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Abstract This paper is a contribution to the theory of functor slices of J. Sichler and

V. Trnková. For every ordinal α we introduce a basket Eα, prove that every essentially

algebraic category of height α is a slice of Eα, characterize small slices of Eα and give

a common generalization of known results about slices of the algebraic basket A.
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1 Introduction

In [9], J. Sichler and V. Trnková introduced a concept of functor slices. Their theory

yields a quasiorder (i.e. a reflexive and transitive relation) ≤s on the collection of all

faithful functors and thus determines an equivalence ∼s by U ∼s V iff U ≤s V and

V ≤s U . If U ≤s V , they say that U is a slice of V . See Section 3 for the corresponding

definitions.

The results in [9] and more recent investigations [10], [7], [3] have shown an interest-

ing and surprising phenomenon: Forgetful functors of many familiar concrete categories

belong to one of five ∼s equivalence “classes”, which were named baskets. These baskets

together with ≤s inequalities between them are indicated in Figure 1 (an arrow stands

for ≤s; none of the arrows reverses and no arrow can be added, except the arrows

implied by transitivity and reflexivity, of course).

Loosely speaking, the basket R contains the concrete categories (we mean their

forgetful functors) which choose their morphisms “in a relational way”; those categories

which choose their morphisms “algebraically” are in the basket A; the baskets P, Pop
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Fig. 1 The five basic baskets

consist of “degenerate” cases of categories from A; the trivial basket T contains precisely

full embeddings.

However, as was observed later by J. Sichler and V. Trnková, there are many

“natural” baskets which lie strictly between A and R. For example, the category whose

objects are sets with two unary operation, the first one total and the second one partial,

defined precisely where the first operation has a fix-point. This category determines

the basket E2. We can add a third unary operation defined on fix-points of the second

one and we obtain the basket E3. Continuing in a similar fashion, we get a basket Eα

for every ordinal α. The slice ordering between Eα and their duals is shown in Figure

2.

Fig. 2 Baskets of essentially algebraic categories
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These categories are special cases of so called essentially algebraic categories (see

[2], Section 4). Our first major theorem says that every essentially algebraic category

is a slice of some Eα. An important example of an essentially algebraic category is the

category of small categories. We show that it belongs to the basket E2.

The reason why no arrow in Figure 1 can be reversed or added is that certain

properties of faithful functors are inherited to slices: Every slice of any member of R

is SSF (strongly small fibered, [10], see Section 3), every slice of (any member of) A

obeys Isbell’s [4,5] zig-zag condition (zz) [9], every slice of P obeys (p), every slice of

P
op obeys (p)op [9]. Conditions (zz), (p), (p)op are recalled in Section 5, we call them

“closure rules”. We introduce “multiple zig-zag closure rules” (zzα) which are obeyed
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by all slices of Eα and show that no arrow in Figure 2 can be reversed or added (except

the obvious arrows, again).

On the other hand, these properties are known to be sufficient in the following

cases: every SSF faithful functor is a slice of R, every SSF faithful functor which obeys

(p) (resp. (pop)) is a slice of P (resp. P
op) (see [10]). Only partial results are known

about the basket A: If U : K → H is a faithful functor which obeys (zz) and either K

and H are small [9], or U is SSF and H = Set [8], then U is a slice of A. We prove in

Section 6 that every faithful functor between small categories which obeys (zzα) is a

slice of Eα. We also give a slight generalization of both above mentioned results about

the basket A.

The paper is organized as follows:

Section 2 Preliminaries and notation.
Section 3 The concept of a functor slice, equivalent formulations;

the baskets R, A, P, P
op

, T;
SSF condition.

Section 4 The definition of essentially algebraic category of height α;
the baskets Eα;
every essentially algebraic category of height α is a slice of Eα.

Section 5 Closure rule, obeying a closure rule, semantic consequence;
the closure rules (zz

α);
every essentially algebraic category of height α obeys (zz

α);
no arrow in Figure 2 can be added or reversed;
syntactic and semantic consequences of closure rules.

Section 6 Known results about universality with respect to closure rules;
every faithful functor between small categories which obeys (zz

α)
is a slice of Eα;

slices of A.

2 Preliminaries and notation

2.1 Category theory

To the basics we refer to [1].

The set of all morphisms in a category K with domain A ∈ Obj(K) and codomain

B ∈ Obj(K) is denoted by K(A, B).

Given a faithful functor U : K → H, A, B ∈ Obj(K) and f ∈ H(UA, UB) we say

that f carries a K-morphism from A to B provided that f = Ug for a K-morphism

g : A → B.

By a concrete category (over H) we mean a faithful functor U : K → H such that

K(A, B) ⊆ H(UA, UB), A, B ∈ Obj(K).

In this case, a H-morphism h : UA → UB carries a K-morphism A → B iff it is a

K-morphism A → B.

We write h ∈ H(A, B), or h is a H-morphism from A to B, in place of h ∈

H(UA, UB). Likewise, for A ∈ Obj(K), H ∈ Obj(H) we write h ∈ H(A, H) in place

of h ∈ H(UA, H).
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Let H be a category and F, G : H → Set be functors. The category A[F, G] is

defined as follows: Objects are pairs (H, α), where H ∈ Obj(H) and α ∈ Set(FH, GH).

An H-morphism h : H → H ′ is an A[F, G]-morphism from (H, α) to (H ′, α′), if

Gh ◦ α = α′ ◦ Fh. We have a natural forgetful functor A[F, G] → H sending (H, α) to

H.

2.2 Set theory

We work in a standard set theory with axiom of choice for classes. At several places we

use “collections larger than classes” for the sake of brevity. This can be made correct by

enhancing the set theory (see [1]), but, in this article, everything could be formulated

without any use of such monsters.

An ordinal is a set of all smaller ordinals and cardinal is the least ordinal with its

cardinality. We write α < β in place of α ∈ β.

A partially ordered set (P, <) ( = poset) is said to be well-founded provided that

every nonempty subset has a <-minimal element. The rank function from P to the

class of ordinals is the unique function which satisfy (see [6])

rankP (p) =

�
0 there is no q < p,

sup{rankP (q) + 1 | q < p} otherwise.

By the height of P is meant the ordinal number sup{rankP (p) + 1 | p ∈ P}, or 0 if P

is empty. The subscripts will be omitted, if they are clear from the context. A tree is

a well-founded poset such that the set {q | q < p} is well-ordered for all p ∈ P .

The symbols ⊔,
`

are used for the coproduct of sets, i.e. the disjoint union. Since,

as I hope, there is no danger of confusion, we identify components of a coproduct with

the sets from which the coproduct is formed, so that A, B ⊆ A ⊔ B, for instance.

2.3 Algebra

The notation here follows the monograph [2].

Let S be a set (of sorts). By an S-sorted signature is understood a set Σ of op-

erational symbols together with an arity function assigning to every σ ∈ Σ a κ-tuple

(si)i<κ of sorts for some cardinal number κ and a sort s. Notation:

σ :
Y
i<κ

si → s.

A signature is called nullary, if it contains nullary operational symbols only. Otherwise,

the signature is nonnullary.

By an S-sorted set is meant a family (As)s∈S of sets. A partial algebra A of

the signature Σ is a pair ((As)s∈S , (σA)σ∈Σ), where Ai are sets and σA are partial

operations

σA : Def(σA) ⊆
Y
i<κ

Asi → As.

Operations with the definition domain Def(σA) equal to
Q

i<κ Asi are called total.
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A homomorphism from an algebra A to an algebra B is a family of mappings

f = (fs)s∈S , fs : As → Bs preserving the operations in the following sense: If σ :Q
i<κ si → s and (ai)i<κ ∈ Def(σA), then (f(ai))i<κ ∈ Def(σB) and

fs(σ
A(ai)) = σB(f(ai)).

This yields the category Palg(Σ) of all partial algebras of the signature Σ and their

homomorphisms, Alg(Σ) is its full subcategory formed by algebras with all operations

total.

The set of terms (or Σ-terms) over an S-sorted set X of variables is the smallest

S-sorted set such that

– each variable of sort s is a term of sort s,

– for each operational symbol σ :
Q

i<κ si → s and κ-tuple of terms τi of sort si, we

conclude that σ(τi) is a term of sort s.

Given an algebra A, term t and a family (ax)x∈X of elements of the underlying S-

sorted set of A we can naturally define the value tA(ax) of tA in (ax) for those (ax)

which are in the definition domain Def(tA) of the term tA.

In this paragraph we assume that the signature Σ contains no nullary operational

symbol. By an address we mean a finite (possible empty) sequence of ordinal numbers.

The concatenation of addresses R, S is denoted by RˆS. By a subterm of a term t at

the address R, we mean the term t[R] defined inductively by

1. τ [∅] = τ .

2. If R = S î, τ [S] = σ(τi)i<κ and i < κ, then τ [R] = τi; otherwise τ [R] is undefined.

If τ [R] is defined, we say that R is a valid address of τ . The valid addresses which have

maximal length are addresses of leaves, i.e. variables in τ . The operational symbol at

a valid address R of τ is denoted by τ〈R〉.

