## Baskets of essentially algebraic categories

#### Libor Barto

Charles University in Prague, Czech Republic

AAA 73 Klagenfurt 2007

Libor Barto

Charles University in Prague, Czech Republic

DEFINITION Concrete category (over H) = category K + faithful functor  $U : K \rightarrow H$ .

Libor Barto

Charles University in Prague, Czech Republic

Image: A (1)

DEFINITION Concrete category (over  $\mathbf{H}$ ) = category  $\mathbf{K}$  + faithful functor  $U : \mathbf{K} \rightarrow \mathbf{H}$ .

We can imagine

**K**-objects: Pairs  $(H, \mathbf{K} - \text{structure}), H \in \text{Obj}(\mathbf{H})$ 

Libor Barto

Charles University in Prague, Czech Republic

DEFINITION Concrete category (over  $\mathbf{H}$ ) = category  $\mathbf{K}$  + faithful functor  $U : \mathbf{K} \rightarrow \mathbf{H}$ .

We can imagine

**K**-objects: Pairs  $(H, \mathbf{K} - \text{structure}), H \in \text{Obj}(\mathbf{H})$ 

K-morphisms  $(H, K - str) \rightarrow (H', K - str')$ : Some H-morphisms  $H \rightarrow H'$ 

Libor Barto

Charles University in Prague, Czech Republic

DEFINITION Concrete category (over  $\mathbf{H}$ ) = category  $\mathbf{K}$  + faithful functor  $U : \mathbf{K} \rightarrow \mathbf{H}$ .

We can imagine

**K**-objects: Pairs  $(H, \mathbf{K} - \text{structure}), H \in \text{Obj}(\mathbf{H})$ 

K-morphisms 
$$(H, K - str) \rightarrow (H', K - str')$$
:  
Some H-morphisms  $H \rightarrow H'$ 

 $U(H, \mathbf{K} - \mathsf{str}) = H$ 

Libor Barto



#### DEFINITION J. Sichler, V. Trnková 91 Let $U : \mathbf{K} \to \mathbf{H}, U' : \mathbf{K}' \to \mathbf{H}'$ be concrete categories. We say that U is a slice of U', if

Libor Barto

Charles University in Prague, Czech Republic



DEFINITION J. Sichler, V. Trnková 91 Let  $U : \mathbf{K} \to \mathbf{H}, U' : \mathbf{K}' \to \mathbf{H}'$  be concrete categories. We say that U is a slice of U', if there exist functors  $\Phi : \mathbf{K} \to \mathbf{K}', F : \mathbf{H} \to \mathbf{H}'$  such that

•  $U'\Phi = FU$  and

Charles University in Prague, Czech Republic

・ロト ・ 日 ・ ・ ヨ ト ・

Libor Barto

DEFINITION J. Sichler, V. Trnková 91 Let  $U : \mathbf{K} \to \mathbf{H}, U' : \mathbf{K}' \to \mathbf{H}'$  be concrete categories. We say that U is a slice of U', if

there exist functors  $\Phi: \textbf{K} \rightarrow \textbf{K}', \ \textbf{F}: \textbf{H} \rightarrow \textbf{H}'$  such that

- $U'\Phi = FU$  and
- ▶ for every K-objects K = (H, ...), L = (J, ...) and H-morphism  $f : H \to J$

 $f: K = (H, \dots) \to L = (J, \dots) \text{ is a } \mathbf{K}\text{-morphism}$ iff  $Ff: \Phi K = (FH, \dots) \to \Phi L = (FJ, \dots) \text{ is a } \mathbf{K}'\text{-morphism}$ 

Charles University in Prague, Czech Republic

Libor Barto

FACT The relation "slice" is a quasi-ordering (reflexive and transitive).

We can form an equivalence

 $U \sim_{slice} U'$  iff U is a slice of U' and vice versa

Equivalence "classes" are called baskets (of concrete categories).

Libor Barto

Charles University in Prague, Czech Republic

### Basic baskets



Libor Barto

Charles University in Prague, Czech Republic

## The category Fix(2)

#### **Objects**: $(A, \alpha_0, \alpha_1)$

- A is a set
- $\alpha_0$  is a (total) unary operation  $\alpha_0 : A \rightarrow A$
- $\alpha_1$  is a partial unary operation  $\alpha_1 : Def(\alpha_1) \to A$

$$\blacktriangleright \operatorname{Def}(\alpha_1) = \{ a \, | \, \alpha_0(a) = a \}$$

Morphisms: Homomorphisms of partial algebras.

Libor Barto

Charles University in Prague, Czech Republic

Image: A match a ma

# The category **Fix**(2)

#### **Objects**: $(A, \alpha_0, \alpha_1)$

- A is a set
- $\alpha_0$  is a (total) unary operation  $\alpha_0 : A \rightarrow A$
- $\alpha_1$  is a partial unary operation  $\alpha_1 : Def(\alpha_1) \to A$

$$\blacktriangleright \operatorname{Def}(\alpha_1) = \{ a \, | \, \alpha_0(a) = a \}$$

Morphisms: Homomorphisms of partial algebras.

