CSP lecture 21/22 winter semester – Problem Set 5

A ternary operation $m : A^3 \to A$ is called a *majority operation* if m(a, a, b) = m(a, b, a) = m(b, a, a) = a for each $a, b \in A$ (note that for $|A| \leq 2$ there is a unique majority operation on A, otherwise there are more of them).

Problem 1 Let $R \subseteq A^n$ be a relation compatible with a majority operation on A. Denote $\pi_{i,j}(R)$ the projection of R onto the coordinates $i, j \ (1 \le i, j \le n)$, that is,

$$\pi_{i,j}(R) = \{(a_i, a_j) : (a_1, \dots, a_n) \in R\}$$
.

Prove that R is determined by these binary projections, that is,

 $(a_1, \ldots, a_n) \in R$ if and only if $(\forall i, j, 1 \leq i, j \leq n)$ $(a_i, a_j) \in \pi_{i,j}(R)$

(Hint: start with n = 3)

Problem 2 Let $\mathbb{A} = (A; ...)$ be a relational structure with a majority polymorphism. Show that there exists a relational structure $\mathbb{B} = (A; ...)$ which contains only binary relations such that \mathbb{A} is pp-definable from \mathbb{B} and \mathbb{B} is pp-definable from \mathbb{A} . For $A = \{0, 1\}$, conclude that $CSP(\mathbb{A}) \leq_P 2$ -SAT (and thus $CSP(\mathbb{A})$ is solvable in polynomial time).

Problem 2' Let $\mathbb{A} = (\mathbb{Z}; R_1, \dots, R_k)$, where all relations R_1, \dots, R_k admit a quantifier-free definition over the relations y < x + c and y = x + c, where $c \in \mathbb{Z}$. E.g. R can be the 4-ary relation that holds on (x, y, z, t) iff $(x > y + 1 \lor x > z - 6) \land (x = z \Rightarrow t = y + 1)$ holds. Suppose that the ternary median operation is a polymorphism of \mathbb{A} . Show that $\text{CSP}(\mathbb{A})$ is solvable in polynomial time.

Problem 3 Let $\mathbb{A} = (\{0, 1\}; ...)$ be a relational structure with polymorphism min (from Problem Set 4). Show that each *n*-ary relation of \mathbb{A} is an affine subspace of \mathbb{Z}_2^n . Conclude that $CSP(\mathbb{A})$ is solvable in polynomial time.

Problem 4 Let $\mathbb{A} = (\{0,1\}; C_0, C_1, H)$ be as in Problem Set 1 (the corresponding CSP is HORN-3-SAT). Let S_{a_1,\ldots,a_k} denote the k-ary relation $\{0,1\}^k \setminus \{(a_1,\ldots,a_k)\}$, e.g., $H = S_{110}$.

Prove that a relation $R \subseteq \{0,1\}^n$ is compatible with the binary minimum operation if and only if R is pp-definable from A.

Below is a strategy to prove the harder implication \Rightarrow . It uses the following notation:

$$[n] = \{1, 2, \dots, n\}$$

 $\chi_{\mathbf{a}} = \{i \in [n] : a_i = 1\}$ for a tuple $\mathbf{a} = (a_1, \dots, a_n) \in \{0, 1\}^n$
 $\chi_R = \{\chi_{\mathbf{a}} : \mathbf{a} \in R\}$

In words, $\chi_{\mathbf{a}}$ is the set of coordinates where the tuple has 1. In this way, a tuple from $\{0, 1\}^n$ corresponds to a subset of [n]. The set χ_R describes the whole relation as a family of subsets of [n].

- Prove that $S_{11...10}$ and $S_{11...1}$ are pp-definable from \mathbb{A} (for any arity). It may be helpful to recall that $S_{110}(x, y, z)$ iff $(x \wedge y) \to z$.
- Assume first that $[n] \in \chi_R$ (that is, $(1, 1, \ldots, 1) \in R$). For a subset $X \subseteq [n]$ denote

$$Cl(X) := \bigcap_{Y: X \subseteq Y \in \chi_R} Y$$

Prove that X = Cl(X) if and only if $X \in \chi_R$ (use that \wedge is a polymorphism of R).

• Prove that

$$R(\mathbf{a}) \text{ if and only if } \bigwedge_{X:X=\{i_1,\ldots,i_k\}\subseteq [n]} \bigwedge_{j:j\in Cl(X)} S_{11\ldots 10}(a_{i_1},a_{i_2},\ldots,a_{i_k},a_j)$$

• Using the above, give a pp–definition in the other case (when $[n] \notin \chi_R$).

Problem 5 Prove that for each relational structure $\mathbb{A} = (A; ...)$ with $A = \{0, 1\}$, either $CSP(\mathbb{A})$ is solvable in polynomial time or $CSP(\mathbb{A})$ is NP-complete (this is *Schaefer's dichotomy theorem* (1978)). Describe the two cases in terms of polymorphisms.