An (S-)equation is a pair (τ1, τ2) of terms over X of the same sort. Notation:

τ1 = τ2. An equation τ1 = τ2 is satisfied by an algebra A in the elements (ax)x∈X

provided that τA1 (ax), τA2 (ax) are defined and equal. An algebra A satisfies τ1 = τ2
provided that τA1 (ax) = τA2 (ax) whenever (ax)x∈X ∈ Def(tA1 ), Def(tA2 ).

3 Slices

The notion of a functor slice was introduced in [9]:

Definition 1 Let U : K → H, U ′ : K′ → H′ be faithful functors. A pair (Φ, F ) of

functors Φ : K → K′, F : H → H′ is said to be an s-embedding of U to U ′, if FU = U ′Φ

and for every A, B ∈ Obj(K), f ∈ H(A, B)

if Ff carries a K′-morphism ΦA → ΦB, then f carries a K-morphism A → B. (1)

K′ H′

U ′
//

K

K′

Φ

��

K H
U // H

H′

F

��
(2)
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If there exists an s-embedding of U to U ′, we say that U is a slice of U ′ and write

U ≤s U ′. If U ≤s U ′ and U ′ ≤s U , we say that U and U ′ are s-equivalent and write

U ∼s U ′. The equivalence “classes” of ∼s are called baskets.

Remark 1 1. In the original definition from [9], the functor F (and thus the functor

Φ) was assumed to be faithful. I think that the present definition is more workable

and almost equally strong.

2. It is easy to see that ≤s is a quasiorder (reflexive and transitive) and thus ∼s is

an equivalence relation. The notation X ≤s Y can (and will) be used, if X, Y are

baskets, or if X is a faithful functor and Y is a basket, etc.

3. (Φ, Id) is an s-embedding iff Φ is concrete (that means U ′Φ = U), full and faithful.

4. If U, U ′ are concrete categories (see Preliminaries), what we can (and often will)

assume, the condition (1) can be formulated as follows:

If Ff ∈ K′(ΦA, ΦB) then f ∈ K(A, B). (3)

5. An s-embedding is a weaker notion than a strong embedding: If (Φ, F ) is an s-

embedding and F is faithful, then (Φ, F ) is a strong embedding iff every K′-

morphism g : ΦA → ΦB is of the form g = Ff for some H-morphism f : UA → UB.

To avoid verbose statements, we will often say that “a category K is a slice of a

category H”, in place of “the natural forgetful functor of K is a slice of the natural

forgetful functor of H”, if the meaning of ”natural” is clear.

A commutative diagram (2) such that (Φ, F ) is an s-embedding is called a subpull-

back for the following reason (see [9]).

Proposition 1 Let U : K → H, U ′ : K′ → H′ be faithful functors and (Φ : K →

K′, F : H → H′) be a pair of functors such that FU = U ′Φ. Then the following

statements are equivalent.

(i) (Φ, F ) is an s-embedding.

(ii) For every A, B ∈ Obj(K), the following diagram is a pullback in Set.

K′(ΦA, ΦB) H′(U ′ΦA, U ′ΦB)
U ′

//

K(A, B)

K′(ΦA, ΦB)

Φ

��

K(A, B) H(UA, UB)
U // H(UA, UB)

H′(U ′ΦA, U ′ΦB)

F

��

(iii) The functor I in the following commutative diagram is a full embedding. (The mark

at the top-left corner of the square denotes pullback.)

K′ H′

U ′
//K′

��

H// H

H′

F

��

K

H

U

((QQQQQQQQQQQQQQQQK

I
?

?

��?
?

K

K′

Φ

��-
--

--
--

--
--

--
--

-
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Corollary 1 Let U : K → H, V : H → L be faithful functors. Then U ≤s V U .

Proof It is easy to see that (Id, V ) is an s-embedding. ⊓⊔

Corollary 2 Let U : K → H, U ′ : K′ → H′ be faithful functors. Then U ≤s V iff

Uop : Kop → Hop ≤s V op : K′op
→ H′op

.

Now, we mention some members of the baskets in Figure 1.

Basket R contains (see [9]) the category Rel(Σ) of relational structures and their

homomorphisms for every nonnulary mono-sorted signature; the category Palg(Σ) for

every nonnullary mono-sorted signature; the category Pos of all partially ordered sets

(posets) and order preserving mappings; the category Top of all topological spaces

and continuous mappings and all its full subcategories down to the category of all

metrizable spaces; the category Unif of all uniform spaces and uniformly continuous

mappings and all its full subcategories down to the category of all complete metrizable

spaces; the category Metr of all metric spaces and maps which do not increase the

distance and all its full subcategories down to the category of all complete metric spaces

of diameter at most one; all their duals.

Basket A contains the category Alg(Σ) for every nonnullary mono-sorted sig-

nature (see [9]); more generally the category SetT of all monadic algebras for any

non-degenerate monad T over Set (see [7]; a monad is non-degenerate iff its functor

part T is neither the identity nor a constant nor their coproduct); the category SetT

of all comonadic coalgebras for any non-degenerate comonad T over Set (see [3]); all

their duals [9].

Basket P contains the category Alg(Σ) for a nullary nonempty mono-sorted sig-

nature [9].

Basket P
op contains precisely the duals of categories in P [9].

Basket T consists of all full and faithful functors [9].

An important property which is inherited to slices is the SSF condition (see [1]):

Definition 2 A concrete category U : K → H is said to be SSF (strongly small

fibered), if for every H ∈ Obj(H), the following equivalence ∼SSF on the class of all

pairs (K, f), where K ∈ Obj(K), f ∈ H(K, H), has only set-many equivalence classes:

(K, f) ∼SSF (K′, f ′)

iff

(∀L ∈ Obj(K)) (∀g ∈ H(H, L)) gf ∈ K(K, L) ⇔ gf ′ ∈ K′(K′, L)

Most of “everyday life” categories are SSF. All categories mentioned in this paper,

for instance.

Proposition 2 (See [10]) A slice of SSF concrete category is SSF.

On the other hand, every SSF concrete category is a slice of R. See Section 6 for

this and similar results.
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4 Essentially algebraic categories

As mentioned, the category Palg(Σ) of all partial algebras with given (nonnullary)

signature and their homomorphisms belongs to the relational basket (we mentioned

the mono-sorted case only, but this can be easily generalized). However, these cate-

gories have important full subcategories called essentially algebraic. These categories

substantially enrich our five-member collection of baskets.

Definition 3 Let α be an ordinal, S be a set. An S-sorted essentially algebraic theory

of height α is given by a quadruple Γ = (Σ, level, E, Def) where:

– Σ is an S-sorted signature (finitary or infinitary).

– level : Σ → α is a mapping assigning a level to each operational symbol σ ∈ Σ.

The set of all operational symbols of level β is denoted by Σβ . Analogically we

define Σ<β , Σ≤β .

– E is a set of Σ-equations.

– Def assigns to each κ-ary operational symbol σ ∈ Σ a set of Σ<level(σ)-equations

over a κ-indexed set X = (xi)i<κ (where the variables have the right sorts). For

all σ such that level(σ) = 0, we assume Def(σ) = ∅.

By a model of Γ (or a Γ -algebra) we mean a partial S-sorted algebra

A = ((As)s∈S , (σA)σ∈Σ) such that A satisfies all equations of E and σA(ai)i<κ is

defined iff A satisfies all equations from Def(σ) in the elements (ai)i<κ.

The category of all Γ -algebras and homomorphisms is called an S-sorted essentially

algebraic category of height α.

Remark 2 1. Locally presentable categories are, up to equivalence, precisely essen-

tially algebraic categories (see [2]). In fact, essentially algebraic categories of height

2 suffice to describe all locally presentable categories at the abstract level (i.e. up to

equivalence), but the height is significant at the concrete level (i.e. when considering

forgetful functors).

2. Operations of level 0 are total. Operations of level 1 are defined where certain

equations in total operational symbols are satisfied, and so on. This guarantees

the following pleasant property of homomorphisms: Let ρ be a κ-ary operational

symbol of level β. If a mapping f : A → B preserves all operations σ ∈ Σ<β , then

(ai)i<κ ∈ Def(ρA) implies (f(ai))i<κ ∈ Def(ρB).

3. An S-sorted essentially algebraic category of height 0 is (isomorphic to) the category

SetS of S-sorted sets.

4. S-sorted essentially algebraic categories of height 1 are precisely varieties of S-

sorted algebras.

5. Let K be an S-sorted essentially algebraic category. We have two “natural” forgetful

functors U, V : U : K → SetS sends an algebra A = ((As)s∈S , ...) to (As)s∈S .

V : K → Set sends A to
`

s∈S As.

For every well-founded poset P we now define a mono-sorted essentially algebraic

category Fix(P ) of height equal to the height of P . The important cases are P = α

for an ordinal α with its natural ordering.

