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Theorem
Let I be an equality constraint language, kK > 3 be odd.
» If I is negative, then ¥,-QCSP(N;TI) is in Logspace.

A predicate is negative if it has a CNF definition in which all of the
clauses are either equalities, or are disjunctions of negative literals

(1=2)AN0e#x3Vxs #x5), (x1 #x) A2 # X3V Xa # X5V X6 # X7)
» Else, if I' is positive, then ¥,-QCSP(N; ") is NP-complete.
A predicate is positive if it has a CNF definition in which all of the literals
are positive.
(x1=xVxs=xi), a=x)A(s=xVxs=xVx=Xx)
» Else, if I' is Horn, then X ,-QCSP(N; ) is coNP-complete.

A predicate is Horn if it has a CNF definition in which each clause
contains at most one positive literal.

(X]_ :Xz\/X3 #X4), (Xl :X2)/\(X3 :X4\/X5 #X6VX1 #X6),
» Else, ¥4,-QCSP(N; ) is ©-complete.

(x1=xVxzs=xaVx3s#xy), (x1F#x)AN(3=x2Vx5=Xp)
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» QCSP(N; x = y — y = z) is PSpace-complete.

» M-QCSP(N; x = y — y = z) is coNP-complete
for every k > 2.

» 24-QCSP(N; x =y — y = z) is coNP-complete
for every k > 3.

» 21-QCSP(N; x =y — y = 2),

Y»-QCSP(N; x =y — y = z), and
M-QCSP(N; x =y — y = z) are in Logspace.
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Suppose I is a set of predicates on Q definable as boolean
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Open question
What is the complexity of QCSP(Q; ) for every '? J
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Thank you for your attention



