CSP lecture 21/22 winter semester – Problem Set 4

A set of operations on a set A is a *(function) clone* on A if it contains all projections and is closed under composition (as in Problem 3, Problem Set 3). A function clone on A is called *idempotent* if for every operation f in it and every $a \in A$, f(a, a, ..., a) = a.

Problem 0. Recall that for any relational structure \mathbb{A} , $Pol(\mathbb{A})$ is a clone.

In this problem set, we focus on function clones on the set $A = \{0, 1\}$. We use the following notation for some special operations on $\{0, 1\}$:

- $\wedge\,$ the binary minimum operation
- \lor the binary maximum operation
- maj the ternary majority operation defined by maj(a, a, b) = maj(a, b, a) = maj(b, a, a) := a for every $a, b \in \{0, 1\}$
- min the ternary minority operation defined by min(a, a, b) = min(a, b, a) = min(b, a, a) := b for every $a, b \in \{0, 1\}$

An operation $f : A^n \to A$ is called *essentially unary* if there exist *i* and a unary operation $\alpha : A \to A$ such that $f(x_1, \ldots, x_n) = \alpha(x_i)$ for every $x_1, \ldots, x_n \in A$.

Problem 1. Assume \mathcal{A} is an idempotent clone on $A = \{0, 1\}$ that contains neither \wedge nor \vee . Show that the only binary operations are the two projections.

Problem 2. Assume \mathcal{A} is an idempotent clone on $A = \{0, 1\}$ that contains neither of the operations \wedge, \vee, maj, min . Show that the only binary and ternary operations are the projections.

Problem 3. Assume \mathcal{A} is an idempotent clone on $A = \{0, 1\}$ that contains neither of the operations \wedge, \vee, maj, min . Show that \mathcal{A} contains only projections. Possible strategy:

- Let $f \in \mathcal{A}$ be *n*-ary with $n \ge 4$.
- Assume first f(1, 0, 0, ..., 0) = 1. Use the binary operation g(x, y) := f(x, y, ..., y) to show that f(0, 1, ..., 1) = 0. Use ternary operations of the form $g(x, y, z) := f(w_1, w_2, ...)$ where $w_1, w_2, ... \in \{x, y, z\}$ to show that f is the projection onto the first coordinate.
- Deduce that if f is not a projection, then $f(x, \ldots, x, y, x, \ldots, x) = x$ for every x, y and every position of y.
- Assuming this and using appropriate ternary operations (similar as above) show that $f(x, \ldots, x, y, y) = x, \ldots$, etc, and derive a contradiction

Problem 4. Let \mathcal{A} be a clone on $A = \{0, 1\}$ with an operation which is not essentially unary. Prove that \mathcal{A} contains a constant unary operation, or at least one of the operations \land, \lor, maj, min . Hint: try to reduce to the idempotent case.