Definition 4 Let A be a set and M be a set of unary operations on A (possibly

empty). The set of all common fix-points of all operations in M will be denoted by

Fix(M):

Fix(M) = {a ∈ A | (∀m ∈ M) m(a) = a}.
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Definition 5 Let (P, <) be a well-founded poset. Fix(P ) is the category of models

of the essentially algebraic theory Γ = (Σ, level, E, Def), where Σ is mono-sorted and

consists of unary operational symbols φp, p ∈ P ; level(p) is the rank of p in the poset

P ; E = ∅; Def(φp) = {φq(x0) = x0 | q < p}.

So, an algebra A ∈ Obj(Fix(P )) is a set A together with partial unary operations

φA
p , p ∈ P such that Def(φA

p ) = Fix({φA
q | q < p}).

Let Eα denote the basket determined by Fix(α).

We will see that (any of the two forgetful functors of) each essentially algebraic

category of height α is a slice of Eα (Theorem 1) and we will characterize those functors

between small categories which are slices of Eα (Theorem 4).

We will show that the inequalities marked in Figure 2 hold and no arrow can be

added or reversed: Eα ≤s Eβ for α ≤ β (Proposition 3) and the inequality is strict if

α < β (Proposition 7); E2 6≤s E
op
α for every α (Proposition 8); of course, Eα ≤s R,

since every essentially algebraic category is a concrete full subcategory of Palg(Σ);

Eα 6∼s R follows from Proposition 5, Proposition 6, Corollary 5.1., for instance.

Proposition 3 Let P be a subposet of a poset Q. Then Fix(P ) ≤s Fix(Q). In partic-

ular Eα ≤s Eβ for arbitrary ordinals α ≤ β.

Proof Let F = Id. For an algebra A = (A, (φp)Ap∈P ) ∈ Fix(P ) let ΦA = (A, (φq)
ΦA
q∈Q),

where

Def(φΦA
q ) = Fix({φA

p | p ∈ P, p < q}),

φΦA
q (a) =

�
φA

q (a) if q ∈ P,

a otherwise

for all a ∈ Def(φΦA
q ).

Clearly, ΦA is a Fix(Q)-object, Φ is a functor and (Φ, F ) is an s-embedding. ⊓⊔

Theorem 1 Let K be an S-sorted essentially algebraic category of height α with its

theory Γ = (Σ, level, E, Def). Then U ≤s V ≤s Eα where U : K → SetS , V : K → Set

are the natural forgetful functors.

Proof U ≤s V follows from Corollary 1 since V is the composition of U and the

coproduct functor SetS → Set.

We can assume that E = ∅ (because concrete full subcategory is a slice of the

original category) and that Σ contains no nullary operational symbol (we can replace

them by unary operational symbols).

We can and will further assume that Σ is mono-sorted:

Claim V is a slice of a mono-sorted essentially algebraic category of height α.

Proof Let

Γ = (Σ = Σ ⊔ {ρ}, level, ∅, Def),

where operational symbols from Σ ⊆ Σ have the same arities, levels and defining

identities, but are considered as mono-sorted (we forget sorts). The operational symbol

ρ is unary and total (of level 0). The category of Γ -algebras will be denoted by L.
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Now, we are going to define an s-embedding of V to (the natural forgetful functor

of) L. The functor F from the subpullback square (2) is defined by

FA = A ⊔ S ⊔ {c},

Ff = f ⊔ ids ⊔ idc,

where A is a set and f : A → B is a mapping.

The functor Φ is defined for an algebra A ∈ K by

ΦA = Φ((As)s∈S , (σA)σ∈Σ) = (
a
s∈S

As ⊔ S ⊔ {c}, (σΦA)σ∈Σ , ρΦA),

where ρΦA(as) = s for as ∈ As, ρΦA(s) = ρΦA(c) = c for s ∈ S. For an operational

symbol σ :
Q

i<κ si → s, the operation σΦA :
Q

i<κ FV A → FV A is given by

σΦA(ai)i<κ =

�
σA(ai)i<κ if ai ∈ Asi , i < κ and (ai)i<κ ∈ Def(σA),

c otherwise (on the def. dom.).

It is easy to see that ΦA ∈ L for any A ∈ K.

Let A = ((As)s∈S , . . .),B = ((Bs)s∈S , . . .) ∈ K. A mapping f :
`

s∈S As →
`

s∈S Bs

carries a K-homomorphism A → B, iff f(As) ⊆ Bs (for all s ∈ S) and f preserves

all operations σ ∈ Σ. This arises precisely when Ff : ΦA → ΦB preserves ρ and all

σ ∈ Σ. Hence (Φ, F ) is an s-embedding. ⊓⊔

To formulate and prove the next two claims which form the most technical part of

this paper, we need to introduce further notation.

For a set X, let QX : Set → Set be the covariant hom-functor:

QXA = {(ax)x∈X | ax ∈ A}, where A is a set,

QXf(ax)x∈X = (f(ax))x∈X , where f : A → B is a mapping.

Given a set Y a subset D ⊆ QY A and a set X ⊆ Y we define a set Proj(D; Y → X) ⊆

QXA by

Proj(D; Y → X) = {(ax)x∈X | (∃ (by)y∈Y ∈ D) (∀x ∈ X) ax = bx}.

Given a partial unary operation ρ : Def(ρ) ⊆ QXA → QXA we define a partial unary

operation Ext(ρ; X → Y ) : D ⊆ QY A → QY A by

(ay)y∈Y ∈ D iff (ax)x∈X ∈ Def(ρ),

(Ext(ρ; X → Y )(ay)y∈Y )k =

�
(ρ(ax)x∈X)k if k ∈ X,

ak otherwise.

Given a subset D ⊆ QXA, an element r ∈ X and a partial mapping e : D → A we

define a partial unary operation Ope(D; e(ax)x∈X → ar) by

Def(Ope(D; e(ax)x∈X → ar)) = D,

(Ope(D; e(ax)x∈X → ar)(ax)x∈X)k =

�
e(ax)x∈X if k = r,

ak otherwise.

Let P be a poset. We say that P satisfy (P1), if

(P1) P is well-founded and the dual poset is a tree.
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The following two claims will be proved simultaneously by induction on β.

Claim (*) Let β ≤ α be an ordinal. Let τ be a term over X in operational symbols

from Σ<β . Then there exists a poset Pτ of height ≤ β satisfying (P1), a set Yτ and a

functor Φτ : K → Fix(Pτ ) such that

(A1) WΦτ = QX⊔Yτ
V , where W : Fix(Pτ ) → Set is the forgetful functor.

(A2) There is an element zτ ∈ Yτ such that for each algebra A ∈ K

Proj(Fix({φΦτA
p | p ∈ Pτ}); X ⊔ Yτ → X ⊔ {zτ}) =

= {(aj)j∈X⊔{zτ} | (ax)x∈X ∈ Def(τA), azτ = τA(ax)x∈X}.

(A3) Let A = (A, . . .),B = (B, . . .) ∈ K. Let f : A → B be a mapping such that

QX⊔Yτ
f : ΦτA → ΦτB is a Fix(Pτ )-morphism.

Then f(τA(ax)x∈X) = τB(f(ax))x∈X for any (ax)x∈X ∈ Def(τA).

Claim (**) Let β < α be an ordinal, σ ∈ Σ≤β be an operational symbol of arity κ,

X = (xi)i<κ be a κ-indexed set. Then there exists a poset Pσ of height ≤ β satisfying

(P1), a set Yσ and a functor Φσ : K → Fix(Pσ) such that

(B1) WΦσ = QX⊔Yσ
V , where W : Fix(Pσ) → Set is the forgetful functor.

(B2) For each algebra A ∈ K we have

Proj(Fix({φΦσA
p | p ∈ Pσ}); X ⊔ Yσ → X) = {(ax)x∈X | (axi)i<κ ∈ Def(σA)}.

Proof (of Claim (*)) Since the statement is empty for β = 0, we assume β ≥ 1. Assume

that Claim (**) holds for all γ < β. We denote

Leaves = {R |R is an address of a leaf of τ},

Addr = {R |R is a valid address of τ , R 6∈ Leaves},

Succ(R) = {i |R î is a valid address of τ}, R ∈ Addr,

ZR = {zR î | i ∈ Succ(R)}, R ∈ Addr.

For all R ∈ Addr let YR be a set, PR be a poset satisfying (P1) and ΦR : K → Fix(PR)

be a functor such that

– WRΦR = QZR⊔YR
V , where WR : Fix(PR) → Set is the forgetful functor.

– For each algebra A ∈ K

Proj(Fix({φΦRA
p | p ∈ PR}); ZR ⊔ YR → ZR) =

= {(az)z∈ZR
| (azRˆi)i<κ ∈ Def(t〈R〉A)}.

