
Charles University in Prague

Faculty of Mathematics and Physics

HABILITATION THESIS

Libor Barto

Universal Algebra and the
Constraint Satisfaction Problem

Department of Algebra

Prague 2014

Contents

Preface 3

Introduction 4
1 CSP over a fixed constraint language . 4
2 Universal algebra in CSP . 8
3 Results . 15
4 Conclusion . 17

Comments on the included articles 18

Bibliography 21

Appendix A – Smooth digraphs 26

Appendix B – Bounded width 48

Appendix C – Absorption and cyclic terms 68

Appendix D – Congruence distributive finitely related algebras 96

Appendix E – Conservative CSPs 116

Appendix F – Near unanimity in NL 127

Appendix G – Robust satisfiability 138

2

Preface

This thesis presents selected results on the complexity of the constraint satisfaction problem
and related topics in universal algebra:

[16] L. Barto, M. Kozik, T. Niven, The CSP dichotomy holds for digraphs with no sources
and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell), SIAM Journal
on Computing 38/5 (2009), 1782-1802.

[13] L. Barto, M. Kozik, Constraint satisfaction problems solvable by local consistency meth-
ods, Journal of the ACM 61/1 (2014), 3:1-3:19.

[11] L. Barto, M. Kozik, Absorbing subalgebras, cyclic terms and the constraint satisfaction
problem, Logical Methods in Computer Science 8/1:07 (2012), 1-26.

[6] L. Barto, Finitely related algebras in congruence distributive varieties have near unanimity
terms, Canadian Journal of Mathematics 65/1 (2013), 3-21.

[5] L. Barto, The dichotomy for conservative constraint satisfaction problems revisited, Pro-
ceedings of the 26th IEEE Symposium on Logic in Computer Science, LICS’11, 301-310.

[17] L. Barto, M. Kozik, R. Willard, Near unanimity constraints have bounded pathwidth
duality, Proceedings of the 27th ACM/IEEE Symposium on Logic in Computer Science,
LICS’12, 125-134.

[12] L. Barto, M. Kozik, Robust satisfiability of constraint satisfaction problems, Proceedings
of the 44th symposium on Theory of Computing, STOC’12 (2012), 931-940.

The thesis is structured as follows. The first chapter is an introduction to the topic
intended for a non-specialist. A survey based on this chapter is being prepared for the
Bulletin of Symbolic Logic. A shorter version will appear in SIGLOG Newsletter. The second
chapter briefly summarizes the main results of the papers listed above. Appendices contain
reprints of these papers.

3

Introduction

The Constraint Satisfaction Problem (CSP) provides a common framework for expressing
a wide range of both theoretical and real-life combinatorial problems [61]. One solves an
instance of CSP by assigning values to the variables so that the constraints are satisfied.

The topic of this thesis is a very active theoretical subfield which studies the computational
complexity of the CSP over a fixed constraint language. This restricted framework is still
broad enough to include many decision problems in the class NP, yet it is narrow enough to
potentially allow a complete classification of all such CSP problems.

One particularly important achievement is the understanding of what makes a problem in
this class computationally easy or hard. It is not surprising that hardness comes from lack of
symmetry. However, usual objects capturing symmetry, automorphisms (or endomorphisms)
and their groups (or semigroups), are not sufficient in this context. It turned out that the
complexity of CSP is determined by more general symmetries: polymorphisms and their
clones.

My aim in this chapter is to introduce the basics of this exciting area and highlight
selected deeper results, in a way that is understandable to readers with a basic knowledge of
computational complexity (see [58, 1]). The presentation of the material is based on my talk
“Universal algebra and the constraint satisfaction problem” delivered at the Association of
Symbolic Logic North American Annual Meeting held in Boulder, Colorado, in 2014.

1 CSP over a fixed constraint language

A constraint – such as R(x3, x1, x4) – restricts the allowed values for a tuple of variables – in
this case (x3, x1, x4) – to be an element of a particular relation on the domain – in this case
R ⊆ D3.1 By an n-ary relation R on a domain D we mean a subset of the n-th cartesian power
Dn. It is sometimes convenient to work with the corresponding predicate which is a mapping
from Dn to {true, false} specifying which tuples are in R. We will use both formalism, so e.g.
(a, b, c) ∈ R and R(a, b, c) both mean that the triple (a, b, c) ∈ D3 is from the relation R.

An instance of CSP is a list of constraints, e.g.,

R(x), S(y, y, z), T (y, w),

where R, S, T are relations of appropriate arity on a common domain D and x, y, z, w are
variables. A mapping f assigning values from the domain to variables is a solution if it
satisfies all the constraints, that is, in our example,

R(f(x)) and S(f(y), f(y), f(z)) and T (f(y), f(w)) .

1There are also different types of constraints considered in the literature, see e.g. Chapter 7 in [61].

4

A standard formal definition of an instance of the CSP over a finite domain goes as follows.

Definition 1.1. An instance of the CSP is a triple P = (V,D, C) with

• V a finite set of variables,

• D a finite domain,

• C a finite list of constraints, where each constraint is a pair C = (x, R) with

– x a tuple of variables of length n, called the scope of C, and

– R an n-ary relation on D, called the constraint relation of C.

An assignment, that is, a mapping f : V → D, satisfies a constraint C = (x, R) if f(x) ∈ R,
where f is applied component-wise. An assignment f is a solution if it satisfies all constraints.

Three basic computational problems associated with an instance are the following:2

• Satisfiability. Does the given instance have a solution? (A related problem, the search
problem, is to find some solution if at least one solution exists.)

• Optimization. Even if the instance has no solution, find an optimal assignment, i.e.,
one that satisfies the maximum possible number of constraints. (Approximation algo-
rithms are extensively studied, where the aim is, for example, to find an assignment that
satisfies at least 80% of the number of constraints satisfied by an optimal assignment.)

• Counting. How many solutions does the given instance have? (This problem also has
an approximation version: approximate counting.)

1.1 Satisfiability over a fixed constraint language

Even the easiest of the problems, satisfiability, is computationally hard: It contains many
NP-complete problems including, e.g., 3-SAT (see Example 1.3). However, certain natural
restrictions to CSP satisfiability ensure tractability. The main types of restrictions that have
been studied are structural restrictions, which limit how constraints interact, and language
restrictions, which limit the choice of constraint relations.

In this chapter, we focus just on satisfiability problems with language restrictions. Please
see [66] for optimization problems and a generalization to valued CSPs, [43] for approximation,
[32] for counting, and [20] for a generalization to infinite domains.

Definition 1.2. A constraint language, D, is a set of relations on a common finite domain,
D. We use CSP(D) to denote the set of CSP satisfiability problems whose relations are drawn
from D.

2To study the computational complexity of these problems we need to specify a representation of instances.
We will assume that the constraint relation in every constraint is given by a list of all its members. Note,
however, that for most of the problems considered in this column any reasonable representation can be taken.

5

1.2 Examples

Example 1.3. An instance of the standard NP-complete problem, 3-SAT, is a Boolean for-
mula in conjunctive normal form with exactly three literals per clause. For example, the
formula,

ϕ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5 ∨ ¬x1) ∧ (¬x1 ∨ ¬x4 ∨ ¬x3)
is a satisfiable instance of 3-SAT. (Any assignment making x1 and x2 false, satisfies ϕ.)
3-SAT is equivalent to CSP(D3SAT), where D3SAT = {0, 1} and

D3SAT = {Sijk : i, j, k ∈ {0, 1}}, where Sijk = {0, 1}3 \ {(i, j, k)} .

For example, the above formula ϕ corresponds to the following instance of CSP(D3SAT)

S010(x1, x2, x3), S101(x4, x5, x1), S111(x1, x4, x3) .

More generally, for a natural number k, k-SAT denotes a similar problem where each
clause is a disjunction of k literals.

Since 3-SAT is NP-complete, it follows that k-SAT is NP-complete for each k ≥ 3. On the
other hand, 2-SAT is solvable in polynomial time, and is in fact complete for the complexity
class NL (non-deterministic logarithmic space).

Example 1.4. HORN-3-SAT is a restricted version of 3-SAT, where each clause may have
at most one positive literal. This problem is equivalent to CSP(DHornSAT) for DHornSAT =
{S011, S101, S110, S111} (or just DHornSAT = {S011, S111}). HORN-3-SAT is solvable in poly-
nomial time, in fact, it is a P-complete problem.

Example 1.5. For a fixed natural number k, the k-COLORING problem is to decide whether
it is possible to assign colors {0, 1, . . . , k− 1} to vertices of an input graph in such a way that
adjacent vertices receive different colors. This problem is equivalent to CSP(DkCOLOR), where
Dk = {1, 2, . . . , k} and DkCOLOR = {6=k} consists of a single relation – the binary inequality
relation 6=k= {(a, b) ∈ D2

k : a 6= b}.
Indeed, given an instance of CSP(D), we can form a graph whose vertices are the variables

and edges correspond to the binary constraints (that is, x has an edge to y iff the instance
contains the constraint x 6=k y). It is easily seen that the original instance has a solution if
and only if the obtained graph is k-colorable. The translation in the other direction is similar.

The k-COLORING problem is NP-complete for k ≥ 3. 2-COLORING is equivalent to
deciding whether an input graph is bipartite. It is solvable in polynomial time, in fact, it
is an L-complete problem (where L stands for logarithmic space) by a celebrated result of
Reingold [60].

Example 1.6. Let p be a prime number. An input of 3-LIN(p) is a system of linear equations
over the p-element field GF(p), where each equation contains 3 variables, and the question is
whether the system has a solution. This problem is equivalent to CSP(D), where D3LINp =
GF(p) and D3LINp consists of all affine subspaces of GF(p)3 of dimension 2 or 3:

D3LINp = {Rabcd : a, b, c, d ∈ GF(p)}, , where Rabcd = {(x, y, z) ∈ GF(p)3 : ax+ by+ cz = d} .

This problem is solvable in polynomial time, e.g. by Gaussian elimination.3 It is complete for
a somewhat less familiar class ModpL.

3The problem of solving general systems of linear equations over GF(p) without the restriction on number
of variables cannot be faithfully phrased as CSP(D) with D consisting of all affine subspaces, since the input
representation of the latter problem can be substantially larger. However, a system of linear equation can be
easily rewritten to an instance of 3-LIN(p) by introducing new variables.

6

Example 1.7. An instance of the s, t-connectivity problem, STCON, is a directed graph and
two vertices s, t. The question is whether there exists a directed path from s to t.

A closely related (but not identical) problem is CSP(DSTCON), where DSTCON = {0, 1}
and DSTCON = {C0, C1,≤}, C0 = {0}, C1 = {1}, ≤= {(0, 0), (0, 1), (1, 1)}. Indeed, given
an instance of CSP(DSTCON) we form a directed graph much as we did in Example 1.5 and
label some vertices 0 or 1 according to the unary constraints. Then the original instance
has a solution if and only if there is no directed path from a vertex labeled 1 to a vertex
labeled 0. Thus CSP(DSTCON) can be solved by invoking the complement of STCON, the
s, t-non-connectivity problem, several times.

Both STCON and CSP(DSTCON) can clearly be solved in polynomial time. By the theorem
of Immerman and Szelepcsényi [47, 64] both problems are NL-complete.

In the same way, the s, t-connectivity problem for undirected graphs is closely related to
CSP(DUSTCON), where DUSTCON = {0, 1} and DUSTCON = {C0, C1,=}. These problems are
L-complete by [60].

1.3 The dichotomy conjecture

The most fundamental problem in the area was formulated in the landmark paper by Feder
and Vardi [40].

Conjecture 1.8 (The dichotomy conjecture). For every finite4 constraint language D, the
problem CSP(D) is in P or is NP-complete.

Recall that if P 6= NP, then there are problems of intermediate complexity [53]. Feder
and Vardi argued that CSPs over a fixed constraint language is a good candidate for a largest
natural class of problems with P versus NP-complete dichotomy.

At that time the conjecture was supported by two major cases: the dichotomy theorem
for all languages over the two-element domain by Schaefer [62] and the dichotomy theorem
for languages consisting of a single binary symmetric relation by Hell and Nešetřil [44].

Feder and Vardi have identified two sources of polynomial-time solvability and made sev-
eral important contributions toward understanding these sources. In particular, they observed
that the known polynomial cases were tied to algebraic closure properties and asked whether
polynomial solvability for CSP can always be explained in such a way. Subsequent papers
have shown that this is indeed the case and this connection to algebra brought the area to
another level.

The algebraic approach is outlined in section 2 and some fruits of the theory discussed in
section 3.

1.4 Alternative views

Note that a constraint language D with domain D can be viewed as a relational structure
(D;R1, R2, . . .), or equivalently relational database, with universe D.

Recall that a conjunctive query over the database D is an existential sentence whose
quantifier-free part is a conjunction of atoms. CSP(D) is exactly the problem of deciding

4It is conjectured in [24] that the dichotomy remains true without the finiteness assumption. Namely, the
local-global conjecture states that CSP(D) is in P (NP-complete) whenever CSP(D′) is in P (NP-complete)
for every (some) finite D′ ⊆ D.

7

whether D satisfies a given conjunctive query. For example, the instance

R(x), S(y, y, z), T (y, w)

has a solution if and only if the sentence

(∃x, y, z, w ∈ D) R(x) ∧ S(y, y, z) ∧ T (y, w)

is true in D.
From this perspective, it is natural to ask what happens if we allow some other combination

of logical connectives {∃,∀,∧,∨,¬,=, 6=}. It turns out that out of the 27 cases only 3 are
interesting (the other cases either reduce to these, or are almost always easy or hard by known
results): {∃,∧} which is CSP, {∃,∀,∧} which is so called quantified CSP, and {∃,∀,∧,∨}.
The complexity of quantified CSP is also an active research area [34] with possible trichotomy
P, NP-complete or Pspace-complete. Recently, a tetrachotomy was obtained for the last
choice [56] – for every D, the corresponding problem is either in P, NP-complete, co-NP-
complete, or Pspace-complete.

The CSP over a fixed language can also be formulated as the homomorphism problem
between relational structures with a fixed target structure [40]. The idea of the translation is
shown in Examples 1.5, 1.7.

2 Universal algebra in CSP

If a computational problem A can simulate (in some sense) another problem B, then A is at
least as hard as B. This simple idea is widely used in computational complexity; for instance,
NP-completeness is often shown by a gadget reduction of a known NP-complete problem
to the given one. A crucial fact for the algebraic theory of CSP is that so called primitive
positive (pp-, for short) interpretation between constraint languages gives such a reduction
between corresponding CSPs (more precisely, if D pp-interprets E , then CSP(E) is reducible
to CSP(D)). Pp-interpretations have been, indirectly, the main subject of universal algebra
for the last 80 years!

The algebraic theory of CSPs was developed in a number of papers including [49, 48, 24,
54]. The viewpoint taken here is close to [20]. All results in this section come from these
sources unless stated otherwise.

To simplify formulations, all structures (relational or algebraic) are assumed to have fi-
nite domains, all constraint languages are assumed to contain finitely many relations, all of
them nonempty. By a reduction we mean a logarithmic space reduction (although first-order
reductions are often possible under additional weak assumptions).

2.1 Primitive positive interpretations

An important special case of pp-interpretability is pp-definability.

Definition 2.1. Let D, E be constraint languages on the same domain D = E. We say that
D pp-defines E (or E is pp-definable from D) if each relation in E can be defined by a first
order formula which only uses relations in D, the equality relation, conjunction and existential
quantification.

Theorem 2.2. If D pp-defines E, then CSP(E) is reducible to CSP(D).

8

Proof by example. Let R be an arbitrary ternary relation on a domain D. Consider the
relations on D defined by

S(x, y) iff (∃z)R(x, y, z) ∧R(y, y, x), T (x, y) iff R(x, x, x) ∧ (x = y) ,

where the existential quantification is understood over D. The relations S and T are defined
by pp-formulae, therefore the constraint language D = {R} pp-defines the constraint language
E = {S, T}.

We sketch the reduction of CSP(E) to CSP(D) using the instance

S(x3, x2), T (x1, x4), S(x2, x4) .

We first replace S and T with their pp-definitions by introducing a new variable for each
quantified variable:

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), x1 = x4, R(x2, x4, y2), R(x4, x4, x2)

and then we get rid of the equality constraint x1 = x4 by identifying these variables. This
way we obtain an instance of CSP(D):

R(x3, x2, y1), R(x2, x2, x3), R(x1, x1, x1), R(x2, x1, y2), R(x1, x1, x2) .

Clearly, the new instance of CSP(D) has a solution if and only if the original instance does.

This simple theorem provides a quite powerful tool for comparing CSPs over different
languages on the same domain. A more powerful tool, which can also be used to compare
languages with different domains, is pp-interpretability. Informally, a constraint language D
pp-interprets E , if the domain of E is a pp-definable relation (from D) modulo a pp-definable
equivalence, and the relations of E (viewed, in a natural way, as relations on D) are also
pp-definable from D.5 Formally:

Definition 2.3. Let D, E be constraint languages. We say that D pp-interprets E if there
exists a natural number n, F ⊆ Dn, and an onto mapping f : F → E such that D pp-defines

• the relation F ,

• the f -preimage of the equality relation on E, and

• the f -preimage of every relation in E,

where by the f -preimage of a k-ary relation S on E we mean the nk-ary relation f−1(S) on
D defined by

f−1(S)(x11, . . . , x1k, x21, . . . , x2k, . . . , xn1, . . . , xnk) iff S(f(x11, . . . , xn1), . . . , f(x1k, . . . , xnk))

Theorem 2.4. If D pp-interprets E, then CSP(E) is reducible to CSP(D).

Proof sketch. The properties of the mapping f from Definition 2.3 allow us to rewrite an
instance of CSP(E) to an instance of the CSP over a constraint language which is pp-definable
from D. Then we apply Theorem 2.2.

5This is the classical notion of interpretation from model theory restricted to pp-formulas.

9

Pp-interpretability is a reflexive and transitive relation on the class of constraint languages.
By identifying equivalent languages, i.e. languages which mutually pp-interpret each other,
we get a partially ordered set, the pp-interpretability poset. Theorem 2.4 then says that the
“higher” we are in the poset the “easier” CSP we deal with. 3-SAT is terribly hard – we
will see later that its constraint language is the least element of this poset. Surprisingly, this
is “almost” the case for all known NP-complete CSPs! For precise formulation we need a
reduction described in the following subsection.

2.2 Cores and singleton expansions

Let D be a constraint language on a finite set D. A mapping f : D → D is called an
endomorphism if it preserves every relation D, that is, f(R) := {f(a) : a ∈ R} ⊆ R for every
R ∈ D.

Theorem 2.5. Let D be a constraint language and f an endomorphism of D. Then CSP(D)
is reducible to CSP(f(D)) and vice versa, where f(D) is a constraint language with domain
f(D) defined by f(D) = {f(R) : R ∈ D}.

Proof sketch. An instance of the CSP(D) has a solution if and only if the corresponding
instance of CSP(f(D)), obtained by replacing each R ∈ D with f(R), has a solution.

A language D is a core if every endomorphism of D is a bijection. It is not hard to show
that if f is an endomorphism of a constraint language D with minimal range, then f(D) is a
core. Moreover, this core is unique up to isomorphism, therefore we speak about the core of
D.

An important fact is that we can add all singleton unary relations to a core constraint
language without increasing the complexity of its CSP:

Theorem 2.6. Let D be a core constraint language and E = D∪
⋃
a∈D Ca, where Ca denotes

the unary relation Ca = {a}. Then CSP(E) is reducible to CSP(D).

Proof idea. The crucial step is to observe that the set of endomorphisms of D, viewed as a
|D|-ary relation, is pp-definable from D. More precisely, the relation

S = {(f(a1), . . . , f(an)) : f is an endomorphism of D} ,

where a1, . . . , an is a list of all elements of D, is pp-definable from D (even without existential
quantification). Indeed, f is, by definition, an endomorphism of D if for every R ∈ D of arity
ar(R) and every (b1, . . . , bar(R)) ∈ R we have (f(b1), . . . , f(bar(R))) ∈ R. This directly leads to
a pp-definition of S:

S(xa1 , . . . , xan) iff
∧
R∈D

∧
(b1,...,barR)∈R

R(xb1 , . . . , xbar(R)
) .

Given an instance of CSP(E) we introduce new variables xa1 , . . . , xan , replace every constraint
of the form Ca(x) by x = xa, and add the constraint S(xa1 , . . . , xan). In this way we obtain
an instance of CSP(D ∪ {=}). Clearly, if the original instance has a solution, then the new
instance has a solution as well. In the other direction, if g is a solution to the new instance,
then its values on xa1 , . . . , xan determine an endomorphism f of D. As D is a core, f is a
bijection, thus f−1 is an endomorphism as well, and f−1 ◦g restricted to the original variables
is a solution of the original instance.

10

We will call constraint languages containing all singletons idempotent. Note that an idem-
potent constraint language is automatically a core as the only endomorphism is the identity.
By Theorems 2.5, 2.6, CSP over D is reducible to CSP over the singleton expansion of the
core of D and vice versa. It is therefore enough to study CSPs over idempotent constraint
languages.

An interesting consequence of these reductions is that the search problem for CSP(D) is
solvable in polynomial time whenever CSP(D) is. The idea is to gradually guess values for
variables using the unary singleton constraints.

2.3 Example

Example 2.7. We show that 3-SAT is reducible to 3-COLORING.
Recall the constraint language D3COLOR = {6={0,1,2}} of 3-COLORING from Example 1.5

and the constraint language D3SAT = {S000, . . . , S111} of 3-SAT from Example 1.3.
Since D3COLOR is a core, CSP(D′3COLOR), where D′3COLOR = {6=, C0, C1, C2}, is reducible

to CSP(D3COLOR) by Theorem 2.6. By Theorem 2.4, it is now enough to show that D′3COLOR

pp-interprets D3SAT. We give a pp-interpretation with n = 1, F = {0, 1}, and f the identity
map (see Definition 2.3). The set (=unary relation) {0, 1} can be pp-defined by

E(x) iff (∃y) C2(y) ∧ x 6= y (iff x 6= 2) .

The preimage of the equality relation is the equality relation on {0, 1} which is clearly pp-
definable. The relation S000 can be defined by

S000(x1, x2, x3) iff (∃y1, y2, y3, z) C2(z) ∧ y1 6= y2 ∧ y2 6= y3 ∧ y1 6= y3

∧
∧

i=1,2,3

z 6= xi ∧ T (xi, yi) ,

where T is the binary relation

T (x, y) iff (∃u, v) C1(u) ∧ u 6= v ∧ x 6= v ∧ y 6= v

The other relations Sijk are defined similarly.

While it is easy to verify that the presented pp-definitions work, it is not so easy to
find them without any tools. The proof of Theorem 2.9 gives an algorithm to produce pp-
definitions whenever they exist (although the obtained definitions will be usually very long).

2.4 Tractability conjecture

Now we return to the pp-interpretability poset. Recall that “higher” in the poset means
“easier” CSP and that 3-SAT corresponds to the least (the hardest) element. When we
restrict to idempotent constraint languages (which we can do by the previous discussion), all
known NP-complete CSPs are at the bottom of the poset. Bulatov, Jeavons and Krokhin
conjectured that this is not a coincidence.6

Conjecture 2.8 (Tractability conjecture). If an idempotent constraint language D does not
pp-interpret the language of 3-SAT, then CSP(D) is solvable in polynomial time.

This conjecture is also known as the algebraic dichotomy conjecture because many equiv-
alent formulations, including the original one, are algebraic.

6Similar hardness results and conjectures are formulated for other computational/descriptive complexity
classes.

11

2.5 Algebraic counterpart of pp-definability

The link between relations and operations is provided by a natural notion of compatibility.
An n-ary operation f on a finite set D (that is, a mapping f : Dn → D) is compatible with a
k-ary relation R ⊆ Dk if f applied component-wise to any n-tuple of elements of R gives an
element of R. In more detail, whenever (aij) is an n× k matrix such that every row is in R,
then f applied to the columns gives a k-tuple which is in R as well.

We say that an operation f on D is a polymorphism of a constraint language D if f
is compatible with every relation in D. Note that unary polymorphism is the same as en-
domorphism. Endomorphisms can be thought of as symmetries, polymorphisms are then
symmetries of higher arity.

The set of all polymorphisms of D will be denoted by D. This algebraic object has the
following two properties.

• D contains all projections, that is, for every natural number n and i ≤ n the n-ary
projection onto i-th coordinate defined by

πni (a1, . . . , an) = ai

is in D.

• D is closed under composition, that is, for any n-ary g ∈ D and k-ary f1, . . . , fn ∈ D
their (k-ary) composition g(f1, . . . , fn) defined by

g(f1, . . . , fn)(a1, . . . , ak) = g(f1(a1, . . . , ak), . . . , fn(a1, . . . , ak))

is in D.

Sets of operations with these properties are called concrete clones (or simply clones), therefore
we refer to D as the clone of polymorphisms of D.

The clone of polymorphisms controls pp-definability in the sense of the following old
result [41, 21].

Theorem 2.9. Let D, E be constraint languages with D = E. Then D pp-defines E if and
only if D ⊆ E.7

Proof sketch. The implication “⇒” is quite easy. For the other implication it is enough to
prove that whenever R is a relation compatible with every polymorphism of D, then R is
pp-definable from D. A crucial step is a more general version of the observation made in the
proof of Theorem 2.6: For any k, the set of k-ary polymorphisms of D can be viewed as a
|D|k-ary relation S on D, and this relation is pp-definable from D. Now R can be defined
from such a relation S (where k is the number of tuples in R) by existential quantification
over suitable coordinates as in Example 2.11.

In view of this result, Theorem 2.2 says that the complexity of CSP(D) only depends on
the clone D. More precisely, if D ⊆ E, then CSP(E) is reducible to CSP(D). Moreover,
the proof of Theorem 2.9 gives a generic pp-definition of E from D, which gives us a generic
reduction of CSP(E) to CSP(D).

7Moreover, every concrete clone is the clone of polymorphisms of some (possibly infinite) constraint lan-
guage.

12

Example 2.10. It is a nice exercise to show that the language D3SAT of 3-SAT has no poly-
morphisms but projections. This means that D3SAT pp-defines every constraint language with
domain {0, 1}. It follows (see also Theorem 2.14) that D3SAT pp-interprets every constraint
language, so it is the least element of the pp-interpretability poset, as claimed before.

Example 2.11. Another nice exercise is to show that the language D′3COLOR = {6=, C0, C1, C2}
on the domain {0, 1, 2} (see Example 2.7) also does not have any polymorphisms except for
projections.

We show how the proof of Theorem 2.9 produces a pp-definition of the relation

R = {(0, 1), (0, 2), (1, 1), (2, 2)} .

Since R contains 4 pairs, we pp-define the 34-ary relation

S = {(f(0, 0, 0, 0), f(0, 0, 0, 1), . . . , f(2, 2, 2, 2)) : f is a 4-ary polymorphism of D′3COLOR}

which corresponds to the set of all 4-ary polymorphisms of D′3COLOR:

S(x0000, . . . , x2222) iff
∧
i

xiiii = i ∧
∧

i1 6=i2,j1 6=j2,k1 6=k2,l1 6=l2

xi1j1k1l1 6= xi2j2k2l2 .

Now we existentially quantify over all variables but x0012 and x1212 – the exceptions are those
variables which correspond to the i-th coordinates of pairs in R, i ∈ {1, 2}. The obtained
binary relation R′(x0012, x1212) contains R since S contains the projections, and is contained
in R since R is compatible with every polymorphism of D′3COLOR.

Note that the definition of S000 from Example 2.7 obtained in this way contains 37 vari-
ables. This is the price we need to pay for genericity.

2.6 Algebraic counterpart of pp-interpretability

For the algebraic description of pp-interpretability we introduce three constructions which
are clone versions of standard constructions for groups, rings, etc.

Let D be a (concrete) clone.
The domain D of D is also called the universe of D. We say that E ⊆ D is a subuniverse

of D if it is closed under all operations of D. In this situation, we can form a clone E by
restricting all operations of D to the set E. The clone E is called a subalgebra of D (the word
subclone is reserved for set theoretic inclusion).

For a natural number n we can form the n-th power Dn of D with domain Dn and
operations from D acting coordinate-wise. (More generally, we can form the X-th power DX

of D for any set X.) A subpower is a subuniverse (or a subalgebra, depending on the context)
of a power. Note that if D is the clone of polymorphisms of a constraint language D, then R
is a subpower of D if and only if R is pp-definable from D (by Theorem 2.9).

Finally, let φ : D → E be an onto mapping such that for any operation f ∈ D (say of
arity n), the formula

fφ(φ(a1), . . . , φ(an)) = φ(f(a1, . . . , an)) ∀a1, . . . , an ∈ D

correctly defines an operation fφ on E. Then E = {fφ : f ∈ D} is a clone with domain E
called a concrete homomorphic image of D and φ is called a concrete homomorphism.

The definition of pp-interpretability can be translated into algebraic terms as follows.

Theorem 2.12. Let D, E be constraint languages. Then D pp-interprets E if and only if E
contains a concrete homomorphic image of a subpower of D.

13

2.7 Identities and Mal’tsev conditions

An alternative algebraic characterization of pp-interpretability, which is missing on the rela-
tional side, follows from the foundation stone of universal algebra, the Birkhoff HSP theo-
rem [19]: pp-interpretability depends on the identities (i.e. universally quantified equations)
satisfied by polymorphisms.

We first present a formulation using abstract clone homomorphisms and then explain the
connection to identities.

Definition 2.13. A mapping H from a clone D to a clone E is called a clone homomorphism
if

• it preserves the arities of operations,

• it maps projections to projections (that is, H(πni) = πni , where the projection on the left
hand side works on the set D, while on the right hand side on the set E), and

• it preserves the composition (that is, H(g(f1, . . . , fn)) = H(g)(H(f1), . . . ,H(fn)) if
g, f1, . . . , fn are from D and have appropriate arities).

Theorem 2.14. Let D, E be constraint languages. Then D pp-interprets E if and only if
there exists an abstract clone homomorphism from D to E.

Proof sketch. There are natural abstract clone homomorphisms associated to the three con-
structions on clones (taking sublagebras, powers and concrete homomorphic images). The
implication ⇒ follows from this observation and Theorem 2.12.

Now assume that H : D → E is a clone homomorphism. For simplicity, let E =
{1, 2, . . . , n}. It is easy to check that the set F of all n-ary operations in D is a subuni-
verse of DDn

. Let F be the corresponding subalgebra of DDn
. (This important object, the

n-generated free algebra for D, already appeared in the proof of Theorem 2.9. Indeed, if
D is the clone of polymorphisms of a constraint language D, then F is the set of all n-ary
polymorphisms of D.) A simple calculation shows that the mapping φ : F → E, defined by
φ(f) = (H(f))(1, 2, . . . , n), is a concrete clone homomorphism from F onto H(D) ⊆ E and
thus D pp-interprets E by Theorem 2.12.

Observe that the existence of an abstract clone homomorphism H : D → E does not
depend on concrete operations in D and E – it only depends on the way how operations
compose and which operations are projections. The torso of a concrete clone which only
remembers projections and composition is called an abstract clone.8

We now explain the promised link to identities, first on an example. A binary operation
f on D is a semilattice operation if satisfies the identities

f(f(x, y), z) ≈ f(x, f(y, z)), f(x, y) ≈ f(y, x), and f(x, x) ≈ x,

meaning that f(f(a, b), c) = f(a, f(b, c)), f(a, b) = f(b, a), and f(a, a) = a hold for any
a, b, c ∈ D. This can be expressed in terms of composition and projections: f is a semilattice
operation if and only if

f(f(π31, π
3
2), π33) = f(π31, f(π32, π

3
3)), f(π21, π

2
2) = f(π22, π

2
1), and f(π11, π

1
1) = π11 .

8The relation between abstract clones and concrete clones is similar to the relation between groups and
permutation groups, or between monoids and transformation monoids.

14

It follows that if H : D→ E is an abstract clone homomorphism and D contains a semilattice
operation f , then E contains a semilattice operation as well, namely H(f).

More generally, if there exists an abstract clone homomorphism from D to E, then E
satisfies all properties of the form “there exist operations . . . satisfying identities . . . ” which
are satisfied by D. Such properties are called Mal’tsev conditions.9 It is not hard to see that
the converse is also true: if no abstract clone homomorphism D → E exists, then there is
some Mal’tsev condition which is satisfied by D while not satisfied by E. In short:

The complexity of CSP(D) only depends on Mal’tsev conditions satisfied by the
clone of polymorphisms of D.

To illustrate this, we state one of increasingly many (e.g., [65, 45, 57, 52, 63]) character-
izations of the conjectured borderline between P and NP-complete CSPs by means of cyclic
operations [11].

Theorem 2.15. Let D be an idempotent constraint language and p > |D| a prime. Then the
following are equivalent.

• D does not interpret the language of 3-SAT.

• D contains an operation t (equivalently, D has a polymorphism t) of arity p such that

t(x1, . . . , xp) ≈ t(x2, . . . , xp, x1) .

Even if the tractability conjecture or the dichotomy conjecture (or finer classification
conjectures) turns out to be incorrect, we know that classes of CSPs in P, L, NL, . . . can be
characterized by Malt’sev conditions on polymorphisms.

Example 2.16. We show how to apply cyclic operations to prove the dichotomy theorem for
undirected graphs [44].

Let R be a symmetric binary relation viewed as an undirected graph and D = {R}. Let
D′ = {R′,} be the singleton expansion of the core of D. If R contains a loop then CSP(D)
is trivially tractable. If R is bipartite, then the core of R is an edge and CSP(D) is essentially
2-COLORING, which is tractable.

Finally, if R is not bipartite and does not contain a loop, then R′ does not contain a loop
and does contain a closed walk a1, a2, . . . , ap, a1 for some prime p > |D′|. Assume that D′

contains a cyclic operation t of arity p. Since t is a polymorphism, the pair

t((a1, a2), . . . , (ap−1, ap), (ap, a1)) = (t(a1, . . . , ap), t(a2, . . . , ap, a1))

is in R′, but it is a loop since t is cyclic. This contradiction shows that D′ does not contain
a cyclic operation of arity p, therefore CSP(D′) (and thus CSP(D)) is NP-complete.

3 Results

Universal algebra serves the investigation in two ways: as a toolbox containing heavy hammers
(such as the Tame Congruence Theory by Hobby and McKenzie [45]) and as a guideline for
identifying interesting intermediate cases, which are hard to spot from the purely relational
perspective. Major results include the following.

9The number of operations and identities appearing in a Mal’tsev condition can be infinite. If it is finite,
then we speak about a strong Mal’tse condtion.

15

• The dichotomy theorem of Schaefer for CSPs over a two-element domain was general-
ized to a three-element domain by Bulatov [27]. A simplification of this result and a
generalization to four-element domains was announced by Marković et al.

• The dichotomy theorem of Hell and Nešetřil for CSPs over undirected graphs was gen-
eralized to digraphs with no sources or sinks [16].

• The dichotomy conjecture was proved for all constraint languages containing all unary
relations by Bulatov [29] (a simpler proof is in [5]).

Notably, all known tractable cases are solvable by a combination of two basic algorithms,
or rather algorithmic principles – local consistency, and the “few subpowers” algorithm. It is
another significant success of the algebraic approach that the applicability of these principles
is now understood.

3.1 Local consistency

The CSP over some constraint languages can be decided in polynomial time by constraint
propagation algorithms, or, in other words, by enforcing local consistency. Such CSPs are
said to have bounded width.

This notion comes in various versions and equivalent forms. We refer to [40] for formaliza-
tions using Datalog programs and games, to [31] for description using dualities, and to [29, 7]
for a notion suitable for infinite languages.

We informally sketch one possible definition. Let k ≤ l be positive integers. The (k, l)-
algorithm derives the strongest possible constraints on k variables by considering l variables
at a time. If a contradiction is found, the algorithm answers “no (solution)”, otherwise it
answers “yes”. These algorithms work in polynomial time (for fixed k, l) and “no” answers
are always correct. A constraint language D (or CSP(D)) has width (k, l), if “yes” answers
are correct for every instance of CSP(D). If D has width (k, l) for some k, l, we say that D
has bounded width.

As an example, we consider the constraint language D2COLOR and the instance

x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x5, x5 6= x1 .

The (2, 3)-algorithm can certify that this instance has no solution as follows:

• We consider the variables x1, x2, x3. Using x1 6= x2, x2 6= x3 we derive x1 = x3.

• We consider x1, x3, x4. Using x3 6= x4 and the already derived constraint x1 = x3 we
derive x1 6= x4.

• We consider x1, x4, x5 and using x1 6= x4, x4 6= x5 and x5 6= x1 we derive a contradiction.

In fact, 2-COLORING has width (2, 3), that is, such reasoning finds a contradiction for every
unsatisfiable instance. Other examples of bounded width problems include HORN-3-SAT and
2-SAT.

Feder and Vardi [40] proved that problems 3-LIN(p) (and more generally, similar problems
3-LIN(M) over finite modules) do not have bounded width and conjectured that linear equa-
tions are essentially the only obstacle for having bounded width. An algebraic formulation
was given by Larose and Zádori [55]. They proved that analogues of results in section 2 hold

16

for bounded width, therefore no problem which pp-interprets the language of 3-LIN(M) has
bounded width, and conjectured that the converse is also true. After a sequence of partial
results [51, 33, 8, 28], the conjecture was eventually confirmed in [13]10 and independently
in [22].

Theorem 3.1. An idempotent constraint language D has bounded width if and only if D does
not interpret the language of 3-LIN(M) for a finite module M.11

3.2 Few subpowers

Gaussian elimination not only solves 3-LIN(p), it also describes all the solutions in the sense
that the algorithm can output a small (polynomially large) set of points in GF(p)n so that
the affine hull of these points is equal to the solution set of the original instance. A sequence
of papers [40, 25, 23, 37] culminating in [46, 18] pushed this idea, in a way, to its limit.

We need some terminology to state the result. Let D be a constraint language and D its
clone of polymorphism. Recall that a relation on D is a subpower of D if and only if it is
pp-definable from D. Note that the set of solutions of any instance of CSP(D) can be viewed
as a subpower of D. Now D has few subpowers if each subpower can be obtained as a closure
under polymorphisms of a small set (polynomially large with respect to the arity).12

Theorem 3.2. Let D be an idempotent constraint language. If D has few subpowers, then
CSP(D) can be solved in polynomial time.

4 Conclusion

We have seen that the complexity of the satisfiability problem for CSP over a fixed constraint
language depends on “higher arity symmetries” – polymorphisms of the language. (We have
only discussed languages with finite domains. The algebraic theory extends to interesting
subclasses of infinite domain CSP [20]). Significant progress has been achieved using this
insight, but the main problem, the dichotomy conjecture, is still open.

A similar approach can be applied to other variants of CSP over a fixed constraint lan-
guage. In two of them, the main goal has been reached: the dichotomy for the counting
problem was proved in [30] (substantially simplified in [39]) and for the robust satisfiability
problem in [12]. A generalization of the theory for the optimization problem and valued CSPs
was given in [35], and some links to universal algebra are emerging from research in the area
of approximation algorithms (such as [59]).

Is this approach only applicable to CSPs over fixed languages? Or are we merely seeing a
piece of a bigger theory?

10A modification required to handle infinite languages was given in [7].
11Moreover, if D has bounded width, then it has width (2, 3) with an appropriate notion of width. Also, the

property of having bounded width can be checked in polynomial time given an idempotent D on input.
12The name comes from an equivalent property that D has only exponentially many subpowers.

17

Comments on the included articles

Smooth digraphs [16]

A digraph R with vertex set D is a binary relation on the set D. It is called smooth if it
has no sources or sinks, that is, every vertex a ∈ D has an incoming edge (b, a) ∈ R and an
outgoing edge (a, c) ∈ R. Hell and Nešetřil [44] proved the dichotomy for the special case
of symmetric digraphs:13 CSP({R}) is in P if the core of R has at most 2 vertices, and is
NP-complete otherwise.

Bang-Jensen and Hell [3] conjectured a generalization for smooth digraphs: CSP({R})
is in P if the core of R is a disjoint union of cycles, and is NP-complete otherwise. We
confirmed their conjecture. This result was presented at the conference STOC’08 [15] and
published in the SIAM Journal on Computing [16]. It follows from [4] that we also get a
characterization of hereditarily hard digraphs, that is, digraphs whose CSP is NP-complete
and remains NP-complete after adding arbitrary vertices and non-loop edges.

Since CSP over a disjoint union of cycles is easily seen to be polynomially solvable, the
interesting part is to prove NP-completeness of the remaining cases. Our main tool was a
characterization of the conjectured borderline between P and NP-complete CSPs in terms
of weak near unanimity operations by Maróti and McKenzie [57]. It turned out that our
result can be used to obtain alternative characterizations of the borderline – by means of a
4-ary operation satisfying a single identity [50] (this result was inspired by an earlier surpris-
ing characterization of Siggers [63] by means of a 6-ary operation) and by means of cyclic
operations [11].

Bounded width [13]

This result was discussed in subsection 3.1: we confirmed the conjectures from [40, 27, 55]
which characterize finite constraint languages whose CSP is solvable by local consistency
methods (see Theorem 3.1). This result was presented at the conference FOCS’09 [9] and an
improved result published in [13].

Techniques and concepts, such as Prague instances and absorption (already implicit
in [16]), which we discovered while working on this project have found further significant
applications.

13Note that a symmetric digraph is smooth unless it has an isolated vertex. Isolated vertices can be safely
ignored.

