The complete classification for quantified equality constraints

Dmitriy Zhuk
Barnaby Martin Michal Wrona

ACM-SIAM Symposium on Discrete Algorithms (SODA23) January 22-25, 2023, Florence, Italy

Quantified Equality Constraints

$(\mathbb{N} ;=)$

Quantified Equality Constraints

$$
\begin{aligned}
& (\mathbb{N} ;=) \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)
\end{aligned}
$$

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true

Quantified Equality Constraints

$$
\begin{aligned}
& (\mathbb{N} ;=) \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right), \text { true } \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right),
\end{aligned}
$$

Quantified Equality Constraints

$$
\begin{aligned}
& (\mathbb{N} ;=) \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right), \text { true } \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right), \text { false }
\end{aligned}
$$

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false
$\operatorname{QCSP}(\mathbb{N} ; x=y)$
Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(x_{i_{1}}=x_{j_{1}} \wedge \cdots \wedge x_{i_{s}}=x_{j_{s}}\right)$. Decide whether it holds.

Quantified Equality Constraints

$$
\begin{aligned}
& (\mathbb{N} ;=) \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right), \text { true } \\
& \forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right), \text { false }
\end{aligned}
$$

$$
\operatorname{QCSP}(\mathbb{N} ; x=y)
$$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(x_{i_{1}}=x_{j_{1}} \wedge \cdots \wedge x_{i_{s}}=x_{j_{s}}\right)$. Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false
$\operatorname{QCSP}(\mathbb{N} ; R)$
Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

$\operatorname{QCSP}(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?
A concrete question

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?
A concrete question

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?
A concrete question

Open since 2007
Easy to Formulate

Quantified Equality Constraints

$(\mathbb{N} ;=)$
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{3}=x_{4}\right)$, true
$\forall x_{1} \exists x_{2} \forall x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, false

QCSP $(\mathbb{N} ; R)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}(R(\ldots) \wedge \cdots \wedge R(\ldots)$.
Decide whether it holds.

- $\operatorname{QCSP}(\mathbb{N} ; x=y)$ is solvable in polynomial time.
- $\operatorname{QCSP}(\mathbb{N} ; x=y \vee z=t)$ is NP-complete [Bodirsky, Chen 2007].
- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow z=t)$ is PSpace-complete [Bodirsky, Chen 2007].

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

A concrete question Accessible to anyone

Open since 2007
Easy to Formulate

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

$\operatorname{QCSP}(A ; \Gamma)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide whether it holds.

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

QCSP $(A ; \Gamma)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

$\operatorname{CSP}(A ; \Gamma)$

Given a sentence $\exists x_{1} \exists x_{2} \ldots \exists x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

$\operatorname{CSP}(A ; \Gamma)$

Given a sentence $\exists x_{1} \exists x_{2} \ldots \exists x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
- Complexity of $\operatorname{CSP}(A ; \Gamma)$ is known for Γ on finite domains [Bulatov, Zhuk, 2017]

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

$\operatorname{CSP}(A ; \Gamma)$

Given a sentence $\exists x_{1} \exists x_{2} \ldots \exists x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
- Complexity of $\operatorname{CSP}(A ; \Gamma)$ is known for Γ on finite domains [Bulatov, Zhuk, 2017]
- There are partial classifications of $\operatorname{CSP}(A ; \Gamma)$ for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

QCSP $(A ; \Gamma)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
- Complexity of $\operatorname{CSP}(A ; \Gamma)$ is known for Γ on finite domains [Bulatov, Zhuk, 2017]
- There are partial classifications of $\operatorname{CSP}(A ; \Gamma)$ for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

QCSP $(A ; \Gamma)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
- Complexity of $\operatorname{CSP}(A ; \Gamma)$ is known for Γ on finite domains [Bulatov, Zhuk, 2017]
- There are partial classifications of $\operatorname{CSP}(A ; \Gamma)$ for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]
- The complexity of $\operatorname{QCSP}(A ; \Gamma)$ is known only for Γ on a 2-element domain and on a 3-element domain with constants.

