Finitely tractable PCSPs

Michael Kompatscher
Charles University Prague

20/05/2022
Schloss Dagstuhl
The Constraint Satisfaction Problem: Complexity and Approximability

CoCoSym: Symmetry in Computational Complexity This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

Promise constraint satisfaction problems (PCSPs)

$\mathbb{A}=\left(A, R_{1}^{\mathbb{A}}, \ldots, R_{n}^{\mathbb{A}}\right)$
$\mathbb{B}=\left(B, R_{1}^{\mathbb{B}}, \ldots, R_{n}^{\mathbb{B}}\right)$
finite, with $\mathbb{A} \rightarrow \mathbb{B}$ homomorphism

$\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ (decision version)

Input: \mathbb{X}
Output: Yes if $\mathbb{X} \rightarrow \mathbb{A}$
No if $\mathbb{X} \nrightarrow \mathbb{B}$

Example

- $\operatorname{PCSP}\left(\mathbb{K}_{3}, \mathbb{K}_{5}\right)$: Is $\mathbb{X} 3$-colorable, or not even 5 -colorable?
- $\mathbb{A}=(\{0,1\}, 1 \mathrm{in} 3), \mathbb{B}=(\{0,1\}, \mathrm{NAE})$:

Is a list of triples $\left(x_{1}, x_{3}, x_{5}\right),\left(x_{2}, x_{1}, x_{4}\right), \ldots$
1 -in-3 satisfiable or not even NAE-satisfiable?

- $\operatorname{PCSP}(\mathbb{A}, \mathbb{A})=\operatorname{CSP}(\mathbb{A})$

Question: When does $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ reduce to a finite CSP ?

Sandwiches

If \mathbb{C} is sandwiched between \mathbb{A} and \mathbb{B} :

$$
\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}
$$

then $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ trivially reduces to $\operatorname{CSP}(\mathbb{C})$.
If $\exists \mathbb{C}$ finite 'cheese', such that

- $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
- $\operatorname{CSP}(\mathbb{C}) \in \mathrm{P}$,
then $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ is called finitely tractable.

Examples

- $\operatorname{CSP}(\mathbb{A}) \in \mathrm{P}$ or $\operatorname{CSP}(\mathbb{B}) \in \mathrm{P}$
$\Rightarrow \operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ finitely tractable
- $(\{0,1\}, 1 \mathrm{in} 4) \rightarrow\left(\{0,1\},\left\{\bar{x} \mid \sum_{i=1}^{4} x_{i}=1\right\}\right) \rightarrow\left(\{0,1\}, \mathrm{NAE}_{4}\right)$
is a 'proper' sandwich witnessing finite tractability
- $\operatorname{PCSP}\left(\mathbb{K}_{3}, \mathbb{K}_{5}\right)$ is not finitely tractable

Sandwiches

If \mathbb{C} is sandwiched between \mathbb{A} and \mathbb{B} :

$$
\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}
$$

then $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ trivially reduces to $\operatorname{CSP}(\mathbb{C})$.
If $\exists \mathbb{C}$ finite 'cheese', such that

- $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
- $\operatorname{CSP}(\mathbb{C}) \in P$,
then $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ is called finitely tractable.

Examples

- $\operatorname{CSP}(\mathbb{A}) \in P$ or $\operatorname{CSP}(\mathbb{B}) \in P$

$\Rightarrow \operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ finitely tractable
- $(\{0,1\}, 1 \mathrm{in} 4) \rightarrow\left(\{0,1\},\left\{\bar{x} \mid \sum_{i=1}^{4} x_{i}=1\right\}\right) \rightarrow\left(\{0,1\}, \mathrm{NAE}_{4}\right)$ is a 'proper' sandwich witnessing finite tractability
- $\operatorname{PCSP}\left(\mathbb{K}_{3}, \mathbb{K}_{5}\right)$ is not finitely tractable

Questions

Task: Characterize finitely tractable $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$

Functional approach

- finite tractability is preserved under gadget reductions [AB21]
\Rightarrow determined by polymorphism minion $\operatorname{Pol}(\mathbb{A}, \mathbb{B})=\left\{f: \mathbb{A}^{n} \rightarrow \mathbb{B} \mid n \in \mathbb{N}\right\}$
- Which minor identities characterize finite tractability?

Structural approach

- For $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$, can we bound the minimal size of the tractable cheese \mathbb{C} ? (Mayr)
- necessary conditions on $\left(R^{\mathbb{A}}, R^{\mathbb{B}}\right)$?