18

Absorption and cyclic terms [11]

This work further developed the technique of absorption. A subuniverse B of an idempotent
clone A is absorbing if A contains an operation t such that t(a1, . . . , an) ∈ B whenever all but
at most one ai is in B. This simple concept is useful, because (1) a problem about A can often
be reduced to a problem about an absorbing subuniverse of A, and (2) “many” clones have
nontrivial absorbing subuniverse. The second claim is witnessed by the Absorption Theorem
proved in this paper.

As an application we gave a different proof of the dichotomy theorem for smooth digraphs
which is shorter and does not require the result of Maróti and McKenzie [57] on weak near
unanimity operations. In fact, our second application strengthened their characterization to
cyclic operations (see Theorem 2.15). This new characterization is currently the syntactically
strongest Mal’tsev condition for the conjectured borderline between P and NP-complete CSPs.

This work was presented at LICS’10 [10]. It was selected, as one of seven papers from this
conference, to a special issue of the journal Logical Methods in Computer Science [11].

Congruence distributive finitely related algebras [6]

This paper applies CSP techniques from [8]14 to settle an algebraic problem – the Zádori
conjecture.

I explain only one consequence of the main result. An operation t on a set A is a near
unanimity operation if t(a, . . . , a, b, a, . . . , a) = a for any a, b ∈ A and any position of b. Clones
containing near unanimity operations are important both in universal algebra (as they gen-
eralize lattices and have some pleasant properties [2]) and in CSP, where they characterize
problems of bounded strict width [40] – these are, roughly, such CSPs whose solution can
be obtained by a greedy algorithm after performing the (k, l)-algorithm described in subsec-
tion 3.1. A consequence of the main result of this paper is that it is decidable whether a finite
constraint language has a near unanimity polymorphism, therefore it is decidable whether a
finite constraint language defines a CSP of bounded strict width.

Conservative CSPs [5]

One of the main achievements toward the Feder–Várdi conjecture is the dichotomy theorem
of Bulatov [26, 29] for conservative CPSs, that is, CSPs over languages that contain all unary
relations. Bulatov’s proof is very long and technical. My paper [5] presented at LICS’11
gives a new, quite short proof using (a refinement of) techniques from the bounded width
paper [13].

Near unanimity in NL [17]

This paper contributes to finer (computational and descriptive) complexity classification of
CSPs, namely, to classification of CSPs in NL.

The “obvious” obstructions for CSP(D) to be in the class NL is that D pp-interprets the
language of 3-LIN(M) for a finite module M (since it is unlikely that these problems are in

14This paper contains a partial result on bounded width problems and it was the first paper which explicitly
uses Prague instances and absorption.

19

NL) or that D pp-interprets the language of HORN-3-SAT (since HORN-3-SAT is P-complete,
it is unlikely in NL). It is conjectured that these are the only obstacles – if D interprets neither
3-LIN(M) nor HORN-3-SAT, then CSP(D) is in NL, moreover it can be solved by a linear
Datalog program, which is, roughly, a non-branching local consistency checking algorithm.

This conjecture remains open, but we confirmed it for what seems to be (in light of [6])
the last reasonable intermediate case – for languages with a near unanimity polymorphism.15

The proof again uses the absorption technique in an essential way.
The result was presented at LICS’12 [17] and we were invited to submit the result to the

Journal of the ACM (work on the journal version is in progress).

Robust satisfiability [12]

Robust satisfiability is one of the few variants of the CSP where the main goal – the classi-
fication of constraint languages over which the problem is polynomially solvable – has been
achieved.

The task is a robust version of the search problem: we not only want to output a solution
if a solution exists, we also want to output an “almost solution” of an “almost satisfiable”
instance. More formally, we say that CSP(D) is robustly solvable, if there exists a function
f : [0, 1]→ [0, 1] with limε→0 f(ε) = 0 and a polynomial algorithm which finds an assignment
satisfying at least (1− f(ε))-fraction of the constraints given a (1− ε)-satisfiable instance of
CSP(D).

This problem was introduced by Zwick [67] who also found such algorithms for 2-SAT
and HORN-3-SAT based on linear programming and semidefinite programming relaxations
of the CSP. From a deep result of H̊astad [43] it follows that the problems 3-LIN(M) are not
robustly solvable (unless P=NP). Guruswami and Zhou [42] recognized the similarity with
the characterization of bounded width problems and conjectured that CSP(D) is robustly
solvable if and only if CSP(D) has bounded width (assuming P 6= NP). One direction was
settled by Dalmau and Krokhin [38] who proved analogues of the results in section 2, thus
CSP(D) can be robustly solvable only if CSP(D) has bounded width. We confirmed the
Guruswami-Zhou conjecture by designing a robust polynomial algorithm for bounded width
CSPs.

This result was presented at STOC’12 [12] and we were invited to submit it for publi-
cation in a special issue of the SIAM Journal of Computing for the best papers from the
conference [14].

15The previous important step was done by Dalmau and Krokhin [36] who proved the conjecture for languages
with a ternary near unanimity polymorphism.

20

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2009.

[2] Kirby A. Baker and Alden F. Pixley. Polynomial interpolation and the Chinese remainder
theorem for algebraic systems. Mathematische Zeitschrift, 143:165–174, 1975.

[3] Jørgen Bang-Jensen and Pavol Hell. The effect of two cycles on the complexity of colour-
ings by directed graphs. Discrete Appl. Math., 26(1):1–23, 1990.

[4] Jørgen Bang-Jensen, Pavol Hell, and Gary MacGillivray. Hereditarily hard H-colouring
problems. Discrete Math., 138(1-3):75–92, 1995. 14th British Combinatorial Conference
(Keele, 1993).

[5] Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited.
In 26th Annual IEEE Symposium on Logic in Computer Science—LICS 2011, pages
301–310. IEEE Computer Soc., Los Alamitos, CA, 2011.

[6] Libor Barto. Finitely related algebras in congruence distributive varieties have near
unanimity terms. Canad. J. Math., 65(1):3–21, 2013.

[7] Libor Barto. The collapse of the bounded width hierarchy. submitted, 2014.

[8] Libor Barto and Marcin Kozik. Congruence distributivity implies bounded width. SIAM
Journal on Computing, 39(4):1531–1542, 2009.

[9] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width.
In FOCS’09: Proceedings of the 50th Symposium on Foundations of Computer Science,
pages 595–603, 2009.

[10] Libor Barto and Marcin Kozik. New conditions for Taylor varieties and CSP. In Pro-
ceedings of the 2010 25th Annual IEEE Symposium on Logic in Computer Science, LICS
’10, pages 100–109, Washington, DC, USA, 2010. IEEE Computer Society.

[11] Libor Barto and Marcin Kozik. Absorbing subalgebras, cyclic terms, and the constraint
satisfaction problem. Logical Methods in Computer Science, 8(1), 2012.

[12] Libor Barto and Marcin Kozik. Robust satisfiability of constraint satisfaction problems.
In Proceedings of the 44th symposium on Theory of Computing, STOC ’12, pages 931–
940, New York, NY, USA, 2012. ACM.

[13] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local con-
sistency methods. J. ACM, 61(1):3:1–3:19, January 2014.

21

[14] Libor Barto and Marcin Kozik. Robustly solvable constraint satisfaction problems. sub-
mitted, 2014.

[15] Libor Barto, Marcin Kozik, and Todd Niven. Graphs, polymorphisms and the complex-
ity of homomorphism problems. In STOC ’08: Proceedings of the 40th annual ACM
symposium on Theory of computing, pages 789–796, New York, NY, USA, 2008. ACM.

[16] Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs
with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell).
SIAM J. Comput., 38(5):1782–1802, 2008/09.

[17] Libor Barto, Marcin Kozik, and Ross Willard. Near unanimity constraints have bounded
pathwidth duality. In Proceedings of the 2012 27th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 125–134. IEEE Computer Soc., Los Alamitos, CA,
2012.

[18] Joel Berman, Pawel Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and
Ross Willard. Varieties with few subalgebras of powers. Transactions of The American
Mathematical Society, 362:1445–1473, 2009.

[19] Garrett Birkhoff. On the structure of abstract algebras. Proc. Camb. Philos. Soc.,
31:433–454, 1935.

[20] Manuel Bodirsky. Constraint satisfaction problems with infinite templates. In Nadia
Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity of Constraints,
volume 5250 of Lecture Notes in Computer Science, pages 196–228. Springer, 2008.

[21] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory for
Post algebras. I, II. Kibernetika (Kiev), (3):1–10; ibid. 1969, no. 5, 1–9, 1969.

[22] Andrei Bulatov. Bounded relational width. manuscript, 2009.

[23] Andrei Bulatov and Vı́ctor Dalmau. A simple algorithm for Mal′tsev constraints. SIAM
J. Comput., 36(1):16–27 (electronic), 2006.

[24] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of con-
straints using finite algebras. SIAM J. Comput., 34:720–742, March 2005.

[25] Andrei A. Bulatov. Mal’tsev constraints are tractable. Electronic Colloquium on Com-
putational Complexity (ECCC), (034), 2002.

[26] Andrei A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceed-
ings of the 18th Annual IEEE Symposium on Logic in Computer Science, pages 321–,
Washington, DC, USA, 2003. IEEE Computer Society.

[27] Andrei A. Bulatov. A graph of a relational structure and constraint satisfaction problems.
In Proceedings of the Nineteenth Annual IEEE Symposium on Logic in Computer Science
(LICS 2004), pages 448–457. IEEE Computer Society Press, July 2004.

[28] Andrei A. Bulatov. Combinatorial problems raised from 2-semilattices. J. Algebra,
298(2):321–339, 2006.

22

[29] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Logic, 12(4):24:1–24:66, July 2011.

[30] Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J.
ACM, 60(5):34:1–34:41, October 2013.

[31] Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose. Complexity of constraints.
chapter Dualities for Constraint Satisfaction Problems, pages 93–124. Springer-Verlag,
Berlin, Heidelberg, 2008.

[32] Jin-Yi Cai and Xi Chen. Complexity of counting csp with complex weights. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pages
909–920, New York, NY, USA, 2012. ACM.

[33] Catarina Carvalho, Vı́ctor Dalmau, Petar Marković, and Miklós Maróti. CD(4) has
bounded width. Algebra Universalis, 60(3):293–307, 2009.

[34] Hubie Chen. Meditations on quantified constraint satisfaction. In RobertL. Constable
and Alexandra Silva, editors, Logic and Program Semantics, volume 7230 of Lecture
Notes in Computer Science, pages 35–49. Springer Berlin Heidelberg, 2012.

[35] David A. Cohen, Martin C. Cooper, Páid́ı Creed, Peter Jeavons, and Stanislav Živný. An
algebraic theory of complexity for discrete optimisation. SIAM Journal on Computing,
42(5):1915–1939, 2013.

[36] Vctor Dalmau and Andrei Krokhin. Majority constraints have bounded pathwidth du-
ality. European Journal of Combinatorics, 29(4):821 – 837, 2008. Homomorphisms:
Structure and Highlights Homomorphisms: Structure and Highlights.

[37] Vı́ctor Dalmau. Generalized majority-minority operations are tractable. Log. Methods
Comput. Sci., 2(4):4:1, 14, 2006.

[38] Vı́ctor Dalmau and Andrei Krokhin. Robust satisfiability for csps: Hardness and algo-
rithmic results. ACM Trans. Comput. Theory, 5(4):15:1–15:25, November 2013.

[39] Martin E. Dyer and David Richerby. An effective dichotomy for the counting constraint
satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013.

[40] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic snp
and constraint satisfaction: A study through datalog and group theory. SIAM Journal
on Computing, 28(1):57–104, 1998.

[41] David Geiger. Closed systems of functions and predicates. Pacific J. Math., 27:95–100,
1968.

[42] Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximability of almost-
satisfiable Horn SAT and exact hitting set. In Dana Randall, editor, SODA, pages
1574–1589. SIAM, 2011.

[43] Johan H̊astad. On the efficient approximability of constraint satisfaction problems. In
Surveys in combinatorics 2007, volume 346 of London Math. Soc. Lecture Note Ser.,
pages 201–221. Cambridge Univ. Press, Cambridge, 2007.

23

[44] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Combin. Theory
Ser. B, 48(1):92–110, 1990.

[45] David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76 of Con-
temporary Mathematics. American Mathematical Society, Providence, RI, 1988.

[46] Pawel Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and Ross Willard.
Tractability and learnability arising from algebras with few subpowers. In Proceedings
of the Twenty-Second Annual IEEE Symposium on Logic in Computer Science (LICS
2007), pages 213–222. IEEE Computer Society Press, July 2007.

[47] Neil Immerman. Nondeterministic space is closed under complementation. SIAM J.
Comput., 17(5):935–938, October 1988.

[48] Peter Jeavons. On the algebraic structure of combinatorial problems. Theoretical Com-
puter Science, 200(12):185 – 204, 1998.

[49] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J.
ACM, 44(4):527–548, 1997.

[50] Keith Kearnes, Petar Markovi, and Ralph McKenzie. Optimal strong malcev conditions
for omitting type 1 in locally finite varieties. Algebra universalis, 72(1):91–100, 2014.

[51] Emil Kiss and Matthew Valeriote. On tractability and congruence distributivity. Log.
Methods Comput. Sci., 3(2):2:6, 20 pp. (electronic), 2007.

[52] Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC
’09, pages 725–734, New York, NY, USA, 2009. ACM.

[53] Richard E. Ladner. On the structure of polynomial time reducibility. J. Assoc. Comput.
Mach., 22:155–171, 1975.

[54] Benôıt Larose and Pascal Tesson. Universal algebra and hardness results for constraint
satisfaction problems. Theor. Comput. Sci., 410:1629–1647, April 2009.

[55] Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra Uni-
versalis, 56(3-4):439–466, 2007.

[56] F. Madelaine and B. Martin. A tetrachotomy for positive first-order logic without equal-
ity. In Logic in Computer Science (LICS), 2011 26th Annual IEEE Symposium on, pages
311–320, June 2011.

[57] Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric opera-
tions. Algebra Universalis, 59(3-4):463–489, 2008.

[58] Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Com-
pany, Reading, MA, 1994.

[59] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In STOC’08, pages 245–254, 2008.

24

[60] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, Septem-
ber 2008.

[61] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

[62] Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of
the Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978),
pages 216–226. ACM, New York, 1978.

[63] MarkH. Siggers. A strong malcev condition for locally finite varieties omitting the unary
type. Algebra universalis, 64(1-2):15–20, 2010.

[64] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Inf., 26(3):279–284, November 1988.

[65] Walter Taylor. Varieties obeying homotopy laws. Canad. J. Math., 29(3):498–527, 1977.

[66] Stanislav Živný. The complexity of valued constraint satisfaction problems. Cognitive
Technologies. Springer, Heidelberg, 2012.

[67] Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, STOC ’98, pages 551–560, New York, NY,
USA, 1998. ACM.

25

Appendix A – Smooth digraphs

26

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 38, No. 5, pp. 1782–1802

THE CSP DICHOTOMY HOLDS FOR DIGRAPHS WITH NO
SOURCES AND NO SINKS (A POSITIVE ANSWER TO A

CONJECTURE OF BANG-JENSEN AND HELL)∗

LIBOR BARTO† , MARCIN KOZIK‡ , AND TODD NIVEN†

Abstract. Bang-Jensen and Hell conjectured in 1990 (using the language of graph homomor-
phisms) a constraint satisfaction problem (CSP) dichotomy for digraphs with no sources or sinks.
The conjecture states that the CSP for such a digraph is tractable if each component of its core is a
cycle and is NP -complete otherwise. In this paper we prove this conjecture and, as a consequence, a
conjecture of Bang-Jensen, Hell, and MacGillivray from 1995 classifying hereditarily hard digraphs.
Further, we show that the CSP dichotomy for digraphs with no sources or sinks agrees with the
algebraic characterization conjectured by Bulatov, Jeavons, and Krokhin in 2005.

Key words. constraint satisfaction problem, graph homomorphism, smooth digraphs

AMS subject classifications. 68R10, 08A70

DOI. 10.1137/070708093

1. Introduction. The history of the constraint satisfaction problem (CSP) goes
back more than thirty years and begins with the work of Montanari [Mon74] and
Mackworth [Mac77]. Since that time many combinatorial problems in artificial in-
telligence and other areas of computer science have been formulated in the language
of CSPs. The study of such problems, under this common framework, has applica-
tions in database theory [Var00], machine vision recognition [Mon74], temporal and
spatial reasoning [SV98], truth maintenance [DD96], technical design [NL], schedul-
ing [LALW98], natural language comprehension [All94], and programming language
comprehension [Nad]. Numerous attempts to understand the structure of different
CSPs has been undertaken, and a wide variety of tools ranging from statistical phy-
sics (e.g., [ANP05, KMRT+07]) to universal algebra (e.g., [JCG97]) has been em-
ployed. Methods and results developed in seemingly disconnected branches of math-
ematics transformed the area. The conjecture proved in this paper resisted the ap-
proaches based in combinatorics and theoretical computer science for nearly twenty
years. Only recent developments in the structural theory of finite algebras provided
tools strong enough to solve this problem.

For the last ten years the study of CSPs has also been a driving force in theoretical
computer science. The dichotomy conjecture of Feder and Vardi, published in [FV99],
has origins going back to 1993. The conjecture states that a CSP, for any fixed
language, is solvable in polynomial time or NP -complete. Therefore the class of CSPs
would be a subclass of NP avoiding problems of intermediate difficulty. The logical

∗Received by the editors November 14, 2007; accepted for publication (in revised form) August
1, 2008; published electronically January 9, 2009. A part of this article appeared, in a preliminary
form, in the Proceedings of the 40th ACM Symposium on Theory of Computing, STOC’08. This
work was partly supported by the Eduard Cech Center grant LC505.

http://www.siam.org/journals/sicomp/38-5/70809.html
†Eduard Čech Center, Charles University, 186 75 Praha, Czech Republic (barto@karlin.mff.cuni.

cz, niven@karlin.mff.cuni.cz). The first author was supported by the Grant Agency of the Czech
Republic under grant 201/06/0664 and by the project of Ministry of Education under grant MSM
0021620839.

‡Eduard Čech Center, Charles University, 186 75 Praha, Czech Republic, and Algorithmics Re-
search Group, Jagiellonian University, 30-072 Kraków, Poland (marcin.kozik@tcs.uj.edu.pl).

1782

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1783

characterization of the class of CSPs (see [FV99] and [Kun]) provides arguments in
support of the dichotomy; nevertheless the conjecture remains open.

One of the results of [FV99] shows that the CSP dichotomy conjecture is equiv-
alent to the CSP dichotomy conjecture restricted to digraphs. Therefore the CSPs
can be defined in terms of the (di)graph homomorphisms studied in graph theory
for over forty years (cf. [Sab61, HP64, Lev73]). It adds a new dimension to a well-
established problem and shows the importance of solving CSPs for digraphs. The
classification of the complexity of the H-coloring problems for undirected graphs,
discovered by Hell and Nešetřil [HN90], is an important step and provides a start-
ing point towards proving, or refuting, the CSP dichotomy conjecture. There have
since appeared many papers on the complexity of digraph coloring problems (see,
e.g., [BJH90, BJHM95, Fed01, GWW92, HNZ96a, HNZ96b, HNZ96c, HZZ93, Mac91,
Zhu95]), but as yet, no plausible conjecture on a graph theoretical classification has
been proposed. Bang-Jensen and Hell [BJH90] did, however, conjecture a classifica-
tion (implying the dichotomy) for the class of digraphs with no sources or sinks. Their
conjecture significantly generalizes the result of Hell and Nešetřil.

In 1995, Bang-Jensen, Hell, and MacGillivray (in [BJHM95]) introduced the no-
tion of hereditarily hard digraphs and conjectured their classification. Surprisingly,
they were able to show that this conjecture and the one given in [BJH90] are equiv-
alent. In this paper we prove the conjecture of Bang-Jensen and Hell and, as a
consequence, the conjecture of Bang-Jensen, Hell, and MacGillivray.

Our paper relies on the interconnection between the CSP and algebra as first dis-
covered by Jeavons, Cohen, and Gyssens in [JCG97] and refined by Bulatov, Jeavons,
and Krokhin in [BJK05]. Using this connection, Bulatov, Jeavons, and Krokhin con-
jectured a full classification of the NP -complete CSPs. For a small taste of results in
the direction of proving this classification, see [BIM+06, Bul06, Dal05, Dal06, KV07].
A particularly interesting example, demonstrating the potency of the algebraic ap-
proach, is Bulatov’s proof of the result of Hell and Nešetřil (see [Bul05]). A recent,
purely algebraic result of Maróti and McKenzie [MM07] is one of the key ingredients
in the proof of the conjecture of Bang-Jensen and Hell. This provides further evidence
supporting the extremely strong bond between the CSP and universal algebra.

2. Preliminaries. We assume that the reader possesses a basic knowledge of
universal algebra and graph theory. For an easy introduction to the notions of uni-
versal algebra that are not defined in this paper, we invite the reader to consult the
monographs [BS81] and [MMT87]. Further information concerning the structural the-
ory of finite algebras (called tame congruence theory) can be found in [HM88]. For
an explanation of the basic terms in graph theory and graph homomorphisms, we
recommend [HN04]. Finally, for an introduction to the connections between universal
algebra and the CSP, we recommend [BJK05].

Throughout the paper we deviate from the standard definition of the CSP, with
respect to a fixed language (found in, e.g., [BKJ00]), in favor of an equivalent definition
from [FV99, LZ06]. The definitions of a relational structure, a homomorphism, or a
polymorphism are presented further in this section in their full generality as well as
in restriction to directed graphs.

A directed graph (or digraph) is a pair G = (V, E), where V is a set of vertices
and E ⊆ V × V is a set of edges. More generally a relational structure T = (T,R)
is an ordered pair, where T is a finite nonempty set and R is a finite set of finitary
relations on T indexed by a set J . Let dj denote the arity of the relation Rj ∈ R.
The indexed set of all the dj constitutes the signature of T .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1784 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

A vertex of a digraph is called a source (resp., a sink) if it has no incoming (resp.,
outgoing) edges. An oriented walk is a sequence of vertices (v0, . . . , vn−1) such that
(vi, vi+1) ∈ E or (vi+1, vi) ∈ E for any i < n − 1 and the length of such a walk is
n− 1. A walk is an oriented walk such that (vi, vi+1) ∈ E for any i < n− 1. A closed
walk is a walk such that v0 = vn−1. Given a digraph G, we sometimes denote the
set of vertices of G by V (G) and similarly the edges of G by E(G). A graph with
n vertices is a cycle if its vertices can be ordered (i.e., V = {v0, . . . , vn−1}) in such a
way that E = {(vi, vj)| j = i + 1 mod n}.

A graph homomorphism is a function between sets of vertices of two graphs map-
ping edges to edges. A graph is 3-colorable if and only if it maps homomorphically
to the complete graph on three vertices (without loops). The notion of colorability
is generalized using graph homomorphisms: a digraph, say G, is H-colorable if there
exists a homomorphism mapping G to H. For two relational structures of the same
signature, say T = (T,R) and U = (U,S), a map h : T → U is a homomorphism if
h(Tj) ⊆ Rj for all j ∈ J (where h(Tj) is computed pointwise).

A digraph polymorphism is a homomorphism from a finite Cartesian power of a
graph to the graph itself. Precisely, for a digraph G = (V, E) a function h : V n → V
is a polymorphism of G if, for any vertices a0, . . . , an−1, b0, . . . , bn−1 ∈ V ,

if (ai, bi) ∈ E for all i < n, then (h(a0, . . . , an−1), h(b0, . . . , bn−1)) ∈ E.

The notion of a polymorphism is defined for relational structures as well. A polymor-
phism h of T is an operation h : T n → T such that, for all relations R ∈ R of arity
m, if

(ai,0, ai,1, . . . , ai,m−1) ∈ R for all i < n,

then

(h(a0,0, a1,0, . . . , an−1,0), . . . , h(a0,m−1, a1,m−1, . . . , an−1,m−1)) ∈ R.

A digraph G = (V, E) retracts to an induced subgraph H = (W, F) if there is an
endomorphism h : V → V such that h(V) = W and h(a) = a for all a ∈ W . Such
a map h is called a retraction. A core of a digraph is a minimal induced subgraph
to which the digraph retracts. The definition of retraction and core clearly generalize
to relational structures. It is a trivial fact that, for any digraph H, and for a core
of H, say H′, the set of H-colorable digraphs coincides with the set of H′-colorable
digraphs.

An algebra is a tuple A = (A, f0, . . .) consisting of a nonempty set A (called
a universe of A) and operations on A. An operation fi is an ni-ary function fi :
Ani → A. With each operation we associate an operation symbol and, by an abuse of
notation, denote it also by fi. A set B ⊆ A is a subuniverse of an algebra A if, for any
number i, the operation fi restricted to Bni has all the results in B. For a nonempty
subuniverse B of an algebra A the algebra B = (B, f ′

0, . . .) (where f ′
i is a restriction

of fi to Bni) is a subalgebra of A. A power of an algebra A has a universe Ak and
the operations f ′′

i derived from the operations of A by computing coordinatewise. A
subalgebra of a power of an algebra is often called a subpower. A term function of an
algebra is any function that can be obtained by a composition using the operations
of the algebra together with all the projections. A term is a formal way of denoting
such a composition; i.e., a term function is attached to an algebra, but a term can be
computed in a subalgebra or a power as well as in the original algebra. A set C ⊆ A

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1785

generates a subuniverse B in an algebra A if B is the smallest subuniverse containing
C—such a subuniverse always exists and can be obtained by applying all the term
functions of the algebra A to all the choices of arguments coming from C.

In this paper all relational structures, digraphs, and algebras are assumed to be
finite.

3. The main result. For a relational structure T = (T, R) we define the lan-
guage CSP(T), of relational structures with the same signature as T , to be

CSP(T) = { U | there is a homomorphism from U to T }.
Alternatively we can view CSP(T) as a decision problem:

INPUT: a relational structure U with the same signature as T
QUESTION: does there exist a homomorphism from U to T ?

In either approach we are concerned with the computational complexity (of member-
ship of the language, or of the decision problem, respectively) for a given relational
structure. The CSP dichotomy conjecture proposed in [FV99] can be stated as follows.

The CSP dichotomy conjecture. For a relational structure T the problem
CSP(T) is solvable in polynomial time or NP-complete.

The (di)graph coloring problems can be viewed as special cases of the CSP. Al-
though a digraph H = (W, F) is technically different from a relational structure, the
set of H-colorable digraphs is obviously polynomially equivalent to the CSP for an
appropriate relational structure, and therefore we denote the class of all H-colorable
digraphs by CSP(H). Due to the reduction presented in [FV99], every CSP is poly-
nomially equivalent to a digraph homomorphism problem. Thus we can restate the
CSP dichotomy conjecture in the following way.

The CSP dichotomy conjecture. For a fixed digraph H, deciding whether a
given digraph is H-colorable is either NP-complete or solvable in polynomial time.

This brings us to the main problem of the paper, a conjecture nearly ten years
older than the CSP dichotomy conjecture, and a special case of it. It deals with
digraphs with no sources or sinks and was first formulated by Bang-Jensen and Hell
in [BJH90].

The conjecture of Bang-Jensen and Hell. Let H be a digraph without
sources or sinks. If each component of the core of H is a cycle, then CSP(H) is
polynomially decidable. Otherwise CSP(H) is NP-complete.

Note that the above conjecture is a substantial generalization of the H-coloring
result of Hell and Nešetřil [HN90].

The notion of hereditarily hard digraphs was introduced by Bang-Jensen, Hell,
and MacGillivray in [BJHM95]. A digraph H is said to be hereditarily hard if the
H′-coloring problem is NP -complete for all loopless digraphs H′ that contain H as a
subgraph (not necessarily induced). The following conjecture was posed and shown
to be equivalent to the Bang-Jensen and Hell conjecture in [BJHM95].

The conjecture of Bang-Jensen, Hell, and MacGillivray. Let H be a
digraph. If the digraph R(H) (which is obtained by iteratively removing the sources
and sinks from H until none remain) does not admit a homomorphism to a cycle of
length greater than one, then H is hereditarily hard. Otherwise there exists a loopless
digraph H′ containing H (as a not necessarily induced subgraph) such that H′-coloring
is solvable in a polynomial time.

In this section we prove the Bang-Jensen and Hell conjecture and therefore the
conjecture of Bang-Jensen, Hell, and MacGillivray. In this proof we assume Theo-
rem 3.1, which will be proved in the subsequent sections of the paper. The reasoning

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1786 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

uses weak near unanimity operations1 and Taylor operations (used only to connect
Theorems 3.2 and 3.3, and therefore not defined here [HM88, Tay77, LZ06]).

Theorem 3.1. If a digraph without sources or sinks admits a weak near unanim-
ity polymorphism, then it retracts to the disjoint union of cycles.

It is easy to see that the colorability by digraphs retracting to a disjoint union of
cycles is tractable (see, e.g., [BJH90]). It remains to prove the NP-completeness of the
digraphs not retracting to such a union. Before we do so, we recall two fundamental
results.

It follows from [HM88, Lemma 9.4 and Theorem 9.6] that a part of the result of
Máróti and McKenzie [MM07, Theorem 1.1] can be stated as follows.

Theorem 3.2 (see [MM07]). A finite relational structure T admits a Taylor
polymorphism if and only if it admits a weak near unanimity polymorphism.

The following result was originally proved in [BKJ00] and [LZ03] and, as stated
below, can be found in [LZ06, Theorem 2.3]. It relies on a connection between rela-
tional structures and varieties generated by algebras of their polymorphisms. A lack
of a Taylor polymorphism in such an algebra implies an existence of a “trivial” algebra
in a variety and NP-completeness of the associated CSP.

Theorem 3.3 (see [LZ06]). Let T be a relational structure which is a core. If T
does not admit a Taylor polymorphism, then CSP(T) is NP -complete.

If a digraph H without sources or sinks does not retract to a disjoint union of
cycles, then its core H′ also does not. Thus, by Theorem 3.1, it follows that H′

does not admit a weak near unanimity polymorphism, and by Theorems 3.2 and 3.3
it follows that CSP(H′) is NP -complete, completing the proof of the conjecture of
Bang-Jensen and Hell.

The conjecture (posed in [BKJ00]), classifying the CSPs from the algebraic point
of view, can be stated as follows (see, e.g., [LZ06]).

The algebraic CSP dichotomy conjecture. Let T be a relational structure
that is a core. If T admits a Taylor polymorphism, then CSP(T) is polynomial time
solvable. Otherwise CSP(T) is NP -complete.

Note that the proof of the conjecture of Bang-Jensen and Hell immediately implies
that the structure of the NP -complete digraph coloring problems agrees with the
algebraic CSP dichotomy conjecture. The remainder of the paper is dedicated to the
proof of the Theorem 3.1.

4. Notation. In this section we introduce the notation required throughout the
remainder of the paper.

4.1. Neighborhoods in graphs. For a fixed digraph G = (V, E) we denote
(a, b) ∈ E by a → b, and we use a

k−→ b to say that there is a directed walk from a
to b of length precisely k. More generally we call a digraph H a pattern if V (H) =
{0, . . . , n − 1} and (u, v) ∈ E if and only if |u − v| = 1 and (v, u) /∈ E. We denote
patterns by lowercase Greek letters and, for a pattern α, we write a

α−→ b if there
exists a homomorphism φ from α into G such that φ(0) = a and φ(n − 1) = b. In
such a case we say that a and b can be connected via the pattern α. The oriented
walk connecting vertices a and b and consisting of the images of elements of α under
φ is a realization of the pattern. For any W ⊆ V we define

W+n = {v ∈ V | (∃w ∈W) w
n−→ v}

1A weak near unanimity operation is a function such that, for any choice of arguments a, b,
w(b, a, . . . , a) = w(a, b, . . . , a) = · · · = w(a, a, . . . , b) and w(a, . . . , a) = a. These operations are
described in more detail in section 4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1787

and similarly

W−n = {v ∈ V | (∃w ∈W) v
n−→ w}.

We define W 0 = W , and write a+n (resp., a−n, a0) instead of {a}+n (resp., {a}−n
, {a}0)

for any a ∈ V . More generally, for a pattern α, we write

Wα = {v ∈ V | (∃w ∈W) w
α−→ v}.

As before, we use aα for {a}α. Sometimes, for ease of presentation, we write a
k,n−−→ b

to denote a
k−→ b and a

n−→ b.

4.2. Digraph path powers. Let G = (V, E) be a digraph and α be a pattern.
We define a path power of the digraph G, which we denote by Gα, in the following way:
the vertices of the power are the vertices of the digraph G, and a pair (c, d) ∈ V 2 is an
edge in Gα if and only if c

α−→ d in G. Moreover, we set G+n = Gα for the pattern α
consisting of n arrows pointing forward. Note that if f : V m → V is a polymorphism
of G, then it is also a polymorphism of any path power of this digraph. Path powers
are special cases of primitive positive definitions (used in, e.g., [Bul05]) or indicator
constructions introduced in [HN90] in order to deal with the colorability problem for
undirected graphs.

4.3. Components. A connected digraph is a digraph such that there exists an
oriented walk, consisting of at least one edge, between every choice of two vertices. A
strongly connected digraph is a digraph such that, for every choice of two vertices, there
is a walk connecting them. By a component (resp., strong component) of a digraph G,
we mean a maximal (under inclusion) induced subgraph that is connected (resp.,
strongly connected). Note that, according to this definition, a single vertex with
the empty set of edges is not connected, and thus not every digraph decomposes
into a union of components (or strong components). Given a digraph G with no
sources or sinks, we say that a strong component H of G is a top component if
V (H)+1 = V (H). Similarly, we say that a strong component H of G is a bottom
component if V (H)−1 = V (H).

4.4. Algebraic length. The following definition is taken from [HNZ96b]. For
a pattern α we define the algebraic length al(α) to be

al(α) = |{edges going forward in α}| − |{edges going backward in α}|.

An algebraic length of an oriented walk is a shorthand expression for an algebraic
length of a pattern which can be realized as such an oriented walk—the pattern is
always clear from the context. For a digraph G = (V, E) we set

al(G) = min{i > 0 | (∃v ∈ V) (∃ a pattern α) v
α−→ v and al(α) = i}

whenever the set on the right-hand side is nonempty and ∞ otherwise. In case of
strongly connected digraphs in section 7 the algebraic length can be equivalently
defined (cf. Corollary 5.7) as the greatest common divisor of the lengths of closed
walks in a digraph. We note that for digraphs with no sources or sinks (or with a
closed walk) the algebraic length of a nonempty digraph is always a natural number.
It is folklore (cf. [HN04, Proposition 5.19]) that a connected digraph G retracts to a
cycle if and only if it contains a closed walk of length al(G).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1788 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

4.5. Algebraic notation. By a we denote the tuple (a, a, . . . , a) (the arity will
always be clear by the context), and by −→a we denote the tuple (a0, a1, . . . , an). Fur-
ther, we extend the notation a to the sets in the following way. For a set W let W
be an appropriate Cartesian power of W . Thus, for example, given a vertex a of a
digraph G, the set a+n is the collection of all tuples whose coordinates are vertices
reachable by a walk of length n from a.

An idempotent operation on a set A is an operation, say f : An → A, such
that f(a) = a for all a ∈ A. In accordance with [MM07], by a weak near unanimity
operation we understand an idempotent operation w(x0, . . . , xn−1) that satisfies

w(y, x, . . . , x) = w(x, y, . . . , x) = · · · = w(x, x, . . . , y),

for any choice of x and y in the underlying set. Moreover, for a term t of arity n, we
define

t(i)(x0, x1, . . . , xn−1) = t(xn−i, xn−i+1, . . . , x0, x1, . . . , xn−i−1),

for each 0 ≤ i < n, where addition on the indices is performed modulo n.

5. Preliminary results on digraphs. We start with a number of basic results
describing the connection between digraphs and their path powers. The following
lemma reveals the behavior of the algebraic lengths of oriented walks in powers of a
digraph.

Lemma 5.1. Let G be a digraph without sources or sinks. Let α be a pattern of
algebraic length k, and let a

α−→ b in G. Then a
β−→ b in G+k for some pattern β of

algebraic length one.
Proof. For a fixed, large enough number j, consider all oriented walks in G of

the form a
l1−→ a1

l2←− a2
l3−→ · · · � alj = b, where l1 − l2 + · · · ± lj = k. We will

show that at least one of these walks has all the li’s divisible by k. Let us choose an
oriented walk in which k divides all the li in a maximal initial segment of the i, and
let li0 be the last element of this segment. If i0 + 1 < j, then (assuming without loss
of generality that i0 is odd) the walk

a
l1−→ · · ·

li0−−→ ai0

li0+1←−−− ai0+1

li0+2−−−→ ai0+2 · · ·

can be altered, using the fact that ai0+1 (and possibly other vertices) is not a source,
to obtain

a
l1−→ · · ·

li0−−→ ai0

l′i0+1←−−− a′
i0+1

l′i0+2−−−→ ai0+2 · · · ,

where l′i0+1 is greater than li0+1 and is divisible by k. This contradicts the choice of
i0.

If, on the other hand, i0 + 1 = j, the number k divides l1 − l2 + · · · ± li0 and,
using the fact that l1 − l2 + · · · ± li0 ∓ li0+1 = k, we infer that k divides li0+1,
again contradicting the choice of i0. Thus i0 = j and we can find an oriented walk
a

l1−→ a1
l2←− a2

l3−→ · · ·alj = b with l1 − l2 + · · · ± lj = k, where each li is divisible
by k. This shows that a is connected to b via a pattern of algebraic length one in
G+k.

As a consequence we obtain the following fact.
Corollary 5.2. Let G be a digraph, without sources or sinks, such that al(G) =

1. Then al(G+k) = 1 for any natural number k.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1789

Proof. Let a
α−→ a, where α is a pattern of algebraic length one. Then, by following

a realization of α k-many times, we obtain a
β−→ a in G for a pattern β of algebraic

length k. Now the statement follows from the previous lemma.
Theorem 3.1 is proved in section 7 for strongly connected digraphs first, and

therefore we need some preliminary results on such digraphs. The following very
simple lemma is needed to prove some of the further corollaries in this section.

Lemma 5.3. Let c be a vertex in a strongly connected digraph. Then the greatest
common divisor (GCD) of the lengths of the closed walks in this digraph is equal to
the GCD of the lengths of the closed walks containing c.

Proof. Suppose, for contradiction, that the GCD, say n′, of the lengths of the
closed walks containing c is bigger than the GCD of the lengths of the closed walks
for the entire digraph. Then there exists a walk d

l−→ d of length l such that n′ does

not divide l. On the other hand, since the digraph is strongly connected, c
l′−→ d and

d
l′′−→ c for some numbers l′, l′′. The number n′, by definition, divides l′ + l′′ and

l′ + l + l′′ and thus divides l, a contradiction.
Moreover, the following easy proposition holds.
Proposition 5.4. Let G be a connected digraph G and α be a pattern. If a

α−→ a
for a vertex a in G, then the number al(G) divides al(α).

Proof. Let G be a connected digraph and, for some vertex a, a
α−→ a via a pattern

α. Let b be a vertex in G such that b
β−→ b for a pattern β satisfying al(β) = al(G).

Since G is connected there is a pattern γ such that b
γ−→ a and thus b

γ−→ a
α−→ a

γ′
−→ b

with al(γ′) = −al(γ). Following appropriate walks, we can obtain an oriented walk,
from b to b, of algebraic length al(α) − k · al(G), for any number k. The minimality
of al(G) implies that al(G) divides al(α).

The following lemma is heavily used in the proof of Theorem 3.1 for strongly
connected digraphs in section 7.

Lemma 5.5. If, for a strongly connected digraph G = (V, E), the GCD of the
lengths of the closed walks in G is equal to one, then

(∃m) (∀a, b ∈ V) (∀n) if n ≥ m, then a
n−→ b.

Proof. Fix an arbitrary element c ∈ V . By Lemma 5.3 we find some closed
walks containing c such that their lengths k1, . . . , ki satisfy GCD(k1, . . . , ki) = 1.
Thus c is contained in a closed walk of length l whenever l is a linear combination
of k1, . . . , ki with nonnegative integer coefficients. It is easy to see that there is a
natural number m′ such that, for every n′ ≥ m′, n′ can be expressed as such a linear
combination; hence c is in a closed walk of length n′ for each such n′. Now it suffices
to set m = m′ + 2|V | since, for arbitrary vertices a, b ∈ V , there are walks of length
at most |V | from a to c and from c to b.

The following easy corollary follows.
Corollary 5.6. For a strongly connected digraph G with GCD of the lengths

of the closed walks equal to one, and for any number n, the digraph G+n is strongly
connected.

For strongly connected digraphs, the GCD of the lengths of the closed walks and
the algebraic length of the digraph coincide.

Corollary 5.7. For a strongly connected digraph, the GCD of the lengths of the
closed walks is equal to the algebraic length of the digraph.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1790 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

Proof. Let us fix a digraph G = (V, E) and denote by n the GCD of the lengths
of the closed walks in G. Since, by Proposition 5.4, the algebraic length of G divides
the length of every closed walk in G, al(G) divides n.

Conversely, let a = a0
l0−→ b0

k0←− a1
l1−→ · · · km−1←−−− am = a be a realization of a

pattern of algebraic length al(G). Let k′
i be such that bi

ki←− ai+1
k′

i←− bi for all i. Note
that n divides ki + k′

i and
∑

i<m li +
∑

i<m k′
i. Thus n divides

∑
i<m li −

∑
i<m ki =

al(G), which shows that n ≤ al(G), and the lemma is proved.
Finally, we remark that if α is a pattern of algebraic length one and G has

no sources and no sinks, then E(Gα) ⊇ E(G). In particular, if al(G) = 1, then
al(Gα) = 1.