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

QCSP $(A ; \Gamma)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
- Complexity of $\operatorname{CSP}(A ; \Gamma)$ is known for Γ on finite domains [Bulatov, Zhuk, 2017]
- There are partial classifications of $\operatorname{CSP}(A ; \Gamma)$ for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]
- The complexity of $\operatorname{QCSP}(A ; \Gamma)$ is known only for Γ on a 2-element domain and on a 3-element domain with constants.
- $\operatorname{QCSP}(A ; \Gamma)$ for a finite domain can be in P, NP-complete, coNP-complete, DP-complete, Θ_{2}^{P}-complete, Π_{2}^{P}-complete, and PSpace-complete.

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

QCSP $(A ; \Gamma)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
- Complexity of $\operatorname{CSP}(A ; \Gamma)$ is known for Γ on finite domains [Bulatov, Zhuk, 2017]
- There are partial classifications of $\operatorname{CSP}(A ; \Gamma)$ for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]
- The complexity of $\operatorname{QCSP}(A ; \Gamma)$ is known only for Γ on a 2-element domain and on a 3-element domain with constants.
- $\operatorname{QCSP}(A ; \Gamma)$ for a finite domain can be in P, NP-complete, coNP-complete, DP-complete, Θ_{2}^{P}-complete, Π_{2}^{P}-complete, and PSpace-complete. What else?

Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

QCSP $(A ; \Gamma)$

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

- QCSP is a generalization of the Constraint Satisfaction Problem (CSP).
- Complexity of $\operatorname{CSP}(A ; \Gamma)$ is known for Γ on finite domains [Bulatov, Zhuk, 2017]
- There are partial classifications of $\operatorname{CSP}(A ; \Gamma)$ for infinite domain [Bodirsky, Kára, Barto, Pinsker, Mottet,...]
- The complexity of $\operatorname{QCSP}(A ; \Gamma)$ is known only for Γ on a 2-element domain and on a 3-element domain with constants.
- $\operatorname{QCSP}(A ; \Gamma)$ for a finite domain can be in P, NP-complete, coNP-complete, DP-complete, Θ_{2}^{P}-complete, Π_{2}^{P}-complete, and PSpace-complete. What else?
- For infinite domain only partial results are known

Quantified Equality Constraints

Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities

Quantified Equality Constraints

Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_{1}=x_{2} \vee x_{3} \neq x_{4}, x_{1} \neq x_{2}, x_{1}=x_{2} \rightarrow x_{3} \neq x_{4}, \ldots$)

Quantified Equality Constraints

Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_{1}=x_{2} \vee x_{3} \neq x_{4}, x_{1} \neq x_{2}, x_{1}=x_{2} \rightarrow x_{3} \neq x_{4}, \ldots$)

QCSP($\mathbb{N} ; \Gamma$)

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Quantified Equality Constraints

Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_{1}=x_{2} \vee x_{3} \neq x_{4}, x_{1} \neq x_{2}, x_{1}=x_{2} \rightarrow x_{3} \neq x_{4}, \ldots$)

QCSP($\mathbb{N} ; \Gamma$)

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Main question

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ for different Γ ?

Quantified Equality Constraints

Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_{1}=x_{2} \vee x_{3} \neq x_{4}, x_{1} \neq x_{2}, x_{1}=x_{2} \rightarrow x_{3} \neq x_{4}, \ldots$)

QCSP($\mathbb{N} ; \Gamma$)

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Main question

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ for different Γ ?
Theorem (Bodirsky, Chen, 2007)
For every $\Gamma \operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is

- in Logspace, or
- NP-complete, or
- PSpace-complete.

Quantified Equality Constraints

Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_{1}=x_{2} \vee x_{3} \neq x_{4}, x_{1} \neq x_{2}, x_{1}=x_{2} \rightarrow x_{3} \neq x_{4}, \ldots$)

QCSP($\mathbb{N} ; \Gamma$)

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Main question

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ for different Γ ?
Theorem (Bodirsky, Chen, 2007) ERROR
For every $\Gamma \operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is

- in Logspace, or
- NP-complete, or
- PSpace-complete.

Crucial language was $x=y \rightarrow y=z$.