Let

Pτ =
a

R∈Addr

PR ⊔ {qR |R ∈ Addr ∪ Leaves},

where the ordering of Pτ on the set PR coincides with the ordering of PR, qR is a new

greatest element of PR for R ∈ Addr and qR is of rank 0 for R ∈ Leaves. The poset Pτ

clearly satisfy (P1) and its height is not greater than β.



12

Let

Z = {zR |R ∈ Addr ∪ Leaves},

Yτ =
a

R∈Addr

YR ⊔ Z =

=
a

R∈Addr

YR ⊔
a

R∈Addr

ZR ⊔ {z∅}.

Finally we have to define the functor Φτ . For an algebra A = (A, (σA)σ∈Σ) ∈ K

we put

ΦτA = (QX⊔Yτ
A, (φΦτA

p )p∈Pτ
),

where

φΦτA
p = Ext(φΦRA

p ; ZR ⊔ YR → X ⊔ Yτ ), p ∈ PR,

φΦτA
qR

= Ope(Fix({φΦτA
p | p ∈ PR}); τ〈R〉A(azRˆi)i∈Succ(R) → azR), R ∈ Addr,

φΦτA
qR

= Ope(QX⊔Yτ
A; aτ〈R〉 → azR), R ∈ Leaves.

From the properties of ΦR we know that the definition of φΦτA
qR

makes sense. Clearly,

if f : A → B is a homomorphism, then QX⊔Yτ
f : ΦτA → ΦτB preserves the operation

φp for all p ∈ Pτ . Thus Φτ is a functor.

For R ∈ Leaves we have

Proj(Fix({φΦτA
qR

}); X ⊔ Yτ → X ⊔ Z) = {(aj)j∈X⊔Z | azR = aτ〈R〉}

and for R ∈ Addr we have

Proj(Fix({φΦτA
qR

}); X ⊔ Yτ → X ⊔ Z) =

= {(aj)j∈X⊔Z | (azRˆi)i∈Succ(R) ∈ Def(τ〈R〉A) and azR = τ〈R〉A(azRˆi)i∈Succ(R)}.

Therefore

Proj(Fix({φΦτA
p | p ∈ Pτ}); X ⊔ Yτ → X ⊔ Z) =

= {(aj)j∈X⊔Z | (∀R ∈ Leaves ∪ Addr) (ax)x∈X ∈ Def(τ [R]A), azR = τ [R]A(ax)x∈X}

and thus the property (A2) is satisfied for zτ = z∅ and (A3) is clear. ⊓⊔

Proof (of (**)) The statement is clear for β = 0, thus we can assume β ≥ 1. Assume

that Claim (*) holds for all γ ≤ β. Let Def(σ) consist of equations τi = ξi, i ∈ λ,

where τ and ξ are Σ<β-terms over X. Let Yτi , Yξi
, zτi , zξi

, Pτi , Pξi
, Φτi , Φξi

be from

the induction hypothesis.

Let

Yσ = (
a
i<λ

Yτi ⊔
a
i<λ

Yξi
)/ ≈

Pσ =
a
i<λ

Pτi ⊔
a
i<λ

Pξi

where the ordering of Pσ on the sets Pτi and Pξi
coincides with the original one

and no other inequalities are added; the equivalence ≈ glues zτi with zξi
and nothing

else. The element [zτi ] = [zξi
] of Yσ will be denoted by zi.
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Now we define the functor Φσ. For an algebra A = (A, (σA)σ∈Σ) ∈ K we put

ΦσA = {QX⊔Yσ
A, (φΦσA

p )p∈Pσ
},

where

φΦσA
p = Ext(φ

Φτi
A

p ; X ⊔ Yτi → X ⊔ Yσ), p ∈ Pτi ,

φΦσA
p = Ext(φ

Φξi
A

p ; X ⊔ Yξi
→ X ⊔ Yσ), p ∈ Pξi

.

Evidently, Φσ is a functor.

We have

(aj)j∈X⊔{zi | i<λ} ∈ Proj(Fix({φΦσA
p | p ∈ Pσ}); X ⊔ Yσ → X ⊔ {zi | i < λ})

iff

(∀i < λ) (ax)x∈X ∈ Def(τAi ) ∩ Def(ξAi ) and azi = τAi (ax)x∈X = ξAi (ax)x∈X

and (B2) follows. ⊓⊔

From Claim (*) we can now easily deduce:

Claim K ≤s Fix(P ) for a poset P of height ≤ α satisfying (P1).

Proof For every operational symbol σ ∈ Σ we can use Claim (*) for the term

σ(xσ
i )i∈arity(σ) over Xσ = {xσ

i }i∈arity(σ). We obtain a set Yσ a poset Pσ of height at

most α satisfying (P1) and a functor Φσ : K → Fix(Pσ) such that

– WσΦσ = QXσ⊔Yσ
V,

– A mapping f : A → B preserves the operation σ whenever QXσ⊔Yσ
: ΦσA → ΦσB

is a Fix(Pσ)-morphism.

Let

P =
a

σ∈Σ

Pσ, F =
a

σ∈Σ

QXσ⊔Yσ
,

where the ordering of P on each component Pσ coincides with the original one and

no other inequalities are added. Recall that the coproduct of functors is computed

componentwise.

For an algebra A = (A, . . .) ∈ K, let ΦA = (FA, (φΦA
p )p∈P ), where the operation

φΦA
p agrees with φΦσA

p on the component QXσ⊔Yσ
A and φΦA

p (x) = x for every p ∈ Pσ,

x ∈ FA − QXσ⊔Yσ
A. It is clear that Φ is a correctly defined functor and (Φ, F ) is an

s-embedding. ⊓⊔

To finish the proof we first adjust properties of the poset P and then find an

s-embedding to Fix(α). The wanted properties are:

(P2) P is well-founded and {q | q > p} is linearly (and hence well) ordered for every

p ∈ P .

(P3) For every p ∈ P and every ordinal β such that rank(p) < β < α, there exists a

(unique) q ∈ P for which p < q, rank(q) = β.
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(P4) For every p, p′, q ∈ P such that p, p′ < q and rank(q) is a limit ordinal, there exists

r ∈ P such that p, p′ < r < q;

Claim Every poset P of height ≤ α satisfying (P1) is a subposet of some poset Q of

height α which satisfy (P2), (P3) and (P4).

Proof Let P be the poset P with a new greatest element ∞:

P = P ⊔ {∞}, p < ∞, p ∈ P.

Since the dual of P is a tree, we know that the interval 〈p, p′) = {p′′ | p ≤ p′′ < p′} has

a unique maximal element (for arbitrary p, p′ ∈ P , p < p′). Let

Q = P ⊔
a
p∈P

Qp,

where

Qp = {qp,β | 0 ≤ β < rank(p) is an ordinal }, p ∈ P,

Q∞ = {q∞,β | 0 ≤ β < α is an ordinal }.

The ordering <Q is given by

p <Q p′ iff p <P p′ where p, p′ ∈ P

qp,β <Q p′ iff p ≤P p′ where p ∈ P , p′ ∈ P

p <Q qp′,β iff p <P p′, where p ∈ P , p′ ∈ P ,

β > rank
P

(max
P
〈p, p′)) qp′,β ∈ Qp′

qp,β <Q qp′,β′ iff p = p′, β < β′ or where p, p′ ∈ P

p <
P

p′, p <Q qp′,β′ qp,β ∈ Qp, qp′,β′ ∈ Qp′

It is straightforward to verify that

– <Q is a partial ordering on Q.

– The function rankQ given by rankQ(p) = rankP (p) for p ∈ P and

rankQ(qp,β) = β for p ∈ P , qp,β ∈ Qp is the rank function of the poset Q. Hence

Q is well-founded.

– If q ∈ Q and β is an ordinal such that α > β > rank(q), then there exists a unique

q′ ∈ Q of Q-rank β such that q <Q q′. Thus the properties (P2), (P3) are satisfied.

– Q satisfy (P4). This follows easily from the following fact: If p, p′, r ∈ P , p, p′ <P r

and β is an ordinal such that rankP (r) > β > rankP (max〈p, r)), rankP (max〈p′, r)),

then p, p′ <Q qr,β .

⊓⊔

From the last claim and Proposition 3 we get Fix(P ) ≤s Fix(Q).

Now it suffices to prove:

Claim Let P be a poset of height α satisfying (P2), (P3) and (P4). Then Fix(P ) ≤s

Fix(α).
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Proof For β < α let Pβ = {p ∈ P | rank(p) = β} and for every β < γ < α let

sβ,γ : Pβ → Pγ be the mapping satisfying p < sβ,γ(p), p ∈ Pβ . Since P satisfy (P2) and

(P3), sβ,γ is a correctly defined surjective mapping and p < q iff srank(p),rank(q)(p) = q.

Let g : P0 → A be a mapping, 0 ≤ β < α. If g factorizes through s0,β , i.e.

g = gβs0,β for a mapping gβ : Pβ → A, we say that gβ exists. Since s0,β is surjective,

if gβ exists then it is necessarily unique. From (P4) it follows that, for a limit β, gβ

exists iff gγ exists for all γ < β.

