The complete classification for quantified equality constraints

Dmitriy Zhuk Barnaby Martin Michal Wrona

ACM-SIAM Symposium on Discrete Algorithms (SODA23) January 22-25, 2023, Florence, Italy

European Research Council Established by the European Commission CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

 $(\mathbb{N};=)$

$$(\mathbb{N}; =) \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4),$$

$$(\mathbb{N}; =)$$

 $\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}$

$$(\mathbb{N}; =) \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4),$$

$$\begin{array}{l} (\mathbb{N};=) \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{array}$$

$$\begin{array}{l} (\mathbb{N};=) \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{array}$$

$QCSP(\mathbb{N}; x = y)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (x_{i_1} = x_{j_1} \land \dots \land x_{i_s} = x_{j_s})$. Decide whether it holds.

$$\begin{aligned} &(\mathbb{N};=)\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; x = y)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (x_{i_1} = x_{j_1} \land \dots \land x_{i_s} = x_{j_s})$. Decide whether it holds.

• $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.

$$\begin{aligned} &(\mathbb{N};=)\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

• $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.

$$\begin{aligned} &(\mathbb{N};=)\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].

$$\begin{aligned} &(\mathbb{N};=)\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ \forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

$$\begin{aligned} &(\mathbb{N};=)\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

$$\begin{aligned} &(\mathbb{N};=) \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question

$$\begin{aligned} &(\mathbb{N};=)\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question

Easy to Formulate

$$\begin{aligned} &(\mathbb{N};=) \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true} \\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question

Open since 2007 Easy to Formulate

$$\begin{aligned} &(\mathbb{N};=)\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_3 = x_4), \text{ true}\\ &\forall x_1 \exists x_2 \forall x_3 \exists x_4 (x_1 = x_2 \land x_2 = x_3 \land x_3 = x_4), \text{ false} \end{aligned}$$

$QCSP(\mathbb{N}; R)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R(\dots) \land \dots \land R(\dots))$. Decide whether it holds.

- $QCSP(\mathbb{N}; x = y)$ is solvable in polynomial time.
- ▶ QCSP(\mathbb{N} ; $x = y \lor z = t$) is NP-complete [Bodirsky, Chen 2007].
- ▶ QCSP(\mathbb{N} ; $x = y \rightarrow z = t$) is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

A concrete question Accessible to anyone Open since 2007 Easy to Formulate

 Γ is a set of predicates on a set A.

 Γ is a set of predicates on a set A.

$QCSP(A; \Gamma)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

 Γ is a set of predicates on a set A.

$QCSP(A; \Gamma)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

 QCSP is a generalization of the Constraint Satisfaction Problem (CSP).

 Γ is a set of predicates on a set A.

$CSP(A; \Gamma)$

Given a sentence $\exists x_1 \exists x_2 \ldots \exists x_{n-1} \exists x_n (R_1(\ldots) \land \cdots \land R_s(\ldots))$. where $R_1, \ldots, R_s \in \Gamma$. Decide whether it holds.

 QCSP is a generalization of the Constraint Satisfaction Problem (CSP).

 Γ is a set of predicates on a set A.

$CSP(A; \Gamma)$

Given a sentence $\exists x_1 \exists x_2 \ldots \exists x_{n-1} \exists x_n (R_1(\ldots) \land \cdots \land R_s(\ldots))$. where $R_1, \ldots, R_s \in \Gamma$. Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
 - Complexity of CSP(A; Γ) is known for Γ on finite domains [Bulatov, Zhuk, 2017]

 Γ is a set of predicates on a set A.

$CSP(A; \Gamma)$

Given a sentence $\exists x_1 \exists x_2 \dots \exists x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
 - Complexity of CSP(A; Γ) is known for Γ on finite domains [Bulatov, Zhuk, 2017]
 - There are partial classifications of CSP(A; Γ) for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]

 Γ is a set of predicates on a set A.

$QCSP(A; \Gamma)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
 - Complexity of CSP(A; Γ) is known for Γ on finite domains [Bulatov, Zhuk, 2017]
 - There are partial classifications of CSP(A; Γ) for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]

 Γ is a set of predicates on a set A.