Quantified Equality Constraints

Γ is a set of predicates on \mathbb{N} definable as Boolean combinations of equalities (such as $x_{1}=x_{2} \vee x_{3} \neq x_{4}, x_{1} \neq x_{2}, x_{1}=x_{2} \rightarrow x_{3} \neq x_{4}, \ldots$)

QCSP ($\mathbb{N} ; \Gamma$)

Given a sentence $\forall x_{1} \exists x_{2} \ldots \forall x_{n-1} \exists x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$. where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide whether it holds.

Main question

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ for different Γ ?
Theorem (Bodirsky, Chen, 2010)
For every $\Gamma \operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is

- in Logspace, or
- NP-hard, or
- coNP-hard.

Crucial language was $x=y \rightarrow y=z$.

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Theorem
$\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard.

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Theorem $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard. proof:

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Theorem

$\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard.
proof: a reduction from Quantified 3-Satisfability.

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Theorem

$\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard.
proof: a reduction from Quantified 3-Satisfability.

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Theorem

$\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard.
proof: a reduction from Quantified 3-Satisfability.

One suspects that a winning strategy for the EP is to play a new value whenever possible

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Theorem

$\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard.
proof: a reduction from Quantified 3-Satisfability.

One suspects that a winning strategy for the EP is to play a new value whenever possible

To build a reduction we start a new sequence of \rightarrow from each Existential Variable

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Theorem

$\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard.
proof: a reduction from Quantified 3-Satisfability.

Quantified Equality Constraints

What is the complexity of $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$?

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-hard [Bodirsky, Chen, 2010].

Theorem

$\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-hard.
proof: a reduction from Quantified 3-Satisfability.

Classification of the complexity

Theorem

Let Γ be an equality constraint language.

Classification of the complexity

Theorem

Let Γ be an equality constraint language.

- If Γ is negative, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

Classification of the complexity

Theorem

Let Γ be an equality constraint language.

- If Γ is negative, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.
- Else, if Γ is positive, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.

Classification of the complexity

Theorem

Let Γ be an equality constraint language.

- If Γ is negative, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.
- Else, if Γ is positive, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.
- Else $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is PSpace-complete.

Classification of the complexity

Theorem

Let Γ be an equality constraint language.

- If Γ is negative, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals

- Else, if Γ is positive, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.
- Else $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is PSpace-complete.

Classification of the complexity

Theorem

Let Γ be an equality constraint language.

- If Γ is negative, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.
- Else $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is PSpace-complete.

Classification of the complexity

Theorem

Let Γ be an equality constraint language.

- If Γ is negative, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete. A predicate is positive if it has a CNF definition in which all of the literals are positive.
- Else $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is PSpace-complete.

Classification of the complexity

Theorem

Let Γ be an equality constraint language.

- If Γ is negative, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete. A predicate is positive if it has a CNF definition in which all of the literals are positive.
$\left(x_{1}=x_{2} \vee x_{3}=x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5}=x_{6} \vee x_{1}=x_{6}\right)$,
- Else $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is PSpace-complete.

Classification of the complexity

Theorem

Let Γ be an equality constraint language.

- If Γ is negative, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete. A predicate is positive if it has a CNF definition in which all of the literals are positive.
$\left(x_{1}=x_{2} \vee x_{3}=x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5}=x_{6} \vee x_{1}=x_{6}\right)$,
- Else $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is PSpace-complete.
$\left(x_{1}=x_{2} \vee x_{3} \neq x_{4}\right),\left(x_{1} \neq x_{2} \vee x_{2}=x_{3} \vee x_{3} \neq x_{4}\right)$

Bounded alternation

Bounded alternation

$\Pi_{k}-\operatorname{QCSP}(A ; \Gamma)$

Given a Π_{k}-sentence

$$
\forall x_{1,1} \ldots \forall x_{1, n_{1}} \exists x_{2,1} \ldots \exists x_{2, n_{2}} \ldots \exists x_{k, 1} \ldots \exists x_{k, n_{k}}
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.

$$
\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Decide whether it holds.

