Universal Algebra Exercises - Sheet 7

Exercise 38. Recall from the homework that, given a group G, its lattice of congruences is isomorphic to its lattice of normal subgroups. Prove an analogous statement for rings.

Exercise 39. Let p be a prime number. Show that the group $(\mathbb{Z}, +)$ is a subdirect product of the groups \mathbb{Z}_{p^k} .

Exercise 40. Let \mathbb{Q} be the additive group of rational numbers and let p be a prime number.

- (i) Let $\mathbb{Q}_p := \{a/p^k \mid a \in \mathbb{Z}, k \geq 0\}$. Show that \mathbb{Q}_p is a subgroup of \mathbb{Q} and that \mathbb{Z} is a normal subgroup of \mathbb{Q}_p .
- (ii) Let $\mathbb{Z}_{p^{\infty}} = \mathbb{Q}_p/\mathbb{Z}$. Prove that every element of $\mathbb{Z}_{p^{\infty}}$ has finite order.
- (iii) Let H be a subgroup of $\mathbb{Z}_{p^{\infty}}$ such that the order of elements in H if bounded. Show that H is a cyclic group of order p^k .
- (iv) Show that $\mathbb{Z}_{p^{\infty}}$ is subdirectly irreducible by showing that the lattice of (normal) subgroups is a chain.

$$0 < H_1 < H_2 < \cdots < \mathbb{Z}_{p^{\infty}}$$

(v) Show that $\mathbb{Z}_{p^{\infty}}/H_k = \mathbb{Z}_{p^{\infty}}$ for all k.

Definition. A variety \mathcal{V} is called *finitely generated* if it contains some finite algebras A_1, \ldots, A_n such that $\mathcal{V} = \mathrm{HSP}(A_1, \ldots, A_n)$.

Definition. A variety V is called *locally finite* if every finitely generated algebra in V is finite.

Exercise 41. Show that every finitely generated variety is locally finite.

Hint: let $B \in HSP(A_1, ..., A_n)$ be finitely generated ...