This is an example of essentially algebraic category of height 2.

Charles University in Prague, Czech Republic

## The category Fix(3)

#### **Objects**: $(A, \alpha_0, \alpha_1, \alpha_2)$

- A is a set
- $\alpha_0$  is a (total) unary operation  $\alpha_0 : A \rightarrow A$
- $\alpha_1$  is a partial unary operation  $\alpha_1 : Def(\alpha_1) \to A$
- $\blacktriangleright \operatorname{Def}(\alpha_1) = \{ a \, | \, \alpha_0(a) = a \}$
- $\alpha_1$  is a partial unary operation  $\alpha_1 : Def(\alpha_1) \to A$
- $\blacktriangleright \operatorname{Def}(\alpha_2) = \{ a \, | \, \alpha_0(a) = a, \ \alpha_1(a) = a \}$

#### Morphisms: Homomorphisms of partial algebras.

This is an example of essentially algebraic category of height 3.

Libor Barto

Charles University in Prague, Czech Republic

・ロト ・ 理 ト ・ 国 ト ・ 国

## Essentially algebraic categories

"DEFINITION" Essentially algebraic theory of height  $\alpha$ :

- A set of operational symbols, each operational symbol has its level < α</li>
- A set of identities
- For every operational symbol σ, a set of identities Def(σ) in operational symbols of smaller level than the level of σ

Possibly many-sorted, infinitary

Libor Barto

## Essentially algebraic categories

"DEFINITION" Essentially algebraic theory of height  $\alpha$ :

- A set of operational symbols, each operational symbol has its level < α</li>
- A set of identities
- For every operational symbol σ, a set of identities Def(σ) in operational symbols of smaller level than the level of σ

Possibly many-sorted, infinitary

EXAMPLE The category of small categories is essentially algebraic category of height 2.

Baskets of essentially algebraic categories



Charles University in Prague, Czech Republic

Libor Barto

A theorem and a problem

THEOREM L. B. 06 Every essentially algebraic category of height  $\alpha$  is a slice of **Fix**( $\alpha$ ).

Libor Barto

Charles University in Prague, Czech Republic

THEOREM L. B. 06 Every essentially algebraic category of height  $\alpha$  is a slice of **Fix**( $\alpha$ ).

OPEN PROBLEM Find all baskets of essentially algebraic categories.

Libor Barto

Charles University in Prague, Czech Republic

## Why baskets differ?

Every slice  $U : \mathbf{K} \to \mathbf{H}$  of Alg(1) satisfies:



Charles University in Prague, Czech Republic

Libor Barto



#### THEOREM J. Sichler, V. Trnková 91 Let **H** be a small category. Then $U : \mathbf{K} \to \mathbf{H}$ is a slice of Alg(1), iff U satisfies $(zz^1)$ .

Libor Barto

Charles University in Prague, Czech Republic

THEOREM J. Sichler, V. Trnková 91 Let **H** be a small category. Then  $U : \mathbf{K} \to \mathbf{H}$  is a slice of Alg(1), iff U satisfies  $(zz^1)$ .

THEOREM J. Reiterman 94 Let  $\mathbf{H} = \mathbf{Set}$  (the category of sets). Then  $U : \mathbf{K} \to \mathbf{H}$  is a slice of  $\mathbf{Alg}(1)$ , iff U is strongly small fibered and satisfies  $(zz^1)$ .

Libor Barto

THEOREM J. Sichler, V. Trnková 91 Let **H** be a small category. Then  $U : \mathbf{K} \to \mathbf{H}$  is a slice of Alg(1), iff U satisfies  $(zz^1)$ .

THEOREM J. Reiterman 94 Let  $\mathbf{H} = \mathbf{Set}$  (the category of sets). Then  $U : \mathbf{K} \to \mathbf{H}$  is a slice of  $\mathbf{Alg}(1)$ , iff U is strongly small fibered and satisfies  $(zz^1)$ .

There is a generalization L. B. 06.

Libor Barto

Charles University in Prague, Czech Republic

# Multiple zig-zags

Every slice of Fix(2) satisfies



Libor Barto

Charles University in Prague, Czech Republic



# THEOREM L. B. 06 Let **H** be a small category. Then $U : \mathbf{K} \to \mathbf{H}$ is a slice of $\mathbf{Fix}(\alpha)$ , iff it satisfies $(zz^{\alpha})$ .

Libor Barto

Charles University in Prague, Czech Republic

Image: A match a ma



# THEOREM L. B. 06 Let **H** be a small category. Then $U : \mathbf{K} \to \mathbf{H}$ is a slice of $\mathbf{Fix}(\alpha)$ , iff it satisfies $(zz^{\alpha})$ .

OPEN PROBLEM Prove this theorem for arbitrary H (or at least for H =**Set**).

Libor Barto

Charles University in Prague, Czech Republic

#### web: http://www.karlin.mff.cuni.cz/~barto

#### Thank you for your attention!

Libor Barto

Charles University in Prague, Czech Republic

<ロ> (日) (日) (日) (日) (日)