For sets A, B and a mapping f : A → B let

FA = {(g, β) | g : P0 → A, β ≤ α}/ ≈,

Ff [g, β]≈ = [fg, β]≈.

The equivalence ≈ is given by

(g, β) ≈ (h, γ) iff both gmax(β,γ), hmax(β,γ) exist and g = h.

F is clearly correctly defined and ≈ is an equivalence. We write [. . .] instead of [. . .]≈.

Given A = (A, (φA
p )p∈P ) ∈ Fix(P ), let

ΦA = (FA, (φΦA
β )β<α),

where

φΦA
0 [g, β] = [g, 1], g(p) = φA

p (g(p)), p ∈ P0

and for 0 < β < α

Def(φΦA
β ) = {[g, β] | gβ exists, (∀p ∈ Pβ) gβ(p) ∈ Def(φA

p )},

φΦA
β [g, β] = [g, β+], g(p) = φA

s0,β(p)(g(p)), p ∈ P0.

To verify that ΦA is a Fix(α)-object, we must check the following: For every

0 < β < α we have Fix({φΦA
γ | γ < β}) = Def(φΦA

β ). By induction on β:

First step, β = 1: The element [g, β] ∈ FA is a fix-point of φΦA
0 iff [g, β] = [g, 1], i.e.

iff g1 exists (which means that g(p) = g(q) whenever s0,1(p) = s0,1(q), where p, q ∈ P0)

and g(p) = φA
p (g(p)) = g(p) for all p ∈ P0. This happens precisely when g1 exists and

g1(p) ∈ Fix({φA
q | q ∈ s−1

0,1(p)}) = Def(φA
p ) for all p ∈ P1.

Isolated step is similar to the first step, limit step follows from the observation

above: For a limit β, gβ exists iff gγ exists for all γ < β.

Let f be a mapping A = (A, . . .) → B = (B, . . .). The mapping Ff preserves φ0,

iff for all [g, β] ∈ FA

φΦB
0 (Ff [g, β]) = φΦB

0 [fg, β] = [fg, 1] =

= Ff(φΦA
0 [g, β]) = Ff [g, 1] = [fg, 1].

For all p ∈ P0

fg(p) = φB
p (f(g(p)))

and

f(g(p)) = f(φA
p (g(p)).

This means that Ff preserves φ0, iff f preserves φp for all p ∈ P0. Similarly, Ff

preserves φβ , iff f preserves φs0,β(p) for all p ∈ P0, i.e. iff f preserves φq for all q ∈ Pβ .

We can now see that Φ is a functor and (Φ, F ) is an s-embedding. ⊓⊔
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The proof of Theorem 1 is concluded. ⊓⊔

Problem 1 Find all baskets of essentially algebraic categories.

Remark 3 As mentioned, every mono-sorted essentially algebraic category of height 1

(i.e. a variety) belongs to one of the baskets T, P, A. So that the first step could be

to generalize this result to many-sorted signatures and then to look at (mono-sorted)

essentially algebraic categories of height 2.

A natural example of an essentially algebraic category of height 2 is the category

Cat of all small categories and functors (the forgetful functor Cat → Set assigns the

set of all morphisms to a category). Indeed, Cat can be described as (i.e., is concretely

equivalent to) the category of models of Γ = ({◦, d, c}, level, E, Def), where

level(d) = level(c) = 0, level(◦) = 1

are the operations of domain, codomain and comoposition, respectively.

E = {dd(x) = cd(x) = dm(x), cc(x) = dc(x) = cm(x),

d(x ◦ y) = d(y), c(x ◦ y) = c(x),

c(x) ◦ x = x = x ◦ d(x),

x ◦ (y ◦ z) = (x ◦ y) ◦ z},

Def(◦) = {d(x0) = c(x1)}.

This is just an object free definition of a category.

Proposition 4 The category Cat is a member of E2.

Proof Since Cat ≤s Fix(2) follows from Theorem 1, it suffices to find an s-embedding

(Φ, F ) of Fix(2) to Cat.

The functor F : Set → Set is defined by

FA = {ma,b, ida,b,i | a, b ∈ A, i ∈ 2}/ ≈,

Ff [ma,b] = [mf(a),f(b)],

Ff [ida,b,i] = [idf(a),f(b),i],

where A is a set, f : A → B is a mapping, the equivalence ≈ is generated by ida,a,0 ≈

ida,a,1 for all a ∈ A, and [. . .] means [. . .]≈.

For an algebra A = (A, (φA
i )i∈2) ∈ Fix(2) we put

ΦA = (FA, dΦA, cΦA, ◦ΦA),

where

d[ma,b] = [ida,φA
0

(a),0], d[ida,b,i] = [ida,b,i],

c[ma,b] = [ida,φA
0

(a),1], c[ida,b,i] = [ida,b,i]

for every a, b ∈ A, i ∈ 2.
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The operation x◦y is to be defined iff d(x) = c(y). The interesting case is x = ma,b,

y = mc,d. In this case d(x) = c(y) iff a = c and φA
0 (a) = a. Let

[ida,b,i] ◦ [ida,b,i] = [ida,b,i],

[ma,b] ◦ [ida,φA
0

(a),0] = [ma,b],

[ida,φA
0

(a),1] ◦ [ma,b] = [ma,b],

[ma,b] ◦ [ma,c] = [ma,φA
1

(a)], if φA
0 (a) = a,

where a, b ∈ A, i ∈ 2.

It is straightforward to verify that the equations from E are satisfied and that

Ff : ΦA → ΦB is a Fix(2)-morphism whenever f : A → B is a Cat-morphism. Hence

Φ is a functor.

To prove that (Φ, F ) is an s-embedding, let A = (A, (φA
i )i∈2),B = (B, (φB

i )i∈2)∈

Fix(2) and f : FA → FB be a Cat-homomorphism ΦA → ΦB. For every a ∈ A we

have

[idf(a),f(φA
0

(a)),0] = Ff(d[ma,a]) = d(Ff [ma,a]) = [idf(a),φB
0
(f(a)),0],

hence f(φA
0 (a)) = φB

0 (f(a)).

For every a ∈ A such that φA
0 (a) = a we have

[mf(a),f(φA
1

(a))] = Ff([ma,a] ◦ [ma,a]) = Ff [ma,a] ◦ Ff [ma,a] = [mf(a),φB
1
(f(a))],

hence f(φA
1 (a)) = φB

1 (f(a)). Therefore f : A → B is a Cat-morphism and the proof is

concluded. ⊓⊔

5 Closure rules

The following formalization of the “properties which are inherited to slices” was sug-

gested by J. Sichler in an unpublished note.

Definition 6 A triple a = (a0,a1,a2) is called a closure rule, if ai (i = 0, 1, 2) are

small categories with the same set of objects, a0 is a subcategory of a1 and a1 is a

subcategory of a2.

Definition 7 Let a = (a0,a1,a2) be a closure rule and i0 : a0 → a1 and i1 : a1 → a2

denote the inclusion functors. We say, that a faithful functor U : K → H obeys a, if

for every pair of functors G0 : a0 → K, G2 : a2 → H such that G2i1i0 = UG0, there

exists a functor G1 : a1 → K such that G1i0 = G0 and UG1 = G2i1. Notation: U � a.

a0 a1
�

� i0 // a1 a2
�

� i1 //a0

K

G0

��

a2

H

G2

��
K H

U
//

a1

K

G1
���

�
�

�
�

(4)

A closure rule a is said to be trivial provided that U � a for every faithful functor U .

Let a, b be closure rules. We say that b is a (semantic) consequence of a, if U � a

implies U � b for every faithful functor U . Notation: a � b.
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All closure rules used in this paper have the property that the category a2 is a

quasiordered set, i.e. there is at most one arrow between any two objects of a2.

The following closure rules play an important role for the baskets in Figure 1 (see

Introduction).

•

•77oooooo
• •//

•

•
''

(p)

•

•77

• •//

•

•
''OOOOOO

(pop)

•

•1 ggOOOOOOOOOOOOOOOOOO

•2•1 oo •2 •3// •3 oo •2n•2n−1 oo•2n−1// •2n

• eeKKKKKKKKKKKKKK

•

•2
ddH

H
H

H
H

H
H
•

•3
\\9

9
9

9
9
•

•2n−1
BB�

�
�

�
�

•

•2n
99s

s
s

s
s

s
s

s

•1

•77o
o

o
o

o
o

o
o

o
•2

•::v
v

v
v

v
v

v
•3

•BB�
�

�
�

�

•2n−1

• \\9
9

9
9

9

•2n

• eeK
K

K
K

K
K

K

•

•OO

(zz1
n), n ≥ 1

· · · · · ·

· · · · · ·

The nodes in the picture denote elements of the common set of objects of the clo-

sure rule. Arrows are a2-morphisms (identities are not drawn), solid arrows are a0-

morphisms and dotted arrows are a1-morphisms.

