CSP lecture 16/17 winter semester – Problem Set 4

A set of operations on a set A is a *(function) clone* on A if it contains all projections and is closed under composition (as in Problem 3, Problem Set 3). A function clone on A is called *idempotent* if for every operation f in it and every $a \in A$, f(a, a, ..., a) = a.

Problem 0. Recall that for any relational structure \mathbb{A} , $Pol(\mathbb{A})$ is a clone.

In this problem set, we concentrate on function clones on the set $A = \{0, 1\}$. Notation for some special operations on $\{0, 1\}$:

- \wedge the binary minimum operation
- \lor the binary maximum operation
- maj the ternary majority operation (ie. f(a, a, b) = f(a, b, a) = f(b, a, a) for every $a, b \in \{0, 1\}$)
- min the ternary minority operation (ie. f(a, a, b) = f(a, b, a) = f(b, a, a) for every $a, b \in \{0, 1\}$, also $f(x, y, z) = x + y + z \pmod{2}$)

An operation $f: A^n \to A$ is called *essentially unary* if there exists i and a unary operation $\alpha: A \to A$ such that $f(x_1, \ldots, x_n) = \alpha(x_i)$ for every $x_1, \ldots, x_n \in A$.

Problem 1. Assume \mathcal{A} is an idempotent clone on $A = \{0, 1\}$ that contains neither \wedge nor \vee . Show that the only binary operations are the two projections.

Problem 2. Assume \mathcal{A} is an idempotent clone on $A = \{0, 1\}$ that contains neither of the operations \wedge, \vee, maj, min . Show that the only binary and ternary operations are the projections.

Problem 3. Assume \mathcal{A} is an idempotent clone on $A = \{0, 1\}$ that contains neither of the operations \wedge, \vee, maj, min . Show that \mathcal{A} contains only projections. Possible strategy:

- Let $f \in \mathcal{A}$ be n-ary with $n \geq 4$.
- Assume first $f(1,0,0,\ldots,0)=1$. Use binary operation $g(x,y):=f(x,y,\ldots,y)$ to show that $f(0,1,\ldots,1)=0$. Use ternary operations of the form $g(x,y,z):=f(x/y/z,x/y/z,\ldots)$ to show that f is the projection onto the first coordinate.
- Deduce that if f is not a projection, then f(x, ..., x, y, x, ..., x) = x for every x, y and every position of y.
- Assuming this and using appropriate ternary operations (similar as above) show that f(x, ..., x, y, y) = x, ..., etc, and derive a contradiction

Problem 4. Let \mathcal{A} be a clone on $A = \{0, 1\}$ with an operation which is not essentially unary. Prove that \mathcal{A} contains a constant unary operation, or at least one of the operations \wedge, \vee, maj, min . Hint: try to reduce to the idempotent case.