CSP lecture 21/22 winter semester - Problem Set 3

An n-ary operation on a set A is a mapping $A^{n} \rightarrow A$. The n-ary projection onto the i-th coordinate (on a set A) is the operation π_{i}^{n} defined by $\pi_{i}^{n}\left(a_{1}, \ldots, a_{n}\right)=a_{i}$ for any $a_{1}, \ldots, a_{n} \in A$.

An n-ary operation $f: A^{n} \rightarrow A$ is compatible with an m-ary relation $R \subseteq A^{m}$ if $f\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{n}\right) \in$ R (operation is applied coordinate-wise) whenever $\mathbf{r}_{1}, \ldots, \mathbf{r}_{n} \in R$. In other words, for any $m \times n$ matrix whose columns are in R, f applied to the rows of this matrix gives a tuple in R. In such a situation, we also say that R is compatible with f, or R is invariant under f.

An operation $A^{n} \rightarrow A$ is a polymorphism of a relational structure $\mathbb{A}=(A ; \ldots)$ if it is compatible with all the relations in \mathbb{A}. The set of all polymorphisms of \mathbb{A} is denoted $\operatorname{Pol}(\mathbb{A})$.
Problem 1. Observe that

- $f: A^{n} \rightarrow A$ is compatible with every singleton unary relation $\{a\}, a \in A$, iff $f(a, \ldots, a)=a$ for all $a \in A$;
- the constant unary operation $c_{a}: A \rightarrow A$ (defined by $c_{a}(b)=a$ for any $b \in A$) is compatible with $R \subseteq A^{n}$ iff R contains the tuple (a, a, \ldots, a).

Problem 2. Let A be a set. Prove that f is compatible with every relation on A if and only if f is a projection.

Problem 3. Let $\mathbb{A}=(A ; \ldots)$ be a relational structure, $f \in \operatorname{Pol}(\mathbb{A})$ a binary polymorphism and $g \in \operatorname{Pol}(\mathbb{A})$ a ternary polymorphism. Then the 4 -ary operation h defined by

$$
h(a, b, c, d)=g(a, f(c, g(b, b, d)), c), \quad a, b, c, d \in A
$$

is a polymorphism of \mathbb{A} as well. Try to formulate a general statement.
Problem 4. Find all unary and binary polymorphisms of the structure $\mathbb{A}=\left(\{0,1\} ; H, C_{0}, C_{1}\right)$ from Problem Set 1 (Problem 2 - HORN-SAT).

Problem 5. Find all unary and binary polymorphisms of the structure

$$
\mathbb{A}=(\{0,1\} ; \text { all unary and binary relations })
$$

from Problem Set 1 (Problem $1-2$-SAT). Find some nice nontrivial ($=$ not a projection) polymorphism of \mathbb{A}.

Problem 6. Find all unary, binary, and ternary polymorphisms of the structure $\mathbb{A}=\left(\{0,1\} ; C_{0}, C_{1}, G_{1}, G_{2}\right)$ from Problem Set 1 (Problem 3 - LIN-EQ $\left(\mathbb{Z}_{2}\right)$).

A relation $R \subseteq A^{m}$ is pp-definable from $\mathbb{A}=(A ; \ldots)$ if it can be defined from relations in \mathbb{A} by a pp-formula, that is, a formula which only uses conjunction, equality, and existential quantification. A relational structure $\mathbb{B}=(B ; \ldots)$ is pp-definable from \mathbb{A} if $A=B$ and each relation in \mathbb{B} is pp-definable from \mathbb{A}. We also say that \mathbb{A} pp-defines \mathbb{B}.
Problem 7. Prove that any relation pp-definable from \mathbb{A} is invariant under every polymorphism of \mathbb{A}.

Problem 8. Find all polymorphisms of the structure \mathbb{B} in Problem Set 2, Problem 4. (3SAT). Hint: only projections; possible approach: (1) pp-define the four-ary relations of the form $R_{a, b, c, d}=\{0,1\}^{4} \backslash\{(a, b, c, d)\}$, (2) pp-define all four-ary relations (3) similarly, pp-define every relation, (4) use the results of other problems in this problem set.
Problem 9. Let \mathbb{A} be a finite structure. Prove that a relation invariant under every polymorphism of \mathbb{A} is pp-definable from \mathbb{A}. Proof strategy:
(i) Denote $R=\left\{\left(c_{11}, \ldots, c_{1 k}\right), \ldots,\left(c_{m 1}, \ldots, c_{m k}\right)\right\}$
(ii) Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ be a complete list of m-tuples of elements of A (ie. $n=|A|^{m}$)
(iii) Prove that the relation

$$
S=\left\{\left(f\left(\mathbf{a}_{1}\right), \ldots, f\left(\mathbf{a}_{n}\right)\right): f \text { is an } m \text {-ary polymorphism }\right\}
$$

is pp-definable from \mathbb{A} (no need to use existential quantification)
(iv) Existentially quantify over all coordinates but those corresponding to $\left(c_{11}, \ldots, c_{m 1}\right), \ldots$, $\left(c_{1 k}, \ldots, c_{m k}\right)$
(v) Prove that the obtained relation contains R (because of projections) and is contained in R (because of compatibility)

Problem 9'. Let $\mathbb{A}=(\mathbb{Z} \times \mathbb{Z} ; R, U)$, where

$$
R=\left\{\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)\left|x=x^{\prime},\left|y^{\prime}-y\right| \in\{1,2\}\right\}, \quad U=\{(0,0)\}\right.
$$

Prove that $\{(0, y) \mid y \in \mathbb{Z}\}$ is invariant under every polymorphism of \mathbb{A}, but that this set is not pp-definable from \mathbb{A}.
Problem 10. Observe that, for finite structures \mathbb{A} and \mathbb{B},

- \mathbb{A} pp-defines \mathbb{B} iff $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$ and in such a case $\operatorname{CSP}(\mathbb{B}) \leq_{P} \operatorname{CSP}(\mathbb{A})$;
- any CSP over a two-element structure is polynomially reducible to 3-SAT
- if $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$, then the proof of $\operatorname{Problem} 9$ gives an explicit pp-formulas defining relations in \mathbb{B} from relations in \mathbb{A}.
- In particular, for \mathbb{B} and \mathbb{C} as in Problem Set 2 , Problem 4, we get $\operatorname{CSP}(\mathbb{C}) \leq \operatorname{CSP}(\mathbb{B})$. How large are the explicit formulas defining relations in \mathbb{C} from relations in \mathbb{B} ?