Let U : K → H be a concrete category. The definition of U � a says the following:

Whenever we have objects of K and H-morphisms between the respective underlying

H-objects, as in the picture, such that the diagram is commutative and solid arrows

are K-morphisms, then the dotted arrows are K-morphisms as well.

Remark 4 1. It can be readily seen that a faithful functor U : K → H obeys each of

closure rules a
i = (ai

0,ai
1,ai

2), i ∈ I iff U obeys its coproducta
i∈I

a
i = (

a
i∈I

ai
0,
a
i∈I

ai
1,
a
i∈I

ai
2).

By (zz1) is meant the coproduct of the closure rules (zz1
n).

2. A faithful functor U : K → H obeys a closure rule a = (a0,a1,a2) iff Uop obeys

the dual closure rule a
op = (aop

0 , aop
1 ,aop

2 ).

3. It can be easily checked that the (forgetful functor of the) category of algebras

with one nullary operation obeys (p), and the category of algebras with one unary

operation obeys (zz1) (this fact is a special case of Proposition 6). Obviously (p) �

(zz1), (pop) � (zz1) and (zz1
n+1) � (zz1

n).

If a faithful functor U obeys a closure rule a, then so does every slice of U :

Proposition 5 Let U : K → H, U ′ : K′ → H′ be concrete categories, a be a closure

rule. If U ≤s U ′ and U ′
� a, then U � a.

Proof Let be G0, G2 be functors such that diagram (4) is commutative, (Φ, F ) be an

s-embedding of U to U ′. Let A, B ∈ Obj(a0) and f ∈ a1(A, B) (dotted arrow). Since

U ′ obeys a, FG2f is a K-morphism from ΦG0A to ΦG0B, hence G2f is a K-morphism

from G0A to G0B, because U ≤s U ′. ⊓⊔

Remark 5 1. An easy consequence of Proposition 5 is that s-equivalent faithful func-

tors obey the same closure rules. Therefore the formulation “the basket . . . obeys

. . . ” makes sense. From Remark 4 it follows that P � (p), P
op

� (p)op, A � (zz1).
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2. Proposition 5 enables us to show that certain s-inequality U ≤s U ′ doesn’t hold:

It suffices to find a closure rule which is obeyed by U ′ but it is not obeyed by U .

3. The notion of a closure rule could be generalized and Proposition 5 would remain

true. For instance, consider a concrete category U : K → H. The condition “the

composition of two H-morphism which are not K-morphisms is not a K-morphism”

inherits also to slices of U . However we have no application of such generalizations.

Now we are going to define inductively closure rules (zzα) (for every ordinal α)

which are obeyed by essentially algebraic categories of height α.

Definition 8 Let U : K → H be a concrete category, A, B be K-objects, f ∈ H(A, B).

– f is called (zz0)-morphism.

– Let α be an ordinal; f is said to be a (zzα+

)-morphism, if there exists a commutative

diagram

A

C1

g1

jjTTTTTTTTTTTTTTTTTTTTTTTTTTT

C2C1
l1oo C2 C3
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oo C2nC2n−1
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M
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M
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M
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M
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z
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z
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q
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q
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(zzα)

where points are K-objects, all arrows are H-morphisms, solid arrows are K-

morphisms and dashed double arrows are (zzα)-morphisms.

– Let α be a limit ordinal; f is said to be a (zzα)-morphism, if it is a (zzβ)-morphism

for every β < α.

We say that U obeys (zzα), if every (zzα)-morphism is a K-morphism.

Remark 6 1. For any α, every K-morphism is a (zzα)-morphism.

2. Note that (zzα) can be written in the form of a closure rule. The rule (zz1) coincides

with the earlier defined version. If α ≤ β, then (zzα) � (zzβ).

3. It can be easily verified that the composition of a (zzα)-morphism and a (zzβ)-

morphism is a (zzmin(α,β))-morphism. In particular (zzα)-morphisms are closed

under composition.

Proposition 6 Let α be an ordinal. Let K be an essential algebraic category of height

α with any of the two natural forgetful functors. Then K � (zzα). In particular Eα �

(zzα) and dually E
op
α � (zzα)op.

Proof Since both forgetful functors of K are slices of Fix(α) (Theorem 1), it suffices

to prove Fix(α) � (zzα). We proof by induction on β ≤ α that every (zzβ)-morphism

f : A = (A, (φA
γ )γ<α) → B = (B, (φB

γ )γ<α) is a Fix(β)-morphism (A, (φA
γ )γ<β) →

(B, (φB
γ )γ<β).

For β = 0 the statement is empty, for limit β it is clear. Now we assume that the

statement holds for β and we will prove it for β+. Since f is a (zzβ+

)-morphism, we

can find Fix(β+)-objects Ci and mappings gi, hi, li as in the diagram in Definition 8.
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From the induction hypothesis we know that f preserves the operations φγ for all

γ < β. Let a ∈ A be in the definition domain of φA
β . We have

fφA
β (a) = h1g1φA

β (a) = [g1 is a Fix(β)-morphism]

= h1φC1

β g1(a) =

= h1φC1

β l1g2(a) = [g2 is a (zzβ)-morphism and l1 a Fix(β)-morphism]

= h1l1φC2

β g2(a) =

= h3l2φC2

β g2(a) =

= h3φC3

β l2g2(a) = h3φC3

β l3g4(a) =

· · ·

= h2nφC2n

β g2n(a) = φB
β h2ng2n(a) = φB

β f(a).

⊓⊔

Proposition 7 Let α be an ordinal. Then Eα 6= Eα+ .

Proof According to Propositions 5, 6 it suffices to construct a mapping between alge-

bras in Fix(α+) which is not a Fix(α+)-homomorphisms, but it is a (zzα)-morphism.

Let A = (1, (φA
γ )γ≤α) be the unique Fix(α+)-algebra on the set 1. For 0 ≤ β ≤ α,

let Bβ = (2, (φ
Bβ
γ )γ≤α), where

φ
Bβ
γ (i) =

8<: i if γ < β, i ∈ 2

1 − i if γ = β, i ∈ 2

undefined otherwise

.

In what follows, c0 denotes the constant mapping with the value 0 (domains and

codomains vary). The mapping c0 : A → Bα+ is not a homomorphism, because it

doesn’t preserve the operation φα. We will show by induction on β ≤ α that c0 : A →

Bβ is a (zzβ)-morphism.

First step: Every mapping is a (zz0)-morphism.

Isolated step: Suppose that c0 : A → Bβ is a (zzβ)-morphism. The following

diagram shows that c0 : A → Bβ+ is a (zzβ+

)-morphism

A

A

c0

eeLLLLLLLL

BβA
c0oo Bβ

Bβ+

c0
eeLLLLLLL

A

Bβ

c0

5=r
r

r
r

r
r

r
r

A

Bβ+

c0
99r

r
r

r

Limit step: Suppose that c0 : A → Bδ is a (zzδ)-morphism for every δ < β, where

β is a limit ordinal. Since c0 : Bδ → Bβ is a Fix(α+)-morphism, c0 : A → Bβ is a

(zzδ)-morphism following Remark 6.3. ⊓⊔

Proposition 8 Let α be an ordinal. Then E2 6≤s E
op
α (and dually E

op
2 6≤s Eα).
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Proof According to Proposition 5 and Proposition 6, it suffices to construct a mapping

between algebras in Fix(2) which is not a Fix(2)-homomorphism, but it is a (zzα)op-

morphism.

Let A = (1, (φA
i )i∈2) be the Fix(2)-algebra on the set 1. Let B = (2, (φB

i )i∈2) and

C = (2, (φC
i )i∈2), where

φB
0 (i) = 1 − i, φC

0 (i) = i, φC
1 (i) = 1 − i, i ∈ 2.

Let c0 be the constant mapping with the value 0 (domains and codomains vary again).

The mapping c0 : A → C is not a Fix(2)-homomorphisms, since it doesn’t preserve φ1.

By induction on β we prove that it is a (zzβ)op-morphism A → C.

First step: Every mapping is a (zz0)op-morphism.

Isolated step: Suppose that c0 : A → C is a (zzβ)op-morphism. The following

diagram shows that it is a (zzβ+)op-morphism.

A

A

c0

eeLLLLLLLL

BA
c0oo B

C
c0

eeLLLLLLLL

A

B

c0

99r
r

r
r

A

C
c0

5=r
r

r
r

r
r

r
r

Limit step: Suppose that c0 : A → C is a (zzγ)op-morphism for all γ < β. Then it

is a (zzβ)op-morphism. ⊓⊔

The reasons for (p) � (zz1
n), (zz1

n+1) � (zz1
n) are syntactic – we can see it from the

pictures of these closure rules. Theorem 2 bellow says that this is not by chance.

