Linear Datalog

Definition (Linear Datalog)

A Datalog program is said to be linear if each rule contains at
most one occurrence of an IDB in the body.

In other words, each rule looks like this

I (x , y)← J(w , u, x), θ1(x , y , z), θ2(x , w)

where I and J are the only IDB’s, or like this

I (x , y)← θ1(x , y , z), θ2(x , w).
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A non-linear Datalog program

Our program for HORN-3-SAT is not linear, since the IDB W

occurs twice in the body of the second rule:

A non-linear program

W (x) ← 1(x)

W (x) ← W (y), W (z), ρ(x , y , z)

G ← W (x), 0(x)
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A linear Datalog program for Directed Reachability

A linear Datalog program

W (x) ← 1(x)

W (y) ← W (x), θ≤(x , y)

G ← W (x), 0(x)
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Expressibility in Linear Datalog

Theorem

If ¬CSP(H) is definable in Linear Datalog then CSP(H) is in NL.

Idea: the program rejects if and only if there is a derivation

path that ends in the goal predicate: this amounts to directed
reachability
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Another fragment: Symmetric Datalog

Definition (Symmetric Datalog)

A Datalog program is said to be symmetric if (i) it is linear and (ii)
it is invariant under symmetry of rules.

In other words, if the program contains the rule

I (x , y)← J(w , u, x), θ1(x , y , z), θ2(x , w)

then it must also contain its symmetric:

J(w , u, x)← I (x , y), θ1(x , y , z), θ2(x , w).
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A non-symmetric (linear) Datalog program

Our program for Directed Reachability is not symmetric:

A non-symmetric linear program

W (x) ← 1(x)

W (y) ← W (x), θ≤(x , y)

G ← W (x), 0(x)
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A symmetric Datalog program for
Undirected Reachability

A symmetric Datalog program

W (x) ← 1(x)

W (y) ← W (x), θ=(x , y)

W (x) ← W (y), θ=(x , y)

G ← W (x), 0(x)
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Expressibility in Symmetric Datalog

Theorem (Egri, BL, Tesson, 2007)

If ¬CSP(H) is definable in Symmetric Datalog then

CSP(H) is in L.

Idea: The program rejects if and only if there is a derivation
path that ends in the goal predicate: since the rules are
symmetric this amounts to undirected reachability
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Non-expressibility Results

The problems we described above which are complete for modpL,
P and NL also have “extremal” properties with respect to
expressibility in fragments of Datalog:
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Non-expressibility Results, cont’d

Theorem (Feder, Vardi, 1993)

Let µ = {(x , y , z) : x + y = z}, let b 6= 0, and let H = 〈A; µ, {b}〉.
Then ¬CSP(H) is not expressible in Datalog.

Theorem (Cook, Sethi, 1976)

HORN-3-SAT is not expressible in Linear Datalog.

Theorem (Egri, BL, Tesson, 2007)

Directed Reachability is not expressible in

Symmetric Datalog.
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Recap of Talk 1

CSP(H) complete expressible in NOT expressible in

NAE SAT NP - Datalog

linear equations modpL ?? Datalog

Horn SAT P Datalog Lin. Datalog

Directed Reach. NL Lin. Datalog Symm. Datalog

Undir. Reach. L Symm. Datalog FO
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Outline of Talk 2

Talk 2, Part a:

to every structure H we associate an idempotent algebra A(H);
the identities satisfied by A(H) impose lower bounds on the
complexity of CSP(H);
we conjecture that the typeset of the variety generated by
A(H) determines the complexity of CSP(H).

Talk 2, Part b:

We present some general results that support these
conjectures.
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