Special case: Boolean PCSPs $|A|=|B|=2$

Functional approach

Necessary minor identities

For $\mathbb{A} \rightarrow^{g} \mathbb{C} \rightarrow^{h} \mathbb{B}$:
$\operatorname{Pol}(\mathbb{C}) \rightarrow \operatorname{Pol}(\mathbb{A}, \mathbb{B}), t \mapsto h \circ t \circ(g, \ldots, g)$ is minion homomorphism.
\Rightarrow finitely tractable $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ has

- Siggers polymorphisms $s(x y x z y z) \approx s(y x z x z y)$
- cyclic polymorphisms $c\left(x_{1}, \ldots, x_{p}\right) \approx c\left(x_{2}, \ldots, x_{p}, x_{1}\right), \forall p>|C|$
- 'doubly cyclic' polymorphisms for $p>|C|$,
- . .

Examples

- $\mathbb{A}=(\{0,1\}, 1$ in 3$), \mathbb{B}=(\{0,1\}, N A E) ; \operatorname{PCSP}(\mathbb{A}, \mathbb{B}) \in \mathrm{P}$ no doubly cyclic polymorphism \Rightarrow not finitely tractable (Barto 19)
- $\mathbb{A}=(\{0,1\}, 1 \mathrm{in} 3)=\mathbf{L O}_{2}^{3}$, $\mathbb{B}=(\{0,1,2\},\{\overleftrightarrow{001}, \overleftarrow{002}, \overleftarrow{112}, \overleftarrow{012}\})=\mathbf{L O}_{3}^{3}$, $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ not finitely tractable (no cyclic polymorphisms for $p=4 k+3$).

Example

Asimi \& Barto classified all tractable Boolean symmetric PCSPs allowing (\neq, \neq) up to finite tractability:

Asimi, Barto '21

- Theorem 3. The PCSP over any of the following templates is not finitely tractable.
(1) $(r-i n-s, \leq(2 r-1)-i n-s),(\neq, \neq)$ where $1<r<s / 2$,
$(r-i n-s, \geq(2 r-s+1)-i n-s),(\neq, \neq)$ where $s / 2<r<s-1$
(2) $(\leq r-i n-s, \leq(2 r-1)-i n-s),(\neq, \neq)$ where s is even, $1<r=s / 2$
$(\geq r-i n-s, \geq(2 r-s+1)$-in-s $),(\neq, \neq)$ where s is even, $1<r=s / 2$
(3) $(r-i n-s, \leq(2 r-1)-i n-s),(\neq, \neq)$ where s is even, $1<r=s / 2$, and r is even
$(r-i n-s, \geq(2 r-s+1)$-in-s $),(\neq, \neq)$ where s is even, $1<r=s / 2$, and r is even
(4) (r-in-s, not-all-equal-s) where $s>r, s>2$, and r is even or s is odd

Otherwise: affine cheese \mathbb{C} over \mathbb{Z}_{2}, e.g.
$(\{0,1\}, 1 \operatorname{in} 4) \rightarrow\left(\{0,1\},\left\{\bar{x} \mid \sum_{i=1}^{4} x_{i}=1 \bmod 2\right\}\right) \rightarrow\left(\{0,1\}\right.$, NAE $\left._{4}\right)$
Question: What about non-symmetric templates?

Bounded width cheese

Example: $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
$A=B=C=\{0,1\}$;
$R^{\mathbb{C}}=\left(x_{1}=0 \vee x_{2}=0\right) \wedge\left(x_{3}=1 \vee x_{4}=1\right)$
$R^{\mathbb{A}}=R^{\mathbb{C}} \backslash\{(0011)\}$
$R^{\mathbb{B}}=\mathrm{NAE}_{4}$

- $\operatorname{CSP}(\mathbb{C})$ has bounded width
- no alternating polymorphisms \Rightarrow no affine cheese \mathbb{C}^{\prime}

Bounded width cheese

Example: $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
$A=B=C=\{0,1\}$;
$R^{\mathbb{C}}=\left(x_{1}=0 \vee x_{2}=0\right) \wedge\left(x_{3}=1 \vee x_{4}=1\right)$
$R^{\mathbb{A}}=R^{\mathbb{C}} \backslash\{(0011)\}$
$R^{\mathbb{B}}=\mathrm{NAE}_{4}$

- $\operatorname{CSP}(\mathbb{C})$ has bounded width
- no alternating polymorphisms \Rightarrow no affine cheese \mathbb{C}^{\prime}

Theorem [MK '21]

- For $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$ with $|A|=|B|=2$,
- and $\operatorname{CSP}(\mathbb{C})$ bounded width,
$\Rightarrow \operatorname{Pol}(\mathbb{A}, \mathbb{B})$ has symmetric terms of all odd arities.

Bounded width cheese

Example: $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
$A=B=C=\{0,1\}$;
$R^{\mathbb{C}}=\left(x_{1}=0 \vee x_{2}=0\right) \wedge\left(x_{3}=1 \vee x_{4}=1\right)$
$R^{\mathbb{A}}=R^{\mathbb{C}} \backslash\{(0011)\}$
$R^{\mathbb{B}}=\mathrm{NAE}_{4}$

- $\operatorname{CSP}(\mathbb{C})$ has bounded width
- no alternating polymorphisms \Rightarrow no affine cheese \mathbb{C}^{\prime}

Theorem [MK '21]

- For $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$ with $|A|=|B|=2$,
- and $\operatorname{CSP}(\mathbb{C})$ bounded width,
$\Rightarrow \operatorname{Pol}(\mathbb{A}, \mathbb{B})$ has symmetric terms of all odd arities.