Definition 9 Let a = (a0,a1,a2), b = (b0,b1,b2) be closure rules. Let b be the

smallest subcategory of b2, such that b0 ⊂ b and the functor ⊆: b → b2 obeys a. We

say, that b is a syntactic consequence of a, if b1 ⊂ b. Notation: a ⊢ b.

Remark 7 This smallest subcategory exists, it can be formed as the intersection of

those satisfying the condition. This category can also be constructed by transfinite

induction: We start with b = b0. Then we repeat the following steps unless no new

element can be added to b (at the limit step, we take the union, of course).

1. Take functors H0 : a0 → b, H2 : a2 → b2 such that jH0 = H2i1i0, where j is the

inclusion j : b → b2. Add all morphisms H2f where f is a morphism of a1.

2. Make a closure of b with respect to composition.

It’s clear that this leads to the category b from the definition.

Theorem 2 Let a = (a0,a1,a2), b = (b0,b1,b2) be closure rules. Then a � b if and

only if a ⊢ b.

Proof “⇒”. Suppose a 6 ⊢b. Let b be the smallest subcategory from Definition 9. The

concrete category ⊆: b → b2 obeys a (according to the definition) and doesn’t obey

b: Put G0 : b0 → b to be the inclusion and G2 : b2 → b2 to be the identity. Now G1

from Definition 7 doesn’t exist, since b1 6⊆ b. Hence a 6� b.

“⇐”. Assume a ⊢ b and let U : K → H be a concrete category which obeys a.

Striving for a contradiction, assume that U doesn’t obey b, i.e. there exist functors
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G0 : b0 → K, G2 : b2 → H such that G2i1i0 = UG0 and there is no functor G1 :

b1 → K completing the commutative diagram (4). Let b′
0 be the maximal subcategory

of b2 such that there exists a functor G′
0 : b′

0 → K for which the following diagram is

commutative:

b0 b′
0

�

� // b′
0 b2

�

� //b0

K

G0

��

b2

H

G2

��
K H

U //

b′
0

K

G′
0

����
��

��
��

�

(The category b′
0 thus consists precisely of those b2-morphisms g : c → d for which

G2g : G0c → G0d is a K-morphism.)

Since b1 6⊆ b′
0 and a ⊢ b, there exist functors H0 : a0 → b′

0, H2 : a2 → b2 such

that there is no H1 : a1 → b′
0 for which the following diagram is commutative:

a0 a1
�

� // a1 a2
�

� //a0

b′
0

H0

��

a2

b2

H2

��
b′

0 b2
�

� //

a1

b′
0

H1

����
��

��
��

�

In other words, there are objects c, d ∈ Obj(a0) and f ∈ a1(c, d) such that H2f :

H0c → H0d isn’t a b′
0-morphism. But G2H2f : G′

0H0c → G′
0H0d is a K-morphism,

because U � a. This is a contradiction with the maximality of b′
0. ⊓⊔

An easy consequence of the proof is:

Corollary 3 Let a, b be closure rules. Then a � b, iff U � a implies U � b for all

faithful functors U between small categories.

Corollary 4 A closure rule a is trivial iff a0 = a1.

Proof If a0 = a1, then a is clearly trivial.

If a0 6= a1, then the concrete category ⊆: a0 → a2 doesn’t obey a. ⊓⊔

6 Universality with respect to closure rules

First recall relevant known results:

Theorem 3 Let U : K → H be a concrete category. Then

1. U ≤s R iff U is SSF (see [10]).

2. U ≤s P iff U is SSF and U � (p) (see [10]).

2op. U ≤s P
op iff U is SSF and U � (pop).

3. Let both K,H be small; or H = Set. U ≤s A iff U is SSF and U � (zz1). (see [9]

for the small case, [8] for the set case)

The following theorem characterizes small slices of Eα.

Theorem 4 Let U : k → h be a concrete category, where k, h are small. Then

U ≤s Eα iff U � (zzα).
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Proof If U ≤s Eα then U � (zzα) follows from Propositions 5, 6.

Suppose that U � (zzα). We will find an s-embedding (Φ, F ) from U to Fix(P ),

where the poset P is the ordinal α plus a second minimal element 0:

P = α ⊔ {0}, 0 < β iff 0 < β.

This is enough due to Theorem 1 (just a small part is needed).

First we define, for every H ∈ Obj(h) and 0 ≤ β < α, a set GβH and an equivalence

≈β on GβH:

GβH = {(A, g, B, h, β) | A, B ∈ Obj(k), g ∈ h(A, B) is a (zzβ)-morphism,

h ∈ h(B, H)}.

The equivalence ≈β is given by

(A, g, B, h, β) ≈β (A, g′, B′, h′, β)

iff there exists a commutative diagram

A

B

g

ck O
O

O
O

O
O

O
O

O

O
O

O
O

O
O

O
O

O

B2B oo B2 B3
// B3

oo B′B2n−1
ooB2n−1

// B′

H

h′

eeK
K

K
K

K
K

K

A

B2 `h H
H

H
H

H
H

H
H

H
H

H
H

A

B3 X`9
9

9
9

9
9

9
9

A

B2n−1>F
�

�
�

�

�
�

�
�

A

B′

g′

5=s
s

s
s

s
s

s

s
s

s
s

s
s

s

B

H

h

77o
o

o
o

o
o

o
o

o
B2

H::v
v

v
v

v
v

v
B3

HBB�
�

�
�

�
B2n−1

H \\9
9

9
9

9

B′

H eeK
K

K
K

K
K

K
,

where Bi are k objects, arrows are h-morphisms (between the respective objects), solid

arrows are k-morphisms and dashed double arrows are (zzβ)-morphisms.

The functor F is defined for h-objects H, H ′ and f ∈ h(H, H ′) as follows:

FH = {[A, g, B, h, β]≈β |β < α, (A, g, B, h, β) ∈ GβH, }/ ≈,

Ff [A, g, B, h, β]≈ = [A, g, B, fh, β]≈,

where the equivalence ≈ is given by

[A, g, B, h, β]≈β ≈ [A, g′, B′, h′, β′]≈β′

iff

(A, g, B, h, β) ≈β (A, idUA, A, hg, β) and (A, g′, B′, h′, β′) ≈β′ (A, idUA, A, hg, β′).

In what follows we omit the subscript ≈.

We will use the following abbreviation:

(A, g) = [A, idUA, A, g, β],

where β is arbitrary (the right hand side does not depend on β). Note that Ff(A, g) =

(A, fg).

Observe that
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– Ff [A, g, B, h, β] doesn’t depend on the choice of the representative and that F

preserves the composition and identities. Thus F is a correctly defined functor

F : h → Set.

– Let A, K be k-objects, g ∈ h(A, K) be a (zzβ)-morphism.

Then (A, g) = [A, g, K, idUK , β] iff g is a (zzβ+

)-morphism.

Next we define the functor Φ. Let K ∈ Obj(k).

ΦK = (FUK, (φΦK
p )p∈P ),

where the total operations φΦK
0 , φΦK

0
are given by

φΦK
0 [A, f, B, g, β] = (A, gf),

φΦK
0 [A, f, B, g, β] = [A, gf, K, idUK , 0].

Let 0 < β < α. The operation φΦK
β is defined by

Def(φΦK
β ) = {(A, g) | g : A → K is a (zzβ)-morphism },

φΦK
β (A, g) = [A, g, K, idUK , β].

To verify that ΦK is a Fix(P )-object, we have to check the following:

Claim Let 0 < β < α. Then Fix({φΦK
p | p < β}) = Def(φΦK

β ).

Proof We proceed by induction on β.

First step: An element x ∈ FUK is a fix-point of φΦK
0

iff x = (A, g) for some

g ∈ H(A, K). An element (A, g) ∈ FUK is a fix-point of φΦK
0 iff

(A, g) = [A, idUA, A, g, 0] = φΦK
0 [A, idUA, A, g, 0] = [A, g, K, idUK , 0].

This happens precisely when g : A → K is a (zz1)-morphism.

Isolated step: Assume that Fix({φΦK
p | p < β}) = Def(φΦK

β ). The element (A, g),

where g ∈ H(A, K) is a (zzβ)-morphism, is a fix-point of φΦK
β iff

(A, g) = φΦK
β (A, g) = [A, g, K, idUK , β].

This happens precisely when g is a (zzβ+

)-morphism A → K (see the observation

above).

The limit step is obvious. ⊓⊔

It is clear that Φ preserves the composition and identities. Therefore, to prove that

Φ is a functor, we have to verify the following:

Claim Let f : K → L be a k-morphism. Then Ff : ΦK → ΦL is a Fix(P )-morphism.

Proof Ff preserves φ0:

Ff(φΦK
0 [A, g, B, h, β]) = Ff(A, hg) = (A, fhg),

φΦL
0 (Ff [A, g, B, h, β]) = φΦL

0 [A, g, B, fh, β] = (A, fhg).
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Ff preserves φ0:

Ff(φΦK
0 [A, g, B, h, β]) = Ff [A, hg, K, idUK , 0] = [A, hg, K, f, 0],

φΦL
0 (Ff [A, g, B, h, β]) = φΦL

0 [A, g, B, fh, β] = [A, fhg, L, idUL, 0].

