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> A,B,X: relational structures

» Often infinite base set, finite signature

» Input: a finite structure X,

» Question: does there exist a homomorphism X — A.

h: X = A (x1,...,x) € RX = (h(x1), ..., h(x)) € R*

» Each problem associated with a relational structure: its template.
> A class of decision problems.

» For a large class of templates, the complexity of each problem depends solely on
the symmetries of the template.

non-trivial symmetries ~~ easier problems
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> Pol(G): set of all polymorphisms of G,
> Z: clone of projections on {0,1}
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> “symmetry” = polymorphism
> “non-trivial symmetries” = polymorphisms satisfying non-trivial identities

G = (V,E), f: V" — V is a polymorphism of G if
V(a1, b1),...,(an, bn) € E, (f(a1,...,an),f(b1,...,bn)) € E.

o
| |
[} o
‘l’)‘\ \:‘ Da "\ t

> Pol(G): set of all polymorphisms of G,
> Z: clone of projections on {0,1}
> ¢£: % — 2 minion homomorphism if it preserves arities and height 1 identities.

Antoine Mottet Topology !



Introduction Finite-Domain Dichotomy

Theorem (Bulatov '17, Zhuk '17)

A finite structure. Exactly one of the following holds:
> Pol(A) — & and CSP(A) is NP-complete,
> Pol(A) A~ & and CSP(A) is in P.
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A finite structure. Exactly one of the following holds:
> Pol(A) — & and CSP(A) is NP-complete,
> Pol(A) A~ & and CSP(A) is in P.

Second condition has several reformulations:

Let A be finite. TFAE:
> Pol(A) A 2,

» Pol(A) satisfies some non-trivial identities,
» Pol(A) contains a cyclic operation (Barto-Kozik)
> Pol(A) contains an s: A* — A such that s(a,r, e, a) = s(r,a,r,e). (Siggers)

Infinite-domain constraint satisfaction problems:
> Step 0: what relational structures to look at?
> Step 1: identify the borderline,

> Step 2: find a useful characterisation of the borderline.
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Topology is relevant Step 0: the scope

» Algebraic approach works for structures with a large automorphism group: A is
w-categorical templates if the action of Aut(A) on A" has finitely many orbits, for
all n.
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Topology is relevant Interlude: amalgamation

A class K of finite relational structures has (AP) if VX, Y;,Y2 € K and f;: X = Y;,
there exists Z € K and g;: Y; — Z s.t.

grofi=goh.
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A class K of finite relational structures has (AP) if VX, Y;,Y2 € K and f;: X = Y;,
there exists Z € K and g;: Y; — Z s.t.

grofi=goh.

Theorem (Fraissé)

Every countable class KK with (AP) and closed under substructures has a Fraissé limit
A: a homogeneous structure such that K = {X finite | X — A}.

K is m-bounded if X € K < all small substructures of X (< m elements) are in K.

Bodirsky-Pinsker: consider A Fraissé limit of a bounded amalgamation class, and any
structure definable within A.

» This class contains all finite structures,
» all such CSPs are in NP,

> all such templates are w-categorical, in particular polymorphisms still capture
complexity.
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» Complexity still captured by polymorphisms:
Pol(A) = Pol(B) = ptime equivalent CSPs

> |If 3¢: Pol(A) — & uniformly continuous, then CSP(A) is NP-hard.

Conjecture (Barto, Opr3al, Pinsker)

A definable over a finitely bounded homogeneous structure.
» Pol(A) — & and CSP(A) is NP-complete,

> Pol(A) A5 % and CSP(A) is in P.

Ways to make the conjecture easier to work with:
P |s there a weakest system of nontrivial height 1 identities for such structures?

» Can topology be dropped in the statement?
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Topology is relevant No weakest strong Mal'cev condition

» Finite undirected graph G ~~ system X of equations

{
2 fi(x,y,2) = g1,2(x, ¥, %, 2,¥,2)

[ ( )=
o\ f(x,y,z) = g12(y,x,2,%,2,y)
Zat f(x,y,2) = g1,3(x,¥,%,2,y,2)
)=

&13(y;x,2,x,2,y)

o o)
2 2 f3(x,y,2
» G not 3-colourable = X is nontrivial
» Every system ¥ implies some X

If A contains a triangle and Pol(A) satisfies X¢, then A contains G.
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Topology is relevant The Cherlin-Shelah-Shi Theorem