$QCSP(A; \Gamma)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
 - Complexity of CSP(A; Γ) is known for Γ on finite domains [Bulatov, Zhuk, 2017]
 - There are partial classifications of CSP(A; Γ) for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]
- The complexity of QCSP(A; Γ) is known only for Γ on a 2-element domain and on a 3-element domain with constants.

 Γ is a set of predicates on a set A.

$QCSP(A; \Gamma)$

Given a sentence $\forall x_1 \exists x_2 \ldots \forall x_{n-1} \exists x_n (R_1(\ldots) \land \cdots \land R_s(\ldots))$. where $R_1, \ldots, R_s \in \Gamma$. Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
 - Complexity of CSP(A; Γ) is known for Γ on finite domains [Bulatov, Zhuk, 2017]
 - There are partial classifications of CSP(A; Γ) for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]
- The complexity of QCSP(A; Γ) is known only for Γ on a
 2-element domain and on a 3-element domain with constants.
- QCSP(A; Γ) for a finite domain can be in P, NP-complete, coNP-complete, DP-complete, Θ₂^P-complete, Π₂^P-complete, and PSpace-complete.

 Γ is a set of predicates on a set A.

$QCSP(A; \Gamma)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
 - Complexity of CSP(A; Γ) is known for Γ on finite domains [Bulatov, Zhuk, 2017]
 - There are partial classifications of CSP(A; Γ) for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]
- The complexity of QCSP(A; Γ) is known only for Γ on a 2-element domain and on a 3-element domain with constants.
- QCSP(A; Γ) for a finite domain can be in P, NP-complete, coNP-complete, DP-complete, Θ₂^P-complete, Π₂^P-complete, and PSpace-complete. What else?

 Γ is a set of predicates on a set A.

$QCSP(A; \Gamma)$

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
 - Complexity of CSP(A; Γ) is known for Γ on finite domains [Bulatov, Zhuk, 2017]
 - There are partial classifications of CSP(A; Γ) for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]
- The complexity of QCSP(A; Γ) is known only for Γ on a 2-element domain and on a 3-element domain with constants.
- QCSP(A; Γ) for a finite domain can be in P, NP-complete, coNP-complete, DP-complete, Θ₂^P-complete, Π₂^P-complete, and PSpace-complete. What else?
- ► For infinite domain only partial results are known

 Γ is a set of predicates on $\mathbb N$ definable as Boolean combinations of equalities

 Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_1 = x_2 \lor x_3 \neq x_4$, $x_1 \neq x_2$, $x_1 = x_2 \rightarrow x_3 \neq x_4$,...)

 Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_1 = x_2 \lor x_3 \neq x_4$, $x_1 \neq x_2$, $x_1 = x_2 \rightarrow x_3 \neq x_4$,...)

QCSP(N; Γ)

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n \ (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

 Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_1 = x_2 \lor x_3 \neq x_4$, $x_1 \neq x_2$, $x_1 = x_2 \rightarrow x_3 \neq x_4$,...)

QCSP(ℕ; Γ)

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Main question

What is the complexity of $QCSP(\mathbb{N};\Gamma)$ for different Γ ?

 Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_1 = x_2 \lor x_3 \neq x_4$, $x_1 \neq x_2$, $x_1 = x_2 \rightarrow x_3 \neq x_4$,...)

QCSP(ℕ; Γ)

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Main question

What is the complexity of $QCSP(\mathbb{N};\Gamma)$ for different Γ ?

Theorem (Bodirsky, Chen, 2007)

For every Γ QCSP(\mathbb{N} ; Γ) is

- in Logspace, or
- NP-complete, or
- PSpace-complete.

 Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_1 = x_2 \lor x_3 \neq x_4$, $x_1 \neq x_2$, $x_1 = x_2 \rightarrow x_3 \neq x_4$,...)

QCSP(N; Γ)

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Main question

What is the complexity of $QCSP(\mathbb{N};\Gamma)$ for different Γ ?

Theorem (Bodirsky, Chen, 2007) ERROR

For every Γ QCSP(\mathbb{N} ; Γ) is

- in Logspace, or
- NP-complete, or
- PSpace-complete.

Crucial language was $x = y \rightarrow y = z$.

 Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_1 = x_2 \lor x_3 \neq x_4$, $x_1 \neq x_2$, $x_1 = x_2 \rightarrow x_3 \neq x_4$,...)

QCSP(Ν; Γ)

Given a sentence $\forall x_1 \exists x_2 \dots \forall x_{n-1} \exists x_n (R_1(\dots) \land \dots \land R_s(\dots))$. where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Main question

What is the complexity of $QCSP(\mathbb{N};\Gamma)$ for different Γ ?

Theorem (Bodirsky, Chen, 2010)

For every Γ QCSP(\mathbb{N} ; Γ) is

- in Logspace, or
- NP-hard, or
- coNP-hard.

Crucial language was $x = y \rightarrow y = z$.

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

• $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is coNP-hard [Bodirsky, Chen, 2010].
What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

• QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Theorem

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

• QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Theorem

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

proof:

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

• QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Theorem

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Theorem

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Theorem

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

One suspects that a winning strategy for the EP is to play a new value whenever possible

What is the complexity of QCSP(\mathbb{N} ; $x = y \rightarrow y = z$)?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Theorem

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

proof: a reduction from Quantified 3-Satisfability.

One suspects that a winning strategy for the EP is to play a new value whenever possible

To build a reduction we start a new sequence of \rightarrow from each Existential Variable

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Theorem

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

What is the complexity of $QCSP(\mathbb{N}; x = y \rightarrow y = z)$?

▶ QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-hard [Bodirsky, Chen, 2010].

Theorem

 $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-hard.

Theorem

Let Γ be an equality constraint language.

Theorem

Let Γ be an equality constraint language.

• If Γ is negative, then QCSP($\mathbb{N}; \Gamma$) is in Logspace.

Theorem

Let Γ be an equality constraint language.

• If Γ is negative, then QCSP($\mathbb{N}; \Gamma$) is in Logspace.

Else, if Γ is positive, then QCSP($\mathbb{N}; \Gamma$) is NP-complete.

Theorem

Let Γ be an equality constraint language.

• If Γ is negative, then QCSP($\mathbb{N}; \Gamma$) is in Logspace.

Else, if Γ is positive, then $QCSP(\mathbb{N};\Gamma)$ is NP-complete.

► Else QCSP(ℕ; Γ) is PSpace-complete.

Theorem

Let Γ be an equality constraint language.

• If Γ is negative, then QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is **negative** if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals

Else, if Γ is positive, then $QCSP(\mathbb{N};\Gamma)$ is NP-complete.

Else $QCSP(\mathbb{N}; \Gamma)$ is PSpace-complete.

Theorem

Let Γ be an equality constraint language.

• If Γ is negative, then QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

► Else, if Γ is positive, then QCSP(N; Γ) is NP-complete.

► Else QCSP(ℕ; Γ) is PSpace-complete.

Theorem

Let Γ be an equality constraint language.

• If Γ is negative, then QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

▶ Else, if Γ is positive, then QCSP(\mathbb{N} ; Γ) is NP-complete.

A predicate is **positive** if it has a CNF definition in which all of the literals are positive.

Else QCSP(Ν; Γ) is PSpace-complete.

Theorem

Let Γ be an equality constraint language.

• If Γ is negative, then QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

Else, if Γ is positive, then $QCSP(\mathbb{N};\Gamma)$ is NP-complete.

A predicate is **positive** if it has a CNF definition in which all of the literals are positive.

$$(x_1 = x_2 \lor x_3 = x_4), (x_1 = x_2) \land (x_3 = x_4 \lor x_5 = x_6 \lor x_1 = x_6),$$

• Else $QCSP(\mathbb{N}; \Gamma)$ is PSpace-complete.

Theorem

Let Γ be an equality constraint language.

• If Γ is negative, then QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

Else, if Γ is positive, then $QCSP(\mathbb{N};\Gamma)$ is NP-complete.

A predicate is **positive** if it has a CNF definition in which all of the literals are positive.

 $(x_1 = x_2 \lor x_3 = x_4), (x_1 = x_2) \land (x_3 = x_4 \lor x_5 = x_6 \lor x_1 = x_6),$

Else QCSP(N; Γ) is PSpace-complete.

