Modularity and coloring of terms by variables

Libor Barto

Eduard Čech Center, Charles University Czech Republic

45th Summer School on Algebra and Ordered Sets, Tale 2007

Libor Barto

Eduard Čech Center, Charles University Czech Republic

Image: A math a math

Join of two varieties

DEFINITION

 \mathbb{V}, \mathbb{W} : varieties σ, ρ : their signatures

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ ≧ ∽○<

Libor Barto

Eduard Čech Center, Charles University Czech Republic

Join of two varieties

DEFINITION

 \mathbb{V}, \mathbb{W} : varieties σ, ρ : their signatures

 $\mathbb{V} \vee \mathbb{W}$: join of \mathbb{V} and \mathbb{W} signature: $\sigma \cup \rho$ (disjoint union) identities: identities in \mathbb{V} + identities in \mathbb{W}

Eduard Čech Center, Charles University Czech Republic

Image: A match a ma

Modularity and coloring of terms by variables

DEFINITION

 \mathbb{V}, \mathbb{W} : varieties σ, ρ : their signatures

 $\mathbb{V} \vee \mathbb{W}$: join of \mathbb{V} and \mathbb{W} signature: $\sigma \cup \rho$ (disjoint union) identities: identities in \mathbb{V} + identities in \mathbb{W}

It is the join in the lattice of interpretability types of varieties W. D. Neumann, 1974

Libor Barto

Eduard Čech Center, Charles University Czech Republic

ADE A ADE A

True for CP S. Tschantz, unpublished

Eduard Čech Center, Charles University Czech Republic

Image: A match a ma

Modularity and coloring of terms by variables

- True for CP S. Tschantz, unpublished
- False for CD O. Garcia, W. Taylor 84

Eduard Čech Center, Charles University Czech Republic

Image: A match a ma

Modularity and coloring of terms by variables

- True for CP S. Tschantz, unpublished
- False for CD O. Garcia, W. Taylor 84
- Unknown for CM, n-CP

Eduard Čech Center, Charles University Czech Republic

Modularity and coloring of terms by variables

- True for CP S. Tschantz, unpublished
- False for CD O. Garcia, W. Taylor 84
- Unknown for CM, n-CP
 - If false, then one of the Day term proving it is of height at least 3 L. Sequeira 01

Image: A match a ma

Libor Barto

- True for CP S. Tschantz, unpublished
- False for CD O. Garcia, W. Taylor 84
- Unknown for CM, n-CP
 - If false, then one of the Day term proving it is of height at least 3 L. Sequeira 01
 - ▶ True, if \mathbb{V}, \mathbb{W} are linear

Eduard Čech Center, Charles University Czech Republic

Image: A match a ma

Modularity and coloring of terms by variables

 $\begin{aligned} \mathbb{V}: \text{ variety} \\ X &= \{x_0, x_1, x_2, x_3\} \\ FX: \text{ free algebra on } X \end{aligned}$

Eduard Čech Center, Charles University Czech Republic

(日)

Modularity and coloring of terms by variables

 < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇</td>

 Eduard Čech Center, Charles University
 Czech Republic

Modularity and coloring of terms by variables

V: variety $X = \{x_0, x_1, x_2, x_3\}$ *FX*: free algebra on *X* $\alpha, \beta, \gamma : X \rightarrow X$ – mappings $\alpha(x_0, x_1, x_2, x_3) = (x_0, x_1, x_1, x_0)$ $\beta(x_0, x_1, x_2, x_3) = (x_0, x_0, x_2, x_2)$ $\gamma(x_0, x_1, x_2, x_3) = (x_0, x_1, x_1, x_3)$ $\overline{\alpha}, \overline{\beta}, \overline{\gamma}$: congruences on *FX* generated by kernels of α, β, γ

Eduard Čech Center, Charles University Czech Republic

Modularity and coloring of terms by variables

 $\begin{aligned} &\mathbb{V}: \text{ variety} \\ &X = \{x_0, x_1, x_2, x_3\} \\ &FX: \text{ free algebra on } X \\ &\alpha, \beta, \gamma: X \to X - \text{mappings} \\ &\alpha(x_0, x_1, x_2, x_3) = (x_0, x_1, x_1, x_0) \\ &\beta(x_0, x_1, x_2, x_3) = (x_0, x_0, x_2, x_2) \\ &\gamma(x_0, x_1, x_2, x_3) = (x_0, x_1, x_1, x_3) \\ &\bar{\alpha}, \bar{\beta}, \bar{\gamma}: \text{ congruences on } FX \text{ generated by kernels of } \alpha, \beta, \gamma \end{aligned}$

THEOREM A. Day 69 TFAE for a variety 𝔍

- ▶ 𝔍 is CM
- there are $t_1, t_2, \dots \in FX$ such that

$$x_0 \overset{\bar{\alpha},\bar{\beta}}{\sim} t_1 \overset{\bar{\gamma}}{\sim} t_2 \overset{\bar{\alpha},\bar{\beta}}{\sim} t_3 \overset{\bar{\gamma}}{\sim} \dots x_3$$

DEFINITION \mathbb{V} : variety, X: set, FX: free algebra on X. $A \subseteq X^X$.