Remarks

- Not true for $\operatorname{Pol}(\mathbb{C})$ itself.
- Corollary: $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ solved by BLP+AIP

Proof idea

Proof idea: study local behaviour of $\operatorname{Pol}(\mathbb{C})$ on $\{0,1\} \subseteq C$ (using [Brady '19])
there are $c, d \in C$, and terms s, m :
$s\left(x_{1} ; x_{2}, \ldots, x_{n}\right)=\left\{\begin{array}{l}x_{1} \text { if } x_{1}=\ldots=x_{n} \\ c \text { if } x_{1}=0,\left\{x_{1}, \ldots, x_{n}\right\}=\{0,1\} \\ d \text { if } x_{1}=1,\left\{x_{1}, \ldots, x_{n}\right\}=\{0,1\}\end{array}\right.$
$m\left(x_{1}, \ldots, x_{n}\right)=\operatorname{maj}\left(x_{1}, \ldots, x_{n}\right)$ if $x_{1}, \ldots, x_{n} \subseteq\{c, d\}$
then $\left.m\left(s\left(x_{1} ; x_{2}, \ldots, x_{n}\right), \ldots, s\left(x_{n} ; x_{2}, \ldots, x_{n}, x_{1}\right)\right)\right|_{\{0,1\}}$ is symmetric.

Question: Is there actually an example with $|C|>2$?

Proof idea

Proof idea: study local behaviour of $\operatorname{Pol}(\mathbb{C})$ on $\{0,1\} \subseteq C$ (using [Brady '19])
there are $c, d \in C$, and terms s, m :
$s\left(x_{1} ; x_{2}, \ldots, x_{n}\right)=\left\{\begin{array}{l}x_{1} \text { if } x_{1}=\ldots=x_{n} \\ c \text { if } x_{1}=0,\left\{x_{1}, \ldots, x_{n}\right\}=\{0,1\} \\ d \text { if } x_{1}=1,\left\{x_{1}, \ldots, x_{n}\right\}=\{0,1\}\end{array}\right.$
$m\left(x_{1}, \ldots, x_{n}\right)=\operatorname{maj}\left(x_{1}, \ldots, x_{n}\right)$ if $x_{1}, \ldots, x_{n} \subseteq\{c, d\}$

then $\left.m\left(s\left(x_{1} ; x_{2}, \ldots, x_{n}\right), \ldots, s\left(x_{n} ; x_{2}, \ldots, x_{n}, x_{1}\right)\right)\right|_{\{0,1\}}$ is symmetric.

Question: Is there actually an example with $|C|>2$?

Structural approach

Big cheeses

Example (Kazda, Mayr, Zhuk '21)
$\mathbb{A}=\left(\{0,1\},\left\{\pi_{i}^{p}:\{0,1\}^{p} \rightarrow\{0,1\}\right.\right.$ projection $\left.\}\right)$,
$\mathbb{B}=\left(\{0,1\},\left\{f:\{0,1\}^{p} \rightarrow\{0,1\} \mid f\right.\right.$ not cyclic $\left.\}\right)$

- $\operatorname{Pol}(\mathbb{A}, \mathbb{B})$ has no p-cyclic polymorphims
\Rightarrow no cheese of size $<p$
- but $\exists \mathbb{C}=\left(\mathbb{Z}_{p} ; R^{\mathbb{C}}\right)$ affine, with $\mathbb{A} \rightarrow \mathbb{C} \rightarrow \mathbb{B}$
\Rightarrow For finitely tractable Boolean PCSPs $|C|$ cannot be bounded!
Question
Is there a bound on $|C|$, depending on $|A|,|B|$ and $\operatorname{arity}(\mathbb{A})$?
Question (Barto)
Are there finitely tractable symmetric \mathbb{A}, \mathbb{B} such that $|C|>|A|,|B|$?

A new loop lemma

Theorem [Zhuk, (MK) '22]
Let $R \subseteq C^{2 k+1}$ for $k \geq 1, C=\mathcal{O} \sqcup \mathcal{I}$

- R symmetric
- $R \neq \emptyset$
- R invariant under WNU

$$
\Rightarrow R \cap \mathcal{O}^{2 k+1} \neq \emptyset \text { or } R \cap \mathcal{I}^{2 k+1} \neq \emptyset .
$$

Corollary

If $\operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ is a symmetric PCSP,

- $|B|=2$
- $\exists R$ odd arity; $(0, \ldots, 0),(1, \ldots, 1) \notin R^{\mathbb{B}}$
$\Rightarrow \operatorname{PCSP}(\mathbb{A}, \mathbb{B})$ is not finitely tractable.

Thank you!

Thank you!