 $(x_1 = x_2 \lor x_3 \neq x_4), (x_1 \neq x_2 \lor x_2 = x_3 \lor x_3 \neq x_4)$

 $\begin{array}{l} \Pi_k \text{-} \mathsf{QCSP}(A; \Gamma) \\ \hline \text{Given a } \Pi_k \text{-sentence} \\ \forall x_{1,1} \dots \forall x_{1,n_1} \exists x_{2,1} \dots \exists x_{2,n_2} \dots \exists x_{k,1} \dots \exists x_{k,n_k} \\ \\ \text{where } R_1, \dots, R_s \in \Gamma. \\ \hline \text{Decide whether it holds.} \end{array}$

 $\begin{array}{l} \Pi_{k} - \mathbf{QCSP}(A; \Gamma) \\ \hline \text{Given a } \Pi_{k} \text{-sentence} \\ \forall x_{1,1} \dots \forall x_{1,n_{1}} \exists x_{2,1} \dots \exists x_{2,n_{2}} \dots \exists x_{k,1} \dots \exists x_{k,n_{k}} \\ \text{where } R_{1}, \dots, R_{s} \in \Gamma. \\ \hline \text{Decide whether it holds.} \\ \hline \Sigma_{k} - \mathbf{QCSP}(A; \Gamma) \\ \hline \text{Given a } \Sigma_{k} \text{-sentence} \end{array}$

 $\exists x_{1,1} \dots \exists x_{1,n_1} \forall x_{2,1} \dots \forall x_{2,n_2} \dots \exists x_{k,1} \dots \exists x_{k,n_k}$ where $R_1, \dots, R_s \in \Gamma$. $(R_1(\dots) \land \dots \land R_s(\dots))$ Decide whether it holds.

 $\begin{array}{l} \Pi_k \operatorname{-}\mathsf{QCSP}(A; \Gamma) \\ \\ \text{Given a } \Pi_k \operatorname{-sentence} \\ \forall x_{1,1} \dots \forall x_{1,n_1} \exists x_{2,1} \dots \exists x_{2,n_2} \dots \exists x_{k,1} \dots \exists x_{k,n_k} \\ \\ \text{where } R_1, \dots, R_s \in \Gamma. \\ \\ \text{Decide whether it holds.} \end{array}$

 Σ_k -**QCSP**(A; Γ)

Question

What is the complexity of Σ_k -QCSP(A; Γ) and Π_k -QCSP(A; Γ) for each equality constraint language Γ and each k?

 $\begin{array}{l} \Pi_{k}\text{-}\mathsf{QCSP}(A;\Gamma)\\\\ \text{Given a } \Pi_{k}\text{-sentence}\\ \forall x_{1,1} \dots \forall x_{1,n_{1}} \exists x_{2,1} \dots \exists x_{2,n_{2}} \dots \exists x_{k,1} \dots \exists x_{k,n_{k}}\\\\ \text{where } R_{1}, \dots, R_{s} \in \Gamma. \\\\ \text{Decide whether it holds.} \end{array}$

 Σ_k -**QCSP**(A; Γ)

Given a
$$\Sigma_k$$
-sentence
 $\exists x_{1,1} \dots \exists x_{1,n_1} \forall x_{2,1} \dots \forall x_{2,n_2} \dots \exists x_{k,1} \dots \exists x_{k,n_k}$
where $R_1, \dots, R_s \in \Gamma$.
Decide whether it holds.
 $(R_1(\dots) \wedge \dots \wedge R_s(\dots))$

Question

What is the complexity of Σ_k -QCSP(A; Γ) and Π_k -QCSP(A; Γ) for each equality constraint language Γ and each k?

▶ Π_{2k} -QCSP(A; Γ) and Π_{2k+1} -QCSP(A; Γ) are polynomially equivalent for $k \ge 2$.