Bounded alternation

$\Pi_{k}-\operatorname{QCSP}(A ; \Gamma)$

Given a Π_{k}-sentence

$$
\forall x_{1,1} \ldots \forall x_{1, n_{1}} \exists x_{2,1} \ldots \exists x_{2, n_{2}} \ldots \exists x_{k, 1} \ldots \exists x_{k, n_{k}}
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.

$$
\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Decide whether it holds.

$\Sigma_{k}-\operatorname{QCSP}(A ; \Gamma)$

Given a Σ_{k}-sentence

$$
\exists x_{1,1} \ldots \exists x_{1, n_{1}} \forall x_{2,1} \ldots \forall x_{2, n_{2}} \ldots \exists x_{k, 1} \ldots \exists x_{k, n_{k}}
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.

$$
\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Decide whether it holds.

Bounded alternation

Π_{k} - $\operatorname{CCSP}(A ; \Gamma)$

Given a Π_{k}-sentence

$$
\forall x_{1,1} \ldots \forall x_{1, n_{1}} \exists x_{2,1} \ldots \exists x_{2, n_{2}} \ldots \exists x_{k, 1} \ldots \exists x_{k, n_{k}}
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.

$$
\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Decide whether it holds.
$\Sigma_{k}-\operatorname{QCSP}(A ; \Gamma)$
Given a Σ_{k}-sentence

$$
\exists x_{1,1} \ldots \exists x_{1, n_{1}} \forall x_{2,1} \ldots \forall x_{2, n_{2}} \ldots \exists x_{k, 1} \ldots \exists x_{k, n_{k}}
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.

$$
\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Decide whether it holds.

Question

What is the complexity of $\Sigma_{k}-\operatorname{QCSP}(A ; \Gamma)$ and $\Pi_{k}-\operatorname{QCSP}(A ; \Gamma)$ for each equality constraint language Γ and each k ?

Bounded alternation

$\Pi_{k}-\operatorname{QCSP}(A ; \Gamma)$

Given a Π_{k}-sentence

$$
\forall x_{1,1} \ldots \forall x_{1, n_{1}} \exists x_{2,1} \ldots \exists x_{2, n_{2}} \ldots \exists x_{k, 1} \ldots \exists x_{k, n_{k}}
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.

$$
\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Decide whether it holds.
$\Sigma_{k}-\operatorname{QCSP}(A ; \Gamma)$
Given a Σ_{k}-sentence

$$
\exists x_{1,1} \ldots \exists x_{1, n_{1}} \forall x_{2,1} \ldots \forall x_{2, n_{2}} \ldots \exists x_{k, 1} \ldots \exists x_{k, n_{k}}
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.

$$
\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Decide whether it holds.

Question

What is the complexity of $\Sigma_{k}-\operatorname{QCSP}(A ; \Gamma)$ and $\Pi_{k}-\operatorname{QCSP}(A ; \Gamma)$ for each equality constraint language Γ and each k ?

- $\Pi_{2 k}-\operatorname{QCSP}(A ; \Gamma)$ and $\Pi_{2 k+1}-\operatorname{QCSP}(A ; \Gamma)$ are polynomially equivalent for $k \geq 2$.

Bounded alternation

$\Pi_{k}-\operatorname{QCSP}(A ; \Gamma)$

Given a Π_{k}-sentence

$$
\forall x_{1,1} \ldots \forall x_{1, n_{1}} \exists x_{2,1} \ldots \exists x_{2, n_{2}} \ldots \exists x_{k, 1} \ldots \exists x_{k, n_{k}}
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.

$$
\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Decide whether it holds.
$\Sigma_{k}-\operatorname{QCSP}(A ; \Gamma)$
Given a Σ_{k}-sentence

$$
\exists x_{1,1} \ldots \exists x_{1, n_{1}} \forall x_{2,1} \ldots \forall x_{2, n_{2}} \ldots \exists x_{k, 1} \ldots \exists x_{k, n_{k}}
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.

$$
\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

Decide whether it holds.

Question

What is the complexity of $\Sigma_{k}-\operatorname{QCSP}(A ; \Gamma)$ and $\Pi_{k}-\operatorname{QCSP}(A ; \Gamma)$ for each equality constraint language Γ and each k ?