6. A connection between graphs and algebra. In this section we present
basic definitions and results concerning the connection between digraphs and alge-
bras. Let G = (V, E) be a digraph admitting a weak near unanimity polymorphism
w(x0, x1, . . . , xh−1). We associate with G an algebra A = (V, w) and note that E is
a subuniverse of A2. Note that for any subuniverse of A, say W , we can define the
digraph G|W = (W, E ∩W ×W) (or (W, E|W)) which admits the weak near unanim-
ity polymorphism w|W h , and the algebra (W, w|W h) is a subalgebra of A. For the
remainder of this section we assume that G and A are as above.

The first lemma describes the influence of the structure of the digraph on the
subuniverses of the algebra.

Lemma 6.1. For any subuniverse W of A the sets W+1 and W−1 are subuni-
verses of A.

Proof. Take any elements a0, . . . , ah−1 from W+1 and choose b0, . . . , bh−1 ∈ W
such that bi → ai for all i. Then w(b0, . . . , bh−1) → w(a0, . . . , ah−1) showing that
w(a0, . . . , ah−1) ∈W+1, and the claim is proved. The proof for W−1 is similar.

Since the weak near unanimity operation is idempotent, all the one element sub-
sets of V are subuniverses of A. Using the previous lemma, the following result follows
trivially.

Corollary 6.2. For any a ∈ V , any pattern α, and any number n, the sets
a+n, a−n, and aα are subuniverses of A.

Subuniverses of A can also be obtained in another way.
Lemma 6.3. Let H be a strong component of G. Assume that the GCD of the

lengths of the cycles in H is equal to one. Then V (H) is a subuniverse of A.
Proof. Using Lemma 5.5, we find a number m such that there is a walk b

m−→ c in
H for all b, c ∈ V (H). Fix a vertex a ∈ V (H). There is a walk a

m−→ b for all b ∈ V (H)
and a walk c

m−→ a for all c ∈ V (H). Thus, V (H) = a+m∩a−m is a subuniverse.
We present a second construction leading to a subuniverse of the algebra.
Lemma 6.4. If H = (W, F) is the largest induced subgraph of G without sources

or sinks, then W is a subuniverse of A.
Proof. Clearly, the vertices of H can be described as those having arbitrarily long

walks to and from them. Since G is finite, there exists a natural number k such that

W = {w | (∃v, v′ ∈ V) v
k−→ w and w

k−→ v′}.

Thus W = V +k ∩ V −k, and we are done, since both sets on the right-hand side are
subuniverses.

7. Strongly connected digraphs. In this section we present a proof Theo-
rem 3.1 in the case of strongly connected digraphs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1791

Theorem 7.1. If a strongly connected digraph of algebraic length k admits a
weak near unanimity polymorphism, then it contains a closed walk of length k (and
thus retracts to a cycle of length k).

Using Corollary 5.7, the result can be restated in terms of the GCD of the lengths
of closed walks in G, and we will freely use this duality. Theorem 7.1 is a consequence
of the following result.

Theorem 7.2. If a strongly connected digraph G of algebraic length one admits
a weak near unanimity polymorphism, then it contains a loop.

We present a proof of Theorem 7.1, assuming Theorem 7.2, and devote the re-
mainder of this section to proving Theorem 7.2.

Proof of Theorem 7.1. Fix an arbitrary vertex c in a strongly connected digraph
of algebraic length k. Using Lemma 5.3 and Corollary 5.7, we obtain closed walks
containing c with the GCD of their lengths equal to k. Thus, in the path power
G+k, the GCD of lengths of closed walks containing c is equal to one. Let H be the
strong component of G+k containing c. Using Lemma 6.3, we infer that V (H) is a
subuniverse of the algebra (V (G+k), w), and thus H admits a weak near unanimity
polymorphism. The algebraic length of H (again by Corollary 5.7) is one, and there-
fore by Theorem 7.2 it follows that there is a loop in G+k. This trivially implies a
closed walk of length k in G, and the theorem is proved using the folklore proposition
from section 4.4.

The remaining part of this section is devoted to the proof of Theorem 7.2. We
start by choosing a digraph G = (V, E) to be a minimal (with respect to the number
of vertices) counterexample to Theorem 7.2. We fix a weak near unanimity polymor-
phism w(x0, . . . , xh−1) of this digraph and associate with it the algebra A = (V, w).
The proof will proceed by a number of claims.

Claim 7.3. The digraph G can be chosen to contain a closed walk of length 2.
Proof. Using Lemma 5.5, we find a minimal k such that a closed walk of length

2k is contained in G. Consider the path power G+2k−1
. It contains a closed walk of

length 2 and admits a weak near unanimity polymorphism. Moreover, since k was
chosen to be minimal and G did not contain a loop, the path power G+2k−1

does not
contain a loop either. By Corollary 5.6 the path power is strongly connected, and
by Corollary 5.2 it has algebraic length equal to one. Thus, the digraph G+2k−1

is
also a counterexample to Theorem 7.2 (with the same number of vertices as G), and
therefore we can use it as a substitute for G.

From this point on we assume that G contains a closed walk of length 2 (an
undirected edge). The next claim allows us to choose and fix an undirected edge with
special properties.

Claim 7.4. There are vertices a, b ∈ V forming an undirected edge in G and a
binary term t of A such that a = t(w(a, b), w(b, a)).

Proof. Let M ⊆ V be a minimal (under inclusion) subuniverse of A containing an
undirected edge, and let a, b ∈ M be vertices in such an edge. Since vertices w(a, b),
w(b, a) ∈ M form an undirected edge in G, the set {w(a, b), w(b, a)} generates, in
the algebraic sense, the set M (by the minimality of M). Since every vertex in a
subuniverse is a result of an application of some term function to the generators of
the subuniverse, there exists a term t such that t(w(a, b), w(b, a)) = a.

In the following claims we fix vertices a, b and a term t(x, y) such that a →
b → a and a = t(w(a, b), w(b, a)) (provided by the previous claim). Note that, by
the definition of the operation w(x0, . . . , xh−1), for any numbers i, j < h, we obtain
a = t(w(i)(a, b), w(j)(b, a)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1792 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

Using Lemma 5.5, we find and fix a minimal number n such that a+(n+1) = V .
We put W = a+n and F = (W ×W)∩E so that H = (W, F) is an induced subgraph
of the digraph G. Using Corollary 6.2, we infer that W is a subuniverse of A and thus
H admits a weak near unanimity polymorphism. In the following claims we will show
that the algebraic length of some strong component of H is one, which will contradict
the minimality of G.

Claim 7.5. For any vertex in W there exists a closed walk in H and a walk (also
in H) connecting the closed walk to this vertex.

Proof. Let d0 denote an arbitrary vertex of W . Since a+(n+1) = W+1 = V there
is d1 ∈ W such that d1 → d0. Similarly, there exists d2 ∈ W such that d2 → d1. By
repeating this procedure, we get both statements of the claim.

The next claim will allow us to fix some more vertices necessary for further con-
struction.

Claim 7.6. There exist vertices c, c′ ∈W and a number k such that
1. c′ → a,
2. c

k−→ c in H, and
3. c

k−n−1−−−−−→ c′ in H.
Proof. Since W+1 = V there exists c′ ∈W such that c′ → a. Let l be the length

of a closed walk provided by Claim 7.5 for c′ ∈W . For a sufficiently large multiple k
of l there is a walk in H of length k − n− 1 from some vertex of the closed walk to
c′; we call this vertex c. This finishes the proof.

From this point on we fix vertices c and c′ in W and a number k to satisfy the
conditions of the last claim. The following claims focus on uncovering the structure
of the strong component containing c in H.

Claim 7.7. For any m ≤ n either a+m ⊆ a+n or a+m ⊆ b+n.
Proof. Since a is in a closed walk of length 2, we obviously have a+n ⊇ a+(n−2) ⊇

a+(n−4) · · · , which proves the claim for even m’s. If, on the other hand, m is odd, we
have b+n ⊇ a+(n−1) ⊇ a+(n−3) · · · , completing the proof.

The next two claims are of major importance for the proof of Theorem 7.2. They
are used to show that the algebraic length of the strong component of H containing c
is one.

Claim 7.8. For any m ≤ n and for any 0 ≤ i, j < h the following inclusion
holds:

t(w(i)(a+n, a+m), w(j)(a+m, a+n)) ⊆ a+n.

Proof. Note that a = t(w(i)(a, b), w(j)(b, a)) and therefore, for any choice of
arguments of the term reachable by walks of length n from corresponding arguments
of t(w(i)(a, b), w(j)(b, a)), the result is reachable by a walk of the same length from a,
i.e.,

a+n ⊇ t(w(i)(a+n, b+n), w(j)(b+n, a+n)).

By the same token, using a = t(w(i)(a, a), w(j)(a, a)) provided by the idempotency of
the terms, we obtain

a+n ⊇ t(w(i)(a+n, a+n), w(j)(a+n, a+n)).

Now the claim follows directly from Claim 7.7.
The following technical claim will allow us to find walks in the strong component

of H containing c.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1793

Claim 7.9. The following implication holds in H (i.e., all the walks and vertices
lie inside H). For any numbers 0 ≤ i, j < h and all e, e′, f ∈ W and

−→
d ,
−→
d′ ,−→g ∈ W ,

if
e

k
��

e′
and

dl

k
��

d′l

for all l, then
t(w(i)(

−→
d , c), w(j)(c, e))

k
��

t(w(i)(
−→
d′ , f), w(j)(−→g , e′)).

Proof. Note that, by looking at the tuples of vertices pointwise, we can find the
following walks in G:

−→
d

k

��

c

k−n−1
��

c
k−n−1
��

e

k

��

c′

��

c′

��

a
n
��

a
n
��−→

d′ f −→g e′

where the walks from c to c′ are provided by Claim 7.6 and lie entirely in H. Ap-
plying the appropriate term to the consecutive vertices of the walks (rows in the
diagram above), we obtain a walk of length k connecting t(w(i)(

−→
d , c), w(j)(c, e)) to

t(w(i)(
−→
d′ , f), w(j)(−→g , e′)). It remains to prove that all the vertices of this walk are in

W . The first k − n− 1 vertices of the walks are in W , since W is a subuniverse and
they are results of an application of a term to vertices of the subuniverse. For m ≥ 0,
the (k−n+m)th vertex of the walk is a member of t(w(i)(a+n, a+m), w(j)(a+m, a+n))
and thus in W by Claim 7.8.

We now construct a closed walk in H, that contains c, of length coprime to k.

Claim 7.10. There exists a closed walk c
(h+1)k−1−−−−−−→ c in digraph H.

Proof. In the proof of this claim we use only vertices and walks that lie inside
H. Fix d ∈ W (provided by Claim 7.6) such that c → d

k−1−−→ c in H. By repeatedly
applying Claim 7.9 we obtain

t(w(c, . . . , c, c, c), w(c, c . . . , c))
k
��

t(w(c, . . . , c, c, d), w(d, c, . . . , c)) = t(w(1)(c, . . . , c, d, c), w(1)(c, . . . , c, d))
k
��

t(w(2)(c, . . . , d, d, c), w(1)(c, . . . , c, d))

��

= t(w(1)(c, . . . , c, d, d), w(1)(c, . . . , c, d))

= t(w(h−1)(d, . . . , d, d, c), w(1)(c, . . . , c, d))
k
��

t(w(h−1)(d, . . . , d, d, d), w(1)(d, . . . , d, d))

and since the algebra is idempotent, the starting point of this walk is c and the
ending point is d. Thus c

hk−→ d (for h the arity of the operation w(x0, . . . , xh−1)),
which immediately gives us the claim.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1794 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

By Claims 7.6 and 7.10, the strong component of H containing c has GCD of
the lengths of its closed walks equal to one, and thus, by Lemma 6.3, its vertex set
forms a subuniverse of the algebra A. As a digraph it admits a weak near unanimity
polymorphism. By Corollary 5.7 it has algebraic length one, and (as an induced
subgraph of G) it has no loops. Since H was chosen to be strictly smaller than G
we obtain a contradiction with the minimality of G, and the proof of Theorem 7.2 is
complete.

8. The general case. In this section we prove Theorem 3.1 in its full generality.
Nevertheless the majority of this section is devoted to the proof of the following result.

Theorem 8.1. If a digraph with no sources or sinks has algebraic length one and
admits a weak near unanimity polymorphism, then it contains a loop.

Using the above result, we prove the core theorem of the paper, Theorem 3.1.
Proof of Theorem 3.1. Let G be a digraph with no sources or sinks which admits

a weak near unanimity polymorphism. Let n be the algebraic length of some com-
ponent of G. The path power G+n admits a weak near unanimity polymorphism,
has no sources or sinks, and, by Lemma 5.1, has algebraic length equal to one. Thus,
Theorem 8.1 applied to G+n provides a loop in the path power and therefore a closed
walk of length n in G.

Let n be minimal, under divisibility, in the set of algebraic lengths of components
of G. Since the algebraic length of a component divides (by Proposition 5.4) the length
of any closed walk in it, every closed walk of length n (for such a minimal n) forms a
subgraph which is a cycle. Moreover, by the same reasoning, cycles obtained for two
different minimal n’s cannot belong to the same component. Thus each component
of G maps homomorphically to an n-cycle (for any minimal n dividing the algebraic
length of this component), and it is not difficult to see that these homomorphisms
can be chosen so that their union is a retraction. This proves the theorem.

Therefore the only missing piece of the proof to the conjecture of Bang-Jensen
and Hell is Theorem 8.1. We prove this result by way of contradiction. Suppose that
G = (V, E) is a minimal (with respect to the number of vertices) counterexample to
Theorem 8.1, and let A = (V, w(x0, . . . , xh−1)) be the algebra associated with G, in
the sense of section 6, for some weak near unanimity polymorphism w(x0, . . . , xh−1).

The first part of the proof is dedicated to finding a particular counterexam-
ple satisfying more restrictive conditions than G. To do so we need to define a
special family of digraphs called tambourines. The n-tambourine is the digraph
({d0, . . . , dn−1, u0, . . . , un−1}, Fn) such that

Fn =
⋃
i

{(di, di+1), (di, ui), (di, ui+1), (ui, ui+1)},

where the addition on the indices is computed modulo n. The 12-tambourine can be
found in Figure 1. We begin the proof of the theorem with the following claim.

Claim 8.2. We can choose a digraph G and a number n such that
1. the n-tambourine maps homomorphically to G,
2. every vertex of G is in a closed walk of length n, and
3. G+(mn+1) = G for any number m.

To prove this claim, we begin with an easy subclaim and work towards replacing
G with a particular path power of G which satisfies the additional conditions. Note
that, for any pattern α, the path power Gα admits w(x0, . . . , xh−1) as a polymorphism
and has no sources or sinks. If such a path power has algebraic length one and does
not contain a loop, then it can be taken as a substitute for G.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1795

d0

d1

d2

d3

d4d5

d6

d7

d8

d9

d10 d11

u0

u1

u2

u3

u4u5
u6

u7

u8

u9

u10 u11

���������������

���������������������

���������������

��������� ������ ����

��������������

�������������������

�������������

������������������

������������

																	

���� � �� �� �� �

��� �� �� ��� �� �

������������

��������������

��

���������������

���������

���������������

�����������������

����������������

�����������������������

����������������

������������������������

��

��

��

����

��

��

��

��

�� ��

��

��

��

��

����

��

��

!!

�� ��

��

Fig. 1. The 12-tambourine.

Subclaim 8.2.1. The digraph G contains vertices d and u such that d
|V |,|V |+1−−−−−−→

u.
Proof. Let α be the pattern

→ · · · →︸ ︷︷ ︸
|V |+1

← · · · ←︸ ︷︷ ︸
|V |

.

Using the fact that al(α) = 1 and that G has no sources or sinks, it follows that
E(G) ⊆ E(Gα). Moreover, let a, b be vertices in G such that b is contained in a

closed walk and a
k−→ b for some k. Then a

k′
−→ b for some k′ ≤ |V |, and choosing

b′ (from the closed walk containing b) such that b′ k′+1−−−→ b, we obtain

b′ k′+1−−−→ b
(|V |+1)−(k′+1)−−−−−−−−−−→ c

(|V |+1)−(k′+1)←−−−−−−−−−− b
k′
←− a for some c.

Thus b′ α−→ a, and this implies that every component of G becomes a strong component
of Gα.

Let H = (W, F) be a component of G with a closed walk realizing a pattern
of algebraic length one. Then, for an appropriate F ′, containing F , the digraph
H′ = (W, F ′) is a strong component of Gα. The digraph H′ contains H as a subgraph,
and therefore its algebraic length is one. The path power Gα admits w(x0, . . . , xh−1)
as a polymorphism, and thus, by Lemma 6.3, the digraph H′ admits an appropriate
restriction of w(x0, . . . , xh−1). Theorem 7.2 provides a loop in H′, which in turn

implies the existence of vertices d, u ∈W such that d
|V |,|V |+1−−−−−−→ u in G.

Proof of Claim 8.2. We fix n = |V |! and argue that, for some k, the path power
Gk = G+(kn+1) satisfies the assertions of the claim and therefore can be taken as a
substitute for G. Note that, for any number k, the digraph Gk admits w(x0, . . . , xh−1)
as a polymorphism, has no sources or sinks, and, by Corollary 5.2, has algebraic length
one.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1796 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

We first prove that, for all k, the digraph Gk does not contain a loop. If Gk

does contain a loop, then there exists a closed walk of length kn + 1 in some strong
component of G. In the same strong component in G there exists a closed walk of
length smaller than n and thus coprime to kn + 1; therefore the GCD of the lengths
of closed walks in this strong component is one, and, using Corollary 5.7, Lemma 6.3,
and Theorem 7.2, we obtain a loop in this strong component and therefore also in G,
a contradiction. Thus, to prove the claim, it remains to verify the additional required
properties.

We now show that, for the fixed number n, the n-tambourine maps homomorphi-
cally to Gk for k ≥ 4. Let d, u be vertices of G provided by Subclaim 8.2.1. Since G
has no sources or sinks, we can find vertices d′, u′, each contained in a closed walk,
such that d′ is connected by a walk to d and u is connected by a walk to u′. By
following the closed walks containing d′ and u′ multiple times, we get d′0, u

′
0, each

contained in a closed walk, such that d′0
3n,3n+1−−−−−→ u′

0. Moreover, again following the
closed walks multiple times, we obtain

d′0
n−→ d′0

3n,3n+1−−−−−→ u′
0

n−→ u′
0.

Let d′i denote the ith vertex of the closed walk d′0
n−→ d′0 and, similarly, u′

i the ith
vertex of the closed walk u′

0
n−→ u′

0. Then, for any number k ≥ 4 and any i < n, we
have d′i

kn+1−−−→ u′
i and d′i

kn+1−−−→ u′
(i+1) mod n. On the other hand, d′i

kn+1−−−→ d′(i+1) mod n

and u′
i

kn+1−−−→ u′
(i+1) mod n. Thus, for any k ≥ 4, the map di �→ d′i, ui �→ u′

i is a
homomorphism from the n-tambourine in the path power Gk.

To prove the second assertion of the claim we need to show that if k ≥ 4, then
any vertex of Gk is in a closed walk of length n. We fix such a number k and let
W ⊂ V be the subuniverse of A generated by {d′0, . . . , d′n−1, u

′
0, . . . , u

′
n−1}. Let G′

k be
the subgraph induced by Gk on W . The digraph G′

k obviously admits a restriction
of w(x0, . . . , xh−1) and (since the n-tambourine maps homomorphically to it) has
algebraic length one. Choose an arbitrary a ∈ W . Then, by the definition of W , we
have a term t(x0, . . . , xn−1, y0, . . . , yn−1) such that a = t(d′0, . . . , d

′
n−1, u

′
0, . . . , u

′
n−1).

Therefore,

t(d′0, . . . , d
′
n−2, d

′
n−1, u

′
0, . . . , u

′
n−2, u

′
n−1)

��

t(d′1, . . . , d′n−1, d
′
0, u

′
1, . . . , u

′
n−1, u

′
0)

��

t(d′n−1, . . . , d
′
n−3, d

′
n−2, u

′
n−1, . . . , u

′
n−3, u

′
n−2)

��

t(d′0, . . . , d
′
n−2, d

′
n−1, u

′
0, . . . , u

′
n−2, u

′
n−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

n,

and thus a is in a closed walk of length n. This proves that G′
k has no sources and no

sinks, and since it cannot be a counterexample smaller than G, we infer that W = V .
Therefore the second assertion holds for all the digraphs Gk with k ≥ 4.

In the digraph G4 every vertex is in a closed walk of length n, and therefore
E(G4

+(nm+1)) ⊆ E(G4
+(n(m+1)+1)) for any number m. Thus, there is a number l

such that for any m ≥ l we have G4
+(nm+1) = G4

+(nl+1). Take

G′ = G4
+(nl+1) = G+(4n+1)(nl+1) = G(4nl+l+4)n+1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1797

and note that, according to the previous paragraphs of this proof, such a digraph sat-
isfies all but the last assertion of the claim. Let m be arbitrary. Then (G′)+(mn+1) =
G4

+((mnl+l+m)n+1) = G4
+(nl+1) = G′, and thus G′ can be taken to substitute for G

and the claim is proved.
From this point on we substitute G with a digraph provided by the previous claim

and fix it together with the number n. For ease of notation we denote the number
modulo n using brackets (e.g., [n + 1] = 1). We already know that the n-tambourine
maps homomorphically to G, but we must choose such a homomorphism carefully.

Claim 8.3. The n-tambourine can be mapped homomorphically to G in such a
way that, for some term t(x0, . . . , xn−1) of algebra A,

d′i = t(i)(w(d′0, d
′
1), w(d′1, d

′
2), . . . , w(d′n−1, d

′
0)) for all i < n,

where d′i is the image of di.
Proof. Let di �→ d′i, ui �→ u′

i be a homomorphism from the n-tambourine to G.
Then, for any i, we have

w(u′
i, u

′
[i+1]) "" w(u′

[i+1], u
′
[i+2]) "" · · ·

w(d′i, d
′
[i+1])

�� ����������
"" w(d′[i+1], d

′
[i+2]) ""

��

· · ·
· · ·

and thus di �→ w(d′i, d
′
[i+1]), ui �→ w(u′

i, u
′
[i+1]) is also a homomorphism from the n-

tambourine to G. By repeating this procedure, we obtain an infinite sequence of
homomorphisms from the n-tambourine to G, and thus some homomorphism has
to appear twice in this sequence. This homomorphism satisfies the claim, since the
term t(x0, . . . , xn−1) can be easily obtained as a composition of the polymorphism
w(x0, . . . , xh−1) used in the construction of the sequence.

In the remaining part of the proof we fix vertices d′0, . . . , d
′
n−1, u

′
0, . . . , u

′
n−1 pro-

vided by the previous claim and a term t(x0, . . . , xn−1) associated with them. Let ϕk

be the pattern 0
ϕk−−→ k

0 2 4

1 3
· · ·

(k − 1)

k
##���
�����

##���
�����

##
##���

��

with exactly k edges. (The last edge of the pattern is pointing forward for odd k, as
in the above picture, and backward for even k.)

Claim 8.4. The neighborhood (d′0)ϕn contains all vertices of G.
Proof. Note that, in the n-tambourine, we have

(d0)
ϕn = {d0, . . . , dn−1, u0, . . . , un−1},

and thus in the digraph G we have

(d′0)
ϕn ⊇ {d′0, . . . , d′n−1, u

′
0, . . . , u

′
n−1}.

Let G′ denote the subgraph of G induced on the set (d′0)
ϕn . Then, by Corollary 6.2,

G′ admits a restriction of w(x0, . . . , xh−1) as a polymorphism and has algebraic length
one. Further restricting the digraph G′, denote the largest induced subgraph of G′

without sources or sinks by G′′. By Lemma 6.4 G′′ admits a weak near unanimity

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1798 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

polymorphism. Moreover, the vertices {d′0, . . . , d′n−1, u
′
0, . . . , u

′
n−1} are among the

vertices of G′′. Thus G′′ is a counterexample to Theorem 8.1 and therefore has to be
equal to G. This proves the claim.

We choose (and fix) k to be a minimal number such that (d′0)
ϕk+1 = V . Define

Wi = (d′i)
ϕk , for each i < n. We set

W =
⋂
i<n

Wi,

and since W is an intersection of subuniverses of A, by Corollary 6.2, it is itself a
subuniverse of A. We denote by H the subgraph of G induced by W and prove that
H is a counterexample to Theorem 8.1, contradicting the minimality of G.

The most involved part of the proof deals with constructing a closed realization
of a pattern with the algebraic length one in H. Two following claims introduce tools
for “projecting” certain walks from G to H.

Claim 8.5. There exists a term s(x0, . . . , xp−1) of algebra A such that for every
coordinate q < p there exists i such that

s(q)(Wl, W, . . . , W) ⊆W[i−l] ∩W[i−l+1] for any l < n.

Proof. Let p = hn and let s(x0, . . . , xp−1) be defined by

t
(
w(x0, . . . , xh−1), w(xh, . . . , x2h−1), . . . , w(x(n−1)h, . . . , xhn−1)

)
.

For all q < p, let i be maximal such that q = ih + q′′ for some nonnegative q′′. Then,
for all l < n

s(q)(Wl, W) ⊆ t(i)
(
w(q′′)(Wl, W), w(W), . . . , w(W)

)
⊆ t(i)

(
w(q′′)(Wl, W[l+1]), w(W[l+1], W[l+2]), . . . , w(W[l+n−1], Wl)

)
= t([i−l])

(
w(W0, W1), . . . , w(q′′)(Wl, W[l+1]), . . . , w(Wn−1, W0)

)
⊆W[i−l],

where the last inclusion follows from Claim 8.3 and the fact that

d′[i−l] = t([i−l])(w(d′0, d
′
1), . . . , w(d′l, d

′
[l+1]), . . . , w(d′n−1, d

′
0))

= t([i−l])(w(d′0, d
′
1), . . . , w

(q′′)(d′l, d
′
[l+1]), . . . , w(d′n−1, d

′
0)).

Similar reasoning shows that

s(q)(Wl, W) ⊆ t(i)
(
w(q′′)(Wl, W), w(W), . . . , w(W)

)
⊆ t(i)

(
w(q′′)(Wl, W[l−1]), w(W[l+1], Wl), . . . , w(W[l+n−1], W[l+n−2])

)
= t[i−l+1]

(
w(W1, W0), . . . , w(q′′)(Wl, W[l−1]), . . . , w(W0, Wn−1)

)
⊆W[i−l+1],

and the proof is finished.
Further, using the term constructed in the last claim, we can construct a term

satisfying stronger conditions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1799

Claim 8.6. There exists a term r(x0, . . . , xm−1) of algebra A such that for every
coordinate q < m

r(q)

(⋃
l<n

Wl, W, . . . , W

)
⊆W.

Proof. Let s(x0, . . . , xp−1) be the p-ary term provided by the previous claim.
Note that the term

s2(x0, x1, . . . , xp2−1) = s(s(x0, . . . , xp−1), . . . , s(xp2−p, . . . , xp2−1))

has the property that for every coordinate q < p2 − 1 there exists an i such that

s
(q)
2 (Wl, W) ⊆W[i−l] ∩W[i−l+1] ∩W[i−l+2].

To prove a more general statement we recursively define a sequence of terms
• s1(x0, . . . , xp−1) = s(x0, . . . , xp−1) and
• sj+1(x0, . . . , xpj−1) = s(sj(x0, . . . , xpj−1−1), . . . , sj(x(p−1)pj−1 , . . . , xpj−1)).

We claim that for any j, any q < pj , and any l < n there is an i such that

s
(q)
j

(
Wl, W, . . . , W

)
⊆W[i−l] ∩ · · · ∩W[i−l+j].

We prove this fact by induction on j. The first step of the induction holds via
Claim 8.5. Assume that the fact holds for j; then for any l (setting q′ to be the result
of integer division of q by pj−1, and q′′ the remainder of this division) there exist i
and i′ such that

s
(q)
j+1(Wl, W) ⊆ s(q′)(s(q′′)

j (Wl, W), sj(W), . . . , sj(W)
)

⊆ s(q′)(W[i−l] ∩ · · · ∩W[i−l+j], W
)

⊆W[i′+i−l] ∩ · · · ∩W[i′+i−l+(j+1)],

where the second inclusion follows from the induction step and the last one from
Claim 8.5. Setting r(x0, . . . , xm−1) equal to sn−1(x0, . . . , xpn−1) proves the claim.

From this point on we fix a term r(x0, . . . , xm−1) (of arity m) provided by the
previous claim. To prove additional properties of the set W (e.g., the fact that it is
not empty) we require the following easy claim.

Claim 8.7. Let α be a pattern, and let a0 → a1 and b0 → b1 be edges that belong
to closed walks. If a0

α−→ b0, then a1
α−→ b1.

Proof. We prove the claim by induction with respect to the number of edges in α.
Let the vertices a0, a1, b0, b1 be as in the statement of the claim. Assume that a0 → b0.
If i is the length of the closed walk containing the edge a0 → a1, then, following this
walk almost n times, a1

in−1−−−→ a0 → b0 → b1 and, by Claim 8.2, a1 → b1. The same
reasoning can be applied to the case of a0 ← b0, and the first step of the induction is
proved.

For a pattern α consisting of more than one edge we can assume, without loss of

generality, that the last edge is going forward. Then a0
α′
−→ a′

0 → b0 for some vertex
a′
0 (where α′ is the pattern obtained by removing the last edge of α). By Claim 8.2, it

follows that a′
0 is in a closed walk of length n, and therefore a′

0 → a′
1

n−1−−−→ a′
0 for some

a′
1. By the induction hypothesis, a1

α′
−→ a′

1 and, by the first step of the induction,
a′
1 → b1, which proves the claim.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1800 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

We recall the definition of the top and bottom components of the graph from
subsection 4.3 and prove some basic properties of W .

Claim 8.8. The digraph H has no sources and no sinks and
1. if k is even, then every bottom component is contained in W , and
2. if k is odd, then every top component is contained in W .

Proof. First we show that, for any vertices a, b such that a
i−→ b

j−→ a in G for
some i, j,

if a ∈ Wl, then b ∈ W[l+i].

To see this note that if d′l
ϕk−−→ a and a → b

j−→ a, then, using Claim 8.7 and the edge
d′l → d′[l+1], we infer that d′[l+1]

ϕk−−→ b. The same procedure repeated i-many times
provides the result for arbitrary i.

Let a ∈ W be arbitrary and b be such that a
i−→ b

j−→ a for some numbers i, j.
Since a ∈ W it follows, using the note above, that b ∈

⋂
l<n W[l+i] = W , and this

implies that W is a union of strong components. Since, by Claim 8.2, every vertex in
G belongs to a closed walk of length n, the digraph H has no sources or sinks.

Let k be even and let a be a member of a bottom component. Since every
vertex of the graph, by Claim 8.2, belongs to a closed walk, there exists b in the
bottom component containing a such that a → b. Since (d′0)

ϕk+1 = V , we have
d′0

ϕk−1−−−→ c ← a′ → b for some a′ and c. The vertex a is in a bottom component,
and therefore a′ must be a member of the same bottom component. This implies
that a′ → b

i−→ a′, for some i, and following the closed walk containing b almost n

times, a → b
n(i+1)−1−−−−−−→ a′ → c. Thus, by Claim 8.2, we have a → c and a ∈ W0.

Therefore every bottom component is contained in W0. To see that every a from a
bottom component is contained in an arbitrary Wl we find a b satisfying a

l−→ b
i−→ a

for some i and apply the note from the beginning of the proof of the claim. The claim
is proved for even k’s, and the same reasoning provides a proof for odd k and top
components.

Now we are ready to prove the final claim of this section.
Claim 8.9. The algebraic length of H is one.
Proof. In the case where k is odd, we want to find a, b, c ∈ W and e ∈ W0 such

that

a b c

e

"" ""
������

##����

To find such vertices we set e = d′1 and find, using Claim 8.8, b ∈ W from a top
component such that u′

[2]

in−1−−−→ b for some i. There exist a and c in the same com-

ponent (and thus in W by Claim 8.8) such that a → b → c. Since d′1
1,2−−→ u′

[2], we

have e
in+1−−−→ b and e

in+1−−−→ c, and therefore, by Claim 8.2, the vertices a, b, c, and
e satisfy the required properties. Then, using the term r(x0, . . . , xm−1), we produce
the following oriented walk:

•
b = r(b)

•
r(e, a)

•
r(c, b) = r(1)(b, c)

•
r(1)(e, a, b)

•
r(1)(c, b, c) = r(2)(b, c, c)

. . .

•
r(n−1)(c) = c

��������

$$�����������

%%�����������

$$�����������

�� &&

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CSP DICHOTOMY HOLDS FOR SMOOTH DIGRAPHS 1801

By Claim 8.6, all the vertices of this walk belong to W . Thus we have constructed
an oriented walk in H realizing a pattern of algebraic length zero connecting b to c.
Since b→ c we immediately obtain that the algebraic length of H is one.

In the case where k is even, we similarly find a, b, c ∈ W and e ∈ W0 (using u′
1

for e) such that

a b c

e

'' ''

##����

������

The construction of a closed oriented walk realizing a pattern of algebraic length one
is the same as it is for odd k, with the exception that the direction of the edges is
reversed.

Thus H is a digraph without sources or sinks (by Claim 8.8), admitting a weak
near unanimity polymorphism and, by the last claim, having algebraic length equal
to one. Since, by the definition of W , the number of vertices in H is strictly smaller
than the number of vertices in G, we obtain a contradiction with the minimality of
G, and Theorem 8.1 is proved.

REFERENCES

[All94] J. Allen, Natural Language Understanding, 2nd ed., Benjamin Cummings, San Fran-
cisco, CA, 1994.

[ANP05] D. Achlioptas, A. Naor, and Y. Peres, Rigorous location of phase transitions in
hard optimization problems, Nature, 435 (2005), pp. 759–764.

[BIM+06] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R.

Willard, Varieties with few subalgebras of powers, Trans. Amer. Math. Soc., to
appear.

[BJH90] J. Bang-Jensen and P. Hell, The effect of two cycles on the complexity of colour-
ings by directed graphs, Discrete Appl. Math., 26 (1990), pp. 1–23.

[BJHM95] J. Bang-Jensen, P. Hell, and G. MacGillivray, Hereditarily hard H-colouring
problems, Discrete Math., 138 (1995), pp. 75–92.

[BJK05] A. Bulatov, P. Jeavons, and A. Krokhin, Classifying the complexity of constraints
using finite algebras, SIAM J. Comput., 34 (2005), pp. 720–742.

[BKJ00] A. A. Bulatov, A. A. Krokhin, and P. Jeavons, Constraint satisfaction problems
and finite algebras, in Automata, Languages and Programming (Geneva, 2000),
Lecture Notes in Comput. Sci. 1853, Springer, Berlin, 2000, pp. 272–282.

[BS81] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate
Texts in Math. 78, Springer-Verlag, New York, 1981.

[Bul05] A. A. Bulatov, H-coloring dichotomy revisited, Theoret. Comput. Sci., 349 (2005),
pp. 31–39.

[Bul06] A. A. Bulatov, A dichotomy theorem for constraint satisfaction problems on a 3-
element set, J. ACM, 53 (2006), pp. 66–120.

[Dal05] V. Dalmau, A new tractable class of constraint satisfaction problems, Ann. Math.
Artif. Intell., 44 (2005), pp. 61–85.

[Dal06] V. Dalmau, Generalized majority-minority operations are tractable, Log. Methods
Comput. Sci., 2 (2006), pp. 1–15.

[DD96] R. Dechter and A. Dechter, Structure-driven algorithms for truth maintenance,
Artificial Intelligence, 82 (1996), pp. 1–20.

[Fed01] T. Feder, Classification of homomorphisms to oriented cycles and of k-partite sat-
isfiability, SIAM J. Discrete Math., 14 (2001), pp. 471–480.

[FV99] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory, SIAM J.
Comput., 28 (1998), pp. 57–104.

[GWW92] W. Gutjahr, E. Welzl, and G. Woeginger, Polynomial graph-colorings, Discrete
Appl. Math., 35 (1992), pp. 29–45.

[HM88] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Contemp. Math. 76,
American Mathematical Society, Providence, RI, 1988.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1802 LIBOR BARTO, MARCIN KOZIK, AND TODD NIVEN

[HN90] P. Hell and J. Nešetřil, On the complexity of H-coloring, J. Combin. Theory Ser.
B, 48 (1990), pp. 92–110.

[HN04] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford Lecture Series in
Math. Appl. 28, Oxford University Press, Oxford, 2004.

[HNZ96a] P. Hell, J. Nešetřil, and X. Zhu, Complexity of tree homomorphisms, Discrete
Appl. Math., 70 (1996), pp. 23–36.

[HNZ96b] P. Hell, J. Nešetřil, and X. Zhu, Duality and polynomial testing of tree homo-
morphisms, Trans. Amer. Math. Soc., 348 (1996), pp. 1281–1297.

[HNZ96c] P. Hell, J. Nešetřil, and X. Zhu, Duality of graph homomorphisms, in Combina-
torics, Paul Erdős is Eighty, Vol. 2 (Keszthely, 1993), Bolyai Soc. Math. Stud. 2,
János Bolyai Mathematical Society, Budapest, 1996, pp. 271–282.

[HP64] Z. Hedrĺın and A. Pultr, Relations (graphs) with given finitely generated semi-
groups, Monatsh. Math., 68 (1964), pp. 213–217.

[HZZ93] P. Hell, H. S. Zhou, and X. Zhu, Homomorphisms to oriented cycles, Combina-
torica, 13 (1993), pp. 421–433.

[JCG97] P. Jeavons, D. Cohen, and M. Gyssens, Closure properties of constraints, J. ACM,
44 (1997), pp. 527–548.

[KMRT+07] F. Krza̧ka�la, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zde-

borová, Gibbs states and the set of solutions of random constraint satisfaction
problems, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 10318–10323.

[Kun] G. Kun, Constraints, MMSNP and Expander Relational Structures, manuscript,
2007; http://arxiv.org/abs/0706.1701.

[KV07] E. Kiss and M. Valeriote, On tractability and congruence distributivity, Log. Meth-
ods Comput. Sci., 3 (2007), 2:6 (electronic).

[LALW98] D. Lesaint, N. Azarmi, R. Laithwaite, and P. Walker, Engineering dynamic
scheduler for Work Manager, BT Technology J., 16 (1998), pp. 16–29.

[Lev73] L. A. Levin, Universal enumeration problems, Problemy Peredači Informacii, 9
(1973), pp. 115–116.

[LZ03] B. Larose and L. Zádori, The complexity of the extendability problem for finite
posets, SIAM J. Discrete Math., 17 (2003), pp. 114–121.

[LZ06] B. Larose and L. Zádori, Taylor terms, constraint satisfaction and the complexity
of polynomial equations over finite algebras, Internat. J. Algebra Comput., 16
(2006), pp. 563–581.

[Mac77] A. Mackworth, Consistency in networks of relations, Artificial Intelligence, 8
(1977), pp. 99–118.

[Mac91] G. MacGillivray, On the complexity of colouring by vertex-transitive and arc-
transitive digraphs, SIAM J. Discrete Math., 4 (1991), pp. 397–408.

[MM07] M. Maróti and R. McKenzie, Existence theorems for weakly symmetric operations,
Algebra Universalis, to appear.

[MMT87] R. N. McKenzie, G. F. McNulty, and W. F. Taylor, Algebras, Lattices, Vari-
eties, Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth &
Brooks/Cole Advanced Books & Software, Monterey, CA, 1987.

[Mon74] U. Montanari, Networks of constraints: Fundamental properties and applications
to picture processing, Information Sci., 7 (1974), pp. 95–132.

[Nad] B. A. Nadel, Constraint satisfaction in Prolog: Complexity and theory-based heuris-
tics, Inform. Sci., 83 (1995), pp. 113–131.

[NL] B. A. Nadel and J. Lin, Automobile transmission design as a constraint satisfaction
problem: Modeling the kinematic level, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing (AI EDAM), 53 (1991), pp. 137–171.

[Sab61] G. Sabidussi, Graph derivatives, Math. Z., 76 (1961), pp. 385–401.
[SV98] E. Schwalb and L. Vila, Temporal constraints: A survey, Constraints, 3 (1998),

pp. 129–149.
[Tay77] W. Taylor, Varieties obeying homotopy laws, Canad. J. Math., 29 (1977), pp. 498–

527.
[Var00] M. Vardi, Constraint satisfaction and database theory: A tutorial, in Proceedings

of 19th ACM Symposium on Principles of Database Systems (PODS’00), ACM,
New York, 2000, pp. 76–85.

[Zhu95] X. Zhu, A polynomial algorithm for homomorphisms to oriented cycles, J. Algo-
rithms, 19 (1995), pp. 333–345.

Appendix B – Bounded width

48

�

�

�

�

�

�

�

�

3

Constraint Satisfaction Problems Solvable by Local
Consistency Methods

LIBOR BARTO, McMaster University and Charles University in Prague
MARCIN KOZIK, Jagiellonian University

We prove that constraint satisfaction problems without the ability to count are solvable by the local con-
sistency checking algorithm. This settles three (equivalent) conjectures: Feder–Vardi [SICOMP’98], Bulatov
[LICS’04] and Larose–Zádori [AU’07].

