NMAG 455 Universal Algebra 2, spring semester 2017–2018

Homework 3 Deadline 9 May 2018, 9:00

Let t be an n-ary operation on A, B a set, and $f: A \to B, g: B \to A$ mappings. We define an n-ary operation $t^{(f,g)}$ on B by

$$t^{(f,g)}(x_1,\ldots,x_n) = f(t(g(x_1),\ldots,g(x_n)))$$

(this is called a *reflection* of t)

For clones \mathcal{A}, \mathcal{B} , write $\mathcal{B} \in ER(\mathcal{A})$ if there are $f : A \to B, g : B \to A$ such that

$$\{t^{(f,g)}:t\in\mathcal{A}\}\subseteq\mathcal{B}$$
.

3.1. (10 points) Prove that the following are equivalent for any clones \mathcal{A}, \mathcal{B} on finite sets:

- (i) $\mathcal{A} \stackrel{h1}{\leq} \mathcal{B}$
- (ii) $\mathcal{B} \in ERP(\mathcal{A})$ (ie. $\mathcal{B} \in ER(\mathcal{C})$ for some power \mathcal{C} of \mathcal{A})

(Hint: use an argument similar to the proof of the analogous theorem for \leq .)

A clone \mathcal{A} on a finite set A is called a *core* if each unary member of \mathcal{A} is a bijection.

3.2 (10 points)

- (i) Prove that for any core clone \mathcal{A} on a finite set and a unary member f, $f^{-1} \in \mathcal{A}$.
- (ii) Prove that for any clone \mathcal{A} on a finite set there is a core clone \mathcal{B} on a finite set such that $\mathcal{A} \stackrel{h_1}{\sim} \mathcal{B}$

(Hint for (ii): use a non-bijective unary member of \mathcal{A} to define a $\stackrel{h_1}{\sim}$ equivalent clone on a smaller set.)

3.3 (10 points) Prove that for any core clone $\mathcal{A}, \mathcal{A} \stackrel{h_1}{\sim} \mathcal{A}^{id}$, where

$$\mathcal{A}^{id} = \{ f \in \mathcal{A} : f \text{ is idempotent } \}$$

(Modify each operation in \mathcal{A} (by composing it with a unary operation) to make it idempotent and prove that this modification is an h1-homomorphism.)