CSP lecture 16/17 winter semester - Problem Set 2

We say that $\operatorname{CSP}(\mathbb{A})$ is polynomially reducible to $\operatorname{CSP}(\mathbb{B})$ if there exists a polynomial-time algorithm which transforms an input I of $\operatorname{CSP}(\mathbb{A})$ to an input $r(I)$ of $\operatorname{CSP}(\mathbb{B})$ so that I is satisfiable iff $r(I)$ is satisfiable. In such a case, we write $\operatorname{CSP}(\mathbb{A}) \leq_{P} \operatorname{CSP}(\mathbb{B})$. When $\operatorname{CSP}(\mathbb{A}) \leq_{P} \operatorname{CSP}(\mathbb{B}) \leq_{P}$ $\operatorname{CSP}(\mathbb{A})$, we write $\operatorname{CSP}(\mathbb{A}) \sim_{P} \operatorname{CSP}(\mathbb{B})$ and say that the two problems are polynomially equivalent.

Observe that if $\operatorname{CSP}(\mathbb{A}) \leq_{P} \operatorname{CSP}(\mathbb{B})$ and $\operatorname{CSP}(\mathbb{B})$ in in P (ie. solvable in polynomial time), then $\operatorname{CSP}(\mathbb{A})$ in in P. Similarly, if $\operatorname{CSP}(\mathbb{A}) \leq_{P} \operatorname{CSP}(\mathbb{B})$ and $\operatorname{CSP}(\mathbb{A})$ is NP-complete, then $\operatorname{CSP}(\mathbb{B})$ is NP-complete.
Problem 1. Let $\mathbb{A}=\left(\{0,1,2\} ; C_{0}, C_{1}, Q\right)$, where

$$
C_{0}=\{0\}, C_{1}=\{1\}, Q=\{000,110,120,210,101,102,201,202,011,012,021\}
$$

(Q is a ternary relation, we omit the commas and parentheses, eg. 110 stands for $(1,1,0)$.)
Moreover, let \mathbb{B} be the relational structure $\mathbb{B}=\left(\{0,1\} ; C_{0}, C_{1}, G_{1}\right)$ (where the notation is from the 1st problem set). Prove that $\operatorname{CSP}(\mathbb{A}) \sim_{P} \operatorname{CSP}(\mathbb{B})$. (Hint: use homomorphisms $\mathbb{A} \rightarrow \mathbb{B}$ and $\mathbb{B} \rightarrow \mathbb{A}$).

Problem 2. Prove that for each finite relational structure \mathbb{A} there exists a relational structure \mathbb{B} such that

- there exists a homomorphism $\mathbb{A} \rightarrow \mathbb{B}$ and a homomorphism $\mathbb{B} \rightarrow \mathbb{A}$, and
- \mathbb{B} is a core, that is, each endomorphism of \mathbb{B} is an automorphism.

Deduce that we can WLOG concentrate on CSPs over cores.
Also prove that such a structure is unique up to isomorphism.
Problem 3. Let $\mathbb{A}=\left(A ; R_{1}, R_{2}, R_{4}\right)$ be a relational structure, where R_{i} is an i-ary relation. Let E be the equality relation (ie. $E=\{(a, a): a \in A\}$, let S be the ternary relation on A defined by

$$
S(x, y, z) \quad \text { iff } \quad R_{1}(x) \wedge R_{2}(x, z) \wedge R_{4}(y, z, y, x)
$$

and let T be the binary relation defined by

$$
T(x, y) \quad \text { iff } \quad(\exists z \in A) S(x, y, z)
$$

Prove that

- $\operatorname{CsP}\left(A ; R_{1}, R_{2}, R_{4}, E\right) \leq_{P} \operatorname{CSP}(\mathbb{A})$
- $\operatorname{CSP}\left(A ; R_{1}, R_{2}, R_{4}, E, S\right) \leq_{P} \operatorname{CSP}(\mathbb{A})$
- $\operatorname{CSP}\left(A ; R_{1}, R_{2}, R_{4}, E, S, T\right) \leq_{P} \operatorname{CSP}(\mathbb{A})$

Try to formulate a general theorem covering these particular cases.
Problem 4. Prove that $\operatorname{CSP}(\mathbb{A}), \operatorname{CSP}(\mathbb{B})$ and $\operatorname{CSP}(\mathbb{C})$ are polynomially equivalent, where

$$
\begin{aligned}
& \mathbb{A}=\left(\{0,1,2\}, C_{0}, C_{1}, C_{2}, N\right), \quad N=\{0,1,2\}^{2} \backslash\{(0,0),(1,1),(2,2)\} \\
& \mathbb{B}=\left(\{0,1\}, S_{000}, S_{001}, S_{011}, S_{111}\right), \quad S_{i j k}=\{0,1\}^{3} \backslash\{(i, j, k)\} \\
& \mathbb{C}=\left(\{0,1\}, C_{0}, C_{1}, R\right), \quad R=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}
\end{aligned}
$$

Problem 5. prove that $\operatorname{CSP}(\mathbb{A}) \sim_{P} \operatorname{CSP}(\{0,1,2\}, N)$, where \mathbb{A}, N are from the previous problem.
Problem 6. For each finite relational structure \mathbb{A} find an input of $\operatorname{CSP}(\mathbb{A})$ whose solutions precisely correspond to endomorphisms of \mathbb{A}.
Problem 7. Let \mathbb{A} be a finite core and let \mathbb{B} be the relational structure formed from \mathbb{A} by adding all the unary relations $C_{a}=\{a\}, a \in A$. Prove that $\operatorname{CSP}(\mathbb{A}) \sim_{P} \operatorname{CSP}(\mathbb{B})$.
Problem 8. Let \mathbb{A} be a relational structure such that $\operatorname{CSP}(\mathbb{A})$ is in P. Prove that there is a polynomial-time algorithm for finding a solution of $\operatorname{CSP}(\mathbb{A})$.