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Measures and
Classes—Relations among complexity classes; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—Computations on discrete structures; F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Logic and constraint programming

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Constraint satisfaction problem, local consistency checking

ACM Reference Format:
Barto, L. and Kozik, M. 2014. Constraint Satisfaction Problems solvable by local consistency methods. J.
ACM 61, 1, Article 3 (January 2014), 19 pages.
DOI:http://dx.doi.org/10.1145/2556646

1. INTRODUCTION

The Constraint Satisfaction Problem (CSP) asks if, given variables and constraints,
there is an assignment such that all the constraints are satisfied. Each constraint is
presented by a list of admissible evaluations for a few variables. Deciding if such an
assignment exists is NP-complete.

In a seminal paper [Feder and Vardi 1998], a concept of nonuniform CSPs was intro-
duced. A nonuniform CSPs restricts the admissible instances by limiting the allowed
constraints – the language of the CSP. Thus, each constraint language defines a com-
putational problem of some complexity. The most important question in this area is
the Dichotomy Conjecture of Feder and Vardi [1998] postulating that each constraint
language defines a problem which is NP-complete or solvable in polynomial time.

Two major algorithmic principles solve CSPs for wide classes of constraint lan-
guages. One of them, generalizations of Gaussian elimination [Berman et al. 2009;
Bulatov 2006a; Bulatov and Dalmau 2006; Idziak et al. 2007], is beyond the scope of

A preliminary version of this article appeared in Proceedings of the 50th Symposium on Foundations of
Computer Science (FOCS 09) [Barto and Kozik 2009b].
L. Barto was supported by the Grant Agency of the Czech Republic, grant 201/09/P223 and by the Ministry
of Education of the Czech Republic, grant MSM 0021620839. M. Kozik was partially supported by National
Science Center grant DEC-2011/01/B/ST6/01006.
Authors’ addresses: L. Barto, Department of Algebra, Faculty of Mathematics and Physics, Charles Univer-
sity in Prague, Sokolovská 83, 186 75 Praha 8, Czech Republic; M. Kozik (corresponding author), Theoretical
Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, ul.
Prof. St. Łojasiewicza 6, 30-348 Kraków, Poland; email: marcin.kozik@uj.edu.pl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0004-5411/2014/01-ART3 $15.00
DOI:http://dx.doi.org/10.1145/2556646

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:2 L. Barto and M. Kozik

this article. The other algorithm, called the local consistency checking algorithm, de-
termines whether an instance has a consistent set of local solutions. For a wide variety
of constraint languages the existence of such a set implies a global solution. These
constraint languages are said to have bounded width [Feder and Vardi 1998].

The CSPs of bounded width appear naturally in different approaches to the subject.
The class can be equivalently described as the CSPs having complements recognizable
by a Datalog program with a goal predicate, using pebble games, or as problems with
a bounded tree-width duality.

An obstruction to having bounded width was recognized in Feder and Vardi [1998]
and called the ability to count. A constraint language has this property if it can, in
some sense, simulate relations encoding linear equations over a finite field. Feder and
Vardi [1998] proved that a bounded width constraint language cannot have the ability
to count and conjectured that lack of this ability implies bounded width. A different
conjecture characterizing bounded width was stated by Bulatov [2004b] by means of
his very successful [Bulatov 2003, 2004a, 2006c] technique based on studying the lo-
cal structure of the constraint language. Finally, Larose and Zádori [2007] used Tame
Congruence Theory [Hobby and McKenzie 1988] to propose a characterization using
the types in the variety associated with the constraint language. These three conjec-
tures were shown to be equivalent in Larose et al. [2009] and Bulatov and Valeriote
[2008].

The progress toward proving the bounded width conjecture(s) [Barto and Kozik
2009a; Bulatov 2006b; Carvalho et al. 2009; Kiss and Valeriote 2007] culminated in its
confirmation announced by the authors [Barto and Kozik 2009b] and independently
by Bulatov [2009]. This article contains a full proof of the result announced in Barto
and Kozik [2009b] presented in a self-contained way (modulo basic algebraic and com-
putational notions). The result is stated in a slightly more general way than in Barto
and Kozik [2009b]. This change is motivated by recent developments in robust approx-
imability of CSPs [Barto and Kozik 2012].1 The presented proof is also more elemen-
tary than Barto and Kozik [2009b] in the sense that we do not require the algebraic
results from Maróti and McKenzie [2008]. A generalization of our result in a different
direction appears in Barto [2013].

The material presented in this article is divided in the following way. The next sec-
tion contains preliminary information on CSPs, universal algebra and the connection
between constraint languages and algebras. In Section 3, we introduce the local con-
sistency checking algorithm and use it to define CSPs of bounded width. Section 4
states the three conjectures. Sections 5 and 6 contain reductions of the conjecture of
Larose and Zádori to the case of special instances with binary constraints only. In Sec-
tion 7, we introduce tools and concepts of universal algebra necessary for the proof. In
Section 8, we use these tools to prove the conjecture.

2. PRELIMINARIES

The preliminaries are split into three parts.

2.1. Constraint Satisfaction Problems

The following definition is standard for nonuniform Constraint Satisfaction Problems.

Definition 2.1. An instance of the CSP is a triple I = (V, D, C) with V a finite set of
variables, D a finite domain, and C a finite list of constraints, where each constraint is

1The characterization of CSPs admitting robust approximation, given in Barto and Kozik [2012], requires a
result stronger than the one provided in Barto and Kozik [2009b].

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

Constraint Satisfaction Problems Solvable by Local Consistency Methods 3:3

a pair C = (S, R) with S a tuple of variables of length k, called the scope of C, and R a
k-ary relation on D (i.e., a subset of Dk), called the constraint relation of C.

An assignment for I is a mapping F : V → D. We say that F satisfies a constraint
C = (S, R) if F(S) ∈ R (where F is applied component-wise). An assignment which
satisfies all the constraints of the instance is a solution.

A finite set of relations D over a common domain D is called a constraint lan-
guage (the arities of the relations form the signature of the language). An instance
of CSP(D) is an instance of the CSP such that all the constraint relations are from D.
The decision problem for CSP(D) asks whether an input instance I of CSP(D) has a
solution.

The definition of the CSP does not specify how the constraint relations are given on
the input. Note, however, that for a nonuniform problem CSP(D), where D is finite,
standard representations lead to log-space equivalent problems. We can, for instance,
represent relations by listing all their tuples in every constraint (this is how relations
are usually represented when the constraint language is not finite), or we can just use
names of the relations.

2.2. Universal Algebra

The following paragraphs cover most of the algebraic concepts which are used in this
paper, for a more exhaustive introduction refer to Burris and Sankappanavar [1981]
and Bergman [2011].

An algebra denoted in boldface, for example A, consists of a set A (the universe of A)
and operations (sometimes called the basic operations) – functions from finite powers
of A to A. The symbols and arities of the operations of an algebra form the signature of
this algebra, for example, algebras A and B in the same signature containing an n-ary
symbol t have basic operations tA : An → A and tB : Bn → B respectively.2

A subuniverse of A is a nonempty set B, contained in A, and such that every oper-
ation of A evaluated on arguments from B produces a result in B. An algebra B is a
subalgebra of A (denoted by B ≤ A) if B is a subuniverse of A and the operations of B
are the operations of A restricted to B.

The product of algebras A and B (of the same signature), denoted by A × B, is the
algebra with universe A × B and operations computed coordinatewise. A product of
more than two, or an infinite number of algebras is defined analogically. A power of
A is a product of copies of A and a subpower of A is a subalgebra of a power of A. A
subalgebra B of a product A1 ×· · ·×An is called subdirect if the projection of B on each
coordinate is full (i.e., the projection on the ith coordinate is equal to Ai), in such a case
we write B ≤sd A1 × · · · × An.

A function f from A to B is a homomorphism from A to B (the signatures of A
and B are identical) if, for every operation t with arity n, we have f (tA(a1, . . . , an)) =
tB(f (a1), . . . , f (an)), for every choice of a1, . . . , an ∈ A.

An equivalence relation α is a congruence of A if every operations of A, computed
on two coordinatewise α-related tuples, produces a pair in α. The congruences of an
algebra A form a lattice: α ∧ β is the largest congruence contained in both α and β,
and α ∨β is the smallest congruence containing both. An algebra with just two (or one)
congruences (i.e., the identity congruence and the full congruence) is called simple. If α
is a congruence of A one can form the quotient algebra A/α: the universe of A/α is A/α
and the operations are derived from the operations on A by taking representatives
of the congruence classes (since α is a congruence the operations are well defined).
If B ≤ A1 × · · · × An, then the kernel of projection to Ai is denoted by πi and is a

2We will skip the superscript, writing t instead tA, whenever the algebra is clear from the context.

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:4 L. Barto and M. Kozik

congruences of B. If, on the other hand, α is a congruence of such B, then the projection
of α to ith coordinate is the smallest congruence of Ai containing all (ai, bi) such that
((a1, . . . , an), (b1, . . . , bn)) ∈ α.

A term t is a syntactical description of composition of operations in a given signature.
For a given algebra A (in this signature) a term operation tA is an operation obtained
by composition of basic operation according to t. A class of algebras is a variety if it
is closed under taking products, subalgebras and homomorphic images of algebras in
the class (quotients of algebras in a variety are also inside the variety). The smallest
variety containing an algebra A is called the variety generated by A and denoted by
V(A). By Birkhoff ’s theorem [Birkhoff 1935], each variety V is determined by a set of
pairs of terms s ≈ t (called identities) in the following way: an algebra A is in V if and
only if tA = sA for each pair of terms from the set.

2.3. Polymorphisms

Much of the recent progress on the complexity of the decision problem for CSP was
achieved by the algebraic approach. The notion linking relations and operations is at
the center of these developments.

Definition 2.2. An l-ary operation f on D is a polymorphism of a k-ary relation R (or
R is compatible with f), if

(f (a1
1, . . . , al

1), f (a1
2, . . . , al

2), . . . , f (a1
k, . . . , al

k)) ∈ R

whenever (a1
1, . . . , a1

k), (a2
1, . . . , a2

k), . . . , (al
1, . . . , al

k) ∈ R.
An operation on D is a polymorphism of a constraint language D (with domain D) if

it is a polymorphism of every relation in D.

The set of all polymorphisms of a constraint language D will be denoted by Pol(D).
Among the earliest results of the algebraic approach to the CSP is a theorem [Jeavons
et al. 1997] stating that adding to D relations compatible with all operations of Pol(D)
produces a CSP computationally equivalent to CSP(D). Earlier results [Bodnarčuk
et al. 1969; Geiger 1968] show that these are exactly the relations definable from D
by pp-formulas – formulas using existential quantification, conjunction and equality.
Moreover, adding such relations does not alter the set of polymorphisms of the con-
straint language.

With each constraint language D, an algebra D is associated. The algebra D has
universe D and the set of operations Pol(D). The relations compatible with all the
operations of Pol(D) (from the previous paragraph) are, using algebraic terms, the sub-
powers of D (i.e., subalgebras of powers of D).

Further developments in the algebraic approach [Bulatov et al. 2000, 2005; Larose
and Tesson 2009] showed that, given D, for any algebra E in the variety generated
by D, any constraint language with domain E and with subpowers of E as relations
defines a CSP reducible (in log-space) to CSP(D). Therefore, the complexity of the de-
cision problem for CSP(D) depends only on the variety generated by D, that is, by the
result of Birkhoff, on the identities that hold in D.

A constraint language D is a core, if all its unary polymorphisms are bijections. It is
clear that, for any constraint language D, there is a core constraint language D′ (the
core of D) such that CSP(D) = CSP(D′). Further, if D′ is a core one can construct D′′
by adding, for every d ∈ D′, the unary constraint relation {d} (this relation allows to
fix an evaluation of a variable to d). The constraint languages D′ and D′′ are log-space
equivalent [Bulatov et al. 2005]. Any t ∈ Pol(D′′) has the property that t(d, . . . , d) = d
for all d ∈ D which means that D satisfies the identity t(x, . . . , x) ≈ x for every opera-
tion t. Such algebras are called idempotent. Summarizing, every constraint language

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

Constraint Satisfaction Problems Solvable by Local Consistency Methods 3:5

ALGORITHM 1: The (k, l)-consistency checking algorithm
Input: An instance I = (V, D, C)

1 F = all functions from at most l-elements subsets of V into D;
2 for f ∈ F do
3 for ((x1, . . . , xn), R) ∈ C do
4 if x1, . . . , xn ∈ dom f and (f (x1), . . . , f (xn)) /∈ R then
5 F = F \ {f };
6 break;
7 repeat
8 for f ∈ F do
9 foreach W at most l-element subset of V do

10 if
11 (| dom f | ≤ k, dom f ⊆ W and there is no g ∈ F with dom g = W and

g| dom f = f) or
12 (W ⊆ dom f and f|W /∈ F)
13 then
14 F = F \ {f };
15 break; // proceed to the next f ∈ F
16 until F was not altered;
17 if F = ∅ then return NO else return YES

has a computationally equivalent constraint language associated with an idempotent
algebra. This fact is essential to the algebraic classification of CSPs.

3. PROBLEMS OF BOUNDED WIDTH

In the seminal paper [Feder and Vardi 1998], the class of CSPs of bounded width was
introduced. A constraint language D has, according to Feder and Vardi [1998], bounded
width if the complement of CSP(D) can be recognized by a Datalog program. The class
can be also described as the CSPs recognizable by certain pebble games or having
bounded tree-width duality. In this article, the class of CSPs of bounded width is in-
troduced as the CSPs solvable by the local consistency checking algorithm. A more ex-
haustive overview of this and other related classes of problems is provided in Bulatov
et al. [2008].

The local consistency algorithm, presented as Algorithm 1, is parametrized by two
natural numbers k ≤ l. The algorithm starts with the set F of all partial assignments
of variables (of at most l variables) into the domain D. In the first loop (lines 2–6), the
assignments which falsify constraints are removed. In the second loop (lines 7–15), an
assignment f ∈ F is removed if it falsifies one of two conditions:

(1) if | dom f | ≤ k, for any set consisting of at most l variables and containing dom f ,
there is an assignment in F which extends f to this set (line 11), and

(2) every restriction of f to a subset of its domain is in F (line 12).

Finally, the algorithm answers NO if F is empty and YES otherwise (note that, at this
stage, if F contains no functions with domain W, and |W| ≤ l, then F is empty).

Intuitively, the algorithm constructs a set of partial assignments (restricted to at
most l variables) which are consistent on small (at most k element) sets of variables.
If the instance on the input of the algorithm has a global solution, then none of its
restrictions can be removed from F . Thus, if the local consistency checking algorithm
outputs NO there is no solution. Constraint languages of bounded width are those, for
which the YES answer of the algorithm is always correct.

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:6 L. Barto and M. Kozik

Definition 3.1. A constraint language D has width (k, l) if (k, l)-consistency check-
ing correctly decides CSP(D). A constraint language D (or the problem CSP(D)) has
bounded width if it has width (k, l) for some k, l.

Let D be a constraint language and let I be an instance of CSP in this language. Let
us assume that the (k, l)-consistency checking algorithm answered YES and F is the
set of partial assignments of variables at the end of the run. Note that, for a fixed set
of variables {x1, . . . , xn}, all the functions in F with domain {x1, . . . , xn} can be viewed
as a set, say E, of tuples from Dn (by putting (f (x1), . . . , f (xn)) into E for each such f).
It is crucial for the proof, and a part of folklore, that such obtained E is a subpower of
D, that is, E is a relation preserved by all3 the polymorphisms of D.

Finally, if a constraint language D has bounded width, then so do the languages
defined (in the same way as in the fourth paragraph of Section 2.3) on algebras in
the variety generated by D [Larose and Zádori 2007]. Therefore, again by Birkhoff ’s
result, the property of having bounded width is determined by identities in the algebra
of polymorphisms.

4. THE THREE CONJECTURES

The conjectures in this section are mostly concerned with constraint languages which
are cores. In the last paragraph of Section 2.3 we argued that this restriction does not
decrease the generality of the statements.

Feder and Vardi [1998] introduced the notion of ability to count. A constraint lan-
guage has the ability to count if it can simulate the set {1, . . . , p} with two relations
similar to the relations “sum of x, y and z is equal to 1” and “x is 0” in a cyclic group.
The precise definition can be found in Larose et al. [2009]. Constraint languages with
the ability to count are on the opposite end of the spectra from those of bounded
width (Feder and Vardi [1998] called them languages “in Datalog”). The conjecture
of Feder and Vardi in the orginal form states the following.

CONJECTURE 4.1 (CONJECTURE 1 IN FEDER AND VARDI [1998]). A constraint-
satisfaction problem is not in Datalog if and only if the associated core T can simulate
a core T′ consisting of two relations C, Z that give the ability to count. This is equivalent
to simulating either Zp or one-in-three SAT.

It is shown in Feder and Vardi [1998] that if a constraint language can simulate
one-in-three SAT or Zp then the associated CSP does not have bounded width. The
conjecture postulates that the reverse implication holds as well.

Given a constraint language D, Bulatov [2004b] constructs a graph G(D) with colored
edges and a vertex set D. Two elements of the domain a, b ∈ D are connected with a
blue edge if the smallest subalgebra of D containing a and b, say E, has a congruence
α and there is an affine operation of E/α (and no congruence on this algebra produces
a quotient with a semilattice or majority operation).

CONJECTURE 4.2 (CONJECTURE 2 IN BULATOV [2004B]). Let D be a constraint
language which is a core, and let D′ consist of all the relations from D plus all the
single element relations {a} for a ∈ D. Then, CSP(D) has bounded width if and only if

(1) for every algebra A ≤ D′ and congruence α of A the algebra ((Pol(D′))|A)/α contains
an operation which is not essentially unary, and

3The reason is that, when we apply all polymorphisms of D to a set F satisfying (1) and (2), we get a set
satisfying the same conditions. On the other hand, the (k, l)-consistency checking algorithm produces the
largest set F of partial assignments satisfying the constraints and conditions (1) and (2). Therefore, the set
F is closed under all polymorphisms.

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

Constraint Satisfaction Problems Solvable by Local Consistency Methods 3:7

(2) the graph G(D) has no blue edges,

Similarly, as in the case of the conjecture of Feder and Vardi, the implication from
left to right is proved [Bulatov 2004b].

Larose and Zádori [2007] used Tame Congruence Theory (TCT) to conjecture the
classification of problems of bounded width. TCT, developed in Hobby and McKenzie
[1988], introduces five types of local behaviors of algebras. TCT then classifies varieties
according to types of the behavior present in its finite members. The TCT-types 1 and
2 correspond to essentially unary and affine behavior, respectively.

CONJECTURE 4.3 (CONJECTURE IN LAROSE AND ZÁDORI [2007]). For a core D,
the CSP(D) has bounded width if and only if D generates a variety omitting TCT-types
1 and 2.

Also in this case, the authors show that if type 1 or 2 appears in the variety then the
CSP in question cannot have bounded width. The reverse implication is the question
asked.

The equivalence of the conjectures above has been shown [Bulatov and Valeriote
2008; Larose et al. 2009] which allows us to focus on proving the conjecture of Larose
and Zádori. The knowledge of types of Tame Congruence Theory is not required for the
proof presented in this article. Our proof uses a condition from Hobby and McKenzie
[1988] stated, in Section 7, as Theorem 7.1.

5. REDUCTION TO BINARY RELATIONS

In this section we prove a reduction of Conjecture 4.3 to the case of languages with
binary constraints only. The precise form of the binary instances we produce will
simplify the remainder of the proof. We say that an instance of CSP is syntactically
simple if

— every constraint is binary, that is, the scope of each constraint is a pair of distinct
variables,

— for every pair (x, y) of distinct variables there is at most one constraint with scope
(x, y). The corresponding constraint relation is denoted by Rx,y,4 and

— if (x, y) is the scope of some constraint, then so is (y, x) and Ry,x = {(b, a) : (a, b) ∈
Rx,y}.

Let D be a constraint language with the maximum arity of a constraint relation
equal to n and such that the algebra D generates a variety omitting types 1 and 2.
Let I be an instance in the language D. We run the (2�n

2
, 3�n
2
)-consistency checking

algorithm on I. If the answer is NO, there is no solution to I. If the answer is YES, we
produce a new instance I ′ in a language D′ such that:

(1) the instance I ′ is syntactically simple (with one constraint ((x, y), R′
x,y) for every

pair (x, y) of distinct variables),
(2) the (2, 3)-consistency checking algorithm on I ′ answers YES and stops with a set

F ′ such that R′
x,y = {(f ′(x), f ′(y)) : f ′ ∈ F ′ and dom f ′ = {x, y}},

(3) the algebra D′ generates a variety omitting types 1 and 2, and
(4) I has a solution if and only if I ′ does.

The construction of I ′ was presented in Section 5 of Barto and Kozik [2009a] (al-
though with a different notation). For the sake of completeness, we now give a sketch.

4The reduction of Conjecture 4.3 to Theorem 6.6 presented in this section produces an instance with con-
straints ((x, y), Rx,y) for every pair (x, y) of distinct variables. The statement of Theorem 6.6 in full generality,
that is, with some of the constraints missing, is referred, and required, in Barto and Kozik [2012].

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:8 L. Barto and M. Kozik

Assume that the (2�n
2
, 3�n

2
)-consistency checking algorithm on I returns YES and
stops with the set F of partial assignments of variables. The constraint language D′
has domain D� n

2
 and the relations in the new, syntactically simple instance I ′ are
defined as follows:

(1) for every �n
2
-tuple of variables in I we introduce a variable in I ′, and

(2) if x is a variable for (x1, . . . , x� n
2
) and y for (y1, . . . , y� n

2
), x �= y, we introduce a
constraint ((x, y), R′

x,y) where

R′
x,y = {((a1, . . . , a� n

2
), (b1, . . . , b� n
2
)) : ∃f ∈ F f (xi) = ai and f (yi) = bi}.

Let F ′ be the set of assignments obtained by the (2, 3)-consistency checking for I ′. It
is clear that, after the first loop (lines 2–6 of Algorithm 1) f ′ is in F ′ if and only if there
is f ∈ F such that for every variable x ∈ dom f ′ with corresponding tuple (x1, . . . , x� n

2
)
we have f ′(x)i = f (xi). That is, condition (2) imposed on F ′ and R′

x,y in I ′ holds after
the first loop of the algorithm. The second loop of Algorithm 1 does not remove any
functions from F ′. Therefore, the (2, 3)-consistency checking algorithm for I ′ answers
YES and condition (2) required for I ′ holds.

The domain D� n
2
 is the universe of the algebra D� n

2
 (a power of D) which lies in the
variety generated by D. Each relation

{(a1, . . . , a� n
2
, b1, . . . , b� n

2
) : ∃f ∈ F f (xi) = ai and f (yi) = bi}
is a subpower of D (by the discussion in the fourth paragraph of Section 3), and thus all
R′

x,y’s are subpowers of D� n
2
. The variety generated by D� n

2
 is contained in the variety
generated by D and therefore omits types 1 and 2. The algebra of polymorphisms of D′
contains all the operations of D� n

2
 and thus omits types 1 and 2 as well [Hobby and
McKenzie 1988].

6. REDUCTION TO WEAK PRAGUE INSTANCES

From this point on, all instances, without mentioning it, are assumed to be syntac-
tically simple. By considerations of Section 5, this assumption does not decrease the
generality of the result.

We define two consistency notions very important for the proof. The first notion is
the weaker one.

Definition 6.1. An instance I = (V, D, C) is called 1-minimal, if there are sets Px,
x ∈ V, such that the projection of each Rx,y on the first coordinate is Px and on the
second Py.

In order to define a stronger consistency notion, a weak Prague instance, we define
patterns and realizations.

Definition 6.2 (Pattern and Step). A step in an instance I is a pair of variables
which is the scope of a constraint in I. A pattern from x to y (in I) is a sequence of
variables p = (x = x1, x2, . . . , xk = y) such that every pair (xi, xi+1), 1 ≤ i ≤ k − 1, is a
step.

For a pattern p = (x1, . . . , xk), we define −p = (xk, . . . , x1). If p = (x1, . . . , xk), q =
(y1, . . . , yl), xk = y1, then the sum of p and q is the pattern p + q = (x1, x2, . . . , xk =
y1, y2, . . . , yk). For a pattern p from x to x and a natural number k, kp denotes the k-fold
sum of p with itself.

Note that the addition of patterns is allowed only if the terminal point of the first
pattern coincides with the initial point of the second one. Observe also that from the

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

Constraint Satisfaction Problems Solvable by Local Consistency Methods 3:9

definition of a syntactically simple instance it follows that −p is a pattern whenever
p is.

Definition 6.3 (Realization, Addition). Let p = (x = x1, x2, . . . , xk = y) be a pattern
from x to y in an instance I. A realization of p is a sequence (a1, . . . , ak) ∈ Dk such that
(ai, ai+1) ∈ Rxi,xi+1 for every 1 ≤ i ≤ k − 1.

For a subset A ⊆ D, we define A+p as the set of the last elements of those realizations
of p whose first element is in A, that is,
A + p = {b ∈ D : (∃ a1, . . . , ak−1 ∈ D) a1 ∈ A and (a1, . . . , ak−1, b) is a realization of p}.

Finally, we define A − p = A + (−p).

The addition of patterns is associative, that is, (A + p) + q = A + (p + q). Also note
that, in a 1-minimal instance, we have A ⊆ A + p − p for any A ⊆ Px and any pattern
p from x, in particular, A + p is nonempty when A �= ∅. A weak Prague instance is a
1-minimal instance with additional requirements concerning addition of patterns.

Definition 6.4 (Weak Prague Instance). An instance I is a weak Prague instance if

(P1) I is 1-minimal (with sets Px from Definition 6.1),
(P2) for every A ⊆ Px and every pattern p from x to x, if A+p = A, then A−p = A, and
(P3) for any patterns p, q from x to x and every A ⊆ Px, if A+p+q = A, then A+p = A.

The instance I is nontrivial, if Px �= ∅ for every x ∈ V.

To clarify the definition, let us consider the following digraph G for a 1-minimal
instance: vertices of G are all the pairs (A, x) with x ∈ V and A ⊆ Px, and ((A, x), (B, y))
forms a directed edge iff A+(x, y) = B. Condition (P3) means that no strong component
of G contains (A, x) and (A′, x) with A �= A′. Condition (P2) is equivalent (albeit this
fact requires a reasoning) to the fact that every strong component of G contains only
“undirected” edges (that is, if ((A, x), (B, y)) is an edge then so is ((B, y), (A, x))).

LEMMA 6.5. The instance I ′ constructed in Section 5 is a weak Prague instance.

PROOF. Let F ′ be the set of partial assignments of variables after the (2, 3)-
consistency checking algorithm answered YES on I ′. We put P′

x = {f (x) : f ∈
F ′ and dom f = {x}}.

To see that condition (P1) is satisfied, let x and y be arbitrary variables. If a ∈ P′
x,

then there is f ∈ F ′ with domain {x} and f (x) = a. Then some function f ′ with dom f ′ =
{x, y} and f ′(x) = a belongs to F ′ (as otherwise f would be removed by condition on
line 11 of Algorithm 1). But this implies that a is in the first projection of R′

x,y. On the
other hand, if a is in the first projection of R′

x,y then there is f ∈ F ′ with f (x) = a and
thus f|{x} ∈ F ′ provides a ∈ Px (f|{x} ∈ F ′ as otherwise f would be dropped from F ′ by
condition on line 12 of Algorithm 1). The proof for the second projection is analogical.

To show (P2) and (P3), we first prove that for any (a, b) in R′
x,y and for any pattern

p from x to y, we have b ∈ {a} + p. The proof is by induction on the length of p. If p is
a step, then p = (x, y) and the claim is obvious. For the induction step from n to n + 1,
take any pattern p = (x, . . . , w, v, y) of length n + 1. By induction hypothesis used for
the pattern (x, . . . , w, y), there is c ∈ {a} + (x, . . . , w) such that (c, b) ∈ R′

w,y. Therefore,
there exists f ∈ F ′ such that dom f = {w, y}, f (w) = c and f (y) = b. By condition
on line 11 of Algorithm 1, we can find f ′ ∈ F ′ which extends f to {w, v, y}. Then, the
element d = f ′(v) satisfies (c, d) ∈ R′

w,v, (d, b) ∈ R′
v,y (by condition on line 12) which

implies b ∈ c + (w, v, y), and b ∈ {a} + p.
To see (P3), we note that for any A ⊆ P′

x and any pattern p from x to x we have
A ⊆ A + p. Indeed, take a ∈ A, and let p = (x, . . . , y, x). As our instance is 1-minimal,

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:10 L. Barto and M. Kozik

there is some b ∈ P′
y with (a, b) ∈ R′

x,y. By the previous paragraph, b ∈ {a} + (x, . . . , y)

and therefore a ∈ {a} + p and A ⊆ A + p. Now condition (P3) follows: if A + p + q = A,
then A ⊆ A + p ⊆ A + p + q = A.

Finally, for (P2), let A ⊆ P′
x and A + (x, . . . , y, x) = A. It suffices to show that A +

(x, . . . , y) = A − (y, x) as we can apply the same argument to the sets A′ = A + p′
for initial segments p′ of p (the condition A′ + p′′ = A′ will be satisfied for a cyclic
shift p′′ of p). The inclusion A + (x, . . . , y) ⊆ A − (y, x) follows from 1-minimality as
A + (x, . . . , y) ⊆ A + (x, . . . , y) + (y, x) − (y, x) and A + (x, . . . , y) + (y, x) = A. For the
reverse inclusion, we take an arbitrary b ∈ A− (y, x). Then, (a, b) ∈ R′

x,y for some a ∈ A,
and, by a paragraph above, b ∈ {a} + (x, . . . , y) as required.

In order to confirm Conjecture 4.3, it remains to prove the following theorem.

THEOREM 6.6. Every nontrivial weak Prague instance in a constraint language D,
with D in a variety omitting types 1 and 2, has a solution.

7. ALGEBRAIC TOOLS

Our proof relies heavily on the algebraic properties implied by omitting types 1 and 2.
We use the following charaterization [Hobby and McKenzie 1988]:

THEOREM 7.1. Let V be a variety generated by a finite algebra. The following are
equivalent:

(1) V omits types 1 and 2;
(2) for every A ∈ V and three congruences α, β, γ on A, if α ∧ β = α ∧ γ , then α ∧ β =

α ∧ (β ∨ γ).

In this section, we tacitly assume that all the algebras are idempotent, that is, every
operation of every algebra satisfies the identity t(x, . . . , x) ≈ x.

7.1. Absorption

One of the main algebraic concepts behind the proof is the notion of an absorbing
subuniverse.

Definition 7.2. We say that B is an absorbing subuniverse of an algebra A (de-
noted by B � A) if B ≤ A and there exists a term t of A such that
t(B, B, . . . , B, A, B, B, . . . , B) ⊆ B for any position of A.

In varieties omiting type 1, lack of absorption has interesting consequences for a
particular type of subdirect subalgebras.

Definition 7.3. A subdirect subalgebra R of A × B is called linked, if π1 ∨ π2 = 1R.

The set R ⊆ A × B can be viewed as a bipartite graph with partite sets A and B.
Then, R is linked if and only if this graph is connected.

One of the main tools of Barto and Kozik [2010] is extensively used in the proof.

THEOREM 7.4 (ABSORPTION THEOREM). If A and B are algebras in a variety omit-
ting type 1, R ≤sd A × B is linked and R �= A × B, then A or B has a proper absorbing
subuniverse.

7.2. Pointed Terms

The second algebraic tool – pointed terms – is studied in more detail in Barto et al.
[2013]. Here we provide only the facts necessary for the proof of the main result of the
paper.

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

Constraint Satisfaction Problems Solvable by Local Consistency Methods 3:11

Definition 7.5. Let A be an algebra and let a ∈ A. An n-ary term t of A points to a if
there exist a1, . . . , an ∈ A such that

t(b1, . . . , bn) = a whenever bi ∈ A and |{i : ai �= bi}| ≤ 1.

In the remaining part of this section, we will be working towards a proof of the
following lemma.

LEMMA 7.6. Let A be a simple algebra with no proper absorbing subuniverse, gen-
erating a variety omitting types 1 and 2. Then, for every a ∈ A, there exists a term of A
which points to a.

We begin with a basic property of (absorbing) subuniverses of algebras.

LEMMA 7.7. Let R ≤sd A × B and let C be an (absorbing) subuniverse of A. Then
the set {d ∈ B : ∃c ∈ C (c, d) ∈ R} is an (absorbing) subuniverse of B. The absorption is
realized by the same term.

PROOF. Let C be a subuniverse of A. Put D = {d ∈ B : ∃c ∈ C (c, d) ∈ R} and let t be
a n-ary term. For any d1, . . . , dn ∈ D, we can find c1, . . . , cn ∈ C such that (ci, di) ∈ R
for all i. Therefore, t((c1, d1), . . . , (cn, dn)) = (t(c1, . . . , cn), t(d1, . . . , dn)) ∈ R and, since
C is a subuniverse of A, we get t(d1, . . . , dn) ∈ D as required – this proves that D is a
subuniverse of B.

If C were absorbing A with an m-ary term r, then for, d1, . . . , dk−1, b, dk+1, . . . , dm
with di ∈ D, we find c1, . . . , ck−1, ck+1, . . . , cm as previously stated and use subdirectness
of R to get a ∈ A with (a, b) ∈ R. We proceed as in the previous case and use absorption
to conclude that r(c1, . . . , ck−1, a, ck+1, . . . , cm) ∈ C.

The following lemma states that a product of algebras with no proper absorbing
subuniverses has no proper absorbing subuniverse.

LEMMA 7.8. Let A1, . . . , An be algebras and let R �
∏n

i=1 Ai. If R �
∏n

i=1 Ai, then
some Ai contains a proper absorbing subalgebra.

PROOF. Suppose, for a contradiction, that the lemma holds for n − 1 and fails for
R �

∏n
i=1 Ai. The projection of R on the first coordinate is an absorbing subuniverse of

A1, so it has to be equal to A1. Therefore, there exists a ∈ A1 such that

∅ �= R′ = {(b2, . . . , bn) | (a, b2, . . . , bn) ∈ R} �=
n∏

i=2

Ai.

Since A1 is idempotent, R′ is a subuniverse of
∏n

i=2 Ai. Moreover, since R absorbs the
full product with an idempotent term, it is easily seen that R′ absorbs

∏n
i=2 Ai with

the same term. Using the induction hypothesis for R′, we get a proper absorbing sub-
universe of one of the Ai’s for some i > 1 which is a contradiction.

Next, we argue that certain products of algebras (in varieties omitting types 1 and
2) have no nontrivial subdirect subuniverses.

LEMMA 7.9. Let A1, . . . , An be simple algebras with no proper absorbing subuni-
verses and in a variety omitting types 1 and 2. If R ≤sd

∏n
i=1 Ai and πi ∨ πj = 1R for

every i �= j, then R = ∏n
i=1 Ai.

PROOF. First, we prove that there exists j such that
∧

i�=j πi �= 0R, unless 0R =
1R (which implies that R has one element and the lemma is trivially true). Suppose
otherwise, that is, for every j, we have

∧
i�=j πi = 0R. We prove by induction on n − |I|

that
∧

i∈I πi = 0R for every I ⊆ {1, . . . , n}. By the assumption, it is true for |I| = n − 1;

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:12 L. Barto and M. Kozik

suppose it holds for all I with |I| = k and let J be such that |J| = k − 1. Let l /∈ J, m /∈
J, l �= m. Theorem 7.1 (with α = ∧

i∈J πi, β = πl, γ = πm) provides

0R =
∧

i∈J∪{l}
πi =

∧

i∈J

πi ∧ (πl ∨ πm) =
∧

i∈J

πi

and the induction step is proved. Finally, for |I| = 1, we get π1 = π2 = 0R which
contradicts π1 ∨ π2 = 1R.

Without loss of generality, we assume that
∧

i�=1 πi �= 0R. The projection of
π1 ∨ ∧

i�=1 πi to the first coordinate cannot be 0A1 (since for some a �= b we have
(a, b) ∈ ∧

i�=1 πi, we immediately get that the projections of a and b on the first
coordinate are different and related by the projection of π1 ∨ ∧

i�=1 πi). Since A1 is
simple, π1 ∨ ∧

i�=1 πi = 1R.
Suppose, for a contradiction, that the lemma holds for n − 1 and fails for R ≤sd∏n
i=1 Ai. By this assumption, the projection of R to the coordinates 2, . . . , n is equal to∏n
i=2 Ai and R is a subdirect product of A1 and

∏n
i=2 Ai. By the previous paragraph, R

is linked and therefore, by the Absorption Theorem, R is either equal to A1 × ∏n
i=1 Ai,

or A1 contains a proper absorbing subuniverse – which contradicts the hypotheses, or∏n
i=2 Ai contains a proper absorbing subuniverse – which contradicts Lemma 7.8.

Finally, we argue that if a simple algebra with no proper absorbing subuniverses
generates a variety omitting types 1 and 2, then it has many term operations. In the
statement, we use the notation SgA(B) for the subalgebra of A generated by B, that is,
the smallest subalgebra of A containing B.

LEMMA 7.10. Let A be a simple algebra in a variety omitting types 1 and 2, with
no proper absorbing subuniverse. Let n be an arbitrary positive integer, and let Z ⊆ An

be such that

∀a �= b ∈ Z ∃i, j (ai = aj ∧ bi �= bj) ∨ (ai �= aj ∧ bi = bj)

and

∀a ∈ Z SgA({a1, . . . , an}) = A.

Then every function from Z to A is a restriction of some n-ary term operation of A.

PROOF. Let F ≤ AAn
be the free algebra on n-generators (the universe consists of

the n-ary term operations of A).
Choose a, b to be two arbitrary tuples from Z and let R be the projection of F to

the coordinates a, b. Since F is generated by projections, we have (ai, bi) ∈ R for every
i ≤ n. By the second condition on Z, the algebra R is subdirect in A × A. The first
condition provides i, j with, say, ai = aj and bi �= bj (the other case is similar). Thus,
the projection of π1 ∨ π2 (computed in R) to the second coordinate is not the equality
congruence, and, by simplicity of A, it is the full congruence. That means that R is
linked, so πa ∨ πb = 1F.

By the previous paragraph, the restriction of F to Z satisfies the hypotheses of
Lemma 7.9, and therefore is the full relation. In other words, every function from Z to
A extends to a term operation of A.

To finish the proof of Lemma 7.6, we take a list a1, . . . , an of all elements in A. We
put b = (a1, a1, a2, a2, . . . , an, an) ∈ A2n and

Z = {c ∈ A2n : |{i : ci �= bi}| ≤ 1}.

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

Constraint Satisfaction Problems Solvable by Local Consistency Methods 3:13

It is straightforward to verify that the set Z satisfies the hypotheses of Lemma 7.10
and therefore, for every a ∈ A, the constant function mapping Z to a extends to a term
operation. The term associated with this operation points to a.

7.3. Additional Properties of Absorbing Subuniverses

We require the following observation.

LEMMA 7.11. Let A and B be algebras in a variety omitting types 1 and 2 and such
that neither A nor B has a proper absorbing subuniverse. Moreover, let R ≤sd A×B and
let α be a maximal congruence of A. Then

(1) either (a, b), (a′, b) ∈ R implies that (a, a′) ∈ α for all a, a′ ∈ A, or
(2) for every a ∈ A and b ∈ B there exists a′ ∈ A such that (a, a′) ∈ α and (a′, b) ∈ R.

PROOF. Consider the subdirect product R′ = {(a/α, b) : (a, b) ∈ R} ≤sd A/α × B. The
algebra A/α has no absorbing subuniverse (since it is easily seen that the preimage of
an absorbing subuniverse of A/α is an absorbing subuniverse of A) and is simple (as α
is maximal).

If (1) is not satisfied, then the projection of π1 ∨ π2 to the first coordinate (i.e., A/α)
is not the equality congruence, therefore, since A/α is simple, π1 ∨ π2 = 1R′ , so R′ is
linked. By the Absorption Theorem, R′ = A/α × B which is a restatement of (2).

8. A PROOF OF THEOREM 6.6

Theorem 6.6 is a generalization of a result in Barto and Kozik [2009b]. The more gen-
eral version is required for the approximability results which appear in Barto and
Kozik [2012].

To prove Theorem 6.6, we work with a weak Prague instance I in a constraint lan-
guage D such that the associated algebra D generates a variety omitting types 1 and
2. Since I is syntactically simple, the only constraints are of the form ((x, y), Rx,y) and
each Rx,y is a subuniverse of D2. Similarly, each Px from the definition of 1-minimality
is a subuniverse of D.

Our last preliminary step is to drop, from D, all the nonidempotent operations. The
algebra D′ obtained in this way is idempotent and, still, generates a variety omitting
types 1 and 2 (it follows from part (2) of Theorem 9.10 in Hobby and McKenzie [1988]).
All Rx,y’s and Px’s are subuniverses of (D′)2 and D′ respectively. This allows us to sub-
stitute, in the remainder of the proof, D with D′ and work within a variety generated
by an idempotent algebra. In particular, all the results of Section 7 can be applied in
this variety.

8.1. Pointed Decomposition

Given a weak Prague instance, we proceed by reducing it to a smaller induced
subinstance.

Definition 8.1. Let J be an instance. An instance J ′ is an induced subinstance of J
with potatoes P′

x ≤ D, x ∈ V, if R′
x,y = Rx,y ∩ (P′

x × P′
y).

In order to succeed with such a reduction, we first decompose the instance.