Libor Barto

Eduard Čech Center, Charles University Czech Republic

• • • • • • • • • • •

DEFINITION \mathbb{V} : variety, X: set, FX: free algebra on X. $A \subseteq X^X$. A-coloring of \mathbb{V} is a mapping $c : FX \to X$ such that

Libor Barto

Eduard Čech Center, Charles University Czech Republic

Image: A math a math

DEFINITION \mathbb{V} : variety, X: set, FX: free algebra on X. $A \subseteq X^X$.

A-coloring of \mathbb{V} is a mapping $c : FX \to X$ such that

$$\blacktriangleright (\forall x \in X) c(x) = x$$

Eduard Čech Center, Charles University Czech Republic

Image: A math a math

Modularity and coloring of terms by variables

DEFINITION \mathbb{V} : variety, X: set, FX: free algebra on X. $A \subseteq X^X$.

A-coloring of \mathbb{V} is a mapping $c : FX \to X$ such that

◄ ► ★ ▲ ► ★ ► ► ► ► ► ► ► ► ♥ ♥ ♥
 Eduard Čech Center, Charles University Czech Republic

Modularity and coloring of terms by variables

DEFINITION \mathbb{V} : variety, X: set, FX: free algebra on X. $A \subseteq X^X$.

A-coloring of \mathbb{V} is a mapping $c : FX \to X$ such that

$$\blacktriangleright (\forall x \in X) c(x) = x$$

$$\blacktriangleright \ (\forall \alpha \in A) \ (\forall t, s \in FX) \ t \stackrel{\bar{\alpha}}{\sim} s \ \Rightarrow \ c(t) \stackrel{\bar{\alpha}}{\sim} c(s)$$

The second condition can be written as

► $(\forall \alpha \in A) \ (\forall t, s \in FX) \ F\alpha(t) = F\alpha(s) \Rightarrow \alpha(c(t)) = \alpha(c(s))$ where $F\alpha : FX \to FX$ is the obvious mapping

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Libor Barto

DEFINITION \mathbb{V} : variety, X: set, FX: free algebra on X. $A \subseteq X^X$.

A-coloring of \mathbb{V} is a mapping $c : FX \to X$ such that

$$\blacktriangleright (\forall x \in X) c(x) = x$$

$$\blacktriangleright \ (\forall \alpha \in A) \ (\forall t, s \in FX) \ t \stackrel{\bar{\alpha}}{\sim} s \ \Rightarrow \ c(t) \stackrel{\bar{\alpha}}{\sim} c(s)$$

The second condition can be written as

► $(\forall \alpha \in A) \ (\forall t, s \in FX) \ F\alpha(t) = F\alpha(s) \Rightarrow \alpha(c(t)) = \alpha(c(s))$ where $F\alpha : FX \to FX$ is the obvious mapping

REMARK Similar to L. Sequeira's compatibility with projections

Eduard Čech Center, Charles University Czech Republic

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Libor Barto

A characterization of modularity

PROPOSITION TFAE

- ▶ 𝔍 is modular
- *FX* is not $\{\alpha, \beta, \gamma\}$ -colorable

Eduard Čech Center, Charles University Czech Republic

A D > A B > A B > A

Modularity and coloring of terms by variables

A characterization of modularity

PROPOSITION TFAE

- ▶ 𝔍 is modular
- *FX* is not $\{\alpha, \beta, \gamma\}$ -colorable

REMARK Similar characterization for *n*-CP. Impossible for CD.

Libor Barto

Eduard Čech Center, Charles University Czech Republic

DEFINITION $F : \mathbf{Set} \to \mathbf{Set}$: functor s.t. $Id \subseteq F$, X: set, $A \subseteq X^X$.

A-coloring of F is a mapping $FX \rightarrow X$ such that

$$(\forall x \in X) \ c(x) = x (\forall \alpha \in A) \ (\forall t, s \in FX) \ F\alpha(t) = F\alpha(s) \ \Rightarrow \ \alpha(c(t)) = \alpha(c(s))$$

Eduard Čech Center, Charles University Czech Republic

Modularity and coloring of terms by variables

DEFINITION $F : \mathbf{Set} \to \mathbf{Set}$: functor s.t. $Id \subseteq F$, X: set, $A \subseteq X^X$.

A-coloring of F is a mapping $FX \rightarrow X$ such that

►
$$(\forall x \in X) \ c(x) = x$$

► $(\forall \alpha \in A) \ (\forall t, s \in FX) \ F\alpha(t) = F\alpha(s) \Rightarrow \alpha(c(t)) = \alpha(c(s))$

REMARK

A-coloring of a variety = A-coloring of its free functor

Libor Barto

Eduard Čech Center, Charles University Czech Republic

ADE A ADE A

DEFINITION $F : \mathbf{Set} \to \mathbf{Set}$: functor s.t. $Id \subseteq F$, X: set, $A \subseteq X^X$.

