Homework 1 Deadline 4 Apr 2018, 9:00

1.1. (10 points) Let \mathbf{A} be an algebra with a central Malcev polynomial and let ring \mathbf{R} and \mathbf{R} -module \mathbf{M} be as in the proof of the fundamental theorem on Abelian algebras. Prove that every polynomial operation of \mathbf{A} is a polynomial operation of \mathbf{M} (this fills in one of the omitted parts of the proof of the fundamental theorem).

Recall that a *loop* is a quasigroup with a neutral element (the signature is \cdot (multiplication), /, \ (right and left division), 1 (neutral element wrt. \cdot). In the following problems, a *group* is a loop such that \cdot is associative (and it is *commutative* if \cdot is commutative).

1.2 (10 points) Prove that a loop is Abelian iff it is a commutative group.

1.3 (10 points) Consider the loop **L** with universe $\mathbb{Z}_4 \times \mathbb{Z}_2$ given by the multiplication $(a, b) \cdot (c, d) = (a + c, b + d)$ unless b = d = 1, and $(a, 1) \cdot (c, 1) = (a \star c, 0)$

*	0	1	2	3
0	1	0	2	3
1	0	2	3	1
2	2	3	1	0
3	3	1	0	2

Consider the mapping $f : L \to \mathbb{Z}_2$ given by $(a, b) \mapsto b$, its kernel α , and the α -block N of 1 = (0, 0) (ie. $N = \mathbb{Z}_4 \times \{0\}$) (note that N is a subuniverse of **L**, the corresponding subalgebra **N** is clearly isomorphic to the group \mathbb{Z}_4).

- Prove that f is a homomorphism (so **N** is a so called normal subloop, which is Abelian)
- Prove that α is not an Abelian congruence (ie. α does not centralize α modulo 0).