 $\begin{array}{l} \Pi_k \text{-}\mathsf{QCSP}(A; \Gamma) \\ \\ \text{Given a } \Pi_k \text{-sentence} \\ \forall x_{1,1} \dots \forall x_{1,n_1} \exists x_{2,1} \dots \exists x_{2,n_2} \dots \exists x_{k,1} \dots \exists x_{k,n_k} \\ \\ \text{where } R_1, \dots, R_s \in \Gamma. \\ \\ \text{Decide whether it holds.} \end{array}$

 Σ_k -**QCSP**(A; Γ)

Given a
$$\Sigma_k$$
-sentence
 $\exists x_{1,1} \dots \exists x_{1,n_1} \forall x_{2,1} \dots \forall x_{2,n_2} \dots \exists x_{k,1} \dots \exists x_{k,n_k}$
where $R_1, \dots, R_s \in \Gamma$.
Decide whether it holds.
 $(R_1(\dots) \wedge \dots \wedge R_s(\dots))$

Question

What is the complexity of Σ_k -QCSP(A; Γ) and Π_k -QCSP(A; Γ) for each equality constraint language Γ and each k?

- ▶ Π_{2k} -QCSP(A; Γ) and Π_{2k+1} -QCSP(A; Γ) are polynomially equivalent for $k \ge 2$.
- ► Σ_{2k+1} -QCSP(A; Γ) and Σ_{2k+2} -QCSP(A; Γ) are polynomially equivalent for $k \ge 2$

Theorem

Let Γ be an equality constraint language, $k\geq 2$ be even.

Theorem

Let Γ be an equality constraint language, $k \ge 2$ be even.

► If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

Theorem

Let Γ be an equality constraint language, $k\geq 2$ be even.

• If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

• Else, if Γ is positive, then Π_k -QCSP(\mathbb{N} ; Γ) is NP-complete.

Theorem

Let Γ be an equality constraint language, $k \ge 2$ be even.

► If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

► Else, if Γ is positive, then Π_k -QCSP($\mathbb{N}; \Gamma$) is NP-complete.

► Else, if Γ is Horn, then Π_k -QCSP(\mathbb{N} ; Γ) is coNP-complete.

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

► If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

► Else, if Γ is positive, then Π_k -QCSP($\mathbb{N}; \Gamma$) is NP-complete.

Else, if Γ is Horn, then Π_k -QCSP($\mathbb{N}; \Gamma$) is coNP-complete.

Theorem

Let Γ be an equality constraint language, $k\geq 2$ be even.

• If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is **negative** if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals

• Else, if Γ is positive, then Π_k -QCSP(\mathbb{N} ; Γ) is NP-complete.

Else, if Γ is Horn, then Π_k -QCSP($\mathbb{N}; \Gamma$) is coNP-complete.

Theorem

Let Γ be an equality constraint language, $k\geq 2$ be even.

• If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is **negative** if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

• Else, if Γ is positive, then Π_k -QCSP(\mathbb{N} ; Γ) is NP-complete.

Else, if Γ is Horn, then Π_k -QCSP($\mathbb{N}; \Gamma$) is coNP-complete.

Theorem

Let Γ be an equality constraint language, $k\geq 2$ be even.

• If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is **negative** if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

► Else, if Γ is positive, then Π_k -QCSP(\mathbb{N} ; Γ) is NP-complete.

A predicate is **positive** if it has a CNF definition in which all of the literals are positive.

Else, if Γ is Horn, then Π_k -QCSP($\mathbb{N}; \Gamma$) is coNP-complete.

Theorem

Let Γ be an equality constraint language, $k\geq 2$ be even.

• If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is **negative** if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

Else, if Γ is positive, then Π_k -QCSP($\mathbb{N}; \Gamma$) is NP-complete.

A predicate is **positive** if it has a CNF definition in which all of the literals are positive.

- $(x_1 = x_2 \lor x_3 = x_4), (x_1 = x_2) \land (x_3 = x_4 \lor x_5 = x_6 \lor x_1 = x_6),$
 - ► Else, if Γ is Horn, then Π_k -QCSP(\mathbb{N} ; Γ) is coNP-complete.

Theorem

Let Γ be an equality constraint language, $k\geq 2$ be even.

• If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is **negative** if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

Else, if Γ is positive, then Π_k -QCSP($\mathbb{N}; \Gamma$) is NP-complete.