Definition 8.2. A decomposition of a 1-minimal instance J consists of induced
subinstances J 1, . . . ,J l of J with potatoes Pi

x ≤ Px, relations Ri
x,y = Rx,y ∩ (Pi

x × Pi
y)

x, y ∈ V, i ≤ l and a subset X of V such that

(1) if x /∈ X, then Pi
x = Px for all i ≤ l,

(2) if x ∈ X, then

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:14 L. Barto and M. Kozik

(a) Pi
x ∩ Pj

x = ∅ for all i �= j, and
(b) for any step (x, y), either Pi

x + (x, y) = Pi
y for all i ≤ l, or Pi

x + (x, y) = Py for all
i ≤ l.

Note that any decomposition of a 1-minimal J consists of instances which are 1-
minimal as well.

Definition 8.3. We say that the decomposition is pointed, if there exists a term t of
D of arity m and indices k1, . . . , km such that

∀i ≤ m ∀x ∈ V t(Pk1
x , . . . , Pki−1

x , Px, Pki+1
x , . . . , Pkm

x) ⊆ P1
x .

The decomposition is proper if J 1 is a nontrivial instance and P1
x � Px for some

x ∈ V.

In the following two sections, we prove:

THEOREM 8.4. Every nontrivial weak Prague instance J with |Px| > 1 for some
x ∈ V has a proper pointed decomposition.

In the last section, we show that J 1 is a weak Prague instance. As P1
x ’s are assumed

to be subuniverses of D, then R1
x,y’s are subuniverses of D2. That means that throwing

all the R1
x,y’s into D does not affect polymorphisms of D and that we reduced I to a

strictly smaller instance still satisfying hypotheses of Theorem 6.6. Continuing this
process, we obtain a minimal induced subinstance of I and it must have |Px| = 1 for all
x ∈ V. Any such instance, trivially, has a solution which sends x to the unique element
of Px. This finishes the proof of Theorem 6.6.

8.2. Pointed Decomposition when Absorption Is Present

We prove Theorem 8.4 when some algebra Px has a proper absorbing subuniverse A.
In this case, we find a decomposition into a single subinstance J 1.

We define a preorder � on the set of all pairs (C, y), C � Py, by (C, y) � (D, z) if
(C, y) = (D, z) or there exists a pattern p from y to z such that C + p = D. Among the
equivalence classes of this preorder which are greater or equal to the equivalence class
containing (A, x), we choose a maximal one and denote it by M. Let X denote the set
of all y ∈ V for which there exists some C such that (C, y) ∈ M.

CLAIM 1. The set C is uniquely determined by y.

PROOF. If (C, y), (D, y) ∈ M, then by the fact that (C, y) and (D, y) are in the same
equivalence class of � we get C = D, or C + p = D and D + q = C for some patterns p
and q from y to y, and, by (P3), C = D again.

For y ∈ X we define P1
y as the unique set with (P1

y , y) ∈ M. For y �∈ X, we put P1
y = Py.

Note that, as J is 1-minimal, we have P1
y �= ∅ for all y ∈ V. Conditions (1) and (2a) from

Definition 8.2 hold by the construction; it remains to verify condition (2b) and find a
term witnessing that the decomposition is pointed.

To show condition (2b) of Definition 8.2, let y ∈ X be arbitrary and let (y, z) be any
step. If (P1

y + (y, z), z) ∈ M, then P1
y + (y, z) = P1

z as required. On the other hand, if
(P1

y + (y, z), z) /∈ M, then this pair is outside of the preorder; therefore, P1
y + (y, z) = Pz.

It remains to show that the induced subinstance J 1 of J with potatoes P1
y for y ∈ V

is a pointed decomposition of J .

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

Constraint Satisfaction Problems Solvable by Local Consistency Methods 3:15

Note that Lemma 7.7 implies that, for an absorbing subuniverse B of Py and a step
(y, v), the set B + (y, v) is an absorbing subuniverse of Pv. By induction, we get that
P1

y (which is equal to A + p for some p from x to y) is an absorbing subuniverse of Py
and the absorbing term is the same as for A and Px. This term satisfies the condition
in Definition 8.2 with ki = 1 for all i.

8.3. Pointed Decomposition when Absorption Is Missing

Now we prove Theorem 8.4 in the case that none of the algebras Px, x ∈ V has a proper
absorbing subuniverse.

LEMMA 8.5. Let α be a maximal congruence on some Px. Then, for every step (x, y)

(case1) either
(
a/α + (x, y)

) ∩ (
b/α + (x, y)

) �= ∅ implies (a, b) ∈ α for all a, b ∈ Px,
(case2) or a/α + (x, y) = Py for all a ∈ Px.

PROOF. The lemma is a restatement of Lemma 7.11.

If Px and α are as in the previous lemma, then we can define an equivalence relation
α + (x, y). The equivalence is given by the following partition of Py

{a/α + (x, y) : a ∈ Px}.
This defines a trivial partition {Py} in (case2) of Lemma 8.5 or a proper partition in
(case1). The equivalence α + (x, y) is easily seen to be a congruence of Py. Moreover, in
(case1), the function

{(
a/α, b/(α + (x, y))

)
: (a, b) ∈ Rx,y

}

provides an isomorphism between Px/α and Py/(α + (x, y)). Therefore, in this case,
α + (x, y) is a maximal congruence of Py and (α + (x, y)) + (y, x) = α.

LEMMA 8.6. Let α be a maximal congruence on Px, a ∈ Px, and let p be a pattern
from x to y. If a/α + p � Py, then for any a′ ∈ Px we have a′/α + p − p = a′/α.

PROOF. The proof is by induction on the length of p. Let p = (x, z) + p′. Then, a/α +
(x, z) � Pz and (case1) of Lemma 8.5 (used for the step (x, z)) applies. Therefore α+(x, z)
is a maximal congruence on Pz, both a/α + (x, z) and a′/α + (x, z) are its congruence
classes and a′/α+ (x, z)+ (z, x) = a′/α. By induction hypothesis, (a′/α+ (x, z))+p′ −p′ =
(a′/α + (x, z)) and the lemma is proved.

If Px and α are as in the previous lemma, a/α+p � Py, and q is another pattern from
x to y such that a/α + q � Py, then, by the previous lemma, (a/α + p) − p + q = a/α + q
and (a/α + q) − q + p = a/α + p, and using (P3), we get a/α + p = a/α + q, that is, the
result of addition is independent of the pattern.

Now we are ready to define the decomposition. We assume that Px has at least two
elements and put α to be a maximal congruence on Px. We denote by P1

x , . . . , Pl
x the

equivalence classes of α and will decompose J into J 1, . . . ,J l. We include y into X if
there is a pattern p from x to y such that P1

x + p � Py and, in this case, we set Pi
y =

Pi
x + p for all i ≤ l (by the discussion after Lemma 8.6, the definition is independent

on the choice of p as long as Pi
x + p � Pi

y). If y /∈ X, we put Pi
y = Py. Condition (1) of

Definition 8.2 holds by the construction.
Let y be an arbitrary variable in X. From Lemma 8.6, it follows that Pi

y ∩ Pi′
y = ∅ for

any i �= i′, that is, condition (2a) of Definition 8.2 holds. To prove condition (2b), take
any step (y, z), and suppose that Pi

y + (y, z) �= Pi
z for some i ≤ l. By Lemma 8.5, the

sets (Pj
y + (y, z)) (for different j’s) are either pairwise disjoint, or all equal to Pz. If they

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:16 L. Barto and M. Kozik

were disjoint, Pi
y + (y, z) would be a candidate for Pi

z (given by a different path). This

is impossible (by the discussion after Lemma 8.6) and therefore Pj
y + (y, z) = Pz for all

j ≤ l – this proves condition (2b) of Definition 8.2. Therefore, the induced subinstances
J 1, . . . ,J l with potatoes Pi

x, x ∈ V form a decomposition.
It remains to show that the decomposition is pointed. Clearly, for any i, Pi

x is a
subuniverse of Px and therefore, by Lemma 7.7, Pi

y is a subuniverse of Py. In order to
find a pointed term for this decomposition consider Px/α. This algebra is simple, has
no proper absorbing subuniverses (since Px does not) and lies in a variety omitting
types 1 and 2. Therefore, by Lemma 7.6, there exists a term t(x1, . . . , xm) in Px/α

pointing to P1
x/α.

This term clearly satisfies the required condition for the variable x and for all the
variables outside the set X. On the other hand, if y ∈ X, then Py/(α + p) is isomorphic
to Px/α via an isomorphism sending P1

x to P1
y and therefore t(x1, . . . , xm) satisfies the

condition for Py as well. This finishes the case when there is no absorption in the weak
Prague instance.

8.4. The Reduction to J 1

The following theorem finishes the proof of the main result.
THEOREM 8.7. Let J be a weak Prague instance with a pointed decomposition

J 1, . . . ,J l with potatoes Pi
x, x ∈ V, i ≤ l. Then, J 1 is a weak Prague instance.

In this section, we need to consider realizations and addition in the instance J as
well as in the subinstance J 1. To distinguish them, we write A + p for addition in J
and A +1 p for addition in J 1 (and similarly for subtraction).

When we keep adding a pattern p from x to x to a set A ⊆ Px, the process will stabilize
on a set containing A.

LEMMA 8.8. Let x ∈ V, A ⊆ Px and let p be a pattern from x to x. There exists a
natural number i such that A + ip + jp = A + ip for every integer5 j and, moreover,
A ⊆ A + ip.

PROOF. Since the domain is finite, there exist i, i′ > 0 such that A+ ip+ i′p = A+ ip.
Put B = A + ip. Then, B + p + (i′ − 1)p = B and, by (P3), B + p = B. From (P2) we
get that B − p = B and now clearly B + jp = B for every integer j. Finally, we have
A ⊆ A + ip − ip = B − ip = B.

For every A ⊆ Px and pattern p from x to x, the set A + ip given by Lemma 8.8 is
denoted by [A]p. We have A ⊆ [A]p and [A]p + jp = [A]p for every integer j.

Theorem 8.7 is a consequence of the following lemma.
LEMMA 8.9. Let x ∈ V, A ⊆ P1

x and let p be a pattern from x to x. If A+1 p = A, then
A = [A]p ∩ P1

x.

Using this lemma, we prove Theorem 8.7.

PROOF OF THEOREM 8.7. It follows from the definition of decomposition that J 1

(as well as J 2, . . . , J l) is 1-minimal.
(P2). If A +1 p = A, where A ⊆ Px and p is a pattern from x to x, then A ⊆ A +1

p −1 p = A −1 p. To prove the reverse inclusion, we use the properties of [A]p stated
after Lemma 8.8 and Lemma 8.9. Since A ⊆ [A]p = [A]p − p, we have A −1 p ⊆ A − p ⊆
[A]p − p = [A]p, and then A −1 p ⊆ [A]p ∩ P1

x = A. Thus, A = A −1 p as required.

5Compare Definition 6.2 for pattern multiplicities.

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

Constraint Satisfaction Problems Solvable by Local Consistency Methods 3:17

(P3). Let A ⊆ P1
x and let p, q be patterns from x to x such that A +1 p +1 q = A.

Using (P3) for the instance J and [A]p+q = [A]p+q + p + q, we get [A]p+q + p = [A]p+q.
Now A +1 p ⊆ A + p ⊆ [A]p+q + p = [A]p+q and, by Lemma 8.9, we obtain A +1 p ⊆
[A]p+q ∩ P1

x = A.
Similarly, the set A = (A +1 p) +1 q is a subset of A +1 p, and then A = A +1 p as

required.

The remaining part of this section is devoted to the proof of Lemma 8.9. Let x, A, p
be as in the statement of the lemma.

For any i > 0, we have A +1 ip = A +1 p and [A]p = [A]ip, therefore we can, without
loss of generality, replace p with the pattern ip. We do it for large enough i so that
B + p = [B]p for every B ⊆ Px.

As A ⊆ [A]p, the inclusion A ⊆ [A]p ∩ P1
x is satisfied and we proceed to prove the

reverse containment. Let b ∈ [A]p ∩ P1
x be arbitrary. We need to show that b ∈ A. As

[A]p = A + p, there exists a ∈ A such that b ∈ {a} + p and we fix such an element a.
We split the pattern p into parts. Let p = (x = x1, x2, . . . , xn = x) and define r, s:

— let r be the largest index such that P1
xz

+ (xz, xz+1) = P1
xz+1

for all z < r,
— let s be the smallest index such that P1

xz
+ (xz, xz−1) = P1

xz−1
for all z > s.

If it is not true that r + 1 ≤ s − 1, then b ∈ {a} + p implies b ∈ {a} +1 p ∈ A since no
realization of p can leave J 1 and return to it, thus in this case the proof is concluded.

Let t be an m-ary term and k1, . . . , km be indices from the definition of pointed de-
composition. We find a matrix of domain elements with m rows such that its ith row

(a = ai
11, ai

12, . . . , ai
1n = ai

21, . . . , ai
2n = ai

31, . . . , ai
(m−1)n = ai

m1, . . . , ai
mn = b)

is a realization of the pattern mp in the instance J satisfying the following conditions
for every 1 ≤ j ≤ m.

(1) The elements ai
j1, . . . , ai

jr, ai
js, . . . , ai

jn lie in the instance J 1 (i.e., more precisely, ai
j1 ∈

P1
x1

, . . . , ai
jr ∈ P1

xr
, etc.), and

(2) if j �= i, then ai
j(r+1)

, . . . , ai
j(s−1)

lie in the instance J ki (i.e., for all z such that r < z <

s, we have ai
jz ∈ Pki

xz).

First, we find the initial part (ai
11, . . . , ai

i1).
The first segment (ai

11, . . . , ai
1n) is found as follows. We start with ai

11 = a. By 1-
minimality of J 1, we can choose elements ai

12 ∈ P1
x2

, . . . , ai
1r ∈ P1

xr
one by one so

that (ai
1z, ai

1(z+1)
) is a realization of (xz, xz+1) in the instance J 1 for all z < r. By the

choice of r, we have P1
xr

+ (xr, xr+1) �= P1
xr+1

and, by the definition of decomposition,

P1
xr

+ (xr, xr+1) = Pxr+1 . In particular, Pki
xr+1 + (xr+1, xr) intersects P1

xr
. If ki �= 1, then it

follows from the definition of decomposition that Pki
xr+1 + (xr+1, xr) = Pxr , and we can

therefore choose ai
1(r+1)

∈ Pki
xr+1 such that (ai

1r, ai
1(r+1)

) is a realization of (xr, xr+1). If
ki = 1, we can find ai

1(r+1)
from 1-minimality of J 1. Using 1-minimality of J ki , we

find ai
1(r+2)

, . . . , ai
1(s−1)

such that (ai
1(r+1)

, . . . , ai
1(s−1)

) is a realization of (xr+1, . . . , xs−1)

in the instance J ki . By the choice of s, we have P1
xs

+ (xs, xs−1) �= P1
xs−1

and, by the
definition of decomposition again, we get P1

xs
+ (xs, xs−1) = Pxs−1 ; therefore, there exists

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

3:18 L. Barto and M. Kozik

ai
1s ∈ P1

xs
such that (ai

1(s−1)
, ai

1s) is a realization of (xs−1, xs). Finally, by 1-minimality of
J 1, we find ai

1(s+1)
, . . . , ai

1n such that (ai
1s, . . . , ai

1n) is a realization of (xs, . . . , xn) in J 1.
By the same argument, we construct the remaining (i − 2) segments of

(ai
11, . . . , ai

(i−1)n = ai
i1). These elements satisfy, by construction, both (1) and (2) for

every j < i. Using an analogical reasoning starting from b = ai
mn (and following the

pattern in reverse direction), we can find a realization (ai
in = ai

(i+1)1, . . . , ai
mn) of the

pattern (m − i)p satisfying (1) and (2) for every j > i.
It remains to fill in the middle part (ai

i1, . . . , ai
in) of the ith row of the matrix. Let a′ =

ai
i1 and b′ = ai

in. By construction, a′, b′ ∈ P1
x , a′ ∈ {a} + (i−1)p and b′ ∈ {b} − (m − i)p.

We observe that [{a′}]p contains b′. Indeed, since a ∈ {a′} − (i − 1)p, we have a ∈
[{a′}]p − (i−1)p = [{a′}]p, then, using b ∈ {a}+p, we get b ∈ [{a′}]p + p = [{a′}]p, and, by
b′ ∈ {b} − (m − i)p, we obtain b′ ∈ [{a′}]p − (m − i)p = [{a′}]p. Recall that [B]p = B + p
for every B ⊆ Px, therefore b′ ∈ {a′} + p and hence we can find a realization (a′ =
ai

i1, ai
i2, . . . , ai

in = b′) of the pattern p in the instance J . By the choice of r, we have P1
xz

+
(xz, xz+1) = P1

xz+1
for all z < r, which guarantees ai

iz ∈ P1
xz

for all z ≤ r. Similarly, by the
choice of s, we have ai

iz ∈ P1
xz

for z ≥ s and the construction of the matrix is concluded.
Finally, we apply the operation t to the columns of the matrix and obtain a tuple

(b11, . . . , bmn). Note that b11 = a and bmn = b from idempotency of t. Since every row of
the matrix is a realization of the pattern mp and t is a polymorphism of the relations
Rx1,x2 , . . . Rxn−1,xn , the tuple (b11, . . . , bmn) is a realization of mp. Every element bjz lies
in P1

xz
since either t was applied to elements of P1

xz
(in the case that z ≤ r or z ≥ s), or

t was applied to (a1
jz, . . . , am

jz) where ai
jz ∈ Pki

xz for all i �= j (in the case that r < z < s)
and we can then use the property of t from the definition of pointed decomposition.
Thus (a = b11, . . . , bmn = b) is a realization of mp in the instance J 1; therefore, b ∈
{a} +1 mp ⊆ A +1 mp = A as required.

REFERENCES

Libor Barto. 2013. The collapse of the bounded width hierarchy. In preparation.
Libor Barto and Marcin Kozik. 2009a. Congruence distributivity implies bounded width. SIAM J. Comput.

39, 4, 1531–1542. DOI:http://dx.doi.org/10.1137/080743238.
Libor Barto and Marcin Kozik. 2009b. Constraint satisfaction problems of bounded width. In Proceedings of

the 50th Symposium on Foundations of Computer Science (FOCS’09). 595–603.
Libor Barto and Marcin Kozik. 2010. New conditions for Taylor varieties and CSP. In Proceedings of the

25th Annual IEEE Symposium on Logic in Computer Science (LICS’10). IEEE Computer Society, Los
Alamitos, CA, 100–109. DOI:http://dx.doi.org/10.1109/LICS.2010.34.

Libor Barto and Marcin Kozik. 2012. Robust satisfiability of constraint satisfaction problems. In Proceedings
of the 44th Symposium on Theory of Computing (STOC’12). ACM, New York, 931–940.
DOI:http://dx.doi.org/10.1145/2213977.2214061.

Libor Barto, Marcin Kozik, and David Stanovský. 2013. Mal’tsev conditions, lack of absorption, and solv-
ability. Submitted.

C. Bergman. 2011. Universal Algebra: Fundamentals and Selected Topics. Taylor and Francis.
http://books.google.ca/books?id=QXi3BZWoMRwC.

Joel Berman, Pawel Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and Ross Willard. 2009.
Varieties with few subalgebras of powers. Trans. Amer. Math. Soc. 362, 1445–1473.
DOI:http://dx.doi.org/10.1090/S0002-9947-09-04874-0.

Garrett Birkhoff. 1935. On the structure of abstract algebras. Proc. Cambridge Philos. Soc. 31, 433–454.
V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. 1969. Galois theory for Post algebras. I, II.

Kibernetika (Kiev) 3, 1–10; ibid. 1969, no. 5, 1–9.
Andrei Bulatov. 2006a. Complexity of Maltsev constraints. Algebra i Logika 26, 1, (In Russian).

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

�

�

�

�

�

�

�

�

Constraint Satisfaction Problems Solvable by Local Consistency Methods 3:19

Andrei Bulatov. 2009. Bounded relational width. Manuscript.
http://www.cs.sfu.ca/∼abulatov/papers/relwidth.pdf.

Andrei Bulatov and Vı́ctor Dalmau. 2006. A simple algorithm for Mal′tsev constraints. SIAM J. Comput. 36,
1, 16–27 (electronic).

Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. 2005. Classifying the complexity of constraints using
finite algebras. SIAM J. Comput. 34, 720–742. Issue 3.
DOI:http://dx.doi.org/10.1137/S0097539700376676.

Andrei A. Bulatov. 2003. Tractable conservative constraint satisfaction problems. In Proceedings of the 18th
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, Los Alamitos, CA,
321–. DOI:http://dl.acm.org/citation.cfm?id=788023.789067.

A. A. Bulatov. 2004a. Complexity of the conservative generalized satisfiability problem. Dokl. Akad. Nauk
397, 5, 583–585.

Andrei A. Bulatov. 2004b. A graph of a relational structure and constraint satisfaction problems. In Pro-
ceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04). IEEE Computer
Society Press, Los Alamitos, CA, 448–457.

Andrei A. Bulatov. 2006b. Combinatorial problems raised from 2-semilattices. J. Algebra 298, 2, 321–339.
Andrei A. Bulatov. 2006c. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J.

ACM 53, 1, 66–120.
Andrei A. Bulatov and Matthew Valeriote. 2008. Recent results on the algebraic approach to the CSP. In

Complexity of Constraints, Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer Eds., Lecture
Notes in Computer Science, vol. 5250, Springer, 68–92.
http://dblp.uni-trier.de/db/conf/dagstuhl/coc2008.html#BulatovV08.

Andrei A. Bulatov, Andrei A. Krokhin, and Peter Jeavons. 2000. Constraint satisfaction problems and finite
algebras. In Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 1853,
Springer, Berlin, 272–282.

Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose. 2008. Dualities for constraint satisfaction problems.
In Complexity of Constraints, Springer-Verlag, Berlin, 93–124.
DOI:http://dx.doi.org/10.1007/978-3-540-92800-3_5.

Stanley N. Burris and H. P. Sankappanavar. 1981. A Course in Universal Algebra. Graduate Texts in Math-
ematics, Vol. 78, Springer-Verlag, New York.

Catarina Carvalho, Vı́ctor Dalmau, Petar Marković, and Miklós Maróti. 2009. CD(4) has bounded width.
Algebra Universalis 60, 3, 293–307.

Tomás Feder and Moshe Y. Vardi. 1998. The computational structure of monotone monadic SNP and
constraint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28, 1, 57–104.
DOI:http://dx.doi.org/10.1137/S0097539794266766.

David Geiger. 1968. Closed systems of functions and predicates. Pacific J. Math. 27, 95–100.
David Hobby and Ralph McKenzie. 1988. The Structure of Finite Algebras. Contemporary Mathematics,

Vol. 76, American Mathematical Society, Providence, RI.
Pawel Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and Ross Willard. 2007. Tractability

and learnability arising from algebras with few subpowers. In Proceedings of the 22nd Annual IEEE
Symposium on Logic in Computer Science (LICS’07). IEEE Computer Society Press, Los Alamitos, CA,
213–222.

Peter Jeavons, David Cohen, and Marc Gyssens. 1997. Closure properties of constraints. J. ACM 44, 4,
527–548.

Emil Kiss and Matthew Valeriote. 2007. On tractability and congruence distributivity. Log. Meth. Comput.
Sci. 3, 2, 2:6, (electronic).

Benoı̂t Larose and Pascal Tesson. 2009. Universal algebra and hardness results for constraint
satisfaction problems. Theoret. Comput. Sci. 410, 18, 1629–1647.
DOI:http://dx.doi.org/10.1016/j.tcs.2008.12.048.

Benoı̂t Larose and László Zádori. 2007. Bounded width problems and algebras. Algebra Universalis 56, 3–4,
439–466.

Benoı̂t Larose, Matt Valeriote, and László Zádori. 2009. Omitting types, bounded width and the ability to
count. Internat. J. Algebra Comput. 19, 5, 647–668.
DOI:http://dx.doi.org/10.1142/S021819670900524X.

Miklós Maróti and Ralph McKenzie. 2008. Existence theorems for weakly symmetric operations. Algebra
Universalis 59, 3–4, 463–489.

Received March 2012; revised February 2013; accepted November 2013

Journal of the ACM, Vol. 61, No. 1, Article 3, Publication date: January 2014.

Appendix C – Absorption and
cyclic terms

68

Logical Methods in Computer Science
Vol. 8 (1:07) 2012, pp. 1–26
www.lmcs-online.org

Submitted Dec. 30, 2010
Published Feb. 20, 2012

ABSORBING SUBALGEBRAS, CYCLIC TERMS, AND THE

CONSTRAINT SATISFACTION PROBLEM ∗

LIBOR BARTO a AND MARCIN KOZIK b

a Department of Algebra, Charles University, Sokolovská 83, 186 75 Prague 8, Czech Republic
and Department of Mathematics and Statistics, McMaster University, 1280 Main Street West,
Hamilton, ON, L8S 4K1, Canada
e-mail address: libor.barto@gmail.com

b Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiel-
lonian University, ul. Prof. St. Lojasiewicza 6, 30-348 Kraków, Poland
e-mail address: marcin.kozik@tcs.uj.edu.pl

Abstract. The Algebraic Dichotomy Conjecture states that the Constraint Satisfaction
Problem over a fixed template is solvable in polynomial time if the algebra of polymor-
phisms associated to the template lies in a Taylor variety, and is NP-complete otherwise.
This paper provides two new characterizations of finitely generated Taylor varieties. The
first characterization is using absorbing subalgebras and the second one cyclic terms. These
new conditions allow us to reprove the conjecture of Bang-Jensen and Hell (proved by
the authors) and the characterization of locally finite Taylor varieties using weak near-
unanimity terms (proved by McKenzie and Maróti) in an elementary and self-contained
way.

Introduction

The Constraint Satisfaction Problem (CSP) is a generic problem in computer science. An
instance consists of a number of variables and constraints imposed on them and the objective
is to determine whether variables can be assigned values in such a way that all the constraints
are met. As CSP provides a common framework for many theoretical problems as well as
for many real-life applications, it has been studied by computer scientists for over forty
years.

1998 ACM Subject Classification: F.2.2, F.4.1.
2000 Mathematics Subject Classification: 08A70, 68Q17.
Key words and phrases: Constraint Satisfaction Problem, Taylor variety, cyclic term, absorbing

subalgebra.
∗ A part of this work has appeared in our paper New conditions for Taylor varieties and CSP, Proceedings

of the 25th IEEE Symposium on Logic in Computer Science, LICS’10, 100-109.
a Research supported by the Grant Agency of the Czech Republic under the grant No. 201/09/P223 and

by the Ministry of Education of the Czech Republic under the grant No. MSM 0021620839.
b Research supported by the Foundation for Polish Science under the grant No. HOM/2008/7 (supported

by MF EOG), and Ministry of Science and Higher Education of Poland under the grant No. N206 357036.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8 (1:07) 2012

c© L. Barto and M. Kozik
CC© Creative Commons

2 L. BARTO AND M. KOZIK

The results contained in this paper follow a long line of research devoted to verifying
the Constraint Satisfaction Problem Dichotomy Conjecture of Feder and Vardi [FV99]. It
deals with so called non-uniform CSP — the same decision problem as the ordinary CSP,
but in this case the set of allowed constraint relations is finite and fixed. The conjecture
states that, for every finite, fixed set of constraint relations (a fixed template), the CSP
defined by it is NP-complete or solvable in polynomial time, i.e. the class of CSPs exhibits
a dichotomy.

The conjecture of Feder and Vardi dates back to 1993. At that time it was sup-
ported by two major results, Schaefer’s dichotomy theorem for two–element templates
[Sch78], and the dichotomy theorem for undirected graphs by Hell and Nešetřil [HN90].
The first breakthrough in the research appeared in 1997 in the work of Jeavons, Cohen and
Gyssens [JCG97], refined later by Bulatov, Jeavons and Krokhin [BKJ00, BJK05]. At heart
of the new approach lies a proof that the complexity of CSP, for a fixed template, depends
only on a set of certain operations — polymorphisms of the template. Thus the study of
templates gives rise to the study of algebras associated to them.

The algebraic approach has lead to a better understanding of the known results and
brought a number of new results which were out of reach for pre-algebraic methods. The the-
orem of Schaefer [Sch78] has been extended by Bulatov [Bul06] to three–element domains.
Another major result of Bulatov [Bul03, Bul11] establishes the dichotomy for templates
containing all unary relations. The conjecture of Bang-Jensen and Hell [BJH90], gener-
alizing Hell’s and Nešetřil’s dichotomy theorem [HN90], was confirmed [BKN08, BKN09].
New algorithms were devised [BD06, Dal06, IMM+07] and pre-algebraic algorithms were
characterized in algebraic terms [BK09a, BK09b].

The hardness parts in the dichotomy results mentioned above were obtained using a
theorem of Bulatov, Jeavons and Krokhin [BKJ00, BJK05] stating that whenever an algebra
associated with a core template does not lie in a Taylor variety then the CSP defined by
the template is NP-complete. In the same paper the authors conjecture that in all the
other cases the associated CSP is solvable in polynomial time. All the known partial results
agree with this proposed classification, which is now commonly referred to as the Algebraic
Dichotomy Conjecture.

In order to prove the Algebraic Dichotomy Conjecture one has to devise an algorithm
that works for any relational structure with the corresponding algebra in a Taylor vari-
ety. As the characterization originally provided by Taylor [Tay77] is difficult to work with,
a search for equivalent conditions is ongoing. A technical, but useful condition was ob-
tained by Bulatov who used it to prove his dichotomy theorems [Bul03, Bul06]. Another
powerful tool is the characterization of (locally finite) Taylor varieties in terms of weak near-
unanimity operations due to Maróti and McKenzie [MM08]. Unfortunately, their proof uses
a deep algebraic theory of Hobby and McKenzie [HM88], therefore is not easily accessible
for a nonspecialist. The proof of the conjecture of Bang-Jensen and Hell hinges on this
characterization; also the algebraic characterization of problems of bounded width [BK09b]
relies on a similar characterization of congruence meet semi-distributive varieties provided
in the same paper [MM08]. Recently, a surprisingly simple condition for Taylor varieties
was found by Siggers [Sig10], and an analytical characterization was given by Kun and
Szegedy [KS09].

In this paper we provide two new conditions for (finitely generated) Taylor varieties.
These new characterizations already proved to be useful. Not only they provide new tools
for attacking the algebraic dichotomy conjecture, but they also allow us to present easy

ABSORPTION, CYCLIC TERMS, AND CSP 3

and elementary proofs for some of the results mentioned above. Moreover, their proofs are
self-contained and do not require heavy algebraic machinery.

The first, structural characterization (the Absorption Theorem) is expressed in terms of
absorbing subalgebras developed and successfully applied by the authors in [BKN08, BKN09,
BK09a, BK09b]. We use it to present an elementary proof of the conjecture of Bang-Jensen
and Hell. Recently, the Absorption Theorem was applied to give a short proof of Bulatov’s
dichotomy theorem for conservative CSPs [Bar11]. The second, equational characterization
involves cyclic terms and is a stronger version of the weak near-unanimity condition. We
use it to restate the Algebraic Dichotomy Conjecture in simple combinatorial terms and to
provide a very short proof of the theorem of Hell and Nešetřil.

The results of this paper also show that the tools developed for the CSP can be suc-
cessfully applied to algebraic questions which indicates a deep connection between the CSP
and universal algebra.

Organization of the paper. In section 1 we introduce the necessary notions concern-
ing algebras and the CSP. In section 2 we define absorbing subalgebras and present the
Absorption Theorem and its corollaries. In section 3 we use the absorbing subalgebra char-
acterization to provide an elementary proof of the conjecture of Bang-Jensen and Hell in a
slightly stronger version which is needed in section 4. Finally, in section 4 we prove the char-
acterization using cyclic terms and its corollaries: the theorem of Hell and Nešetřil [HN90]
and the weak near-unanimity characterization of locally finite Taylor varieties of Maróti
and McKenzie [MM08].

1. Preliminaries

1.1. Notation for sets. For a set A and a natural number n, elements of An are the
n-tuples of elements of A. We index its coordinates starting from zero, for example
(a0, a1, . . . , an−1) ∈ An.

Let R be a subset of a Cartesian product A1×A2×· · ·×An. R is called subdirect (R ⊆S

A1 × · · · ×An) if, for every i = 1, 2, . . . , n, the projection of R to the i-th coordinate is the
whole set Ai.

Given R ⊆ A×B and S ⊆ B × C, by S ◦R we mean the following subset of A× C:

S ◦R = {(a, c) : ∃ b ∈ B (a, b) ∈ R, (b, c) ∈ S}.

If R ⊆ A×A and n is a natural number greater than zero, then we define

R◦n = R ◦R ◦ · · · ◦R
︸ ︷︷ ︸

n

.

4 L. BARTO AND M. KOZIK

1.2. Algebras and varieties. An algebraic signature is a finite set of function symbols
with a natural number (the arity) associated to each of them. An algebra of a signature
Σ is a pair A = (A, (tA)t∈Σ), where A is a set, called the universe of A, and tA is an

operation on A of arity ar(t), that is, a mapping Aar(t) → A. We always use a boldface
letter to denote an algebra and the same letter in a plain type to denote its universe. We
often omit the superscripts of operations when the algebra is clear from the context.

A term in a signature Σ is a formal expression using variables and compositions of sym-
bols in Σ. In this paper we introduce a special notation for a particular case of composition
of terms: given a k-ary term t1 and an l-ary term t2 we define a kl-ary term t1 ∗ t2 by

t1 ∗ t2(x0, x1, . . . , xkl−1) = t1(t2(x0, . . . , xl−1), t2(xl, . . . , x2l−1), . . . , t2(x(k−1)l . . . , xkl−1)).

For an algebra A and a term h in the same signature Σ, hA has the natural meaning in
A and is called a term operation of A. Again, we usually omit the superscripts of term
operations when the algebra is clear from the context. The set of all term operations of A
is called the clone of term operations of A and it is denoted Clo(A).

For a pair of terms s, t over a signature Σ, we say that an algebra A in the signature Σ
satisfies the identity s ≈ t if the term operations sA and tA are the same.

There are three fundamental operations on algebras of a fixed signature Σ: forming
subalgebras, factoralgebras and products. A subset B of the universe of an algebra A is
called a subuniverse, if it is closed under all operations (equivalently term operations) of
A. Given a subuniverse B of A we can form the algebra B by restricting all the operations
of A to the set B. In this situation we write B ≤ A or B ≤ A. We call the subuniverse
B (or the subalgebra B) proper if ∅ 6= B 6= A. The smallest subalgebra of A containing a
set B ⊆ A is called the subalgebra generated by B and will be denoted by SgA(B). It can
be equivalently described as the set of elements which can be obtained by applying term
operations of A to elements of B.

Given a family of algebras Ai, i ∈ I we define its product
∏

i∈I Ai to be the algebra
with the universe equal to the cartesian product of the Ai’s and with operations computed
coordinatewise. The product of algebras A1, . . . , An will be denoted by A1×· · · ×An and
the product of n copies of an algebra A by An. R is a subdirect subalgebra of A1×A2×· · ·×
An if R is subdirect in A1×A2×· · ·×An and, in such a case, we write R ≤S A1×· · ·×An.

An equivalence relation ∼ on the universe of an algebra A is a congruence, if it is a
subalgebra of A2. The corresponding factor algebra A/ ∼ has, as the universe, the set
of ∼-blocks and the operations are defined using (arbitrarily chosen) representatives. A
congruence is nontrivial, if it is not equal to the diagonal or to the full relation A×A.

A variety is a class of algebras of the same signature closed under forming isomorphic
copies, subalgebras, factoralgebras and products. For a pair of terms s, t over a signature
Σ, we say that a class of algebras V in the signature Σ satisfies the identity s ≈ t if every
algebra in the class does. By Birkhoff’s theorem, a class of algebras is a variety if and only
if there exists a set of identities E such that the members of V are precisely those algebras
which satisfy all the identities from E.

A variety V is called locally finite, if every finitely generated algebra (that is, an algebra
generated by a finite subset) contained in V is finite. V is called finitely generated, if there
exists a finite set K of finite algebras such that V is the smallest variety containing K. In
such a case V is actually generated by a single, finite algebra, the product of members of
K. Every finitely generated variety is locally finite, and if a variety is generated by a single

ABSORPTION, CYCLIC TERMS, AND CSP 5

algebra then the identities satisfied in this algebra are exactly the identities satisfied in the
variety.

For a more in depth introduction to universal algebra and proofs of the above mentioned
results we recommend [BS81].

1.3. Taylor varieties. A term s is idempotent in a variety (or an algebra), if it satisfies
the identity

s(x, x, . . . , x) ≈ x.

An algebra (a variety) is idempotent if all its terms are.
A term t of arity at least 2 is called a weak near-unanimity term of a variety (or an

algebra), if t is idempotent and satisfies

t(y, x, x, . . . , x) ≈ t(x, y, x, x, . . . , x) ≈ . . . · · · ≈ t(x, x, . . . , y, x) ≈ t(x, x, . . . , x, y).

A term t of arity at least 2 is called a cyclic term of a variety (or an algebra), if t is
idempotent and satisfies

t(x0, x1, . . . , xk−1) ≈ t(x1, x2, . . . , xk−1, x0).

Finally, a term t of arity k is called a Taylor term of a variety (or an algebra), if t is
idempotent and for every j < k it satisfies an identity of the form

t(�0,�1, . . . ,�k−1) ≈ t(△0,△1, . . . ,△k−1),

where all �i’s and △i’s are substituted with either x or y, but �j is x while △j is y.

Definition 1.1. An idempotent variety V is called Taylor if it has a Taylor term.

Study of Taylor varieties has been a recurring subject in universal algebra for many years.
One of the first characterizations is due to Taylor [Tay77]

Theorem 1.2 (Taylor [Tay77]). Let V be an idempotent variety. The following are equiv-
alent.

• V is a Taylor variety.
• V does not contain a two-element algebra whose every (term) operation is a projection.

Further research led to discovery of other equivalent conditions [HM88, MM08, Sig10, KS09].
One of the most important ones is the result of Maróti and McKenzie [MM08].

Theorem 1.3 (Maróti and McKenzie [MM08]). Let V be an idempotent, locally finite
variety. The following are equivalent.

• V is a Taylor variety.
• V has a weak near-unanimity term.

This result, together with a similar characterization provided in the same paper for con-
gruence meet semi-distributive varieties, found deep applications in CSP [BKN08, BKN09,
BK09b].

6 L. BARTO AND M. KOZIK

1.4. Relational structures and CSP. A convenient formalization of non-uniform CSP
is via homomorphisms between relational structures [FV99].
A relational signature is a finite set of relation symbols with arities associated to them. A
relational structure of the signature Σ is a pair A = (A, (RA)R∈Σ), where A is a set, called

the universe of A, and RA is a relation on A of arity ar(R), that is, a subset of Aar(R).
Let A,B be relational structures of the same signature. A mapping f : A→ B is a homo-

morphism from A to B, if it preserves all R ∈ Σ, that is, (f(a0), f(a1), . . . , f(aar(R)−1)) ∈ RB

for any (a0, . . . , aar(R)−1) ∈ RA. A finite relational structure A is a core, if every homomor-
phism from A to itself is bijective.

For a fixed relational structure A of a signature Σ, CSP(A) is the following decision
problem:

INPUT: A relational structure X of the signature Σ.
QUESTION: Does X map homomorphically to A?

It is easy to see that if A′ is a core of A (i.e. a core which is contained in A and such that
A can be mapped homomorphically into it) then CSP(A) and CSP(A′) are identical.

The celebrated conjecture of Feder and Vardi [FV99] states that the class of CSPs
exhibits a dichotomy:

The dichotomy conjecture of Feder and Vardi. For any relational structure A, the
problem CSP(A) is solvable in polynomial time, or NP-complete.

1.5. Algebraic approach to CSP. A mapping f : An → A is compatible with an m-ary
relation R on A if the tuple

(
f(a00, a

1
0, . . . , a

n−1
0), . . . , f(a0m−1, a

1
m−1, . . . , a

n−1
m−1)

)

belongs to R whenever (ai0, . . . , a
i
m−1) ∈ R for all i < n. A mapping compatible with all

the relations in a relational structure A is a polymorphism of this structure.
For a given relational structure A = (A, (RA)R∈Σ) we define an algebra IdPol(A) (often

denoted by just A). This algebra A has its universe equal to A and the operations of A
are the idempotent polymorphisms of A (we formally define a signature of A to be identical
with the set of its operations).

It follows from an old result [BKKR69, Gei68] that a relation R of arity k is a subuni-
verse of IdPol(A)k if and only if R can be positively primitively defined from relations in A
and singleton unary relations identifying every element of A. That is, R can be defined by
a first-order formula which uses relations in A, singleton unary relations on A, the equality
relation on A, conjunction and existential quantification.

Already the first results on the algebraic approach to CSP [JCG97, BKJ00, BJK05] show
that whenever a relational structure A is a core then IdPol(A) fully determines the compu-
tational complexity of CSP(A). Moreover, Bulatov, Jeavons and Krokhin showed [BKJ00,
BJK05]:

Theorem 1.4 (Bulatov, Jeavons and Krokhin [BKJ00, BJK05]). Let A be a finite relational
structure which is a core. If IdPol(A) does not lie in a Taylor variety, then CSP(A) is NP -
complete.

In the same paper they conjectured that these are the only cases of finite cores which give
rise to NP-complete CSPs.

ABSORPTION, CYCLIC TERMS, AND CSP 7

The Algebraic Dichotomy Conjecture. Let A be a finite relational structure which is a
core. If IdPol(A) does not lie in a Taylor variety, then CSP(A) is NP -complete. Otherwise
is it solvable in polynomial time.

