CSP lecture 16/17 winter semester - Problem Set 6

An instance of the $\operatorname{CSP}(\mathbb{A})$ with the set of variables V is called 1-minimal if there exists a system of subsets $P_{x} \subseteq A, x \in V$ such that for every constraint $R\left(x_{1}, \ldots, x_{k}\right)$, the projection of R onto the j-th coordinate is equal to $P_{x_{j}}$.

Two instances of the CSP are called equivalent if they have the same set of solutions.
Problem 1. Devise a polynomial algorithm that transforms an instance of $\operatorname{CSP}(\mathbb{A})$ into an equivalent 1-minimal instance of $\operatorname{CSP}(\mathbb{B})$, where \mathbb{B} is pp-definable from \mathbb{A}.

A semilattice operation on A is a binary operation $s: A^{2} \rightarrow A$ such that for all $a, b, c \in A$

$$
s(s(a, b), c)=s(a, s(b, c)), \quad s(a, b)=s(b, a), \quad s(a, a)=a
$$

A totally symmetric operation on A of arity n is an operation $t: A^{n} \rightarrow A$ such that $t\left(a_{1}, \ldots, a_{n}\right)=$ $t\left(b_{1}, \ldots, b_{n}\right)$ whenever $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{b_{1}, \ldots, b_{n}\right\}$, that is, the result of t depends only on the set of its arguments.

Problem 2. Prove that every clone that contains a semilattice operation also contains, for each n, a totally symmetric operation of arity n. Observe that the binary minimum and maximum operations on $\{0,1\}$ are semilattice operations.

Problem 3. Prove that $\operatorname{CSP}(\mathbb{A})$ is solvable in polynomial time whenever, for each n, \mathbb{A} has a totally symmetric polymorphism of arity n. (Hint: Use Problems 1 and 2, reject if some P_{x} is empty, otherwise apply a totally symmetric operation of sufficiently large arity to each P_{x} and show that the resulting elements form a solution.)

An instance of the CSP is called a simple (2,3)-minimal instance if

- The set of variables is $V=\left\{x_{1}, \ldots, x_{m}\right\}$
- For each $1 \leq i \leq m$, there is a (single) unary constraint $P_{i}\left(x_{i}\right)$
- For each pair $1 \leq i<j \leq m$, there is a (single) binary constraint $P_{i, j}\left(x_{i}, x_{j}\right)$
- There are no other constraints than those from the previous two items
- For each pair $1 \leq i<j \leq m$, the projection of $P_{i, j}$ onto the first (second, resp.) coordinate is equal to $P_{i}\left(P_{j}\right.$, resp.).
- For each triple $1 \leq i, j, k \leq m$ of distinct integers and each $(a, b) \in P_{i, j}$, there exists $c \in P_{k}$ such that $(a, c) \in P_{i, k}$ and $(b, c) \in P_{j, k}$. Here, for $i>j$, we define $P_{i, j}=\left\{(a, b):(b, a) \in P_{j, i}\right\}$.

A simple (2,3)-minimal instance is best visualized as a multipartite graph as follows: Each variable x_{i} corresponds to one partite set whose vertex set is (a disjoint copy of) P_{i}. Edges between P_{i} and P_{j} are given by the relation $P_{i, j}$. Interpret the last two items using this graph. Also interpret solutions of the instance.

Problem 4. Devise a polynomial time algorithm to transform an instance of $\operatorname{CSP}(\mathbb{A})$, where all relations in \mathbb{A} are at most binary, to an equivalent simple (2,3)-minimal instance of $\operatorname{CSP}(\mathbb{B})$, where \mathbb{B} is pp-definable from \mathbb{A}.

Adjust the algorithm to the situation when \mathbb{A} has a majority polymorphism but the relations in \mathbb{A} can have arbitrary arities.

Problem 5. Prove that $\operatorname{CSP}(\mathbb{A})$ is solvable in polynomial time whenever \mathbb{A} has a majority polymorphism. Strategy:

- Deduce from the previous problem that it is enough to show that a simple (2,3)-minimal instance of $\operatorname{CSP}(\mathbb{B})$ has a solution whenever \mathbb{B} has a majority polymorphism m and each P_{i} is nonempty.
- Gradually build a solution as follows. Take any $a_{1} \in P_{1}, a_{2} \in P_{2}, a_{3} \in P_{3}$ such that $\left(a_{1}, a_{2}\right) \in P_{1,2},\left(a_{1}, a_{3}\right) \in P_{1,3},\left(a_{2}, a_{3}\right) \in P_{2,3}$ (a partial solution on variables $\left.x_{1}, x_{2}, x_{3}\right)$.
- Take $b \in P_{4}$ such that $\left(a_{2}, b\right) \in P_{2,4}$ and $\left(a_{3}, b\right) \in P_{3,4}$. Take $b^{\prime} \in P_{4}$ such that $\left(a_{1}, b^{\prime}\right) \in P_{1,4}$ and $\left(a_{3}, b^{\prime}\right) \in P_{3,4}$. Take $b^{\prime \prime} \in P_{4}$ such that $\left(a_{1}, b^{\prime \prime}\right) \in P_{1,4}$ and $\left(a_{2}, b^{\prime \prime}\right) \in P_{2,4}$. Define $a_{4}=m\left(b, b^{\prime}, b^{\prime \prime}\right)$ and show that $a_{1}, a_{2}, a_{3}, a_{4}$ is a partial solution on variables $x_{1}, x_{2}, x_{3}, x_{4}$.
- Continue similarly.