A predicate is **positive** if it has a CNF definition in which all of the literals are positive.

 $(x_1 = x_2 \lor x_3 = x_4), (x_1 = x_2) \land (x_3 = x_4 \lor x_5 = x_6 \lor x_1 = x_6),$

Else, if Γ is Horn, then Π_k -QCSP($\mathbb{N}; \Gamma$) is coNP-complete.

A predicate is **Horn** if it has a CNF definition in which each clause contains at most one positive literal.

• Else,
$$\Pi_k$$
-QCSP($\mathbb{N}; \Gamma$) is Π_k^P -complete.

Theorem

Let Γ be an equality constraint language, $k\geq 2$ be even.

• If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is **negative** if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

Else, if Γ is positive, then Π_k -QCSP($\mathbb{N}; \Gamma$) is NP-complete.

A predicate is **positive** if it has a CNF definition in which all of the literals are positive.

 $(x_1 = x_2 \lor x_3 = x_4), (x_1 = x_2) \land (x_3 = x_4 \lor x_5 = x_6 \lor x_1 = x_6),$

► Else, if Γ is Horn, then Π_k -QCSP(\mathbb{N} ; Γ) is coNP-complete.

A predicate is **Horn** if it has a CNF definition in which each clause contains at most one positive literal.

 $(x_1 = x_2 \lor x_3 \neq x_4), (x_1 = x_2) \land (x_3 = x_4 \lor x_5 \neq x_6 \lor x_1 \neq x_6),$

Theorem

Let Γ be an equality constraint language, $k\geq 2$ be even.

▶ If Γ is negative, then Π_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is **negative** if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

Else, if Γ is positive, then Π_k -QCSP($\mathbb{N}; \Gamma$) is NP-complete.

A predicate is **positive** if it has a CNF definition in which all of the literals are positive.

 $(x_1 = x_2 \lor x_3 = x_4), (x_1 = x_2) \land (x_3 = x_4 \lor x_5 = x_6 \lor x_1 = x_6),$

► Else, if Γ is Horn, then Π_k -QCSP(\mathbb{N} ; Γ) is coNP-complete.

A predicate is **Horn** if it has a CNF definition in which each clause contains at most one positive literal.

 $(x_1 = x_2 \lor x_3 \neq x_4), (x_1 = x_2) \land (x_3 = x_4 \lor x_5 \neq x_6 \lor x_1 \neq x_6),$

• Else, Π_k -QCSP($\mathbb{N}; \Gamma$) is Π_k^P -complete.

 $(x_1 = x_2 \lor x_3 = x_4 \lor x_3 \neq x_4), (x_1 \neq x_2) \land (x_3 = x_4 \lor x_5 = x_6).$

Theorem

Let Γ be an equality constraint language, $k \geq 3$ be odd.

• If Γ is negative, then Σ_k -QCSP($\mathbb{N}; \Gamma$) is in Logspace.

A predicate is **negative** if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $(x_1 = x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5), (x_1 \neq x_2) \land (x_2 \neq x_3 \lor x_4 \neq x_5 \lor x_6 \neq x_7)$

• Else, if Γ is positive, then Σ_k -QCSP(\mathbb{N} ; Γ) is NP-complete.

A predicate is **positive** if it has a CNF definition in which all of the literals are positive.

 $(x_1 = x_2 \lor x_3 = x_4), (x_1 = x_2) \land (x_3 = x_4 \lor x_5 = x_6 \lor x_1 = x_6),$

► Else, if Γ is Horn, then $\sum_{k} -QCSP(\mathbb{N}; \Gamma)$ is coNP-complete.

A predicate is **Horn** if it has a CNF definition in which each clause contains at most one positive literal.

 $(x_1 = x_2 \lor x_3 \neq x_4)$, $(x_1 = x_2) \land (x_3 = x_4 \lor x_5 \neq x_6 \lor x_1 \neq x_6)$,

• Else, \sum_{k} -QCSP($\mathbb{N}; \Gamma$) is \sum_{k}^{P} -complete.

 $(x_1 = x_2 \lor x_3 = x_4 \lor x_3 \neq x_4), (x_1 \neq x_2) \land (x_3 = x_4 \lor x_5 = x_6).$
• $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-complete.