- $\Pi_{2 k}-\operatorname{QCSP}(A ; \Gamma)$ and $\Pi_{2 k+1}-\operatorname{QCSP}(A ; \Gamma)$ are polynomially equivalent for $k \geq 2$.
- $\Sigma_{2 k+1}-\operatorname{QCSP}(A ; \Gamma)$ and $\Sigma_{2 k+2}-\operatorname{QCSP}(A ; \Gamma)$ are polynomially equivalent for $k \geq 2$

Classification for bounded alternation

Theorem
Let Γ be an equality constraint language, $k \geq 2$ be even.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.
- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.
- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.
- Else, if Γ is Horn, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.
- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.
- Else, if Γ is Horn, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.
- Else, $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is Π_{k}^{P}-complete.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals

- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.
- Else, if Γ is Horn, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.
- Else, $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is Π_{k}^{P}-complete.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals
$\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.
- Else, if Γ is Horn, then Π_{k} - $\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.
- Else, $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is Π_{k}^{P}-complete.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals
$\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.

A predicate is positive if it has a CNF definition in which all of the literals are positive.

- Else, if Γ is Horn, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.
- Else, $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is Π_{k}^{P}-complete.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals
$\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.

A predicate is positive if it has a CNF definition in which all of the literals are positive.
$\left(x_{1}=x_{2} \vee x_{3}=x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5}=x_{6} \vee x_{1}=x_{6}\right)$,

- Else, if Γ is Horn, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.
- Else, $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is Π_{k}^{P}-complete.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals
$\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.

A predicate is positive if it has a CNF definition in which all of the literals are positive.
$\left(x_{1}=x_{2} \vee x_{3}=x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5}=x_{6} \vee x_{1}=x_{6}\right)$,

- Else, if Γ is Horn, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.

A predicate is Horn if it has a CNF definition in which each clause contains at most one positive literal.

- Else, $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is Π_{k}^{P}-complete.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals
$\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.

A predicate is positive if it has a CNF definition in which all of the literals are positive.
$\left(x_{1}=x_{2} \vee x_{3}=x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5}=x_{6} \vee x_{1}=x_{6}\right)$,

- Else, if Γ is Horn, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.

A predicate is Horn if it has a CNF definition in which each clause contains at most one positive literal.
$\left(x_{1}=x_{2} \vee x_{3} \neq x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5} \neq x_{6} \vee x_{1} \neq x_{6}\right)$,

- Else, $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is Π_{k}^{P}-complete.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 2$ be even.

- If Γ is negative, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.

A predicate is positive if it has a CNF definition in which all of the literals are positive.
$\left(x_{1}=x_{2} \vee x_{3}=x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5}=x_{6} \vee x_{1}=x_{6}\right)$,

- Else, if Γ is Horn, then $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.

A predicate is Horn if it has a CNF definition in which each clause contains at most one positive literal.
$\left(x_{1}=x_{2} \vee x_{3} \neq x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5} \neq x_{6} \vee x_{1} \neq x_{6}\right)$,

- Else, $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is Π_{k}^{P}-complete.
$\left(x_{1}=x_{2} \vee x_{3}=x_{4} \vee x_{3} \neq x_{4}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5}=x_{6}\right)$.

Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, $k \geq 3$ be odd.

- If Γ is negative, then $\Sigma_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is in Logspace.

A predicate is negative if it has a CNF definition in which all of the clauses are either equalities, or are disjunctions of negative literals $\left(x_{1}=x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{2} \neq x_{3} \vee x_{4} \neq x_{5} \vee x_{6} \neq x_{7}\right)$

- Else, if Γ is positive, then $\Sigma_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is NP-complete.

A predicate is positive if it has a CNF definition in which all of the literals are positive.
$\left(x_{1}=x_{2} \vee x_{3}=x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5}=x_{6} \vee x_{1}=x_{6}\right)$,

- Else, if Γ is Horn, then $\Sigma_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is coNP-complete.