Theorem (Cherlin-Shelah-Shi, Hubitka-Ne3et¥il)

Let G be a finite connected graph. There exists an w-categorical CSS(G) such that
for all X, X — CSS(G) iff G 4 X.
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Theorem (Cherlin-Shelah-Shi, Hubitka-Ne3et¥il)
Let G be a finite connected graph. There exists an w-categorical CSS(G) such that
for all X, X — CSS(G) iff G /4 X.
Proof:

1. Suppose K = {X finite | G 4 X} has the amalgamation property (AP),

2. Take its Fraissé limit CSS(G).

3. In case K does not have (AP), add relation symbols for the cuts of G.
Moreover:

> A is definable in a finitely bounded homogeneous structure

» If G is not 3-colourable, Pol(A) does not satisfy X (A contains a triangle, does
not contain G)

> Pol(A) satisfies some nontrivial global height 1 equations
» CSP(A) is in FO!

Theorem (BMOOPW)

There is no weakest non-trivial system of global height 1 identities. In particular, one

cannot replace Pol(A) 7&> & by some global identities in the statement of the
dichotomy conjecture.
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Topology is relevant Local 7& Global

Conjecture (Barto, Opr3al, Pinsker)

A definable over a finitely bounded homogeneous structure. One of the following
holds:

» Pol(A) — Pol(SAT) uniformly continuously and CSP(A) is NP-complete,
> Pol(A) A5 % and CSP(A) is in P.
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Conjecture (Barto, Opr3al, Pinsker)
A definable over a finitely bounded homogeneous structure. One of the following
holds:

» Pol(A) — Pol(SAT) uniformly continuously and CSP(A) is NP-complete,

> Pol(A) A5 % and CSP(A) is in P.

Theorem (BMOOPW)

There exists an w-categorical structure such that Pol(A) £ % and Pol(A) — 2.
Proof:
» For each G not 3-colorable, A(G) that does not satisfy X,

» Superpose all these structures A := A(G1) @ A(G2) B ...,
~ A that does not satisfy any X so Pol(A) — Pol(SAT),

» A has local Barte-Pham terms (Gillibert, Jonuas, Kompatscher, M, Pinsker)
= Pol(A) £ @

More recently:

There exists an w-categorical structure with finite signature with the same properties.
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Topology is relevant Generic superposition

Combine several w-categorical structures (oligomorphic groups) and get another
w-categorical structure (oligomorphic group) in a generic way.
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Topology is relevant Generic superposition

Combine several w-categorical structures (oligomorphic groups) and get another
w-categorical structure (oligomorphic group) in a generic way.

> G1,Gr — A(Gl) (&) A(Gg)

K1 = {X finite | G; 4 X}

K2 = {X finite | G2 4 X},

K=all (V,E,E)st (V,E) €K and (V,E) € K>

>
>
>
> A(G1) ® A(Gy) is the Fraissé limit of K.
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Topology is relevant Generic superposition

Combine several w-categorical structures (oligomorphic groups) and get another
w-categorical structure (oligomorphic group) in a generic way.

> G1,Gr — A(Gl) (&) A(Gg)
> K1 = {X finite | G1 4 X}

> Ko = {X finite | Gy /4 X},

> K=all (V,E,B)st. (V,E) €Ky and (V,B) € Ky

> A(G1) ® A(Gy) is the Fraissé limit of K.

Fact

# orbits of pairs in A(G1) ® A(G2) = (# ... in A(G1)) x (#... in A(G2))
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Topology is relevant Generic superposition

Combine several w-categorical structures (oligomorphic groups) and get another
w-categorical structure (oligomorphic group) in a generic way.

> G1,Gr — A(Gl) (&) A(Gg)
> K1 = {X finite | G1 4 X}

> Ky = {X finite | G, 4 X},

> K=all (V,E,E)st (V,E) €Ky and (V, B) € Ka

> A(G1) ® A(Gy) is the Fraissé limit of K.

Fact

# orbits of pairs in A(G1) ® A(G2) = (# ... in A(G1)) x (#... in A(G2))
Final trick: first encode A(Gy) as a graph on n-tuples.
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Topology is relevant Conclusion

Theorem (BMOOPW)

There is no weakest non-trivial system of global height 1 identities. In particular, one
cannot replace Pol(A) £S5 P by some global identities in the statement of the
dichotomy conjecture.

Theorem (BMOOPW)

There exists a closed oligomorphic clone € such that € £~ 2 and € — 2.
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