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Quantified Equality Constraints

(N; =)

∀x1∃x2∀x3∃x4(x1 = x2 ∧ x3 = x4), true
∀x1∃x2∀x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), false

QCSP(N; x = y)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (xi1 = xj1 ∧ · · · ∧ xis = xjs ).
Decide whether it holds.

I QCSP(N; x = y) is solvable in polynomial time.
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Quantified Constraint Satisfaction Problem

Γ is a set of predicates on a set A.

QCSP(A; Γ)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R1(. . . ) ∧ · · · ∧ Rs(. . . )).
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

I QCSP is a generalization of the Constraint Satisfaction
Problem (CSP).

I Complexity of CSP(A; Γ) is known for Γ on finite domains
[Bulatov, Zhuk, 2017]

I There are partial classifications of CSP(A; Γ) for infinite
domain [Bodirsky, Kára, Barto, Pinsker, Mottet,. . . ]

I The complexity of QCSP(Γ) is known only for Γ on 2-element
domain and on a 3-element domain with constants.

I QCSP(Γ) for a finite domain can be in P, NP-complete,
coNP-complete, DP-complete, ΘP

2 -complete, ΠP
2 -complete,

and PSpace-complete. What else?
I For infinite domain only partial results are known
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Quantified Equality Constraints

Γ is a set of predicates on N definable as Boolean combinations of
equalities

(such as x1 = x2 ∨ x3 6= x4, x1 6= x2, x1 = x2 → x3 6= x4,...)

QCSP(N; Γ)

Given a sentence ∀x1∃x2 . . . ∀xn−1∃xn (R1(. . . ) ∧ · · · ∧ Rs(. . . )).
where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Main question

What is the complexity of QCSP(N; Γ) for different Γ?

Theorem (Bodirsky, Chen, 2007)

ERROR

For every Γ QCSP(N; Γ) is

I in Logspace, or

I NP-complete, or

I PSpace-complete.

Crucial language was x = y → y = z .
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Classification of the complexity

Theorem

Let Γ be an equality constraint language.

I If Γ is negative, then QCSP(N; Γ) is in Logspace.

A predicate is negative if it has a CNF definition in which all of the
clauses are either equalities, or are disjunctions of negative literals

(x1 = x2)∧ (x2 6= x3 ∨ x4 6= x5), (x1 6= x2)∧ (x2 6= x3 ∨ x4 6= x5 ∨ x6 6= x7)

I Else, if Γ is positive, then QCSP(N; Γ) is NP-complete.

A predicate is positive if it has a CNF definition in which all of the literals
are positive.

(x1 = x2 ∨ x3 = x4), (x1 = x2) ∧ (x3 = x4 ∨ x5 = x6 ∨ x1 = x6),

I Else QCSP(N; Γ) is PSpace-complete.

(x1 = x2 ∨ x3 6= x4), (x1 6= x2 ∨ x2 = x3 ∨ x3 6= x4)
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Bounded alternation

Πk-QCSP(A; Γ)

Given a Πk -sentence

∀x1,1 . . . ∀x1,n1∃x2,1 . . . ∃x2,n2 . . . ∃xk,1 . . . ∃xk,nk
(R1(. . . ) ∧ · · · ∧ Rs(. . . ))

where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Σk-QCSP(A; Γ)

Given a Σk -sentence

∃x1,1 . . . ∃x1,n1∀x2,1 . . . ∀x2,n2 . . . ∃xk,1 . . . ∃xk,nk
(R1(. . . ) ∧ · · · ∧ Rs(. . . ))

where R1, . . . ,Rs ∈ Γ.
Decide whether it holds.

Question

What is the complexity of Σk -QCSP(A; Γ) and Πk -QCSP(A; Γ) for each
equality constraint language Γ and each k?

I Π2k -QCSP(A; Γ) and Π2k+1-QCSP(A; Γ) are polynomially equivalent for k ≥ 2.

I Σ2k+1-QCSP(A; Γ) and Σ2k+2-QCSP(A; Γ) are polynomially equivalent for k ≥ 2
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Classification for bounded alternation

Theorem

Let Γ be an equality constraint language, k ≥ 2 be even.

I If Γ is negative, then Πk -QCSP(N; Γ) is in Logspace.

A predicate is negative if it has a CNF definition in which all of the
clauses are either equalities, or are disjunctions of negative literals

(x1 = x2)∧ (x2 6= x3 ∨ x4 6= x5), (x1 6= x2)∧ (x2 6= x3 ∨ x4 6= x5 ∨ x6 6= x7)

I Else, if Γ is positive, then Πk -QCSP(N; Γ) is NP-complete.

A predicate is positive if it has a CNF definition in which all of the literals
are positive.

(x1 = x2 ∨ x3 = x4), (x1 = x2) ∧ (x3 = x4 ∨ x5 = x6 ∨ x1 = x6),

I Else, if Γ is Horn, then Πk -QCSP(N; Γ) is coNP-complete.

A predicate is Horn if it has a CNF definition in which each clause
contains at most one positive literal.

(x1 = x2 ∨ x3 6= x4), (x1 = x2) ∧ (x3 = x4 ∨ x5 6= x6 ∨ x1 6= x6),

I Else, Πk -QCSP(N; Γ) is ΠP
k -complete.

(x1 = x2 ∨ x3 = x4 ∨ x3 6= x4), (x1 6= x2) ∧ (x3 = x4 ∨ x5 = x6).
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Predicate x = y → y = z

I QCSP(N; x = y → y = z) is PSpace-complete.

I Πk-QCSP(N; x = y → y = z) is coNP-complete
for every k ≥ 2.

I Σk-QCSP(N; x = y → y = z) is coNP-complete
for every k ≥ 3.

I Σ1-QCSP(N; x = y → y = z),
Σ2-QCSP(N; x = y → y = z), and
Π1-QCSP(N; x = y → y = z) are in Logspace.
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I A complete classification for positive languages (W.
Charatonik, M. Wrona, 2008)

I A dichotomy for self-dual languages (M. Wrona, 2014)

I QCSP(Q; x = y → y ≤ z) is in P (J. Rydval, 2022)

I QCSP(Q; x = y < z ∨ x = z < y) is NP-complete

I QCSP(Q; x < y ∨ u < v) is PSpace-complete

I QCSP(Q; x = y → z < t) is PSpace-complete

I QCSP(Q; x = y → (x > u ∨ x ≥ v)) is an open question

I QCSP(Q; x < y ∨ y < z) is an open question

I QCSP(Q; x < y < z ∨ x > y > z) is an open question



Next step (Temporal QCSP)

Suppose Γ is a set of predicates on Q definable as boolean
combinations of x < y and x = y .

Open question

What is the complexity of QCSP(Q; Γ) for every Γ?

I Complexity of CSP(Q; Γ) was classified (Bodirsky, Kára, 2010)
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