This conjecture is supported by many partial results on the complexity of CSPs [Bul03,
Bul06, BKN08, BKN09, BK09b, IMM+07] and it renewed interest in properties of finitely
generated Taylor varieties.

2. Absorbing subalgebras and absorption theorem

In this section we introduce the concept of an absorbing subalgebra and prove the Absorp-
tion Theorem and its corollaries. The proof is self-contained and elementary. In section 3 we
use Theorem 2.3 to reprove a stronger version of the “Smooth Theorem” [BKN08, BKN09]
which, in turn, will be used to prove the second main result of this article, Theorem 4.1.
This approach simplifies significantly the known proof of the Smooth Theorem, and does
not rely on the involved algebraic results results from [MM08]. It has also lead to a simple
proof [Bar11] of the dichotomy theorem for conservative CSPs [Bul03].

2.1. Absorption. A subalgebra B of an algebra A is an absorbing subalgebra, if there
exists a term operation of A which outputs an element of B whenever all but at most one
of its arguments are from B. More precisely

Definition 2.1. Let A be an algebra and t ∈ Clo(A). We say that a subalgebra B of A is
an absorbing subalgebra of A with respect to t if, for any k < ar(t) and any choice of ai ∈ A
such that ai ∈ B for all i 6= k, we have t(a0, . . . , aar(t)−1) ∈ B.

We say that B is an absorbing subalgebra of A, or that B absorbs A (and write B ⊳A),
if there exists t ∈ Clo(A) such that B is an absorbing subalgebra of A with respect to t.

We also speak about absorbing subuniverses, i.e. universes of absorbing subalgebras. Recall
that an (absorbing) subalgebra B of A is proper, if ∅ 6= B A.

The Absorption Theorem says that the existence of a certain kind of subuniverse R of
a product of two Taylor algebras A and B forces a proper absorbing subuniverse in one of
these algebras. It is helpful to draw R as a bipartite undirected graph in the following sense:
the vertex set is the disjoint union of A (draw it on the left) and B (on the right) and two
elements a ∈ A from the left side and b ∈ B from the right side are adjacent if (a, b) ∈ R.
We say that two vertices are linked if they are connected in this graph, and we call R linked
if the graph is connected after deleting the isolated vertices. Note that R ≤S A×B if and
only if there are no isolated vertices.

Definition 2.2. Let R ⊆ A × B and let a, a′ ∈ A. We say that a, a′ ∈ A are linked in R,
or R-linked, via c0, . . . , c2n, if a = c0, c2n = a′ and (c2i, c2i+1) ∈ R and (c2i+2, c2i+1) ∈ R for
all i = 0, 1, . . . , n− 1.

In a similar way we define when a ∈ A, a′ ∈ B (or a ∈ B, a′ ∈ A, or a ∈ B, a′ ∈ B) are
R-linked.

We say that R is linked, if a, a′ are R-linked for any elements a, a′ of the projection of
R to the first coordinate.

These definitions allow us to state the Absorption Theorem which is the first main result
of the paper.

8 L. BARTO AND M. KOZIK

Theorem 2.3. Let V be an idempotent, locally finite variety, then the following are equiv-
alent.

• V is a Taylor variety;
• for any finite A,B ∈ V and any linked R ≤S A×B:
− R = A×B or
− A has a proper absorbing subuniverse or
− B has a proper absorbing subuniverse.

2.2. Proof of Absorption Theorem. We start with a couple of useful observations. The
first one says that absorbing subalgebras are closed under taking intersection, and that ⊳ is
a transitive relation:

Proposition 2.4. Let A be an algebra.

• If C ⊳B ⊳A, then C ⊳A.
• If B ⊳A and C ⊳A, then B ∩ C ⊳A.

Proof. We start with a proof of the first item. Assume that B absorbs A with respect
to t (of arity m) and that C absorbs B with respect to s (of arity n). We will show
that C is an absorbing subalgebra of A with respect to s ∗ t. Indeed, take any tuple
(a0, . . . , amn−1) ∈ Amn such that ai ∈ C for all but one index, say j, and consider the
evaluation of s ∗ t(a0, . . . , amn−1). Every evaluation of the term t appearing in s ∗ t is of the
form

t(aim, . . . , aim+m−1)

and therefore whenever j does not fall into the interval [im, im+m− 1] the result of it falls
in C (as C is a subuniverse of A). In the case when j is in that interval we have a term t
evaluated on the elements of C (and therefore elements of B) in all except one coordinate.
The result of such an evaluation falls in B (as B absorbs A with respect to t). Thus s is
applied to a tuple consisting of elements of C on all but one position, and on this position
the argument comes from B. Since C absorbs B with respect to s the results falls in C and
the first part of the proposition is proved.

For the second part we consider B ⊳A and C ⊳A; it follows easily that B ∩C ⊳C with
respect to the same term as B ⊳A. Now it is enough to apply the first part.

Let R be a subuniverse of A×B. We use the following notation for the neighborhoods of
X ⊆ A or Y ⊆ B:

X+R = {b ∈ B : ∃ a ∈ X (a, b) ∈ R}

Y −R = {a ∈ A : ∃ b ∈ Y (a, b) ∈ R}

When R is clear from the context we write just X+ and Y −. The next lemma shows that
these operations preserve (absorbing) subalgebras.

Lemma 2.5. Let R ≤ A × B, where A,B are algebras of the same signature. If X ≤ A

and Y ≤ B, then X+ ≤ B and Y − ≤ A. Moreover, if R ≤S A×B and X ⊳A and Y ⊳B,
then X+ ⊳B and Y − ⊳A.

Proof. Suppose X ≤ A and take any term t, say of arity j, in the given signature. Let
b0, . . . , bj−1 ∈ X+ be arbitrary. From the definition of X+ we can find a0, . . . , aj−1 ∈ X
such that (ai, bi) ∈ R for all 0 ≤ i < j. Since R is a subuniverse of A × B, the pair

ABSORPTION, CYCLIC TERMS, AND CSP 9

(t(a0, . . . , aj−1), t(b0, . . . , bj−1)) is in R. But t(a0, . . . , aj−1) ∈ X as X is a subuniverse of
A. Therefore t(b0, . . . , bj−1) ∈ X+ and we have shown that X+ is closed under all term
operations of B, i.e. X+ ≤ B.

Suppose X absorbs A with respect to a term t of arity j. Let 0 ≤ k < j be arbitrary
and let b0, . . . , bj ∈ B be elements such that bi ∈ X+ for all i 6= k. Then, for every
i, i 6= k, we can find ai ∈ X such that (ai, bi) ∈ R. Also, since the projection of R to
the second coordinate is B, we can find ak ∈ A such that (ak, bk) ∈ R. We again have
(t(a0, . . . , aj−1), t(b0, . . . , bj−1)) ∈ R and t(a0, . . . , aj−1) ∈ X (as X absorbs A with respect
to t). It follows that t(b0, . . . , bj−1) ∈ X+ and that X+ ⊳B with respect to t.

The remaining two statements are proved in an identical way.

The subalgebra of A generated by B can be obtained by applying term operations of A to
elements of B. The following auxiliary lemma provides a single term for all subsets B.

Lemma 2.6. Let A be a finite idempotent algebra. Then there exists an operation s ∈
Clo(A) such that for any B ⊆ A and any b ∈ SgA(B) there exists a0, . . . , aar(s)−1 ∈ B such
that s(a0, . . . , aar(s)−1) = b.

Proof. From the definition of SgA(B) it follows that for every B ⊆ A and every b ∈ SgA(B)
there exists an operation s(B,b) ∈ Clo(A) of arity n and elements a0, . . . , an−1 ∈ B such
that s(B,b)(a0, . . . , an−1) = b. This operation is idempotent, as A is.

For any two idempotent operations t1, t2 on A (of arities n1, n2) and any a0, . . . , an1−1,
b0, . . . , bn2−1 ∈ A we have

t1 ∗ t2(a0, . . . , a0
︸ ︷︷ ︸

n2

, a1, . . . , a1
︸ ︷︷ ︸

n2

, . . . , an1−1, . . . , an1−1
︸ ︷︷ ︸

n2

)

equal to t1(a0, . . . , an1−1) and

t1 ∗ t2(b0, b1, . . . , bn2−1, . . . , b0, b1, . . . , bn2−1)

equal to t2(b0, . . . , bn2−1). Therefore the term operation

s = s(B1,b1) ∗ s(B2,b2) ∗ . . . ∗ s(Bl,bl),

where (B1, b1), (B2, b2), . . . , (Bl, bl) is a complete list of pairs such that bi ∈ SgA(Bi), satisfies
the conclusion of the lemma.

The following proposition is the only place in this article, where we use a Taylor term.
Although the proof is quite easy, we believe that this proposition is of an independent
interest.

Proposition 2.7. Let A be a finite algebra in a Taylor variety and suppose that A has no
proper absorbing subalgebra. Then there exists an operation v ∈ Clo(A) such that for any
b, c ∈ A and any coordinate i < ar(v) there exist a0, . . . , aar(v)−1 ∈ A such that ai = b and
v(a0, . . . , aar(v)−1) = c.

Proof. For a term operation t ∈ Clo(A) of arity k, an element b ∈ A, and a coordinate
i < ar(t) we set

W (t, b, i) = {t(a0, . . . , ak−1) : ai = b and aj ∈ A ∀j}.

Our aim is to find a term v such that W (v, b, i) = A for any b ∈ A and any coordinate i.
We will achieve this goal by gradually enlarging the sets W (t, b, i).

10 L. BARTO AND M. KOZIK

Let n < |A| and assume we already have an operation v(n) ∈ Clo(A) such that each
W (v(n), b, i) contains a subuniverse of A with at least n elements. From idempotency it
follows that all the one-element subsets of A are subuniverses of A, thus any operation in
Clo(A) can be taken as v(1).

For an induction step we first find an operation w(n+1) ∈ Clo(A) such that each

W (w(n+1), b, i) has at least (n+ 1)-elements:

Claim 2.8. Let t ∈ Clo(A) be a Taylor term operation and put w(n+1) = t ∗ v(n). Then
|W (w(n+1), b, i)| > n for all b ∈ A and all coordinates i < ar(w(n+1)).

Proof. Let j = i div ar(t), k = i mod ar(t) and let B ⊆W (v(n), b, k) be a subuniverse of A
with |B| ≥ n.

First we observe that B ⊆W (w(n+1), b, i). Indeed, take an arbitrary element c ∈ B, and

find a tuple a0, . . . , aar(v(n))−1 ∈ A such that ak = b and that v(n)(a0, . . . , aar(v(n))−1) = c.

The application of t ∗ v(n) to a concatenation of ar(t)-many copies of (a0, . . . , aar(v(n))−1)

produces t(c, c, . . . , c) = c. Since on the i-th coordinate of this catenation we have b, we

showed that c ∈ W (w(n+1), b, i). Therefore if B = A the claim holds and we can assume
B A.

As t is a Taylor operation, it satisfies an identity of the form

t(�0,�1, . . . ,�m−1) ≈ t(△0,△1, . . . ,△m−1),

where all �l’s and △l’s are substituted with either x or y, but �j is x while △j is y.
Let r(x, y) = t(�0,�1, . . . ,�m−1). Clearly r ∈ Clo(A). Since A has no proper absorb-

ing subuniverses, the subuniverse B is not an absorbing subuniverse of A with respect to
the operation r. Therefore there exist c ∈ B and d ∈ A such that either r(c, d) 6∈ B or

r(d, c) 6∈ B. We will show that r(c, d), r(d, c) ∈W (w(n+1), b, i).
For each e ∈ {r(c, d), r(d, c)} we can find a tuple f0, . . . , far(t)−1 ∈ {c, d} such that

fj = c and that t(f0, . . . , far(t)−1) = e. To obtain this we put

• fl = c if �l = x, and fl = d if �l = y in the case that e = r(c, d) and
• fl = c if △l = x, and fl = d if △l = y in the case that e = r(d, c).

Further, since c ∈ B ⊆ W (v(n), b, k), we can find elements a0, . . . , aar(v(n))−1 ∈ A such that

ak = b and v(n)(a0, . . . , aar(v(n))−1) = c. To construct the argument for t ∗ v(n) we expand

each element of the tuple (f0, . . . , far(t)−1) into ar(v(n))-many identical copies of itself except

fj which is substituted by (a0, . . . , aar(v(n))−1). It is easy to verify that t ∗ v(n) applied to

such an argument produces e.
We have proved that B∪{r(c, d), r(d, c)} ⊆W (w(n+1), b, i). As |B| ≥ n and r(c, d) 6∈ B

or r(d, c) 6∈ B, we are done

Now we are ready to define an operation v(n+1) such that each W (v(n+1), b, i) contains a
subuniverse with at least (n+ 1) elements:

Claim 2.9. Let s be the operation from Lemma 2.6 and let v(n+1) = s∗w(n+1). Then, for all
b ∈ A and all coordinates i < ar(v(n+1)), W (v(n+1), b, i) contains a subuniverse with more
than n elements.

Proof. Let j = i div ar(t), k = i mod ar(t) and let B = W (w(n+1), b, k). We will show that

SgA(B) ⊆W (v(n+1), b, i).

ABSORPTION, CYCLIC TERMS, AND CSP 11

Choose an arbitrary c ∈ SgA(B). By Lemma 2.6, there exist f0, . . . , far(s)−1 ∈ B such

that s(f0, . . . , far(s)−1) = c. As before we prepare the tuple of arguments for s ∗ w(n) by

expanding the tuple (f0, . . . , far(s)−1). Each fi gets expanded into ar(w(n+1))-many identical
copies of itself, except fj which gets expanded into a tuple (a0, . . . , aar(w(n+1))−1) ∈ A with

ak = b and such that w(n+1)(a0, . . . , aar(w(n+1))−1) = fj (such a tuple exists as fj ∈ B). It

is clear that s ∗ w(n+1) applied to such a tuple produces c and the claim is proved.

To finish the proof of Proposition 2.7, it is enough to set v = v(|A|).

It is an easy corollary that for two (or any finite number of) algebras in a Taylor variety we
can find a common term satisfying the conclusion of Proposition 2.7.

Corollary 2.10. Let A,B be finite algebras in a Taylor variety without proper absorbing
subalgebras. Then there exists a term v such that for any b, c ∈ A (resp. b, c ∈ B) and any
coordinate j < ar(v) there exist a0, . . . , aar(v) ∈ A (resp. a0, . . . , aar(v) ∈ B) such that aj = b
and v(a0, . . . , aar(v)) = c.

Proof. If v1 (resp. v2) is the term obtained from Proposition 2.7 for the algebra A (resp.
B), then we can put v = v1 ∗ v2.

We are now ready to prove Theorem 2.3. One direction of the proof is straightforward: if
an idempotent variety V is not a Taylor variety, then, by Theorem 1.2, it contains a two-
element algebra whose every operation is a projection. Such an algebra has no absorbing
subuniverses and any three-element subset of its square is a linked subdirect subalgebra
which falsifies the second condition of Theorem 2.3. Therefore it remains to prove the
following.

Theorem 2.11. Let A,B be finite algebras in a Taylor variety and let R be a proper,
subdirect and linked subalgebra of A×B. Then A or B has a proper absorbing subalgebra.

Proof. For contradiction, assume that R,A,B form a counterexample to the theorem. Thus
neither A nor B has a proper absorbing subalgebra and R ≤S A × B is a linked, proper
subset of A×B.

First we find another counterexample satisfying R−1 ◦R = A×A. As R is linked, there
exists a natural number k such that (R−1 ◦R)◦k = A2. Take the smallest such k. If k = 1,
then R−1 ◦ R = A × A and we need not to do anything. Otherwise we replace B by A

and R by (R−1 ◦ R)◦(k−1). Our new choice of R,A,B is clearly a counterexample to the
theorem satisfying R−1 ◦R = A×A.

From now on we assume that our counterexample satisfies R−1 ◦R = A×A. In other
words, for any a, c ∈ A, there exists b ∈ B such that (a, b), (c, b) ∈ R.

For a X ⊆ A we set

N(X) = {b ∈ B : ∀ a ∈ X (a, b) ∈ R} =
⋂

a∈X

{a}+

Claim 2.12. N(X) = N(SgA(X)).

Proof. If t is a k-ary term, a0, . . . , ak−1 are elements of X and b ∈ N(X), then (ai, b) ∈
R for any i = 0, 1, . . . , k − 1. Therefore (t(a0, . . . , ak−1), b) ∈ R. This shows that b ∈
{t(a0, . . . , ak−1)}

+.

12 L. BARTO AND M. KOZIK

Claim 2.13. N(A) 6= ∅.

Proof. We call a subset X ⊆ A good, if (N(X))− = A. Since R−1 ◦ R = A × A, every
one-element subset of A is good. We prove the claim by showing that A is good.

Let X be a maximal, with respect to inclusion, good subset of A. We know that ∅ 6= X,
since each one-element subset is good, and also X 6= A, otherwise the claim is proved. As
N(X) = N(SgA(X)) due to the Claim 2.12, X is a subuniverse of A. Let v ∈ Clo(A) be
the operation from Proposition 2.7. Due to our assumption that A has no proper absorbing
subuniverses, X is not an absorbing subuniverse of A with respect to the operation v. It
follows that there exists a coordinate j < ar(v) and elements a0, . . . , aar(v)−1 ∈ A such that
ai ∈ X for all i 6= j, and b := v(a0, . . . , aar(v)−1) 6∈ X.

We will prove that the set X ∪ {b} is good, which will contradict the maximality of X.
Let c ∈ A be arbitrary. From Proposition 2.7 we obtain d0, . . . , dar(v)−1 ∈ A such that dj =

aj and v(d0, . . . , dar(v)−1) = c. Since (N(X))− = A, we can find e0, . . . , ear(v)−1 ∈ N(X)
such that (di, ei) ∈ R for all i. Put f = v(e0, . . . , ear(v)−1). As R is a subuniverse of A×B

and (di, ei) ∈ R for all i, it follows that (v(d0, . . . , dar(v)−1), v(e0, . . . , ear(v)−1)) = (c, f) ∈ R.
The set N(X) is a subuniverse of B thus we have f ∈ N(X). For all i 6= j, we have
aj ∈ X and ej ∈ N(X), hence (aj , ej) ∈ R. But also (ai = di, ei) ∈ R and, again, R is
a subuniverse of A×B, therefore (v(a0, . . . , aar(v)−1), v(e0, . . . , ear(v)−1)) = (b, f) ∈ R. We

have proved that, for any c ∈ A, there exists f ∈ N(X) ∩ {b}+ = N(X ∪ {b}) such that
(c, f) ∈ R. Therefore X ∪{b} is good, a contradiction. This contradiction shows that N(A)
is nonempty.

Since R is a proper subset of A × B, N(A) is a proper subset of B. This set is
an intersection of subuniverses of B, thus N(A) a subuniverse of B. Since N(A) is not an
absorbing subuniverse of B with respect to v, there exists a coordinate j < ar(v) and a tuple
b0, . . . , bar(v)−1 ∈ B such that bi ∈ N(A) for all i 6= j, and c := v(b0, . . . , bar(v)−1) 6∈ N(A).

We will prove that (d, c) ∈ R for all d ∈ A, which will contradict the definition of
N(A). Let a ∈ A be any element of A such that (a, bj) ∈ R (we use subdirectness of
R here) and let ai ∈ A be obtained from Proposition 2.7 in such a way that aj = a
and v(a0, . . . , aar(v)) = d. For all i 6= j, we have (ai, bi) ∈ R as bi ∈ N(A), and also
(aj = a, bj) ∈ R. Thus (v(a0, . . . , aar(v)−1), v(b0, . . . , bar(v)−1)) = (d, c) ∈ R.

2.3. Minimal absorbing subalgebras. We present a number of properties of absorbing
subuniverses required in the proof of Theorem 4.1. Most of them are corollaries of the Ab-
sorption Theorem and they give us some information about minimal absorbing subalgebras:

Definition 2.14. If B ⊳A and no proper subalgebra of B absorbs A, we call B a minimal
absorbing subalgebra of A (and write B ⊳⊳ A).

Alternatively, we can say that B is a minimal absorbing subalgebra of A, if B⊳A and B has
no proper absorbing subalgebras. Equivalence of these definitions follows from transitivity
of ⊳ (proved in Proposition 2.4). Observe also that two minimal absorbing subuniverses of
A are either disjoint or coincide, but the union of all minimal absorbing subuniverses need
not be the whole set A.

Proposition 2.15. Let V be a Taylor variety, let A and B be finite algebras in V and let
R ≤S A×B.

(i) If R is linked and E ⊳R, then E is linked.

ABSORPTION, CYCLIC TERMS, AND CSP 13

(ii) If C ⊳⊳ A, D ⊳⊳ B, and (C ×D) ∩R 6= ∅, then (C×D) ∩R ≤S C×D.
(iii) If R is linked, C ⊳⊳ A, D ⊳⊳ B, and (C ×D) ∩R 6= ∅, then C×D ⊳⊳ R.
(iv) If R is linked, and C ⊳⊳ A, then there exists D ⊳⊳ B such that C ×D ⊆ R.
(v) If R is linked, C ⊳⊳ A or C ⊳⊳ B, D ⊳⊳ A or D ⊳⊳ B, c ∈ C, and d ∈ D, then c and

d can be linked via c0, . . . , cj where each ci is a member of some minimal absorbing
subalgebra of A or B.

To avoid ambiguity in the statement of item (v), assume that the algebras A,B are disjoint.
When we apply the corollary this need not be the case, but the assumptions (and therefore
conclusions) of the corollary will be satisfied when we substitute the algebras A,B with
their isomorphic, disjoint copies.

Proof.

(i) Suppose that E absorbsR with respect to an operation t. Let (a, b), (a′, b′) be arbitrary
elements of E. As R is linked, there exist c0, c1, . . . , c2n ∈ A ∪ B such that c0 = a,
c2n = a′, (c2i, c2i+1) ∈ R and (c2i+2, c2i+1) ∈ R for all i = 0, 1, . . . , n− 1. The pair

t((c2i, c2i+1), (a, b), (a, b), . . . , (a, b)),

which is, by definition of the product of two algebras, equal to

(t(c2i, a, a, . . . , a), t(c2i+1, b, b, . . . , b))

is in E for all i, since E absorbs R with respect to t. Similarly,

(t(c2i+2, a, a, . . . , a), t(c2i+1, b, b, . . . , b)) ∈ E.

Therefore the elements a = t(a, a, . . . , a) and t(a′, a, a, . . . a) are linked in E via
t(c0, a, . . . , a), t(c1, b, . . . , b), . . . , t(c2n, a, . . . , a).

Using the same reasoning, the pairs

(t(a′, c2i, a, . . . , a), t(b
′, c2i+1, b, . . . , b))

and
(t(a′, c2i+2, a, . . . , a), t(b

′, c2i+1, b, . . . , b))

are in E and it follows that t(a′, a, a, . . . , a) and t(a′, a′, a, a, . . . , a) are linked in E. By
continuing similarly we get that a = t(a, a, . . . , a) and a′ = t(a′, a′, . . . , a′) are linked
in E as required.

(ii) By Lemma 2.5 D− ⊳ A, therefore ∅ 6= (D− ∩ C) ⊳ A (by Proposition 2.4) and, as
C ⊳⊳ A, we get D− ⊇ C. A symmetric reasoning shows that C+ ⊇ D and the item is
proved.

(iii) Let E = (C ×D) ∩ R and let E be the subalgebra of A ×B with universe E. From
(ii) it follows that E ≤S C×D. Clearly E ⊳R, therefore E is linked by (i). Theorem
2.11 together with the minimality of C and D now gives E = C ×D.

Let ∅ 6= F ⊳ E. The projection of F to the first (resp. the second) coordinate is
clearly an absorbing subuniverse of C (resp. D). Therefore F ≤S C ×D. Using (i)
and Theorem 2.11 as above we conclude that F = C ×D.

(iv) Let D′ = C+. According to Lemma 2.5, D′ is an absorbing subuniverse of B. Let D′

be the subalgebra of A with universe D′ and let D be a minimal absorbing subalgebra
of D′. The claim now follows from (iii).

14 L. BARTO AND M. KOZIK

(v) We prove this fact by induction on the length of the path connecting c and d. If
the length is 2, then we have c, d ∈ A (thus {c}+ ∩ {d}+ 6= ∅), or c, d ∈ B (thus
{c}− ∩ {d}− 6= ∅). Without loss of generality we assume the first case and, conclude
using Lemma 2.5 and Proposition 2.4, that ∅ 6= (C+ ∩ D+) ⊳ B. Let E be any
subuniverse such that E⊳⊳ (C+∩D+). Then, as (C×E)∩R 6= ∅ and (D×E)∩R 6= ∅,
by (iii), we obtain C × E ⊆ R and D × E ⊆ R and the first case is proved.

For the induction step, we assume, without loss of generality, that C⊳⊳ A and define
C0 = C,C1 = C+

0 , C2 = C−1 , C3 = C+
2 , . . . with d ∈ Cn. Suppose, for simplicity of the

presentation, that d appears on the right side (i.e. d ∈ B) and consider (Cn−1∩D
−)⊳A.

Let E ⊳⊳ (Cn−1 ∩D−). By (iii) we have E × D ⊆ R and, by inductive assumption
we have an element of E, say e, linked inside minimal absorbing subuniverses to some
element of C say c′. Therefore d is linked (through e) inside minimal sets to some
c′ ∈ C. By (iv) we link, inside minimal absorbing subuniverses, c′ to c and the item is
proved.

3. New proof of the Smooth Theorem

The Smooth Theorem classifies the computational complexity of CSPs generated by smooth
digraphs (digraphs, where every vertex has at least one incoming and at least one outgoing
edge). This classification was conjectured by Bang-Jensen and Hell [BJH90] and confirmed
by the authors in [BKN08, BKN09]. The proof presented in those papers heavily relied on
the results of McKenzie and Maroti [MM08] which characterized the locally finite Taylor
varieties in terms of weak near-unanimity operations. We present an alternative proof which
depends only on Theorem 2.3. The Smooth Theorem states:

Theorem 3.1. Let H be a smooth digraph. If each component of the core of H is a circle,
then CSP(H) is polynomially decidable. Otherwise CSP(H) is NP-complete.

3.1. Basic digraph notions. A digraph is a pair G = (V,E), where V is a finite set of
vertices and E ⊆ V × V is a set of edges. If the digraph is fixed we write a→ b instead of
(a, b) ∈ E. The induced subgraph of G with vertex set W ⊆ V is denoted by G|W , that is,
G|W = (W,E ∩ (W ×W)). A loop is an edge of the form (a, a). G is said to be smooth if
every vertex has an incoming and an outgoing edge, in other words, G is smooth, if E is
a subdirect product of V and V . The smooth part of G is the largest subset W of V such
that G|W is smooth (it can be empty).

An oriented path is a digraph P with vertex set P = {p0, . . . , pk} and edge set consisting
of k edges — for all i < k either (pi, pi+1), or (pi+1, pi) is an edge of P. An initial segment
of such a path is any path induced by P on vertices {p0, . . . , pi} for some i < k. We denote

the oriented path consisting of k edges pointing forward by ·
k
−→ · and, similarly the oriented

path consisting of k edges pointing backwards by ·
k
←− ·. The concatenation of paths is

performed in the natural way. A (k, n)-fence (denoted by F[k, n]) is the oriented path
consisting of 2kn edges, k forward edges followed by k backward edges, n times i.e.:

·
k
−→ ·

k
←− · · · ·

k
−→ ·

k
←− ·

︸ ︷︷ ︸

n

ABSORPTION, CYCLIC TERMS, AND CSP 15

The algebraic length of an oriented path is the number of forward edges minus the
number of backward edges (and thus all the fences have algebraic length zero). Let G be a
digraph, let P be an oriented path with vertex set P = {p0, . . . , pk}, and let a, b be vertices
of G. We say that a is connected to b via P, if there exists a homomorphism f : P → G

such that f(p0) = a and f(pk) = b. We sometimes write a
k
−→ b when a is connected to b via

·
k
−→ ·. If a

k
−→ a (for some k) then a is in a cycle and any image of the path ·

k
−→ · with the

same initial and final vertex is a cycle. A circle is a cycle which has no repeating vertices
and no chords.

The relation “a is connected to b (via some path)” is an equivalence, its blocks (or
sometimes the corresponding induced subdigraphs) are called the weak components of G.

The vertices a and b are in the same strong component if a
k
−→ b

k′
−→ a for some k, k′. For a

subset B of A and an oriented path P we set

BP = {c : ∃b ∈ B b is connected to c via P }.

Note that B·
k

−→· is formally equal to B+E◦k
but we prefer the first notation.

Finally, G has algebraic length k, if there exists a vertex a of G such that a is connected
to a via a path of algebraic length k and k is the minimal positive number with this property.
The following proposition summarizes easy results concerning reachability via paths:

Proposition 3.2. Let G be a smooth digraph, then:

• for any vertices a, b in G if a is connected to b via ·
k
−→ · then a is connected to b via every

path of algebraic length k;
• for any vertex a and any path P there exists a vertex b and a path Q which is an initial
segment of some fence such that {a}P ⊆ {b}Q;
• if H ⊆ G is such that H ·→· ⊇ H or H ·←· ⊇ H then the digraph G|H contains a cycle (i.e.
the smooth part of G|H is non-empty)

Proof. The first item of the proposition follows directly form the definition of a smooth
digraph.

We prove the second item by induction on the length of P. If the length is zero there is
nothing to prove. Therefore we take an arbitrary path P of length n and arbitrary a ∈ A.
The proof splits into two cases depending on the direction of the last edge in P. We consider
the case when the last edge of P points forward first and set P′ to be P take away the last
edge. The inductive assumption for a and P′ provides a vertex b and a path Q′ (an initial
fragment of a fence F[k, l]). If the algebraic length of Q′ is strictly smaller than k, we put
Q′′′ to be a path such that the concatenation of Q′ and Q′′′ is an initial fragment of the fence
F[k, l+1] and such that the algebraic length of Q′′′ is one; then the concatenation of Q′ and
Q′′′ proves the second item of the proposition (as, by the first item of the proposition, every

element reachable from {b}Q
′
by · → · is also reachable by Q′′′). If the algebraic length of

Q′ equals k we consider a path Q′′ obtained from Q′ by substituting each subpath of the

shape · → · ← · with ·
2
−→ ·

2
←− ·. The path Q′′ is an initial fragment of F[k + 1, l] and we

have {b}Q
′
⊆ {b}Q

′′
(as the digraph is smooth). Now we can find Q′′′ as in the previous

case.
If the last edge of P points backwards, we proceed with dual reasoning. If the algebraic

length of Q′ is greater than zero we obtain Q′′′ of algebraic length −1 as before and the
proposition is proved. If the algebraic length of Q′ is zero we substitute b with any vertex

16 L. BARTO AND M. KOZIK

b′ such that b′ → b and alter Q′ by substituting each · ← · → · with ·
2
←− ·

2
−→ ·. The new

path is an initial fragment of F[k + 1, l] and we can proceed as in previous case.
For the third item of the proposition. Without loss of generality we can assume the

first possibility and choose an arbitrary b0 ∈ H. As H ⊆ H ·→· there is an element b1 ∈ H
such that b1 → b0. Repeating the same reasoning for b1, b2, . . . we obtain a sequence of
vertices in H such that bi+1 → bi. As H is finite, we obtain a cycle in H and the last item
of the proposition is proved.

The following lemma shows that the smooth part of an induced subdigraph of a smooth
digraph shares some algebraic properties with the induced subdigraph.

Lemma 3.3. Let A be a finite algebra and let G = (A,E) be a smooth digraph such that E
is a subuniverse of A2. If B is a subuniverse of A (an absorbing subuniverse of A) then the
smooth part of G|B forms a subuniverse of A (an absorbing subuniverse of A respectively).

Proof. Note that if the smooth part of G|B is empty then the lemma holds. Assume it is
non-empty and let A, G, B be as in the statement of the lemma. We put B1 ⊆ B to be
the set of all the vertices in B with at least one outgoing and at least one incoming edge in
G|B (i.e. an outgoing edge and an incoming edge to elements of B). As B1 = B∩B+E∩B−E

Lemma 2.5 implies that B1 is a subuniverse (absorbing subuniverse resp.) of A. We put

B2 = B1 ∩B
+E
1 ∩B−E1 and continue the reasoning. Since A is finite we obtain some k such

that Bk = Bk+1. Since G|Bk
has no sources and no sinks the lemma is proved.

3.2. Reduction of the problem. The first part of Theorem 3.1 is easy: if a digraph H
has a core which is a disjoint union of circles then CSP(H) is solvable in polynomial time
(see [BJH90]). On the other hand, using Theorem 1.4 and the fact that CSPs of a relational
structure and its core are the same, it suffices to prove that:

Theorem 3.4. If a smooth digraph admits a Taylor polymorphism then it retracts onto the
disjoint union of circles.

Finally, Theorem 3.4 reduces to the theorem below. An elementary proof of this reduction
can be found in [BKN08, BKN09].

Theorem 3.5. If a smooth digraph has algebraic length one and admits a Taylor polymor-
phism then it contains a loop.

In fact, in the remainder of this section, we prove a stronger version of Theorem 3.5:

Theorem 3.6. Let A be a finite algebra in a Taylor variety and let G = (A,E) be a smooth
digraph of algebraic length one such that E is a subuniverse of A2. Then G contains a
loop. Moreover, if there exists an absorbing subuniverse I of A which is contained in a
weak component of G of algebraic length 1, then the loop can be found in some J such that
J ⊳⊳ A.

ABSORPTION, CYCLIC TERMS, AND CSP 17

3.3. The proof. Our proof of Theorem 3.6 proceeds by induction on the size of the vertex
set of G = (A,E). If |A| = 1 there is nothing to prove (as the only smooth digraph on
such a set contains a loop); for the induction step we assume that Theorem 3.6 holds for
all smaller digraphs.

Claim 3.7. Let H be a weak component of G of algebraic length one, then there exists
a ∈ H and a path P such that {a}P contains a cycle.

Proof. We choose a ∈ H to be the element of the component H such that there is a path
Q of algebraic length one connecting a to a. We define the sequence of sets B0 = {a}

and Bi = BQi−1 recursively. As a is connected to a via Q we have B0 ⊆ B1 and therefore

Bi ⊆ Bi+1 for any i (as by definition Bi−1 ⊆ Bi implies that BQi−1 ⊆ BQi i.e. Bi ⊆ Bi+1).
As Q is of algebraic length one we can use Proposition 3.2 to infer that {a}·→· ⊆ B1 and

further that {a}·
k

−→· ⊆ Bk for any k. These facts together imply that

k⋃

i=0

{a}·
i

−→· ⊆ Bk

and, as the digraph is finite, we can find a cycle in one of the Bk’s. Take P to be the Q
concatenated with itself sufficiently many times to witness the claim.

Claim 3.8. Let H be a weak component of G of algebraic length one, then there exists
a ∈ H and a fence F such that {a}F = H.

Proof. Let us choose a ∈ H and P′ as provided by Claim 3.7. Set B to be the set of elements
of {a}P

′
which belong to some cycle fully contained in {a}P

′
. Proposition 3.2 implies that

BF[|A|,1] contains all elements reachable by ·
i
−→ · or ·

i
←− · (for any i), from any element of B.

Indeed if such a c is reachable from b ∈ B by ·
i
←− · then it is reachable by ·

|A|
←−− · from some

b′ ∈ B and further by F[|A|, 1] from some b′′ ∈ B. In the other case b
i
−→ c for some b ∈ B.

There obviously exists d such that d
|A|
←−− c and since b

i
−→ c

|A|
−−→ d we have some j ≤ |A| and

b
j
−→ d. Thus there exists b′ ∈ B with b′

|A|
−−→ d and c is reachable by F[|A|, 1] from b′.

For every element c in H we can find b0, b1, . . . , b|A| = c such that each bj, j 6= |A|, is

in a cycle Bj where B0 ⊆ B, and b0
i0−→ b1

i1←− b2
i2−→ b3 ←− . . . b|A| for some i0, i1, . . . , i|A|−1.

The reasoning above shows that Bj is contained in B
F[|A|,1]
j−1 (for all 1 ≤ j < |A|) and b|A|

belongs to B
F[|A|,1]
|A|−1 , therefore BF[|A|,|A|] = H.

Thus, for an appropriate path P we have a connected to every element of H by P. The
second item of Proposition 3.2 provides b and an initial segment Q of a fence F such that b
is connected to every element from H by Q. Let S denote the remaining part of the fence
F. Then {b}F = ({b}Q)S = HS = H and the claim is proved.

The remaining part of the proof splits into two cases: in the first case the algebra A

has an absorbing subuniverse in a weak component of algebraic length one and in the
second it doesn’t. Let us focus on the first case and define I ⊳ A contained in a weak
component (denoted by H) of algebraic length one of G.

Claim 3.9. There is a fence F such that IF = H.

Proof. Let a and F′ be provided by Claim 3.8. We put F to be a concatenation of F′ with
itself. Since a ∈ IF

′
, then IF = H.

18 L. BARTO AND M. KOZIK

Let P be the longest initial segment of F (provided by Claim 3.9) such that IP 6= H. Put
S = IP. By multiple application of Lemma 2.5 we infer that S is a subuniverse of A and
that S ⊳A. The definition of S implies that S·→· = H ⊇ S or S·←· = H ⊇ S, and therefore,
by Proposition 3.2, S contains a cycle. Thus the smooth part of G|S, denoted by S′, is
non-empty and, by Lemma 3.3, it absorbs A. If the digraph G|S′ has algebraic length one
and is weakly connected, then we use the inductive assumption:

• either G|S′ has no absorbing subuniverses in a weak component of algebraic length one; in
such a case, as it is weakly connected, it has no absorbing subuniverses at all — therefore
S′ ⊳⊳ A and the inductive assumption provides a loop in S′, or
• G|S′ has an absorbing subuniverse; then it has a loop in J ⊳⊳ S′ and, as J ⊳⊳ A, the
theorem is proved.

Therefore to conclude the first case of the theorem it remains to prove

Claim 3.10. G|S′ is a weakly connected digraph of algebraic length 1.

Proof. Assume that S′ absorbs A with respect to t of arity k and let m,n be natural
numbers such that every two vertices of H are connected via the (m,n)-fence (implied by
Claim 3.8) denoted by F. We will show that any two vertices a, b ∈ S′ are connected via
the (m,nk)-fence in the digraph G|S′.

As the digraph G|S′ is smooth, a is connected to a via F and b is connected to b via

F (by the first item of Proposition 3.2). Let f : F→ S′ and g : F→ S′ be the corresponding
digraph homomorphisms. Moreover, a is connected to b via F in the digraph G and we take
the corresponding homomorphism h : F→ G. For every i = 0, 1, . . . , k − 1 we consider the
following matrix with k rows and 2nm+ 1 columns: To the first (k − i− 1) rows we write
f -images of the vertices of F, to the (k− i)th row we write h-images, and to the last i rows
we write g-images. We apply the term operation t to columns of this matrix. Since E ≤ A2

we obtain a homomorphism from F to G which realizes a connection from

t(a, a, . . . , a
︸ ︷︷ ︸

(k−i)

, b, b, . . . , b
︸ ︷︷ ︸

i

)

to
t(a, a, . . . , a
︸ ︷︷ ︸

(k−i−1)

, b, b, . . . , b
︸ ︷︷ ︸

(i+1)

).

Moreover, since all but one member of each column are elements of S′ and S′⊳A, we actually
get a homomorphism F → S′. By joining these homomorphisms for i = 0, 1, . . . , k − 1 we
obtain that a = t(a, a, . . . , a) is connected to b = t(b, b, . . . , b) via the (m,nk)-fence in S′.

As S′ ⊆ H all the elements of S′ are connected in H, and, using the paragraph above,
also in S′. Moreover we can take two elements a, b ∈ S′ such that a→ b. As a is connected
to b via a (m,nk)-fence in S′ the algebraic length of G|S′ is one.

It remains to prove the case of Theorem 3.6 when there is no absorbing subuniverse in any
weak component of G of algebraic length one. We choose such a component and call it H.
By Claim 3.8 there is an a ∈ H and F such that H = {a}F. Since {a} is a subuniverse,
multiple application of Lemma 2.5 (as above) shows that H is a subuniverse as well. If
H A we are done by the inductive assumption. Therefore H = A and there is no
absorbing subuniverse in A.

Let k be minimal such that there exists m and a ∈ A with {a}F[k,m] = A. This implies
that E◦k ≤S A× A is linked and, as there is no absorbing subuniverse in A, Theorem 2.3

ABSORPTION, CYCLIC TERMS, AND CSP 19

implies that E◦k = A×A. In particular the digraph G is strongly connected. Choose any
a ∈ A and consider the fence F[k − 1,m′] for m′ large enough so that B = {a}F[k−1,m

′] =

{a}F[k−1,m
′+1]. The set B is a proper subset of A (by minimality of k) and it is a subuniverse

of A (by Lemma 2.5 again). It suffices to prove that the smooth part of G|B (which is a
subuniverse by Lemma 3.3) has algebraic length 1.

Claim 3.11. The smooth part of G|B, denoted by B′, is non-empty and has algebraic length
one.

Proof. Note that, by definition of B, BF[k−1,1] = B.
Let b be an arbitrary element of B. As G is smooth we can find c ∈ A such that

b
k−1
−−→ c. Since E◦k = A × A we get b

k
−→ c. Consider the first element b1 on this path:

b → b1 and b1 ∈ B as b
k−1
−−→ c

k−1
←−− b1. Therefore b → b1 in G|B. We have shown that

B·←· ⊇ B. By Proposition 3.2 the smooth part of B is non-empty.
To show that G|B′ has algebraic length one we pick arbitrary b, b′ ∈ B′ such that

b
k−1
−−→ b′ in G|B′ . As E◦k = A×A we have b

k
−→ b′ in G. All the vertices on the path b

k
−→ b′

are in B, because BF[k−1,1] = B and b′ is in the smooth part of G|B . Since b, b′ are in B′,
the whole path falls in B′. This gives a path of algebraic length one connecting b to b in B′

which proves the claim.