The right hand sides are equal, since (A, hg, K, f, 0) ≈0 (A, fgh, L, idUL, 0):

A

K

hg

eeL
L

L
L

A

L

hgf

99r
r

r
r

K L
f //K

UL
f 99r

r
r

r
L

UL
idUL

eeL
L

L
L

Ff preserves φβ , 0 < β < α: Let g : A → K be a (zzβ)-morphism. Then

Ff(φΦK
β (A, g)) = Ff [A, g, K, idUK , β] = [A, g, K, f, β],

φΦK
β (Ff(A, g)) = φΦL

β (A, fg) = [A, fg, L, idUL, β].

The right hand sides are equal, since (A, g, K, f, β) ≈β (A, fg, L, idUL, β):

A

K

g

ai L
L

L
L

L
L

L
L

A

L

fg

5=r
r

r
r

r
r

r
r

K L
f //K

UL
f 99r

r
r

r
L

UL
idUL

eeL
L

L
L

(the dashed double arrows are (zzβ)-morphisms). ⊓⊔

Finally, to show that (Φ, F ) is an s-embedding, we prove

Claim Let f : K → L be a h-morphism such that Ff : ΦK → ΦL is a Fix(α)-

morphism. Then f is a k-morphism.

Proof Let β < α. The identity idUK : K → K is a k-morphism, hence it is a (zzβ)-

morphism. Thus φΦK
β (K, idUK) is defined. We have

Ff(φΦK
β (K, idUK)) = Ff(K, idUK) = (K, f),

φΦL
β (Ff(K, idUK)) = φΦL

β (K, f) = [K, f, L, idUL, β].

Thus (K, f) = [K, f, L, idUL, β], hence f : K → L is a (zzβ+

)-morphism.

Since f : K → L is a (zzβ+

)-morphism for all β < α, it is a (zzα)-morphism.

Because U � (zzα), we have f ∈ K(K, L). ⊓⊔

The proof of Theorem 4 is concluded. ⊓⊔

A consequence of Theorems 2, 3, 4 is that, loosely speaking, our baskets obey no

other closure rule than we already know:

Corollary 5 Let a be a closure rule. Then
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1. R � a iff a is trivial.

2. P � a iff (p) ⊢ a.

3. Eα � a iff (zzα) ⊢ a.

Proof We are going to prove 3. The remaining cases can be proved similarly.

If (zzα) ⊢ a, then (zzα) � a (Theorem 2), whence Eα � a.

If Eα � a and U � (zzα), where U is a faithful functor between small categories,

then U ≤s Eα (Theorem 4), hence U � a. Thus (zzα) ⊢ a due to Corollary 3, Theorem

2. ⊓⊔

Using a modification of the last proof, we are able to give a slight generalization of

Theorem 3.3. To formulate this result, we need the following definition.

Definition 10 We say that a category H satisfies (*), if for every H ∈ Obj(H) the

following equivalence on the class of all morphism with codomain H has set-many

equivalence classes only

f : A → H ∼∗ g : B → H iff (∃k : A → B) (∃l : B → A) gk = f and fl = g.

Theorem 5 Let U : K → H be a concrete category, where both H and Hop satisfy

(*). Then U ≤s A iff U is SSF and obeys (zz1).

Proof If U ≤s A, then U is SSF and U � (zz1) (see Propositions 2, 6, 5).

Suppose that U is SSF and obeys (zz1). We will find functors F, G : H → Set and

a concrete full embedding Φ : K → A[F, G]. This suffices, since A[F, G] ≤s A (Let

C = F ⊔G, Ψ(H, α) = (FH⊔GH, α), where α coincides with α on FH and is identical

on GH. (Ψ, C) is an s-embedding.)

For an H-object, let

FH = {(A, g) |A ∈ Obj(K), g ∈ H(A, H)}/ ≈,

where

(A, g) ≈ (A′, g′) iff (A, g) ∼SSF (A′, g′) and g ∼∗ g′.

For a H-morphism f : H → H ′ let

Ff [A, g]≈ = [A, fg]≈.

Since U is SSF and H satisfy (*), there is set-many equivalence classes of ≈ only (for

each H).

For H ∈ Obj(H) we now define a class G′H by

G′H = {(A, g, B, h) |A, B ∈ Obj(K), g ∈ H(A, B), h ∈ H(B, H)}

and an equivalence ≈zz on G′H: (A, g, B, h) ≈zz (A′, g′, B′, h′), iff (A, hg) ∼SSF

(A′, h′g′) and there exists a commutative diagram

B2B oo B2 B3
// B3

oo B′B2n−1
ooB2n−1

// B′

H

h′

ffM
M

M
M

M
M

M
M

A

B

g

OO�
�
�
�

A2

B2OO�
�
�
�

A3

B3OO�
�
�
�

A2n−1

B2n−1OO�
�
�
�

A′

B′

g′

OO�
�
�
�

B

H

h

66lllllllllll
B2

H99s
s

s
s

s
s

s
B3

HBB�
�

�
�

�
B2n−1

H \\9
9

9
9

9

A A2
//___A A2oo ___ A2 A3

//__A2 A3oo __ A3A3 oo A2n−1
// A2n−1A2n−1 A′//___A2n−1 A′oo ___

· · ·

· · ·
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where, again, Ai, Bi are K-objects, arrows are H-morphism and solid arrows are K-

morphisms.

The functor G : H → Set is defined for H, H ′ ∈ Obj(H) and f ∈ H(H, H ′) by

GH = {(A, g, B, h) |A, B ∈ Obj(K), g ∈ H(A, B), h ∈ H(B, H)}/ ≡,

Gf [A, g, B, h]≡ = [A, g, B, fh]≡.

The equivalence ≡ is given by

(A, g, B, h) ≡ (A′, g′, B′, h′) iff OUT(A, g, B, h) = OUT(A′, g′, B′, h′),

where

OUT(A, g, B, h) = {l ∈ H(H, H ′) |H ′ ∈ Obj(H), (∃A′ ∈ Obj(K))

(∃m ∈ H(A′, H ′)) (A, g, B, lh) ≈zz (A′, idUA′ , A′, m)}.

Observe that

– if l ∼∗ l′ in Hop, then l ∈ OUT(A, g, B, h) iff l′ ∈ OUT(A, g, B, h). Thus ≡ has

set-many equivalence classes only.

– Let C ∈ Obj(K) be such that UC = H. If idH ∈ OUT(A, g, B, h) and h ∈ K(B, C),

then hg ∈ K(A, C).

For each K ∈ Obj(K), let ΦK = (UK, K : FUK → GUK), where

K[A, g]≈ = [A, g, K, idUK ]≡.

The definition doesn’t depend on the choice of the representative of [A, g]. Φ is a

functor:

Claim Let f : K → L be a K-morphism. Then f : ΦK → ΦL is an A[F, G]-morphism.

Proof Let [A, g]≈ ∈ FUK. Then

Gf(K[A, g]≈) = Ff [A, g, K, idUK ]≡ = [A, g, K, f ]≡

and

L(Ff [A, g]≈) = L[A, fg]≈ = [A, fg, L, idUL]≡.

Since (A, g, K, f) ≈zz (A, gf, L, idUL) it follows that (A, g, K, f) ≡ (A, gf, L, idUL).

⊓⊔

Φ is full:

Claim Let f : K → L be a H-morphism such that f : ΦK → ΦL is an A[F, G]-

morphism. Then f is a K-morphism from K to L.

Proof

Gf(K[K, idUK ]≈) = Gf [K, idUK , K, idUK ]≡ = [K, idUK , K, f ]≡

and

L(Ff [K, idUK ]≈) = L[K, f ]≈ = [K, f, L, idUL]≡.

Since idUL ∈ OUT(K, idUK , K, f), idUL ∈ OUT(K, f, L, idUL). Thus f : K → L is a

K-morphism due to the observation above. ⊓⊔
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The last claim finishes the proof of Theorem 5. ⊓⊔

The conditions on H are still very strong. However, they are satisfied by any small

category, the category of sets, the category of pointed sets, the category of vector

spaces.

Problem 2 Is it possible to generalize Theorem 4 to arbitrary concrete categories

U : K → H? Or, at least, answer the following particular questions:

– Is it possible to generalize Theorem 5 to arbitrary concrete categories U : K → H?

An attempt was made in author’s master thesis: There exists a concrete category

V such that U ≤s V iff U is SSF and U � (zz1
1). This however doesn’t seem to be

the right direction.

– Is it possible to generalize Theorem 4 to concrete categories over Set? If the an-

swer is positive, Theorem 1 would easily follow, since the usage of Theorem 1 in

Proposition 6 is inessential.
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10. V. Trnková. Functorial selection of morphisms. Canadian Math. Soc. Conference Proc.,
13:435–447, 1992.


