Universal Algebra Exercises - Sheet 9

Exercise 1. Given two varieties of groups \mathcal{V} and \mathcal{W} , define

$$\mathcal{V} \cdot \mathcal{W} := \{ G \text{ group } | \exists N \leq G, \ N \in \mathcal{V}, \ G/N \in \mathcal{W} \}.$$

Show that this is a variety of groups.

Exercise 2. Let G be a group and let \mathcal{A} be the variety of abelian groups. Let $\lambda_{\mathcal{A}}^{G}$ be the smallest congruence of G with an abelian quotient.

• Show that the congruence class of the identity element is the subgroup of G generated by elements of the form $[x, y] := xyx^{-1}y^{-1}$.

$$1/\lambda_A^G = \operatorname{Sg}_G([x,y] \mid x, y \in G)$$

• Show that the variety $A \cdot A$ is axiomatized by the group laws and [[x,y],[z,w]]=1.

Exercise 3. Let \mathcal{A}_n be the variety of abelian groups satisfying $x^n \approx 1$. Show that

- $\mathcal{A}_3 \cdot \mathcal{A}_2 = \text{Mod} \Big(\text{ group axioms } \cup \{x^6 \approx 1, \quad [x^2, y^2] \approx 1, \quad [x, y]^3 \approx 1 \} \Big)$
- $\mathcal{A}_2 \cdot \mathcal{A}_2 = \operatorname{Mod} \left(\text{ group axioms } \cup \{(x^2y^2)^2 \approx 1\} \right)$

Exercise 4. Let cRing_n be the variety of commutative rings satisfying $x^n \approx x$, and let \mathbb{F}_9 be the field of order 9. Show that $\operatorname{HSP}(\mathbb{F}_9)$ is axiomatized by the axioms of cRing_9 together with

$$x + x + x \approx 0$$
.