4. Cyclic terms in Taylor varieties

In the final section we prove our second main result – a characterization of Taylor varieties
as the varieties possessing a cyclic term.

Theorem 4.1. Let V be an idempotent variety generated by a finite algebra A then the
following are equivalent.

• V is a Taylor variety;
• V (equivalently the algebra A) has a cyclic term;
• V (equivalently the algebra A) has a cyclic term of arity p, for every prime p > |A|.

The proof uses the Absorption Theorem and its corollaries, and Theorem 3.6. This result
is then applied to restate the Algebraic Dichotomy Conjecture, and to give short proofs of
Theorem 1.3 and the dichotomy theorem for undirected graphs [HN90]. At the very end
of the section we provide more information about possible arities of cyclic terms of a finite
algebra.

4.1. Proof of Theorem 4.1. As every cyclic term is a Taylor term, Theorem 4.1 will
follow immediately when we prove:

Theorem 4.2. Let A be a finite algebra in a Taylor variety and let p be a prime such that
p > |A|. Then A has a p-ary cyclic term operation.

As in the proofs of partial results [BKM+09, BK10], the proof of Theorem 4.2 is based on
studying cyclic relations:

Definition 4.3. An n-ary relation R on a set A is called cyclic, if for all a0, . . . , an−1 ∈ A

(a0, a1, . . . , an−1) ∈ R ⇒ (a1, a2, . . . , an−1, a0) ∈ R.

20 L. BARTO AND M. KOZIK

The following lemma from [BKM+09] gives a connection between cyclic operations and
cyclic relations.

Lemma 4.4. For a finite, idempotent algebra A the following are equivalent:

• A has a k-ary cyclic term operation;
• every nonempty cyclic subalgebra of Ak contains a constant tuple.

Proof. Assume first that A has a k-ary cyclic term operation t and consider an arbi-
trary tuple a = (a0, a1, . . . , ak−1) in a cyclic subalgebra R of Ak. We denote by σ(a),
σ2(a), . . . , σk−1(a) the cyclic shifts of a, that is σ(a) = (a1, a2, . . . , ak−1, a0), σ2(a) =
(a2, a3, . . . , ak−1, a0, a1), . . . , σ

k−1(a) = (ak−1, a0, a1, . . . , ak−2). As R is cyclic, all these
shifts belong to R. By applying t to the tuples a, σ(a), . . . , σk−1(a) coordinatewise we get
the tuple

(t(a0, a1, . . . , ak−1), t(a1, a2, . . . , ak−1, a0), . . . , t(ak−1, a0, a1, . . . , ak−2)),

which belongs to R, since R is a subuniverse of Ak. But t is a cyclic operation, therefore
this tuple is constant.

To prove the converse implication, we assume that every nonempty cyclic subalgebra
of Ak contains a constant tuple. For a k-ary operation t ∈ Clo(A) we define S(t) ⊆ Ak to
be the set of all a ∈ Ak such that t(a) = t(σ(a)) = · · · = t(σk−1(a)). Let t be such that
|S(t)| is maximal.

If S(t) = Ak, then the term operation t is cyclic and we are done. Assume the contrary,
that is, there exists a tuple a ∈ Ak such that t(a) = t(σ(a)) = · · · = t(σk−1(a)) fails.
Consider the tuple b = (b0, b1, . . . , bk−1) defined by bi = t(σi(a)), 0 ≤ i < k, and let
B = {b, σ(b), . . . , σk−1(b)}.

We claim that the subalgebra C = SgAk(B) of Ak is cyclic. Indeed, every tuple
c ∈ C can be written as c = s(b, σ(b), . . . , σk−1(b)) for some term s. Then the element
s(σ(b), σ2(b), . . . , σk−1(b),b) of C is equal to σ(c).

According to our assumption, the algebra C contains a constant tuple. It follows that
there exists a k-ary term s ∈ Clo(A) such that b ∈ S(s). Now consider the term r defined
by

r(x0, x1, . . . , xk−1) = s(t(x0, x1, . . . , xk−1), t(x1, . . . , xk−1, x0), . . . , t(xk−1, x0, x1, . . . , xk−2)).

We claim that S(t) ⊆ S(r), but also that a ∈ S(r). This would clearly be a contradiction
with the maximality of |S(t)|. Let x ∈ S(t). Then

r(σi(x)) = s(t(σi(x)), t(σi+1(x)), . . . , t(σi−1(x))) = s(t(x), t(x), . . . , t(x)) = t(x)

for all i, so x ∈ S(r). On the other hand,

r(σi(a)) = s(t(σi(a)), t(σi+1(a)), . . . , t(σi−1(a))) = s(bi, bi+1, . . . , bi−1) = s(σi(b)),

which is constant for all i by the choice of s. Therefore a ∈ S(r) and the contradiction is
established.

For the rest of the proof of Theorem 4.2 we fix a prime number p, we fix a Taylor variety
V and we consider a minimal counterexample to the theorem with respect to the size of A.
Thus A is a finite algebra in V, p > |A|, and for all B ∈ V with |B| < |A|, B has a cyclic
term of arity p, i.e., by Lemma 4.4, every nonempty cyclic subuniverse of Bp contains a
constant tuple.

An easy reduction proving the following claim can also be found in [BKM+09].

ABSORPTION, CYCLIC TERMS, AND CSP 21

Claim 4.5. A is simple.

Proof. Suppose that A is not simple, and α is a nontrivial congruence of A.
To apply Lemma 4.4 we focus on an arbitrary cyclic subalgebra R of Ap. Our first

objective is to find a tuple in R with all elements congruent to each other modulo α.
Let us choose any tuple (a0, . . . , ak−1) ∈ R and let c(x0, . . . , xk−1) be the operation of A
which gives rise to the cyclic operation of A/α (such an operation exists from the min-
imality assumption). Therefore c(a0, . . . , ak−1), c(a1, . . . , ak−1, a0), . . . all lie in one con-
gruence block of α as the results of these evaluations are equal in A/α. Now we apply
the term c(x0, . . . , xk−1) in R to (a0, . . . , ak−1), (a1, . . . , ak−1, a0), . . . and obtain the tuple
(c(a0, . . . , ak−1), c(a1, . . . , ak−1, a0), . . .) in R with all the coordinates in the same congru-
ence block.

Let C be a congruence block of α such that Cp ∩ R 6= ∅. It is easy to see that in
such a case Cp ∩ R is a (nonempty) cyclic subuniverse of Cp. As the block C has a cyclic
operation of arity p then, again by Lemma 4.4, we obtain a constant in Cp ∩ R and the
claim is proved.

From Lemma 4.4 it follows that there exists a cyclic subalgebra R of Ap containing no
constant tuple. We fix such a subalgebra R. Let Rk, k = 1, 2, . . . , p, denote the projection
of R to the first k coordinates, that is

Rk = {(a0, a1, . . . , ak−1) : (a0, . . . , ap−1) ∈ R}.

Note that, from the cyclicity of R, it follows that for any i we have

Rk = {(ai, ai+1, . . . , ai+k−1) : (a0, . . . , ap−1) ∈ R},

where indices are computed modulo p. In the next claim we show that R is subdirect in
Ap.

Claim 4.6. R1 = A.

Proof. The projection of R to any coordinate is a subalgebra of A. From the cyclicity of
R it follows that all the projections are equal, say to B. The set B is a subuniverse of A
and if it is a proper subset of A, then R ≤S Bp contains a constant tuple by the minimality
assumption, a contradiction.

We will prove the following two claims by induction on n = 1, 2, . . . , p. Note that for n = 1
both claims are valid and that property (P1) for n = p contradicts the absence of a constant
tuple in R.

(P1) There exists I ⊳⊳ A such that In ⊳⊳ Rn.
(P2) If I1, . . . , In ⊳⊳ A and (I1 × · · · × In) ∩Rn 6= ∅, then I1 × · · · × In ⊳⊳ Rn.

We assume that both (P1) and (P2) hold for some n ∈ {1, . . . , p − 1} and we aim to prove
these properties for n+ 1. We fix I ⊳⊳ A such that In ⊳⊳ Rn guaranteed by (P1). Let

S = {((a0, . . . , an−1), an) : (a0, . . . , an) ∈ Rn+1}

and let S denote the subalgebra of An+1 with universe S. Thus S is basically Rn+1, but
we look at it as a (subdirect) product of two algebras Rn and A: S ≤S Rn ×A.

The aim of the next few claims is to show that S is linked. First we show, that it is
enough to have a “fork”.

Claim 4.7. If there exist a ∈ Rn and b, b′ ∈ A, b 6= b′ such that (a, b), (a, b′) ∈ S, then S is
linked.

22 L. BARTO AND M. KOZIK

Proof. Let k = |A|. We define a binary relation ∼ on A by putting b ∼ b′ if and only if
there exist tuples a1, . . . ,ak ∈ Rn and elements b = c0, c1, . . . , ck = b′ ∈ A such that for
every i ∈ {1, 2, . . . , k} we have

(ai, ci−1), (a
i, ci) ∈ S.

The relation ∼ is clearly reflexive and symmetric. It is also transitive as we have chosen k
big enough. It follows immediately from the definition that ∼ is a subuniverse of A2.

Therefore ∼ is a congruence of A. Moreover, from the assumption of the claim it follows
that it is not the smallest congruence (as b ∼ b′ for b 6= b′). Since, by Claim 4.5, A is simple,
then ∼ is the full relation on A and therefore S is linked.

The next claim shows that S is linked in case that A has no proper absorbing subuniverse.

Claim 4.8. If I = A then S is linked.

Proof. From (P1) we have Rn = An. If there are (a0, . . . , ap−1), (b0, . . . , bp−1) ∈ R such that
ai 6= bi for some i and a0 = b0, a1 = b1, . . . , ai−1 = bi−1, ai+1 = bi+1, . . . , an−1 = bn−1, then,
by cyclically shifting these tuples, we obtain tuples (a′0, a

′
1, . . . , a

′
p−1) and (b′0, b

′
1, . . . , b

′
p−1)

such that a′0 = b′0, . . . , a
′
n−1 = b′n−1, and an 6= bn. Then Claim 4.7 proves that S is linked.

In the other case, tuples in R are determined by the first n projections, thus |R| =
|Rn| = |A|

n. Consider the mapping σ : R → R sending a tuple (a0, . . . , ap−1) ∈ R to its
cyclic shift (a1, . . . , ap−1, a0) ∈ R. Clearly, σ is a permutation of R satisfying σp = id. Now
p is a prime number and |R| = |A|n is not divisible by p (as p > |A|), therefore σ has a
fixed point, that is, a constant tuple. A contradiction.

The harder case is when I 6= A. We need two more auxiliary claims.

Claim 4.9. If I 6= A then there exists J ⊳⊳ A such that I 6= J and (In × J) ∩Rn+1 6= ∅.

Proof. Observe that Ip∩R is a cyclic subuniverse of Ip without a constant tuple. Therefore,
by minimality, the intersection Ip ∩R is empty. On the other hand In ∩Rn 6= ∅ by (P1), so
that there exists a greatest number k, n ≤ k < p, such that (Ik × Ap−k) ∩ R is nonempty.
Consider the set

X = {a : (a0, . . . , ak−1, a) ∈ Rk+1, a0, . . . , ak−1 ∈ I}.

It is easy to check that X is an absorbing subuniverse of A. As Ik+1 ∩ Rk+1 is empty, X
is disjoint from I. Let J be a minimal absorbing subuniverse of X. We have J ⊳⊳ A (as
J ⊳⊳ X ⊳A), I 6= J and (Ik × J) ∩ Rk+1 6= ∅. We take a tuple in R whose projection to
the first (k + 1) coordinates lies in Ik × J , and shift it (k − n) times to the left (recall that
k − n ≥ 0). This tuple shows that (In × J) ∩Rn+1 is nonempty.

Similarly we can show that there exists a minimal absorbing subalgebra J′ of A distinct
from I such that (J ′ × In) ∩Rn+1 is nonempty.

We consider the following two subsets of A×A.

F = {(a, b) : ∃ (a, c1, . . . , cn−1, b) ∈ Rn+1}

E = {(a, b) : ∃ (a, c1, . . . , cn−1, b) ∈ Rn+1 and ∀i ci ∈ I}

Let V1 and V2 denote the projections of E to the first and the second coordinate, so that
E ⊆S V1 × V2.

Claim 4.10. E is a subuniverse of A2, is linked and subdirect in V1 × V2 and V1, V2 ⊳A.

ABSORPTION, CYCLIC TERMS, AND CSP 23

Proof. It is straightforward to check that E and F are subuniverses of A2, that E ⊳ F

and that V1,V2 ⊳ A, where E,F denote the subalgebras of A2 with universes E,F and
V1,V2 denote the subalgebras of A with universes V1, V2. From Claim 4.6 we know that
F ≤S A×A.

Similarly as in the proof of Claim 4.7 we will show that F is linked. Let k = |A| and let
us define a congruence ∼ on A by putting b ∼ b′ if and only if there are a1, a2, . . . , ak, b =
b0, b1, . . . , bk = b′ ∈ A such that for all i ∈ {1, 2, . . . , k}

(ai, bi−1), (ai, bi) ∈ F.

The proof that ∼ is a congruence follows exactly as in Claim 4.7.
Take an arbitrary tuple (a0, . . . , ap−1) ∈ R. As p is greater than |A| we can find indices

i 6= j such that ai = aj. There exists k such that ai+kn 6= aj+kn (indices computed modulo
p), otherwise (as p is a prime number) the tuple would be constant. It follows that there
exist i′, j′ such that ai′ = aj′ and ai′+n 6= aj′+n. The pairs (ai′ , ai′+n) and (aj′ , aj′+n) are
in F (by shifting (a0, . . . , ap−1)), therefore ∼ is not the smallest congruence. Since A is
simple, ∼ is the full congruence on A, thus F is linked. By Proposition 2.15.(i), E is linked
as well.

Now we can finally show that S is linked.

Claim 4.11. S is linked.

Proof. From Claim 4.9 and the remark following it we know that (a, b′), (a′, b) ∈ E for
some a, b ∈ I, a′ ∈ J ′, b′ ∈ J , J, J ′ ⊳⊳ A, I 6= J , I 6= J ′. As E is linked, we can find
elements a = c0, c1, . . . , c2i = a′ such that c0, c2, . . . , c2i ∈ V1, c1, c3, . . . , c2i−1 ∈ V2 and
(c2j , c2j+1), (c2j+2, c2j+1) ∈ E for all j = 0, 1, . . . , i − 1. By Proposition 2.15.(v) (used
for E ≤S V1 ×V2) we can assume that all the elements c0, . . . c2i lie in minimal absorbing
subuniverses of V1 or V2 (which are also minimal absorbing subuniverses of A, since V1, V2⊳
A). It follows that there exist w ∈ W ⊳⊳ V1 and u ∈ U ⊳⊳ V2, v ∈ V ⊳⊳ V2 such that
(w, u), (w, v) ∈ E, U 6= V . Therefore there exist a1, . . . , an−1, a

′
1, . . . , a

′
n−1 ∈ I such that

(w, a1, . . . , an−1, u), (w, a
′
1, . . . , a

′
n−1, v) ∈ Rn+1.

From the induction hypotheses (P2) we know that W × In−1 ⊳⊳ Rn. Also V ⊳⊳ A and
((W×In−1)×V)∩S 6= ∅. By Proposition 2.15.(ii), ((W×In−1)×V)∩S ≤S (W×In−1)×V .
In particular, there exists v′ ∈ V such that (w, a1, . . . , an−1, v

′) ∈ Rn+1. Now recall that
(w, a1, . . . , an−1, u) ∈ Rn+1 and observe that u and v′ are distinct, since they lie in different
minimal absorbing subuniverses. Then S is linked by Claim 4.7.

We are ready to prove (P2) for n+ 1.

Claim 4.12. (P2) holds for n+ 1.

Proof. Let I1, . . . , In+1 be absorbing subalgebras of A such that (I1×· · ·×In+1)∩Rn+1 6= ∅.
Now S is a linked subdirect subuniverse of Rn ×A, I1 × · · · × In is a minimal absorbing
subuniverse of Rn (from the induction hypotheses (P2)), In+1 ⊳⊳ A and ((I1 × · · · × In)×
In+1) ∩ S 6= ∅. By Proposition 2.15.(iii), (I1 × · · · × In) × In+1 is a minimal absorbing
subuniverse of S and thus I1 × · · · × In+1 is a minimal absorbing subuniverse of Rn+1.

To prove (P1) for n+ 1 we define a digraph on the vertex set Rn by putting

((a0, . . . , an−1), (a1, . . . , an)) ∈ H

whenever (a0, . . . , an) ∈ Rn+1. We want to apply Theorem 3.6 to obtain a loop of the
digraph G = (Rn,H) in a minimal absorbing subuniverse of Rn.

24 L. BARTO AND M. KOZIK

Observe that H is a subuniverse of R2
n. Next we show that In is contained in a weak

component of G.

Claim 4.13. Any two elements of In are in the same weak component of the digraph G.

Proof. The set X = {x : (a0, . . . , an−1, x) ∈ Rn+1, a0, . . . , an−1 ∈ I} is an absorbing
subuniverse of A. Let X0 be a minimal absorbing subuniverse of the algebra X with
universe X. We have found X0 ⊳A such that (In ×X0) ∩Rn+1 6= ∅. Similarly we can find
X1,X2, . . . ,Xn−1 such that (In−i×X0×X1×· · ·×Xi)∩Rn+1 6= ∅ for all i = 0, 1, . . . , n−1.
From (P2) for n+ 1 (Claim 4.12) it follows that In−i ×X0 ×X1 × · · · ×Xi ⊆ Rn+1 for all
i. Now choose arbitrary elements xi ∈ Xi and take any tuple (b0, . . . , bn−1) ∈ In. Since, for
all i = 0, 1, . . . , n − 1, the tuple (bi, . . . , bn−1, x0, x1, . . . , xi) belongs to Rn+1, the vertices
(bi, . . . , bn−1, x0, . . . , xi−1) and (bi+1, . . . , bn−1, x0, . . . , xi) are in the same weak component
of G. Therefore the vertex (b0, . . . , bn−1), which was an arbitrarily chosen vertex in In, is
in the same weak component as the vertex (x0, . . . , xn−1).

The last assumption of Theorem 3.6 is proved in the next claim.

Claim 4.14. The weak component of G containing In has algebraic length 1.

Proof. Let b ∈ I be arbitrary. As E is linked, b ∈ V1 can be E-linked to b ∈ V2,
i.e. there exist b = c0, c1, . . . , c2i such that (c2j , c2j+1), (c2j+2, c2j+1) ∈ E for all j =
0, . . . , i − 1 and (c2i, b) ∈ E. By Proposition 2.15.(v) we can assume that these ele-
ments lie in minimal absorbing subuniverses of A. Property (P2) for n + 1 (Claim 4.12)
proves that (c2j , b, . . . , b, c2j+1), (c2j+2, b, . . . , b, c2j+1) ∈ Rn+1 for all j = 0, . . . , i − 1 and
(c2i, b, . . . , b, b) ∈ Rn+1. This gives rise to a (1, j)-fence connecting, in G, the tuple (c0 =
b, . . . , b) to the tuple (c2i, b, . . . , b). As ((c2i, b, . . . , b), (b, . . . , b)) ∈ H we showed that the
algebraic length of the weak component containing In is one.

By Theorem 3.6 there exists a loop inside a minimal absorbing subuniverse K of Rn. Since
the projection J of K to the first coordinate is a minimal absorbing subuniverse of A, we
actually get an element a ∈ J ⊳⊳ A such that (a, . . . , a) ∈ Rn+1. Now (P1) follows from
(P2) and the proof of Theorem 4.2 is concluded.

4.2. Consequences of Theorem 4.1. First we restate the hardness criterion in Theo-
rem 1.4 and the Algebraic Dichotomy Conjecture of Bulatov, Jeavons and Krokhin. These
statements are equivalent to the original ones by Theorem 4.1 and Lemma 4.4.

Theorem 4.15. Let A be a core relational structure and let p be a prime number greater
than the size of the universe of A. If there exists a nonempty positively primitively defined
cyclic p-ary relation without a constant tuple then CSP(A) is NP-complete.

The Algebraic Dichotomy Conjecture. Let A be a a core relational structure. Let p
be a prime number greater than the size of the universe of A. If every nonempty positively
primitively defined cyclic p-ary relation has a constant tuple then CSP(A) is solvable in
polynomial time. Otherwise it is NP-complete.

As a second consequence we reprove the dichotomy theorem of Hell and Nešetřil [HN90]. It
follows immediately from the Smooth Theorem from Section 3, but the following proof is
an elegant way of presenting it.

Corollary 4.16 (Hell and Nešetřil [HN90]). Let G be an undirected graph without loops. If
G is bipartite then CSP(G) is solvable in polynomial time. Otherwise it is NP-complete.

ABSORPTION, CYCLIC TERMS, AND CSP 25

Proof. Without loss of generality we can assume that G is a core. If the graph G is bipartite
then it is a single edge and CSP(G) is solvable in polynomial time. Assume now that

G is not bipartite — therefore there exists a cycle a
2k+1
−−−→ a of odd length in G. As

vertex a is in a 2-cycle (i.e. an undirected edge) we can find a path a
i(2k+1)+j2
−−−−−−−→ a for

any non-negative numbers i and j. Thus, for any number l ≥ 2k we have a
l
−→ a. Let

p be any prime greater than max{2k, |A|} and t be any p-ary polymorphism of G. Let
a = a0 → a1 → · · · → ap−1 → a. Then

t(a0, . . . , ap−1)→ t(a1, . . . , ap−1, a0)

and, if t were a cyclic operation we would have

t(a0, . . . , ap−1) = t(a1, . . . , ap−1, a0)

which implies a loop in G. This contradiction shows that G has no cyclic polymorphism for
some prime greater than the size of the vertex set which, by Theorem 4.1, implies that the
associated variety is not Taylor and therefore, by Theorem 1.4, CSP(G) is NP-complete.

Equivalently one can consider the relation

R = {(a0, . . . , ap−1) : a0 → a1 → a2 → · · · → ap−1 → a0},

where p is chosen as above. It is easy to see that R is a cyclic, positively primitively
defined nonempty relation without a constant tuple and therefore CSP(G) is NP-complete
by Theorem 4.15.

Finally, we observe that the weak near-unanimity characterization of Taylor varieties (The-
orem 1.3) is a consequence of Theorem 4.1:

Corollary 4.17 (Maroti and McKenzie [MM08]). For a locally finite idempotent variety V
the following are equivalent.

• V is a Taylor variety;
• V has a weak near-unanimity term.

Proof. In the case that V is finitely generated, the theorem is an immediate consequence of
Theorem 4.1. In the general case the proof can be done by a standard universal algebraic
argument — we apply Theorem 4.1 to the free algebra on two generators.

As opposed to the previous theorem the assumption in Theorem 4.1 that V is finitely
generated cannot be relaxed to locally finite [BKM+09].

It was observed by Matt Valeriote [Val] that Sigger’s characterization of Taylor varieties
[Sig10] is also an easy corollary of Theorem 4.1. The proof will appear elsewhere.

4.3. Arities of cyclic terms. Let A be a finite algebra and let C(A) be the set of arities
of cyclic operations of A i.e.:

C(A) = {n : A has a cyclic term of arity n}.

The following simple proposition was proved in [BKM+09].

Proposition 4.18 ([BKM+09]). Let A be a finite algebra let m,n be natural numbers.
Then the following are equivalent.

(i) m,n ∈ C(A);
(ii) mn ∈ C(A).

26 L. BARTO AND M. KOZIK

This implies that C(A) is fully determined by its prime elements. There are algebras in
Taylor varieties with no cyclic terms of arities smaller than their size [BKM+09]. However
the following simple lemma provides, under special circumstances, additional elements in
C(A). Its proof follows the lines of the proof of Claim 4.5.

Lemma 4.19. Let A be a finite, idempotent algebra and α be a congruence of A. If A/α
and every α-block in A have cyclic operation of arity k then so does A.

This leads to the following observation.

Corollary 4.20. Let A be a finite, idempotent algebra in Taylor variety. Let 0A = α0 ⊆
· · · ⊆ αn = 1A be an increasing sequence of congruences on A. If p is a prime number such
that, for every i ≥ 1, every class of αi splits into less than p classes of αi−1 then A has a
p-ary cyclic term.

References

[Bar11] Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited. In Pro-
ceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011, June
21-24, 2011, Toronto, Ontario, Canada, pages 301–310. IEEE Computer Society, 2011.

[BD06] Andrei Bulatov and Vı́ctor Dalmau. A simple algorithm for Mal′tsev constraints. SIAM J. Com-
put., 36(1):16–27 (electronic), 2006.

[BJH90] Jørgen Bang-Jensen and Pavol Hell. The effect of two cycles on the complexity of colourings by
directed graphs. Discrete Appl. Math., 26(1):1–23, 1990.

[BJK05] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of constraints
using finite algebras. SIAM J. Comput., 34(3):720–742 (electronic), 2005.

[BK09a] Libor Barto and Marcin Kozik. Congruence distributivity implies bounded width. SIAM Journal
on Computing, 39(4):1531–1542, 2009.

[BK09b] Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In FOCS’09:
Proceedings of the 50th Symposium on Foundations of Computer Science, pages 595–603, 2009.

[BK10] Libor Barto and Marcin Kozik. Cyclic terms for SD∨ varieties revisited. Algebra Universalis,
64(1-2):137–142, 2010.

[BKJ00] Andrei A. Bulatov, Andrei A. Krokhin, and Peter Jeavons. Constraint satisfaction problems
and finite algebras. In Automata, languages and programming (Geneva, 2000), volume 1853 of
Lecture Notes in Comput. Sci., pages 272–282. Springer, Berlin, 2000.

[BKKR69] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory for Post
algebras. I, II. Kibernetika (Kiev), (3):1–10; ibid. 1969, no. 5, 1–9, 1969.

[BKM+09] Libor Barto, Marcin Kozik, Miklós Maróti, Ralph McKenzie, and Todd Niven. Congruence
modularity implies cyclic terms for finite algebras. Algebra Universalis, 61(3):365–380, 2009.

[BKN09] Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with no
sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM J.
Comput., 38(5):1782–1802, 2008/09.

[BKN08] Libor Barto, Marcin Kozik, and Todd Niven. Graphs, polymorphisms and the complexity of
homomorphism problems. In STOC ’08: Proceedings of the 40th annual ACM symposium on
Theory of computing, pages 789–796, New York, NY, USA, 2008. ACM.

[BS81] Stanley N. Burris and H. P. Sankappanavar. A course in universal algebra, volume 78 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1981.

[Bul03] Andrei A. Bulatov. Tractable conservative constraint satisfaction problems. In 18th IEEE Sym-
posium on Logic in Computer Science (LICS 2003), 22-25 June 2003, Ottawa, Canada, Proceed-
ings, pages 321–. IEEE Computer Society, 2003.

[Bul06] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element
set. J. ACM, 53(1):66–120 (electronic), 2006.

[Bul11] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans.
Comput. Logic, 12:24:1–24:66, July 2011.

ABSORPTION, CYCLIC TERMS, AND CSP 27

[Dal06] Vı́ctor Dalmau. Generalized majority-minority operations are tractable. Log. Methods Comput.
Sci., 2(4):4:1, 14, 2006.

[FV99] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput., 28(1):57–
104 (electronic), 1999.

[Gei68] David Geiger. Closed systems of functions and predicates. Pacific J. Math., 27:95–100, 1968.
[HM88] David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76 of Contemporary

Mathematics. American Mathematical Society, Providence, RI, 1988.
[HN90] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Combin. Theory Ser. B,

48(1):92–110, 1990.
[IMM+07] Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross Willard.

Tractability and learnability arising from algebras with few subpowers. In LICS, pages 213–224.
IEEE Computer Society, 2007.

[JCG97] Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. J. ACM,
44(4):527–548, 1997.

[KS09] Gábor Kun and Mario Szegedy. A new line of attack on the dichotomy conjecture. In Proceedings
of the 41st annual ACM symposium on Theory of computing, STOC ’09, pages 725–734, New
York, NY, USA, 2009. ACM.

[MM08] Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations. Al-
gebra Universalis, 59(3-4):463–489, 2008.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of the Tenth
Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages 216–226.
ACM, New York, 1978.

[Sig10] Mark H. Siggers. A strong mal’cev condition for locally finite varieties omitting the unary type.
Algebra Universalis, 64(1-2):15–20, 2010.

[Tay77] Walter Taylor. Varieties obeying homotopy laws. Canad. J. Math., 29(3):498–527, 1977.
[Val] Matt Valeriote. personal communication.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

Appendix D – Congruence
distributive finitely related algebras

96

Canad. J. Math. Vol. 65 (1), 2013 pp. 3–21
http://dx.doi.org/10.4153/CJM-2011-087-3
c©Canadian Mathematical Society 2011

Finitely Related Algebras in Congruence
Distributive Varieties Have Near Unanimity
Terms

Libor Barto

Abstract. We show that every finite, finitely related algebra in a congruence distributive variety has a

near unanimity term operation. As a consequence we solve the near unanimity problem for relational

structures: it is decidable whether a given finite set of relations on a finite set admits a compatible

near unanimity operation. This consequence also implies that it is decidable whether a given finite

constraint language defines a constraint satisfaction problem of bounded strict width.

1 Introduction

Since the beginning of the systematic study of universal algebras in the 1930’s it has

been recognized that an important class of invariants of algebras and classes of alge-

bras are their congruence lattices. Particularly widely studied objects are congruence

distributive varieties, i.e., equationally definable classes of algebras whose congruence

lattices are distributive (see Section 2 for definitions).

We call an algebra in a congruence distributive variety a CD algebra. Examples of

CD algebras include lattices, and, more generally, algebras that have a near unanimity

term operation. These operations have also attracted a great deal of attention, not

only in universal algebra, but also in graph theory and, recently, in computer science

in connection with the constraint satisfaction problem (CSP), where, for instance,

near unanimity operations characterize CSPs of bounded strict width [11].

Every finite algebra is, in some sense, determined by a set of relations. We call

an algebra finitely related if this set of relations can be chosen to be finite. A use-

ful corollary of a classical result of Baker and Pixley [2] is that every algebra with a

near unanimity term operation is finitely related. Our main result provides a partial

converse.

Theorem 1.1 Every finite, finitely related CD algebra has a near unanimity term op-

eration.

A special case of this theorem for algebras determined by posets was conjectured

in [10,23]. An affirmative answer was given in [24] for bounded posets and in [19] in

Received by the editors May 3, 2011; revised October 14, 2011.
Published electronically December 24, 2011.
Research supported by the Grant Agency of the Czech Republic under the grant No. 201/09/P223 and

by the Ministry of Education of the Czech Republic under the grant No. MSM 0021620839 and No. MEB
040915.

AMS subject classification: 08B05, 08B10.
Keywords: congruence distributive variety, Jónsson operations, near unanimity operation, finitely

related algebra, constraint satisfaction problem.

3

4 L. Barto

full generality. Another special case of the theorem, namely, for algebras determined

by a reflexive undirected graph, was proved in [18]. The general version is commonly

referred to as the Zádori conjecture, although it has been never stated in a journal

paper, perhaps because of scant evidence.

What made this result possible is the connection between the constraint satisfac-

tion problem and universal algebra discovered in [8, 15]. The interaction between

these areas is very fruitful in both directions. On one hand, universal algebra has

brought a deeper understanding and strong results about the CSP. On the other hand,

the CSP has motivated much of the recent work in universal algebra and opened new

research directions. This is nicely illustrated by the main result of [3] (Theorem 5.7

in this paper). This theorem contributed to the study of local consistency methods

for the CSP (and was an important step toward the full characterization of applica-

bility of local consistency methods given in [4]), and it is also one of the two main

ingredients of the proof of our main, purely algebraic result.

We remark that none of the assumptions of Theorem 1.1 is superfluous. In [24],

Zádori provides an example of an infinite, bounded poset that determines a CD alge-

bra with no near unanimity term operation. A simple example of a finite CD algebra

with no near unanimity operation is the two element set {0, 1} together with the

implication regarded as a binary operation. Finally, the algebra determined by the

complete loopless graph with three vertices does not have any near unanimity oper-

ation (it actually has no idempotent operations other than projections).

Of independent interest is a corollary of the main theorem (Corollary 7.1), which

gives an affirmative answer to the near unanimity problem for relational structures.

It is decidable whether a given set of relations on a finite set admits a compatible near

unanimity operation. This consequence is discussed in more detail in Section 7.

1.1 Organization of the Paper

In Section 2 we recall basic notions and results about algebras and relational struc-

tures. In Section 3 we show that it is enough to deal with algebras determined by at

most binary relations. In Section 4 we associate with such an algebra an instance of

the CSP whose solutions are term operations of that algebra. The definitions and re-

sults about CSP instances that we require are stated in Section 5, where we also prove

the main theorem. The main new tool is only stated in this section; its proof covers

Section 6. Finally, in Section 7 we discuss consequences and open problems.

2 Preliminaries

In this section we recall universal algebraic notions and results that will be needed

throughout the paper. This material, except for the notion of a Jónsson ideal, is

covered in any standard reference on universal algebra, for example, [9].

2.1 Algebras and Varieties

An n-ary operation on a set A is a mapping f : An → A. In this paper we assume that

all operations are finitary, i.e., n is a natural number. An operation is idempotent if it

CD implies NU 5

satisfies the identity f (a, a, . . . , a) = a, i.e., this equation holds for every a ∈ A. An

operation of arity at least three is called a near unanimity operation, if it satisfies the

identity

f (a, a, . . . , a, b, a, a, . . . , a) = a

for every position of b in the tuple.

An algebra is a pair A = (A,F), where A is a set, called the universe of A, and

F is a set (possibly indexed) of operations on A. We use a boldface letter to denote

an algebra and the same letter in plain type to denote its universe. An algebra is

idempotent if all of its operations are idempotent. Two algebras are similar if their

operations are indexed by the same set and corresponding operations have the same

arities.

A term operation of A is an operation that can be obtained from operations in A

using composition and the projection operations. The set of all term operations of A

is denoted by Clo(A). Most structural properties of an algebra (such as subalgebras,

congruences, automorphisms, etc.,) depend only on the set of term operations rather

than on a particular choice of the basic operations.

There are three fundamental operations on algebras of a fixed similarity type:

forming subalgebras, factor algebras, and products.

A subset B of the universe of an algebra A is called a subuniverse if it is closed under

all operations (equivalently term operations) of A. Given a subuniverse B of A we can

form the algebra B by restricting all the operations of A to the set B. In this situation

we say that B is a subalgebra of A and we write B ≤ A or B ≤ A.

The product of algebras A1, . . . ,An is the algebra with the universe equal to A1 ×
· · · × An and with operations computed coordinatewise. The product of n copies of

an algebra A is denoted by An. A subalgebra (or a subuniverse) of a product of A is

called a subpower of A.

An equivalence relation ∼ on the universe of an algebra A is a congruence if it is a

subalgebra of A2. The corresponding factor algebra A/∼ has, as its universe, the set

of ∼-blocks and operations that are defined using arbitrarily chosen representatives.

The set of congruences of A forms a lattice, called the congruence lattice of A.

A variety is a class of similar algebras closed under forming sublagebras, products

(possibly infinite), factor algebras, and isomorphic copies. A fundamental theorem

of universal algebra, due to G. Birkhoff, states that a class of similar algebras is a

variety if and only if this class can be defined via a set of identities.

2.2 Relational Structures

An n-ary relation on a set A is a subset of An (again, n is always finite in this article).

A relational structure is a pair A = (A,R), where A is the universe of A and R is a set

of relations on A. We use blackboard bold letters to denote relational structures.

We say that an operation f : An → A is compatible with a relation R ⊆ Am (or, R

is preserved by f) if the tuple

(
f (a1

1, a2
1, . . . , an

1), f (a1
2, a2

2, . . . , an
2), . . . , f (a1

m, a2
m, . . . , an

m)
)

6 L. Barto

belongs to R whenever (ai
1, ai

2, . . . , ai
m) ∈ R for all i ≤ n. In other words, f is

compatible with R, if R is a subpower of the algebra (A, { f }).

An operation compatible with all relations of a relational structure A is a polymor-

phism of A. The set of n-ary polymorphisms of A is denoted by Poln(A), and the set of

all polymorphisms of A is denoted by Pol(A). This set of operations is closed under

composition and contains the projection operations. On the other hand, every set of

operations on a finite set closed under projections and composition can be obtained

in this way.

Theorem 2.1 ([6, 13]) For every finite algebra A there exists a relational structure A

(with the same universe) such that Pol(A) = Clo(A).

An algebra is called finitely related if finitely many relations suffice to determine

Clo(A).

Definition 2.2 An algebra A is said to be finitely related, if there exists a relational

structure A with finitely many relations such that Pol(A) = Clo(A).

By a classic result of Baker and Pixley [2], every algebra with a near unanimity

term operation is finitely related. More generally, every algebra with few subpowers

is finitely related [5] (see Subsection 7.3).

2.3 CD Algebras

Definition 2.3 A variety is called congruence distributive, if all algebras in it have

distributive congruence lattices. A CD algebra is an algebra in a congruence distribu-

tive variety.

A theorem of Jónsson [16] characterizes CD algebras using operations satisfying

certain identities.

Definition 2.4 A sequence p0, p1, . . . , ps of ternary operations on a set A is called

a Jónsson chain, if the following identities are satisfied:

p0(a, b, c) = a,

ps(a, b, c) = c,

pi(a, b, a) = a for all i ≤ s,

pi(a, a, b) = pi+1(a, a, b) for all even i < s,

pi(a, b, b) = pi+1(a, b, b) for all odd i < s.

Theorem 2.5 ([16]) An algebra A has a Jónsson chain of term operations if and only

if A is a CD algebra.

Example Every algebra with a near unanimity term operation t is a CD algebra.

CD implies NU 7

This can be shown, for instance, by constructing a Jónsson chain:

p0(a, b, c) = a

p1(a, b, c) = t(a, a, . . . , a, b, c)

p2(a, b, c) = t(a, a, . . . , a, c, c)

p3(a, b, c) = t(a, a, . . . , a, b, c, c)

p4(a, b, c) = t(a, a, . . . , a, c, c, c)

. . . .

A useful notion for studying CD algebras is a Jónsson ideal.

Definition 2.6 Let A be a CD algebra with Jónsson chain of term operations

p0, p1, . . . , ps. A subuniverse B of A is a Jónsson ideal, if pi(b1, a, b2) ∈ B for ev-

ery a ∈ A, b1, b2 ∈ B and every i ≤ n.

Every one element subuniverse of a CD algebra is its Jónsson ideal. Therefore, if

A is an idempotent CD algebra, then every singleton is a Jónsson ideal of A.

3 Reduction to Binary Structures

In this section we show that to prove the main result it is enough to consider alge-

bras determined by binary relational structures, i.e., relational structures with at most

binary relations. This will make the presentation technically easier.

Proposition 3.1 Let A be a relational structure whose relations all have arity at most

k. Then there exists a binary relational structure Ā with universe Ā = Ak such that

Pol(Ā) = { f̄ : f ∈ Pol(A)},

where f̄ is defined (if f is n-ary) by

f̄
(

(a1
1, a1

2, . . . , a1
k), (a2

1, . . . , a2
k), . . . , (an

1, . . . , an
k)
)
=

(
f (a1

1, a2
1, . . . , an

1), f (a1
2, . . . , an

2), . . . , f (a1
k, . . . , an

k)
)
.

Proof First we replace every relation R in A with arity l < k by the k-ary relation

R × Ak−l. This clearly does not change the set of polymorphisms, therefore we may

assume that every relation in A has arity precisely k.

Next we introduce the relations in Ā. For every k-ary relation R (on A) in A we

include in Ā the unary relation R (on Ā = Ak), and for every pair 1 ≤ i, j ≤ k we

add a binary relation σi j defined by

(
(a1, . . . , ak), (b1, . . . , bk)

)
∈ σi j if and only if ai = b j .

It is straightforward to check that f̄ ∈ Pol(Ā) for every polymorphism f of A.

8 L. Barto

To prove the converse inclusion, let h : (Ak)n → Ak be a polymorphism of Ā and

let h1, . . . , hk be its components, that is,

h
(

(a1
1, . . . , a1

k), (a2
1, . . . , a2

k), . . . , (an
1, . . . , an

k)
)
=

(

h1

(
(a1

1, . . . , a1
k), (a2

1, . . . , a2
k), . . . , . . . (an

1, . . . , an
k)
)
, . . . ,

hk

(
(a1

1, . . . , a1
k), (a2

1, . . . , a2
k), . . . , (an

1, . . . , an
k)
))

.

For any i, 1 ≤ i ≤ k, the relation σii is compatible with h. Therefore for any elements

a1
1, a1

2, . . . , a2
1, . . . an

k , b1
1, . . . , bn

k ∈ A such that, for all 1 ≤ l ≤ n, al
i = bl

i we have

hi

(
(a1

1, . . . , a1
k), (a2

1, . . . , a2
k), . . . , (an

1, . . . , an
k)
)
=

hi

(
(b1

1, . . . , b1
k), (b2

1, . . . , b2
k), . . . , (bn

1, . . . , bn
k)
)
.