• $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-complete.

• Π_k -QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-complete for every $k \ge 2$.

- $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-complete.
- Π_k -QCSP($\mathbb{N}; x = y \rightarrow y = z$) is coNP-complete for every $k \ge 2$.
- Σ_k -QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-complete for every $k \ge 3$.

- $QCSP(\mathbb{N}; x = y \rightarrow y = z)$ is PSpace-complete.
- Π_k -QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) is coNP-complete for every $k \ge 2$.
- Σ_k -QCSP($\mathbb{N}; x = y \rightarrow y = z$) is coNP-complete for every $k \ge 3$.
- ► Σ_1 -QCSP(\mathbb{N} ; $x = y \rightarrow y = z$), Σ_2 -QCSP(\mathbb{N} ; $x = y \rightarrow y = z$), and Π_1 -QCSP(\mathbb{N} ; $x = y \rightarrow y = z$) are in Logspace.

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

What is the complexity of $QCSP(\mathbb{Q};\Gamma)$ for every Γ ?

Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

- Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

- Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

- Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $QCSP(\mathbb{Q}; x = y \rightarrow y \le z)$ is in P (J. Rydval, 2022)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

- Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $QCSP(\mathbb{Q}; x = y \rightarrow y \le z)$ is in P (J. Rydval, 2022)
- $QCSP(\mathbb{Q}; x = y < z \lor x = z < y)$ is NP-complete

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

- Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $QCSP(\mathbb{Q}; x = y \rightarrow y \le z)$ is in P (J. Rydval, 2022)
- $QCSP(\mathbb{Q}; x = y < z \lor x = z < y)$ is NP-complete
- $QCSP(\mathbb{Q}; x < y \lor u < v)$ is PSpace-complete

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

- Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $QCSP(\mathbb{Q}; x = y \rightarrow y \le z)$ is in P (J. Rydval, 2022)
- $QCSP(\mathbb{Q}; x = y < z \lor x = z < y)$ is NP-complete
- $QCSP(\mathbb{Q}; x < y \lor u < v)$ is PSpace-complete
- $QCSP(\mathbb{Q}; x = y \rightarrow z < t)$ is PSpace-complete

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

- Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $QCSP(\mathbb{Q}; x = y \rightarrow y \le z)$ is in P (J. Rydval, 2022)
- $QCSP(\mathbb{Q}; x = y < z \lor x = z < y)$ is NP-complete
- $QCSP(\mathbb{Q}; x < y \lor u < v)$ is PSpace-complete
- $QCSP(\mathbb{Q}; x = y \rightarrow z < t)$ is PSpace-complete
- $\mathsf{QCSP}(\mathbb{Q}; x = y \to (x > u \lor x \ge v))$ is an open question

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

- Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $QCSP(\mathbb{Q}; x = y \rightarrow y \le z)$ is in P (J. Rydval, 2022)
- $QCSP(\mathbb{Q}; x = y < z \lor x = z < y)$ is NP-complete
- $QCSP(\mathbb{Q}; x < y \lor u < v)$ is PSpace-complete
- $QCSP(\mathbb{Q}; x = y \rightarrow z < t)$ is PSpace-complete
- $QCSP(\mathbb{Q}; x = y \rightarrow (x > u \lor x \ge v))$ is an open question
- $QCSP(\mathbb{Q}; x < y \lor y < z)$ is an open question

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of x < y and x = y.

Open question

- Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $QCSP(\mathbb{Q}; x = y \rightarrow y \le z)$ is in P (J. Rydval, 2022)
- $QCSP(\mathbb{Q}; x = y < z \lor x = z < y)$ is NP-complete
- $QCSP(\mathbb{Q}; x < y \lor u < v)$ is PSpace-complete
- $QCSP(\mathbb{Q}; x = y \rightarrow z < t)$ is PSpace-complete
- $QCSP(\mathbb{Q}; x = y \rightarrow (x > u \lor x \ge v))$ is an open question
- $QCSP(\mathbb{Q}; x < y \lor y < z)$ is an open question
- $QCSP(\mathbb{Q}; x < y < z \lor x > y > z)$ is an open question

Thank you for your attention