A predicate is Horn if it has a CNF definition in which each clause contains at most one positive literal.
$\left(x_{1}=x_{2} \vee x_{3} \neq x_{4}\right),\left(x_{1}=x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5} \neq x_{6} \vee x_{1} \neq x_{6}\right)$,

- Else, $\Sigma_{k}-\operatorname{QCSP}(\mathbb{N} ; \Gamma)$ is Σ_{k}^{P}-complete.
$\left(x_{1}=x_{2} \vee x_{3}=x_{4} \vee x_{3} \neq x_{4}\right),\left(x_{1} \neq x_{2}\right) \wedge\left(x_{3}=x_{4} \vee x_{5}=x_{6}\right)$.

Predicate $x=y \rightarrow y=z$

Predicate $x=y \rightarrow y=z$

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-complete.

Predicate $x=y \rightarrow y=z$

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-complete.
- $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-complete for every $k \geq 2$.

Predicate $x=y \rightarrow y=z$

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-complete.
- $\Pi_{k}-\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-complete for every $k \geq 2$.
- $\Sigma_{k}-\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-complete for every $k \geq 3$.

Predicate $x=y \rightarrow y=z$

- $\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is PSpace-complete.
- $\Pi_{k}-\mathrm{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-complete for every $k \geq 2$.
- $\Sigma_{k}-\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$ is coNP-complete for every $k \geq 3$.
- $\Sigma_{1}-\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$,
$\Sigma_{2}-\operatorname{QCSP}(\mathbb{N} ; x=y \rightarrow y=z)$, and $\Pi_{1-\operatorname{LCSP}}(\mathbb{N} ; x=y \rightarrow y=z)$ are in Logspace.

Next step (Temporal QCSP)

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow y \leq z)$ is in P (J. Rydval, 2022)

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow y \leq z)$ is in P (J. Rydval, 2022)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y<z \vee x=z<y)$ is NP-complete

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow y \leq z)$ is in P (J. Rydval, 2022)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y<z \vee x=z<y)$ is NP-complete
- QCSP($\mathbb{Q} ; x<y \vee u<v)$ is PSpace-complete

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow y \leq z)$ is in P (J. Rydval, 2022)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y<z \vee x=z<y)$ is NP-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x<y \vee u<v)$ is PSpace-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow z<t)$ is PSpace-complete

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow y \leq z)$ is in P (J. Rydval, 2022)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y<z \vee x=z<y)$ is NP-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x<y \vee u<v)$ is PSpace-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow z<t)$ is PSpace-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow(x>u \vee x \geq v))$ is an open question

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow y \leq z)$ is in P (J. Rydval, 2022)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y<z \vee x=z<y)$ is NP-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x<y \vee u<v)$ is PSpace-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow z<t)$ is PSpace-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow(x>u \vee x \geq v))$ is an open question
- $\operatorname{QCSP}(\mathbb{Q} ; x<y \vee y<z)$ is an open question

Next step (Temporal QCSP)

Suppose Γ is a set of predicates on \mathbb{Q} definable as boolean combinations of $x<y$ and $x=y$.

Open question

What is the complexity of $\operatorname{QCSP}(\mathbb{Q} ; \Gamma)$ for every Γ ?

- Complexity of $\operatorname{CSP}(\mathbb{Q} ; \Gamma)$ was classified (Bodirsky, Kára, 2010)
- A complete classification for positive languages (W. Charatonik, M. Wrona, 2008)
- A dichotomy for self-dual languages (M. Wrona, 2014)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow y \leq z)$ is in P (J. Rydval, 2022)
- $\operatorname{QCSP}(\mathbb{Q} ; x=y<z \vee x=z<y)$ is NP-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x<y \vee u<v)$ is PSpace-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow z<t)$ is PSpace-complete
- $\operatorname{QCSP}(\mathbb{Q} ; x=y \rightarrow(x>u \vee x \geq v))$ is an open question
- $\operatorname{QCSP}(\mathbb{Q} ; x<y \vee y<z)$ is an open question
- $\operatorname{QCSP}(\mathbb{Q} ; x<y<z \vee x>y>z)$ is an open question

Thank you for your attention

