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Concrete categories

DEFINITION Concrete category (over H) = category K +
faithful functor U : K → H.
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Concrete categories

DEFINITION Concrete category (over H) = category K +
faithful functor U : K → H.

We can imagine

K-objects: Pairs (H,K − structure), H ∈ Obj(H)
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Libor Barto Charles University in Prague, Czech Republic

Baskets of essentially algebraic categories



Concrete categories

DEFINITION Concrete category (over H) = category K +
faithful functor U : K → H.

We can imagine

K-objects: Pairs (H,K − structure), H ∈ Obj(H)

K-morphisms (H,K − str) → (H ′,K − str’):
Some H-morphisms H → H ′

U(H,K − str) = H
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Slices

DEFINITION J. Sichler, V. Trnková 91
Let U : K → H, U ′ : K′ → H′ be concrete categories.
We say that U is a slice of U ′, if
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Slices

DEFINITION J. Sichler, V. Trnková 91
Let U : K → H, U ′ : K′ → H′ be concrete categories.
We say that U is a slice of U ′, if

there exist functors Φ : K → K′, F : H → H′ such that

◮ U ′Φ = FU and
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Slices

DEFINITION J. Sichler, V. Trnková 91
Let U : K → H, U ′ : K′ → H′ be concrete categories.
We say that U is a slice of U ′, if

there exist functors Φ : K → K′, F : H → H′ such that

◮ U ′Φ = FU and

◮ for every K-objects K = (H, . . . ), L = (J, . . . ) and
H-morphism f : H → J

f : K = (H, . . . ) → L = (J, . . . ) is a K-morphism
iff

Ff : ΦK = (FH, . . . ) → ΦL = (FJ, . . . ) is a K′-morphism

Libor Barto Charles University in Prague, Czech Republic

Baskets of essentially algebraic categories



Baskets

FACT The relation ”slice” is a quasi-ordering (reflexive and
transitive).

We can form an equivalence
U ∼slice U ′

iff

U is a slice of U ′ and vice versa

Equivalence ”classes” are called baskets (of concrete categories).
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Basic baskets

Trivial basket

[Alg(0)]
bbEEEEEEEEE

Trivial basket

[Alg(0)op]
<<yyyyyyyyy

[Alg(0)]

[Alg(1)] - algebraic basket
<<yyyyyyyyy

[Alg(0)op]

[Alg(1)] - algebraic basket
bbEEEEEEEEE

[Alg(1)] - algebraic basket

[Rel(1)] - relational basket
OO
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The category Fix(2)

Objects: (A, α0, α1)

◮ A is a set

◮ α0 is a (total) unary operation α0 : A → A

◮ α1 is a partial unary operation α1 : Def (α1) → A

◮ Def (α1) = {a |α0(a) = a}

Morphisms: Homomorphisms of partial algebras.
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The category Fix(2)

Objects: (A, α0, α1)

◮ A is a set

◮ α0 is a (total) unary operation α0 : A → A

◮ α1 is a partial unary operation α1 : Def (α1) → A

◮ Def (α1) = {a |α0(a) = a}

Morphisms: Homomorphisms of partial algebras.

This is an example of essentially algebraic category of height 2.
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The category Fix(3)

Objects: (A, α0, α1, α2)

◮ A is a set

◮ α0 is a (total) unary operation α0 : A → A

◮ α1 is a partial unary operation α1 : Def (α1) → A

◮ Def (α1) = {a |α0(a) = a}

◮ α1 is a partial unary operation α1 : Def (α1) → A

◮ Def (α2) = {a |α0(a) = a, α1(a) = a}

Morphisms: Homomorphisms of partial algebras.

This is an example of essentially algebraic category of height 3.
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Essentially algebraic categories

”DEFINITION” Essentially algebraic theory of height α:

◮ A set of operational symbols, each operational symbol has its
level < α

◮ A set of identities

◮ For every operational symbol σ, a set of identities Def (σ) in
operational symbols of smaller level than the level of σ

Possibly many-sorted, infinitary
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Essentially algebraic categories

”DEFINITION” Essentially algebraic theory of height α:

◮ A set of operational symbols, each operational symbol has its
level < α

◮ A set of identities

◮ For every operational symbol σ, a set of identities Def (σ) in
operational symbols of smaller level than the level of σ

Possibly many-sorted, infinitary

EXAMPLE The category of small categories is essentially
algebraic category of height 2.
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Baskets of essentially algebraic categories

[Alg(1)]

[Fix(2)] = [Cat]
ggOOOOO

[Alg(1)]

[Fix(2)op]
77ooooo

[Fix(2)] = [Cat]

OO

[Fix(2)op]

OO

[Rel(1)]
55llllllll

[Rel(1)]
iiRRRRRRRR

[Fix(ω)][Fix(ω)] [Fix(ω)op][Fix(ω)op]
...

...

...

...
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A theorem and a problem

THEOREM L. B. 06 Every essentially algebraic category of
height α is a slice of Fix(α).
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A theorem and a problem

THEOREM L. B. 06 Every essentially algebraic category of
height α is a slice of Fix(α).

OPEN PROBLEM Find all baskets of essentially algebraic
categories.
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Why baskets differ?

Every slice U : K → H of Alg(1) satisfies:
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Slices of Alg(1)

THEOREM J. Sichler, V. Trnková 91 Let H be a small category.
Then U : K → H is a slice of Alg(1), iff U satisfies (zz1).
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Slices of Alg(1)

THEOREM J. Sichler, V. Trnková 91 Let H be a small category.
Then U : K → H is a slice of Alg(1), iff U satisfies (zz1).

THEOREM J. Reiterman 94 Let H = Set (the category of sets).
Then U : K → H is a slice of Alg(1), iff U is strongly small fibered
and satisfies (zz1).
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Slices of Alg(1)

THEOREM J. Sichler, V. Trnková 91 Let H be a small category.
Then U : K → H is a slice of Alg(1), iff U satisfies (zz1).

THEOREM J. Reiterman 94 Let H = Set (the category of sets).
Then U : K → H is a slice of Alg(1), iff U is strongly small fibered
and satisfies (zz1).

There is a generalization L. B. 06.
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Multiple zig-zags

Every slice of Fix(2) satisfies

•
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Slices of Fix(α)

THEOREM L. B. 06 Let H be a small category. Then
U : K → H is a slice of Fix(α), iff it satisfies (zzα).
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Slices of Fix(α)

THEOREM L. B. 06 Let H be a small category. Then
U : K → H is a slice of Fix(α), iff it satisfies (zzα).

OPEN PROBLEM Prove this theorem for arbitrary H (or at least
for H = Set).
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web: http://www.karlin.mff.cuni.cz/∼barto

Thank you for your attention!
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