CSP lecture 16/17 winter semester - Problem Set 5

A ternary operation $m: A^{3} \rightarrow A$ is called a majority operation if $m(a, a, b)=m(a, b, a)=$ $m(b, a, a)=a$ for each $a, b \in A$ (note that for $|A| \leq 2$ there is a unique majority operation on A, otherwise there is more of them).

Problem 2. Let $R \subseteq A^{n}$ be a relation compatible with a majority operation on A. Denote $\pi_{i, j}(R)$ the projection of R onto the coordinates $i, j(1 \leq i, j \leq n)$, that is,

$$
\pi_{i, j}(R)=\left\{\left(a_{i}, a_{j}\right):\left(a_{1}, \ldots, a_{n}\right) \in R\right\}
$$

Prove that R is determined by these binary projections, that is,

$$
\left(a_{1}, \ldots, a_{n}\right) \in R \text { if and only if }(\forall i, j, 1 \leq i, j \leq n)\left(a_{i}, a_{j}\right) \in \pi_{i, j}(R)
$$

(Hint: start with $n=3$)
Problem 3. Let $\mathbb{A}=(A ; \ldots)$ be a relational structure with a majority polymorphisms. Show that there exists a relational structure $\mathbb{B}=(A ; \ldots)$ which contains only binary relations such that \mathbb{A} is pp-definable from \mathbb{B} and \mathbb{B} is pp-definable from \mathbb{A}. For $A=\{0,1\}$ conclude that $\operatorname{CSP}(\mathbb{A}) \leq_{P} 2^{-}$ SAT (and thus $\operatorname{CSP}(\mathbb{A})$ is solvable in polynomial time).
Problem 4. Let $\mathbb{A}=(\{0,1\} ; \ldots)$ be a relational structure with polymorphism min (from Problem Set 4). Prove that $\operatorname{CSP}(\mathbb{A})$ is solvable in polynomial time. (Hint: show that each n-ary relation is an affine subspace of \mathbb{Z}_{2}^{n}.)
Problem 5. Let $\mathbb{A}=\left(\{0,1\} ; C_{0}, C_{1}, H\right)$ be as in Problem Set 1 (the corresponding CSP is HORN-3-SAT). Let $S_{a_{1}, \ldots, a_{k}}$ denote the k-ary relation $\{0,1\}^{k} \backslash\left\{\left(a_{1}, \ldots, a_{k}\right)\right\}$, eg. $H=S_{110}$.

Prove that a relation $R \subseteq\{0,1\}^{n}$ is compatible with the binary minimum operation if and only if R is pp-definable from \mathbb{A}.

Below is a strategy to prove the harder implication \Rightarrow. It uses the following notation:

$$
\begin{aligned}
{[n] } & =\{1,2, \ldots, n\} \\
\chi_{\mathbf{a}} & =\left\{i \in[n]: a_{i}=1\right\} \text { for a tuple } \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n} \\
\chi_{R} & =\left\{\chi_{\mathbf{a}}: \mathbf{a} \in R\right\}
\end{aligned}
$$

In words, $\chi_{\mathbf{a}}$ is the set of coordinates, where the tuple has 1 . In this way, a tuple from $\{0,1\}^{n}$ corresponds to as a subset of $[n]$. The set χ_{R} describes the whole relation as a family of subsets of $[n]$.

- Prove that $S_{11 \ldots 10}$ and $S_{11 \ldots 1}$ are pp-definable from \mathbb{A} (for any arity). It may be helpful to recall that $S_{110}(x, y, z)$ iff $(x \wedge y) \rightarrow z$.
- Assume first that $[n] \in \chi_{R}$ (that is, $\left.(1,1, \ldots, 1) \in R\right)$. For a subset $X \subseteq[n]$ denote

$$
C l(X):=\bigcap_{Y: X \subseteq Y \in \chi_{R}} Y
$$

Prove that $X=C l(X)$ if and only if $X \in \chi_{R}$ (use that \wedge is a polymorphism of R).

- Prove that

$$
R(\mathbf{a}) \text { if and only if } \bigwedge_{X: X=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq[n]} \bigwedge_{j: j \in C l(X)} S_{11 \ldots 10}\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}, a_{j}\right)
$$

- Using the above, give a pp-definition in the other case (when $[n] \notin \chi_{R}$).

Problem 6. Prove that for each relational structure $\mathbb{A}=(A ; \ldots)$ with $A=\{0,1\}$ either $\operatorname{CSP}(\mathbb{A})$ is solvable in polynomial time or $\operatorname{CSP}(\mathbb{A})$ is NP-complete. Describe the two cases in terms of polymorphisms.

