CSP lecture 21/22 winter semester - Problem Set 4

A set of operations on a set A is a (function) clone on A if it contains all projections and is closed under composition (as in Problem 3, Problem Set 3). A function clone on A is called idempotent if for every operation f in it and every $a \in A, f(a, a, \ldots, a)=a$.

Problem 0. Recall that for any relational structure $\mathbb{A}, \operatorname{Pol}(\mathbb{A})$ is a clone.
In this problem set, we focus on function clones on the set $A=\{0,1\}$. We use the following notation for some special operations on $\{0,1\}$:
\wedge the binary minimum operation
\checkmark the binary maximum operation
maj the ternary majority operation defined by $\operatorname{maj}(a, a, b)=\operatorname{maj}(a, b, a)=\operatorname{maj}(b, a, a):=a$ for every $a, b \in\{0,1\}$
\min the ternary minority operation defined by $\min (a, a, b)=\min (a, b, a)=\min (b, a, a):=b$ for every $a, b \in\{0,1\}$

An operation $f: A^{n} \rightarrow A$ is called essentially unary if there exist i and a unary operation $\alpha: A \rightarrow A$ such that $f\left(x_{1}, \ldots, x_{n}\right)=\alpha\left(x_{i}\right)$ for every $x_{1}, \ldots, x_{n} \in A$.
Problem 1. Assume \mathcal{A} is an idempotent clone on $A=\{0,1\}$ that contains neither \wedge nor \vee. Show that the only binary operations are the two projections.

Problem 2. Assume \mathcal{A} is an idempotent clone on $A=\{0,1\}$ that contains neither of the operations $\wedge, \vee, \operatorname{maj}, \min$. Show that the only binary and ternary operations are the projections.
Problem 3. Assume \mathcal{A} is an idempotent clone on $A=\{0,1\}$ that contains neither of the operations \wedge, \vee, maj, min. Show that \mathcal{A} contains only projections. Possible strategy:

- Let $f \in \mathcal{A}$ be n-ary with $n \geq 4$.
- Assume first $f(1,0,0, \ldots, 0)=1$. Use the binary operation $g(x, y):=f(x, y, \ldots, y)$ to show that $f(0,1, \ldots, 1)=0$. Use ternary operations of the form $g(x, y, z):=f\left(w_{1}, w_{2}, \ldots\right)$ where $w_{1}, w_{2}, \ldots \in\{x, y, z\}$ to show that f is the projection onto the first coordinate.
- Deduce that if f is not a projection, then $f(x, \ldots, x, y, x, \ldots, x)=x$ for every x, y and every position of y.
- Assuming this and using appropriate ternary operations (similar as above) show that $f(x, \ldots, x, y, y)=$ x, \ldots, etc, and derive a contradiction

Problem 4. Let \mathcal{A} be a clone on $A=\{0,1\}$ with an operation which is not essentially unary. Prove that \mathcal{A} contains a constant unary operation, or at least one of the operations $\wedge, \vee, \operatorname{maj}, \min$. Hint: try to reduce to the idempotent case.