A-coloring of F is a mapping $FX \rightarrow X$ such that

►
$$(\forall x \in X) \ c(x) = x$$

► $(\forall \alpha \in A) \ (\forall t, s \in FX) \ F\alpha(t) = F\alpha(s) \Rightarrow \alpha(c(t)) = \alpha(c(s))$

REMARK

Libor Barto

- A-coloring of a variety = A-coloring of its free functor
- It's a weakening of natural transformation $F \rightarrow Id$

Eduard Čech Center, Charles University Czech Republic

PROPOSITION $F, G : \mathbf{Set} \to \mathbf{Set}$: functors, X: set, $A \subseteq X^X$. If F, G are A-colorable, then FG is A-colorable.

Libor Barto

Eduard Čech Center, Charles University Czech Republic

(日) (同) (三) (

PROPOSITION $F, G : \mathbf{Set} \to \mathbf{Set}$: functors, X: set, $A \subseteq X^X$. If F, G are A-colorable, then FG is A-colorable.

PROBLEM Let V, W be non-CM. Is $V \lor W$ necessarily non-CM?

Eduard Čech Center, Charles University Czech Republic

(日) (同) (三) (

Modularity and coloring of terms by variables

PROPOSITION $F, G : \mathbf{Set} \to \mathbf{Set}$: functors, X: set, $A \subseteq X^X$. If F, G are A-colorable, then FG is A-colorable.

PROBLEM Let V, W be non-CM. Is $V \lor W$ necessarily non-CM?

COROLLARY

- If false, then one of the Day term proving it is of height at least 3
- ► True, if V, W are linear

Eduard Čech Center, Charles University Czech Republic

Modularity and coloring of terms by variables

- V: idempotent variety
- F: free functor of $\mathbb V$

Hobby, McKenzie 88: 𝒱: locally finite

 $\blacktriangleright \ \mathbb{V} \ \text{omits} \ 1 \Leftrightarrow \textit{Taylor} \rightarrow \textit{F} \Leftrightarrow \textit{F} \not\rightarrow \textit{Id}$

Eduard Čech Center, Charles University Czech Republic

Image: A match a ma

Modularity and coloring of terms by variables

- V: idempotent variety
- F: free functor of $\mathbb V$

Hobby, McKenzie 88: V: locally finite

- $\blacktriangleright \ \mathbb{V} \ \text{omits} \ 1 \Leftrightarrow \textit{Taylor} \rightarrow \textit{F} \Leftrightarrow \textit{F} \not\rightarrow \textit{Id}$
- $\blacktriangleright \ \mathbb{V} \text{ omits } 1,5 \Leftrightarrow \cdots \to F \Leftrightarrow F \not\to Semilatt$

▶ ...

Libor Barto

ব াচ ব লাচ ব টাচ ব টাচ টা তাওঁ Eduard Čech Center, Charles University Czech Republic

- V: idempotent variety
- F: free functor of $\mathbb V$

Hobby, McKenzie 88: V: locally finite

- $\blacktriangleright \ \mathbb{V} \ \text{omits} \ 1 \Leftrightarrow \textit{Taylor} \to \textit{F} \Leftrightarrow \textit{F} \not\to \textit{Id}$
- \mathbb{V} omits 1,5 $\Leftrightarrow \cdots \rightarrow F \Leftrightarrow F \not\rightarrow Semilatt$

▶ ...

...

Our characterization

 $\blacktriangleright \ \mathbb{V} \text{ is modular} \Leftrightarrow \textit{Day} \to \textit{F} \Leftrightarrow \textit{F} \not \to \textit{Id}$

ব াচ ব লাচ ব টাচ ব টাচ টা তাওঁ Eduard Čech Center, Charles University Czech Republic

Libor Barto

- V: idempotent variety
- F: free functor of $\mathbb V$

Hobby, McKenzie 88: V: locally finite

- $\blacktriangleright \ \mathbb{V} \ \text{omits} \ 1 \Leftrightarrow \textit{Taylor} \to \textit{F} \Leftrightarrow \textit{F} \not\to \textit{Id}$
- \mathbb{V} omits 1,5 $\Leftrightarrow \cdots \rightarrow F \Leftrightarrow F \not\rightarrow Semilatt$

Our characterization

 $\blacktriangleright \ \mathbb{V} \text{ is modular} \Leftrightarrow \textit{Day} \to \textit{F} \Leftrightarrow \textit{F} \not \to \textit{Id}$

Dualities!

...

▶ ...

Libor Barto

Eduard Čech Center, Charles University Czech Republic

(日) (同) (日) (日) (日)

web: http://www.karlin.mff.cuni.cz/~barto

Thank you for your attention!

Modularity and coloring of terms by variables