In other words, hi((a1
1, . . .), . . .) depends only on a1

i , a2
i , . . . , an

i , and thus there exists

an n-ary operation fi on A such that

hi((a1
1, . . . , a1

k), (a2
1, . . . , a2

k), . . . , (an
1, . . . , an

k)) = fi(a1
i , a2

i , . . . , an
i).

Now we use the relations σi j for i 6= j. For any a1
1, . . . , an

k we choose arbitrarily

b1
1, . . . , bn

k so that al
i = bl

j (for all 1 ≤ l ≤ n). As σi j is compatible with h, it follows

that fi(a1
i , . . . , an

i) = f j(b1
j , . . . , bn

j) = f j(a1
i , . . . , an

i). Therefore, f1 = f2 = · · · = fk.

We have shown that h = f̄ for certain n-ary operation f on A. As each relation R

of A is compatible with h it follows that f is a polymorphism of A.

The proposition implies that Theorem 1.1 follows from the following theorem, to

be proved later.

Theorem 3.2 If A is a finite binary relational structure such that (A,Pol(A)) is a CD

algebra, then A has a near unanimity polymorphism.

Proof of Theorem 1.1 assuming Theorem 3.2 Let A be a finite, finitely related CD

algebra and let A be a relational structure with finitely many relations (say all of them

have arity at most k) such that Pol(A) = Clo(A). Let Ā be the relational struc-

ture from the previous proposition. Then Ā = (A,Pol(Ā)) is a CD algebra, since

p̄0, . . . , p̄s is a Jónsson chain of Ā whenever p0, . . . , ps is a Jónsson chain of A. By

Theorem 3.2, Ā has a near unanimity polymorphism h. Using Proposition 3.1 again

we have h = f̄ for some polymorphism f of A, and f is clearly a near unanimity

operation.

4 CSP Instance Associated with a Binary Relational Structure

Definition 4.1 An instance of the constraint satisfaction problem (CSP) is a triple

P = (V,A,C) with

CD implies NU 9

• V a nonempty, finite set of variables,
• A a nonempty, finite domain,
• C a finite set of constraints, where each constraint is a pair C = (x,R) with

– x a tuple of variables of length n, called the scope of C , and

– R an n-ary relation on A, called the constraint relation of C .

Let A be a finite idempotent algebra. An instance of the CSP over A, denoted by

CSP(A), is an instance such that all constraint relations are subpowers of A.

A solution to an instance P is a function f : V → A such that, for each constraint

C = (x,R) ∈ C, the tuple f (x) belongs to R.

Remark 4.2 The CSP is often parametrized by relational structures: an instance

whose constraint relations are in a relational structure A is called an instance of

CSP(A). It was proved in [15] that the computational complexity of deciding whether

an instance of CSP(A) has a solution is fully determined, at least when A has finitely

many relations, by the algebra A = (A,Pol(A)). Moreover, Bulatov, Jeavons, and

Krokhin proved in [8] that the complexity depends only on the variety generated

by A (i.e., the smallest variety containing A). These results are at the heart of the

connection between universal algebra and the CSP mentioned in the introduction.

For simplicity we will formulate our definitions and results for a special type of

CSP instance with a single binary constraint for each pair of variables, although most

of the material can be generalized.

Definition 4.3 An instance P = (V,A,C) of the CSP is called a simple binary in-

stance if

• C = {((x1, x2),RP
x1,x2

) : x1, x2 ∈ V},

• RP
x2,x1

= RP
x1,x2

−1
(= {(b, a) : (a, b) ∈ RP

x1,x2
}) for every x1, x2 ∈ V , and

• RP
x,x ⊆ {(a, a) : a ∈ A} for every x ∈ V .

We omit the superscript P if the instance is clear from the context.

A simple binary instance can be drawn as a |V |-partite graph in the following way.

Each part is a copy of A, one for each variable x ∈ V (the parts are now commonly

referred to as potatoes), and elements of Rx1,x2
are edges between the corresponding

copies of A. Solutions then correspond to cliques with V vertices (with one vertex in

each part).

To every binary relational structure A and natural number n we can associate, in

a natural way, a simple binary instance P(A, n) of CSP((A,Pol(A))) whose solutions

are precisely the n-ary polymorphisms of A.

Definition 4.4 Let A be a binary relational structure and let n ≥ 2 be a natural

number. The instance P(A, n) = (V,A,C) is defined by

• V = An

• RP
(a1,...,an),(b1,...,bn) = {(t(a1, . . . , an), t(b1, . . . , bn)) : t ∈ Poln(A)}

Note that P(A, n) is indeed an instance of CSP((A,Pol(A))).

10 L. Barto

Proposition 4.5 For every binary relational structure A, the set of solutions of P(A, n)

is equal to Poln(A).

Proof It is clear that every n-ary polymorphism of A is a solution of P(A, n).

Let f be a solution to P(A, n). We have to show that every relation R of A is

preserved by f , but this is easy. If R is binary and n-tuples (a1, . . . , an), (b1, . . . , bn) ∈
An are such that (ai , bi) ∈ R for each 1 ≤ i ≤ n, then (f (a1, . . . , an), f (b1, . . . , bn)) ∈
R(a1,...,an),(b1,...,bn) (as f is a solution), therefore

(
f (a1, . . . , an), f (b1, . . . , bn)

)
=

(
t(a1, . . . , an), t(b1, . . . , bn)

)

for some t ∈ Poln(A). Since t is a polymorphism, the right hand side is an element of

R. The proof for a unary relation R can be done, for instance, by using this reasoning

for the relation R × A.

We are interested in near unanimity polymorphisms, solutions f of P(A, n) satis-

fying the additional conditions f (a, a, . . . , a, b, a, a, . . . , a) = a (for any a, b ∈ A and

any position of b in the tuple). Therefore the following notion of a restriction of an

instance will be useful.

Definition 4.6 Let P = (V,A,C) be a simple binary instance of CSP and let J =

{ Jx : x ∈ V} be a family of subsets of A. By the restriction of P to J we mean the

simple binary instance P|J = (V,A,C ′) with

R
P|J
x1,x2 = RP

x1,x2
∩ (Jx1

× Jx2
)

for every x1, x2 ∈ V .

To find an n-ary polymorphism of a binary relational structure A, we will con-

sider the instance P = P(A, n) and its restriction to the family J = { Jx : x ∈ V},

where J(a,a,...,a,b,a,a,...,a) = {a} (for every a, b ∈ A and every position of b in the tuple),

and J(a1,...,an) = A otherwise. With this choice, the set of solutions of P|J coincides

with the set of n-ary near unanimity polymorphisms of A. We show that this set is

nonempty in two steps. First we prove that P|J contains a subinstance that is “con-

sistent enough”, and then we apply a result from [3] saying that such instances always

have a solution.

In the next section we introduce the required consistency notions.

5 Consistency Notions, Proof of Theorem 3.2

5.1 (1, 2)-systems

Definition 5.1 Let P = (V,A,C) be a simple binary instance and let {Rx : x ∈ V}
be a family of nonempty subsets of A. We say that P is a (1, 2)-system with unary

projections {Rx : x ∈ V}, if, for any x1, x2 ∈ V , the projection of Rx1,x2
to the first

coordinate is equal to Rx1
. (It follows that the projection to the second coordinate is

equal to Rx2
.)

If, moreover, A is an algebra and P is an instance of CSP(A) we say that P is a

(1, 2)-system over A.

CD implies NU 11

Observe that if P is a (1, 2)-system over A, then each Rx is a subuniverse A (since

the set Rx is equal to the projection of Rx,x to the first coordinate). In this case we

denote the subalgebra of A with universe Rx by Rx.

Also note that the instance P(A, n) introduced in Section 4 is always a (1, 2)-system

with unary projections {Rx : x ∈ V}, where

R(a1,...,an) = {t(a1, . . . , an) : t ∈ Poln(A)}.

When a simple binary instance P is drawn as a multipartite graph (see the note

after Definition 4.3), then P is a (1, 2)-system if and only if, for every pair x1, x2 of

variables, every vertex a ∈ Rx1
is adjacent to at least one vertex from Rx2

and to no

vertex outside Rx2
(in particular, vertices outside the sets Rx are isolated).

Whether an instance has a restriction that is a (nonempty) (1, 2)-system can be

decided using trees.

Definition 5.2 Let P = (V,A,C) be a simple binary instance. A P-tree T is a

tree (i.e., an undirected connected graph without loops or cycles) whose vertices are

labeled by variables in V . The vertex set of T is denoted by vert(T) and the label of a

vertex v ∈ vert(T) by lbl(v).

A realization of a P-tree T in P is a mapping r : vert(T) → A such that

(r(v1), r(v2)) ∈ Rlbl(v1),lbl(v2) whenever v1, v2 are adjacent vertices of T. For a vertex v

of T we put

T[v] = {r(v) : r is a realization of T in P}.

If P is a (1, 2)-system with unary projections {Rx : x ∈ V}, then every P-tree

is clearly realizable. Moreover, for every P-tree T and every vertex v of T, we have

T[v] = Rlbl(v). The following proposition provides a converse to this observation.

Proposition 5.3 Let P = (V,A,C) be a simple binary instance over an algebra A. If

every P-tree is realizable in P then, for every x ∈ V , the set

Rx =

⋂

T is a P-tree
v∈vert(T)
lbl(v)=x

T[v]

is nonempty and P|{Rx :x∈V} is a (1, 2)-system over A.

Proof Since A is a finite set, each Rx can be obtained by intersecting the sets T[v]

for only finitely many P-trees T. Moreover, there exists a single tree Tx with vertex vx

labeled by x such that Rx = Tx[vx]. We take the disjoint union of the finite collection

of trees and identify the vertices v to a single vertex. It follows that Rx is nonempty

for every x ∈ V .

Next we prove that P|{Rx :x∈V} is a (1, 2)-system. It is enough to show that for

every x1, x2 ∈ V and every a1 ∈ Rx1
there exists a2 ∈ Rx2

such that (a1, a2) ∈ Rx1,x2
.

Consider the P-tree T constructed from Tx2
by adding a vertex v1 adjacent to vx2

with

label x1. This P-tree has a realization r such that r(v1) = a1 (since Rx1
⊆ T[v1]). Now

we can put a2 = r(vx2
), because

(
r(v1), r(v2)

)
∈ Rx1,x2

and r(v2) ∈ T[vx2
] ⊆ Tx2

[vx2
] = Rx2

.

12 L. Barto

Finally, we have to show that P|{Rx :x∈V} is an instance of CSP(A). It is clearly

enough to prove that Rx (= Tx[vx]) is a subuniverse of A for every x ∈ V . But this

is a straightforward consequence of the definitions: for any P-tree T, any operation

t of A (say, k-ary) and any k-tuple of realizations r1, . . . , rk of T in P, the mapping r

defined by r(v) = t(r1(v), . . . , rk(v)) is a realization of T in P (as Rx1,x2
is a subuniverse

of A2 for every x1, x2 ∈ V).

Remark 5.4 The family R = {Rx : x ∈ V} from the previous proposition is

actually the largest family such that P|R is a (1, 2)-system. Also observe that if some

P-tree is not realizable, then no such a family exists.

5.2 (2, 3)-systems

A (2, 3)-system is a (1, 2)-system such that every edge extends to a triangle:

Definition 5.5 A (1, 2)-system P = (V,A,C) is called a (2, 3)-system if for every

x1, x2, x3 ∈ V and every (a1, a2) ∈ Rx1,x2
there exists a3 ∈ A such that (a1, a3) ∈ Rx1,x3

and (a2, a3) ∈ Rx2,x3
.

Examples of (2, 3)-system include the instances P(A, n).

The following theorem is the main new ingredient for the proof of the Zádori

conjecture. It is proved in Section 6.

Theorem 5.6 Let P = (V,A,C) be a (2, 3)-system with unary projections {Rx : x ∈
V} over a CD algebra A and let J = { Jx : x ∈ V} be a family of (nonempty) subsets of

A such that each Jx is a Jónsson ideal of Rx. If all P-trees with at most 48|A|

vertices are

realizable in P|J, then all P-trees are realizable in P|J.

The core result of [3] states that every (2, 3)-system over a CD algebra has a solution

([3, Theorem 5.2]). We will need a refinement proved (although not explicitly stated)

in the same article.

Theorem 5.7 Let P = (V,A,C) be a (2, 3)-system with unary projections {Rx : x ∈
V} over a CD algebra A and let J = { Jx : x ∈ V} be a family of (nonempty) subsets

of A such that each Jx is a Jónsson ideal of Rx. If P|J is a (1, 2)-system, then P|J has a

solution.

Remark 5.8 The method used to prove [3, Theorem 5.2] was the following. If J

satisfies the assumptions (such families are called absorbing systems in [3]) and some

of the sets Jx have more than one element, then it is possible ([3, Lemma 6.9]) to find

a family J ′
= { J ′x : x ∈ V} such that J ′ satisfies the same conditions, J ′x ⊆ Jx and at

least one of these inclusions is proper. In this way we eventually get a solution to P|J.

More recently, the result that every (2, 3)-system over a CD algebra A has a so-

lution was generalized in two directions. First, a weaker consistency notion than

(2, 3)-system is enough to guarantee a solution. It suffices to assume that the in-

stance is a so-called Prague strategy (see [4]). A more “modern” proof of Theorem

5.7 would be to show that P|J is a Prague strategy (which is not hard).

CD implies NU 13

A weaker condition can also be put on the algebra. It is enough to assume that

A lies in a meet semi-distributive variety (actually, for an idempotent finite algebra

A, the statement “every (2, 3)-system (or Prague strategy) over A has a solution” is

equivalent to “A lies in a meet semi-distributive variety” [4]).

5.3 Proof of the Zádori Conjecture

We are ready to prove the main theorem. As discussed in Section 3, it is enough to

prove Theorem 3.2.

Theorem 3.2 If A is a finite binary relational structure such that (A,Pol(A)) is a CD

algebra, then A has a near unanimity polymorphism.

Proof Let p0, . . . , ps be a Jónsson chain of operations of the algebra (A,Pol(A)). Let

A be the algebra with universe A whose operations are idempotent polymorphisms of

A. Since pi ’s are idempotent, p0, . . . , ps is a Jónsson chain for the algebra A.

Let n be a natural number greater than 48|A|

and let P = P(A, n). It was observed

above that P is a (2, 3)-system over A with unary projections {Rx : x ∈ V}.

Let J = { Jx : x ∈ V}, where J(a,a,...,a,b,a,a,...,a) = {a} (for every a, b ∈ A and every

position of b in the tuple), and J(a1,...,an) = A otherwise. Since A is idempotent, each

Jx is a Jónsson ideal of Rx. As discussed in Section 4, the solutions to the instance

Q = P|J are n-ary near unanimity polymorphisms of A; therefore, it is enough to

show that Q has a solution.

First we observe that every P-tree T with at most n − 1 vertices is realizable in Q.

Indeed, the variables are n-tuples and T has less than n vertices; therefore, there exists

a natural number i (with 1 ≤ i ≤ n) such that b is not on the i-th position of any

tuple x = (a, a, . . . , a, b, a, a, . . . a), a 6= b which is a label of a vertex of T. Then the

mapping assigning ai to a vertex of label (a1, . . . , an) is a realization of T in Q.

By Theorem 5.6 every tree is realizable in Q.

Proposition 5.3 (applied to the simple binary instance Q) gives us a system J ′
=

{ J ′x : x ∈ V} such that Q|J ′ is a (1, 2)-system with unary projections J ′.

For every x ∈ V , J ′x is a Jónsson ideal of Rx. Indeed, in the proof of Proposition 5.3

we have shown that J ′x = TQ
x [vx] for certain tree Tx and its vertex x. If a1, a2 ∈ J ′x and

b ∈ Rx, then there exists a realization r1 (resp. r2) of Tx in Q such that r1(vx) = a1

(resp. r2(vx) = a2), and, since P is a (1, 2)-system, there exists a realization r3 of Tx

in P such that r3(vx) = b. Now we apply the Jónsson term operation pi to r1, r2, r3

(in the same way as in the last paragraph of the proof of Proposition 5.3), and we get

a realization r of Tx in P such that r(vx) = pi(a1, b, a2). From the assumption that

Jx ′ is a Jónsson ideal of Rx ′ (for every x ′ ∈ V), it follows that r is a realization in Q.

Therefore, pi(a1, b, a2) ∈ TQ
x [vx] = J ′x .

Finally, P is a (2, 3)-system, J ′ is formed by Jónsson ideals of appropriate Rx’s and

P|J ′ (= Q|J ′) is a (1, 2)-system; thus, by Theorem 5.7, P|J ′ has a solution, which is

of course also a solution to P|J.

14 L. Barto

6 Proof of Theorem 5.6

Theorem 5.6 Let P = (V,A,C) be a (2, 3)-system with unary projections {Rx : x ∈
V} over a CD algebra A and let J = { Jx : x ∈ V} be a family of subsets of A such that

each Jx is a Jónsson ideal of Rx. If all P-trees with at most 48|A|

vertices are realizable in

P|J, then all P-trees are realizable in P|J.

We argue by contradiction. We take a tree that is not realizable in P|J, and we

eventually obtain a configuration (a tuple (B, L,U , E, F, a, b)) that will contradict the

following auxiliary result. In this lemma we look at the binary relations E, F on B as

digraphs.

Lemma 6.1 Let B be a finite CD algebra and let U , L ⊆ B, E, F ≤ B2, a, b ∈ B be

such that

• E is a Jónsson ideal of F;
• U is disjoint from L;
• a ∈ U , b ∈ L, (a, b) ∈ F;
• the digraph E ∩U 2 has no sources (that is, for all c ∈ U there exists d ∈ U such that

(d, c) ∈ E);
• the digraph E ∩ L2 has no sinks (that is, for all c ∈ L there exists d ∈ L such that

(c, d) ∈ E).

Then there exist c ∈ U and d ∈ B \U such that (c, d) ∈ E.

Proof We take a counterexample to the lemma and fix a Jónsson chain p0, p1, . . . , ps

of term operations of B. We may assume that B is idempotent, otherwise we can

replace B by the algebra (B, {p0, p1, . . . , ps}).

Let us quickly sketch the proof on a smallest choice that does not satisfy the con-

clusion:

B = {1, 2}, U = {1}, L = {2}, E = {(1, 1), (2, 2)},

F = {(1, 1), (2, 2), (1, 2)}, a = 1, b = 2.

The first step of the proof is to transform our counterexample into a form closer to

this simplest one. Next we prove that E must at least contain the edge (2, 1), and

finally we show that in this case we would have a directed path from 1 to 2 in the

digraph E.

Since E ∩ U 2 has no sources, we can find a sequence a = a1, a2, . . . of elements

in U such that (ai+1, ai) ∈ E for all i. As U is finite, there are positive numbers k and

l such that ak = ak+l. Similarly, we find a sequence b = b1, b2, . . . of elements in L

such that (bi , bi+1) ∈ E and positive numbers k ′ and l ′ such that bk ′ = bk ′+l ′ . Let m

be a natural number greater than or equal to k + k ′ − 1 and divisible by l and l ′, let

E ′
= E ◦ E ◦ · · · ◦ E

︸ ︷︷ ︸

m-times

, F ′
= F ◦ F ◦ · · · ◦ F

︸ ︷︷ ︸

m-times

, U ′
= U , B ′

= B, a ′
= ak,

where ◦ denotes the composition of relations defined by

S ◦ S ′
= {(s, s ′ ′) : ∃s ′ ∈ B (s, s ′) ∈ S, (s ′, s ′ ′) ∈ S ′}

CD implies NU 15

and let b ′ ∈ {bk ′ , bk ′+1, . . . , bk ′+l ′} be an element such that there exists a directed

path in the digraph F from a ′ to b ′ of length m (we can take the element of appro-

priate distance from a ′ on the path a ′
= ak, ak−1, . . . , a1, b1, b2, . . . , bk ′ , bk ′+1, . . . ,

bk ′+l ′ = bk ′ , bk ′+1, . . .).

These new sets B ′, E ′, F ′,U ′ and elements a ′, b ′ have the following properties.

• B ′ is a CD algebra, E ′ ≤ F ′ ≤ B ′2, E ′ is a Jónsson ideal of F ′. This is straightfor-

ward. (That E ′, F ′ are subalgebras follows from a more general fact that any relation

positively primitively defined from subpowers is a subpower, but it is easy to check

the claims directly.)

• a ′ ∈ U ′, b ′ ∈ B ′ \ U ′, (a ′, a ′) ∈ E ′, (b ′, b ′) ∈ E ′, (a ′, b ′) ∈ F ′. We have

chosen b ′ so that there exists a directed path in F of length m between a ′ and b ′, thus

(a ′, b ′) ∈ F ′. Since a ′ (resp. b ′) are in a closed path of length l (resp. l ′) and this

length divides m, it follows that (a ′, a ′), (b ′, b ′) ∈ E ′.

• There do not exist c ∈ U ′, d ∈ B ′ \ U ′ such that (c, d) ∈ E ′. Otherwise there is a

path in E from c to d in E, which is impossible as there is no edge from U ′ to B ′ \U ′.

We will show that it is impossible to find B ′,U ′, E ′, F ′, a ′, b ′ satisfying the con-

ditions above. For contradiction, assume that B ′,U ′, E ′, F ′, a ′, b ′ satisfy these three

conditions and |B ′| is the smallest possible.

The minimality assumption has some useful consequences.

• (c, c) ∈ E ′ for any c ∈ B ′. Otherwise the following choice would form a smaller

counterexample: B ′ ′
= {c : (c, c) ∈ E ′}, U ′ ′

= U ′ ∩ B ′ ′, E ′ ′
= E ′ ∩ B ′ ′2, F ′ ′

=

F ′ ∩ B ′ ′2, a ′ ′
= a ′, b ′ ′

= b ′. That B ′ ′ is a subuniverse of B ′ is straightforward to

check (and it again follows from the general fact about positive primitive definitions

of subpowers).

• (a ′, c) ∈ F ′ for any c ∈ B ′. Otherwise we could take B ′ ′
= {c : (a ′, c) ∈ F ′} and

restrict all the sets to B ′ ′ as above, i.e., U ′ ′
= U ′∩B ′ ′, E ′ ′

= E ′∩B ′ ′2, F ′ ′
= F ′∩B ′ ′2,

a ′ ′
= a ′, b ′ ′

= b ′. Note that we need idempotency to show that B ′ ′ is a subuniverse

of B ′ (B ′ ′ is defined using F ′ and the subuniverse {a ′} of B ′).

• (c, d) ∈ F ′ for any c ∈ U ′, d ∈ B ′ \U ′. Otherwise we take B ′ ′
= {e : (e, d) ∈ F ′},

a ′ ′
= a ′, b ′ ′

= d and, again, restrict U ′, E ′, F ′ to B ′ ′. From the first item it follows

that (b ′ ′, b ′ ′) ∈ E ′ ′, and the second item implies that (a ′ ′, b ′ ′) ∈ F ′ ′.

Now we consider the sequence

a ′
= p1(a ′, a ′, b ′), p1(a ′, b ′, b ′) = p2(a ′, b ′, b ′), p2(a ′, a ′, b ′)

= p3(a ′a ′, b ′), . . . , ps ′(a ′, b ′, b ′) = b ′,

where s ′ = s if s is odd and s ′ = s − 1 if s is even.

As (a ′, a ′), (b ′, b ′) ∈ E ′, (a ′, b ′) ∈ F ′, and E ′ is a Jónsson ideal of F ′, it follows

that the first pair of elements of this sequence is in E ′. Similarly, the second pair is in

E ′−1, the third pair in E ′, and so on. Thus we have a “fence” in E ′ from a ′ to b ′, and,

since we are assuming that there are no c ∈ U ′, d ∈ B ′ \ U ′ such that (c, d) ∈ E ′,

there must exist elements c ∈ U ′ and d ∈ B ′ \U ′ such that (d, c) ∈ E ′.

16 L. Barto

We have (c, c), (d, d), (d, c) ∈ E ′ and (c, d) ∈ F ′. It follows that

c = p1(c, c, d), p1(c, d, d) = p2(c, d, d), p2(c, c, d) = p3(c, c, d), . . . , d

is a sequence where all the pairs are in E ′. This contradicts the assumption that there

is no element in U ′ that is E ′-related to an element outside U ′.

For the remainder of this section we fix P, Rx’s, and J satisfying the hypotheses of

Theorem 5.6, and we assume that there exists a tree that is not realizable in P|J.

To obtain a configuration contradicting the previous lemma we will first trans-

form our non-realizable tree to a tree whose every vertex has degree 1 or 3 and that

has no realization in P with leaves realized in P|J. We require the following definition.

Definition 6.2 Let T be a P-tree and let S be a subset of vertices of T. A realization

r of T in P is called an S-realization if r(v) ∈ Jlbl(v) for every v ∈ S.

For a vertex v of T we define

TS[v] = {r(v) : r is an S-realization of T in P}

The set S from the definition will often be the set of all leaves of T, which we

denote by leaves(T).

Lemma 6.3 There exists a P-tree T such that

• the degree of any vertex of T is 1 or 3;
• T has no leaves(T)-realization;
• T has a S-realization for every proper subset S of leaves(T).

Proof We start with a P-tree T that is not realizable in P|J. To every inner vertex

(i.e., a vertex of degree greater than one) we add an adjacent vertex with the same

label. Since Rx,x is a subset of the equality relation, any realization maps the new

leaf to the same element of A as the inner vertex. It follows that the new tree is not

leaves(T)-realizable.

In a similar way we can modify the tree so that all the vertices have degree at most

3. If a vertex v has degree at least 4, we can split it into two adjacent vertices v1, v2

with the same label in such a way that v1 is adjacent to 2 of the original neighbors of v

and v2 is adjacent to the remaining neighbors. Clearly, v1 and v2 have smaller degree

than v; therefore, we can repeat this splitting procedure until we obtain a tree whose

every vertex has degree at most 3 and that is not leaves(T)-realizable.

Let T be such a tree with minimal number of vertices.

Now we show that T has no vertex of degree 2. Suppose otherwise, that is, there

is a vertex v with precisely two neighbors v1, v2. The tree T ′ obtained by remov-

ing the vertex v and adding the edge v1 − v2 is smaller than T, therefore T ′ has a

leaves(T ′)-realization r ′. As (r ′(v1), r ′(v2)) ∈ Rlbl(v1),lbl(v2) and P is a (2, 3)-system,

there exists a ∈ A such that (r ′(v1), a) ∈ Rlbl(v1),lbl(v) and (r ′(v2), a) ∈ Rlbl(v2),lbl(v)

(This is the only place in this section where we use the assumption that P is a (2, 3)-

system. For the rest it would suffice to assume that P is a (1, 2)-system.) It follows

that the extension r of the mapping r ′ by r(v) = a is a leaves(T)-realization of T, a

contradiction.

CD implies NU 17

It remains to show that T is S-realizable for every proper subset S of leaves(T), but

this is easy. If we remove a leaf outside S, the remaining tree is S-realizable (from the

minimality of T), and this realization can be extended to an S-realization of T as P is

a (1, 2)-system.

For the remainder of the proof we fix a P-tree T with the properties stated in the

previous lemma.

Lemma 6.4 T contains a path of length at least 2 · 8|A|.

Proof It can be easily computed that a tree, which has all vertices of degree at most

3 and which does not contain any path with more than k vertices, has size at most 2k

(this is a crude estimate, one computes that the most accurate estimate is 3 · 2k/2 − 2

for even k and 2(k+3)/2 − 2 for odd k > 1).

Since T has more than 48|A|

vertices by our assumption (smaller P-trees are even

realizable in P|J), the claim follows.

We fix a subpath v1, v2, . . . , vm of T, where m ≥ 2 · 8|A|. We define subsets Si of

leaves(T), i = 1, 2, . . . ,m, as follows. A leaf of T is in Si if and only if the shortest

path from this leaf to vi contains neither vi−1 nor vi+1. (For v1 only the vertex v2 is

considered. If v1 is a leaf, then S1 = {v1}. Similarly for vm.) In other words, we

straighten the line v1, . . . , vm and shake the tree. Then Si is the set of leaves below vi .

The next lemma will enable us to find the sought after configuration.

Lemma 6.5 There exist natural numbers k, l such that

• 1 ≤ k, l ≤ m, k ≤ l + 2;
• TSk

[vk] = TSl
[vl];

• TS1∪S2∪···∪Sk
[vk] = TS1∪S2∪...Sl

[vl] 6= ∅;
• TSk∪Sk+1∪···∪Sm

[vk] = TSl∪Sl+1∪···∪Sm
[vl] 6= ∅.

Proof There is at least m/2 − 1 ≥ 8|A| − 1 even numbers less than m. For each such

number i we consider the triple

(
TSi

[vi],TS1∪···∪Si
[vi],TSi∪···∪Sm

[vi]
)

of subsets of A (note that these subsets are nonempty by the third item of Lemma

6.3). There are less than (2|A| − 1)3 < 8|A| − 2 possible triples, therefore, by the

pigeonhole principle, there exist distinct k, l with the same associated triples and the

lemma follows.

Again, the estimates we used are very rough. For instance, the second and third

sets in the triple are disjoint subsets of the first subset. This significantly reduces the

number of possibilities, etc.

Let

Q1 = S1 ∪ S2 ∪ · · · ∪ Sk, Q2 = Sk ∪ · · · ∪ Sl, Q3 = Sl ∪ · · · ∪ Sm.

18 L. Barto

Now we define

B = TSk
[vk] = TSl

[vl],

L = TQ2∪Q3
[vk] = TQ3

[vl],

U = TQ1
[vk] = TQ1∪Q2

[vl],

E = {(r(vk), r(vl)) : r is a Q2-realization of T},

F = {(r(vk), r(vl)) : r is a (Sk ∪ Sl)-realization of T},

(a, b) = (r(vk), r(vl)) for a chosen (Q1 ∪ Q3)-realization r of T.

Since k ≤ l − 2 and Sk+1 6= ∅ (by the first item of Lemma 6.3), Q1 ∪ Q3 is a proper

subset of leaves(T); therefore, T has a (Q1 ∪ Q3)-realization by the third item of

Lemma 6.3, and the definition of a and b makes sense. This choice satisfies all the

assumptions of Lemma 6.1:

• B is a subuniverse of A. It follows directly from the definitions (see the last para-

graph of the proof of Proposition 5.3). Let B be the subalgebra of A with universe

B.
• E, F ≤ B2, E is a Jónsson ideal of F. This is also straightforward. That E is a Jónsson

ideal of F follows from the assumption that Jx is a Jónsson ideal of Rx for every

x ∈ Q2.
• U and L are disjoint. Suppose c ∈ U ∩ L. Since U = TQ1

[vk], there exists a

Q1-realization r1 of T such that r1(vk) = c. Similarly, since L = TQ2∪Q3
[vk], there

exists a (Q2 ∪ Q3)-realization r2 of T such that r2(vk) = c. The realizations r1 and

r2 can be joined in the following way. We put r(v) = r1(v) for vertices v whose

shortest path to vk does not contain vk+1, and r(v) = r2(v) for the other vertices.

Now r is a (Q1 ∪Q2 ∪Q3)-realization of T. But Q1 ∪Q2 ∪Q3 is the set of all leaves

of T, a contradiction (see the second item of Lemma 6.3).
• a ∈ U , b ∈ L, (a, b) ∈ F. The element a is defined as r(vk) for a (Q1 ∪ Q3)-reali-

zation r of T. Since Q1 ⊆ Q1 ∪Q3, we have TQ1∪Q3
[vk] ⊆ TQ1

[vk] = U ; therefore,

a = r(vk) ∈ U . Similarly, b ∈ L follows from b = r(vl), Q3 ⊆ Q1 ∪ Q3 and

L = TQ3
[vl], and (a, b) ∈ F follows from Sk ∪ Sl ⊆ Q1 ∪ Q3.

• E∩U 2 has no sources, E∩L2 has no sinks. Let c be an arbitrary element of U . Since

U = TQ1∪Q2
[vl], there exists a (Q1 ∪Q2)-realization r of T such that r(vl) = c. But

r is also a Q2-realization of T, hence (r(vk), r(vl)) ∈ E. The element d = r(vk) lies

in TQ1∪Q2
[vk] ⊆ TQ1

[vk] = U . We can analogically show that E ∩ L2 has no sinks:

any c ∈ L is equal to r(vk) for a (Q2 ∪Q3)-realization r of T, and r(vl) ∈ TQ3
[vl] =

L.
• There do not exist c ∈ U and d ∈ B \ U such that (c, d) ∈ E. If c ∈ U = TQ1

[vk]

and (c, d) ∈ E, then there exists a Q1-realization r1 of T and a Q2-realization r2

of T such that r1(vk) = c = r2(vk) and r2(vl) = d. When we join r1 and r2 in the

same way as in the proof that U and L are disjoint, we get a (Q1 ∪ Q2)-realization

r of T such that r(vl) = d. But U = TQ1∪Q2
[vl], thus d ∈ U .

The last property contradicts Lemma 6.1, and this concludes the proof of Theo-

rem 5.6.

CD implies NU 19

7 Conclusion

7.1 Decidability of Near Unanimity for Relational Structures

As a corollary of the main theorem we obtain an affirmative answer to the near una-

nimity problem for relations.

Corollary 7.1 It is decidable whether a finite relational structure with finitely many

relations has a near unanimity polymorphism.

Proof It is enough to decide whether the given relational structure has a Jónsson

chain of polymorphisms. This can be decided as follows. We first compute the set

P of all ternary idempotent polymorphisms satisfying p(a, b, a) = a and then com-

pute the graph whose vertices are idempotent binary operations having f and g the

vertices of an edge if and only if there exist p1, p2 ∈ P such that for all a, b,

f (a, b) = p1(a, a, b), p1(a, b, b) = p2(a, b, b) and g(a, b) = p2(a, a, b).

A Jónsson chain exists if and only if π1 is connected to π2, where πi is the idempotent

binary operation that is the projection operation on the i-th coordinate.

It was shown in [22] that the corresponding decision problem for algebras (that is,

does a given finite algebra with finitely many operations have a near unanimity term

operation?) is decidable. This was a surprising development after undecidability

results about closely related questions [21].

The naive algorithm described in the proof of Corollary 7.1 runs in exponential

time.

Open Problem 7.2 Determine the computational complexity of deciding whether a

finite relational structure with finitely many relations has a near unanimity polymor-

phism.

There exist polynomial time algorithms for finite posets [17] and for finite reflex-

ive undirected graphs [18].

The complexity of the same problem for algebras is also unknown. There exists

a polynomial time algorithm for deciding whether a finite idempotent algebra (with

finitely many operations) is a CD algebra, and the same problem without assuming

idempotency is exponential time complete [12].

7.2 Arities

Our proof gives some upper bound on the minimal arity of a near unanimity poly-

morphism; namely, a binary relational structure A either has a near unanimity poly-

morphism of arity 48|A|

+ 1 or has none. From the reduction presented in Section 3 it

follows that for a relational structure whose relations have maximum arity k an upper

bound is 48|A|k

+1. We have used quite rough estimates in a couple of places; however,

this proof most likely cannot provide a better upper bound than doubly exponential.

For finite algebras with finitely many operations the upper bound also exists, but

is tremendously large and is not even computed in [22].

Therefore we have the following open problem.

20 L. Barto

Open Problem 7.3 Give a better upper bound for the minimal arity of a near una-

nimity polymorphism (resp. term operation) for relational structures with finitely many

relations (resp. finite algebras).

7.3 Valeriote’s Conjecture

The most important open problem related to this work is the Valeriote conjecture

(also known as the Edinburgh conjecture [7]).

Conjecture 7.4 Every finite, finitely related algebra in a congruence modular variety

has few subpowers.

Congruence modularity is a widely studied generalization of congruence distribu-

tivity. An algebra A has few subpowers if the logarithm of the number of subalgebras

of An is bounded by a polynomial in n. This property was defined and its importance

in the CSP demonstrated in [5,14]. Examples of algebras with few supbowers include

algebras with a Maltsev operation (e.g., groups, rings, modules) and algebras with a

near unanimity operation. It is known [5, 20] that every finite CD algebra with few

subpowers has a near unanimity term. Therefore, a positive solution to the Valeri-

ote conjecture would imply the main result of this paper. It would also have deep

consequences in the complexity of constraints.

A converse to the conjecture generalizing the Baker–Pixley result [2] was proved

recently. E. Aichinger, P. Mayr, and R. McKenzie [1] have shown that every finite

algebra with few subpowers is finitely related.

References

[1] E. Aichinger, P. Mayr, and R. McKenzie, On the number of finite algebraic structures.
arxiv:1103.2265.

[2] K. A. Baker and A. F. Pixley, Polynomial interpolation and the Chinese remainder theorem for
algebraic systems. Math. Z. 143(1975), no. 2, 165–174. http://dx.doi.org/10.1007/BF01187059

[3] L. Barto and M. Kozik, Congruence distributivity implies bounded width. SIAM J. Comput.
39(2009/10), no. 4, 1531–1542. http://dx.doi.org/10.1137/080743238

[4] , Constraint satisfaction problems of bounded width. In: 2009 50th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2009), IEEE Computer Soc., Los Alamitos, CA, 2009,
pp. 595–603.

[5] J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard, Varieties with few
subalgebras of powers. Trans. Amer. Math. Soc. 362(2010), no. 3, 1445–1473.
http://dx.doi.org/10.1090/S0002-9947-09-04874-0

[6] V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov, Galois theory for Post algebras. I, II.
(Russian), Kibernetika (Kiev) 1969, no. 3, 1–10; ibid. 1969, no. 5, 1–9.

[7] S. Bova, H. Chen, and M. Valeriote, Generic expression hardness results for primitive positive formula
comparison. 38th International Colloquium on Automata, Languages and Programming (ICALP),
Zürich, Switzerland, 2011.

[8] A. Bulatov, P. Jeavons, and A. Krokhin, Classifying the complexity of constraints using finite algebras.
SIAM J. Comput. 34(2005), no. 3, 720–742. http://dx.doi.org/10.1137/S0097539700376676

[9] S. N. Burris and H. P. Sankappanavar, A course in universal algebra. Graduate Texts in Mathematics,
78, Springer-Verlag, New York-Berlin, 1981.

[10] B. A. Davey, Monotone clones and congruence modularity. Order 6(1990), no. 4, 389–400.
http://dx.doi.org/10.1007/BF00346133

[11] T. Feder and M. Y. Vardi, The computational structure of monotone monadic SNP and constraint
satisfaction: a study through Datalog and group theory. SIAM J. Comput. 28(1999), no. 1, 57–104.
http://dx.doi.org/10.1137/S0097539794266766

CD implies NU 21

[12] R. Freese and M. A. Valeriote, On the complexity of some Maltsev conditions. Internat. J. Algebra
Comput. 19(2009), no. 1, 41–77. http://dx.doi.org/10.1142/S0218196709004956

[13] D. Geiger, Closed systems of functions and predicates. Pacific J. Math. 27(1968), 95–100.
[14] P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard, Tractability and learnability

arising from algebras with few subpowers. In: Proceedings of the Twenty-Second Annual IEEE
Symposium on Logic in Computer Science (LICS 2007), IEEE Computer Society Press, 2007,
pp. 213–222.

[15] P. Jeavons, D. Cohen, and M. Gyssens, Closure properties of constraints. J. ACM 44(1997), no. 4,
527–548. http://dx.doi.org/10.1145/263867.263489

[16] B. Jónsson, Algebras whose congruence lattices are distributive. Math. Scand. 21(1968), 110–121.
[17] G. Kun and C. Szabó, Order varieties and monotone retractions of finite posets. Order 18(2001),

no. 1, 79–88. http://dx.doi.org/10.1023/A:1010681409599

[18] B. Larose, C. Loten, and L. Zádori, A polynomial-time algorithm for near-unanimity graphs. J.
Algorithms 55(2005), no. 2, 177–191. http://dx.doi.org/10.1016/j.jalgor.2004.04.011

[19] B. Larose and L. Zádori, Algebraic properties and dismantlability of finite posets. Discrete Math.
163(1997), no. 1–3, 89–99. http://dx.doi.org/10.1016/0012-365X(95)00312-K

[20] P. Marković and R. McKenzie, Few subpowers, congruence distributivity and near-unanimity terms.
Algebra Universalis 58(2008), no. 2, 119–128. http://dx.doi.org/10.1007/s00012-008-2049-1

[21] M. Maróti, On the (un)decidability of a near-unanimity term. Algebra Universalis 57(2007), no. 2,
215–237. http://dx.doi.org/10.1007/s00012-007-2037-x

[22] M. Maróti, The existence of a near-unanimity term in a finite algebra is decidable. J. Symbolic Logic
74(2009), no. 3, 1001–1014. http://dx.doi.org/10.2178/jsl/1245158096

[23] , Monotone clones, residual smallness and congruence distributivity. Bull. Austral. Math. Soc.
41(1990), no. 2, 283–300. http://dx.doi.org/10.1017/S0004972700018104

[24] L. Zádori, Monotone Jónsson operations and near unanimity functions. Algebra Universalis
33(1995), 216–236. http://dx.doi.org/10.1007/BF01190934

Department of Mathematics and Statistics, McMaster University, Hamilton, ON

and

Department of Algebra, Charles University, Prague, Czech Republic
e-mail: libor.barto@gmail.com

Appendix E – Conservative CSPs

116

The Dichotomy for Conservative
Constraint Satisfaction Problems Revisited

Libor Barto
Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada

and
Department of Algebra, Charles University, Prague, Czech Republic

Email: libor.barto@gmail.com

Abstract—A central open question in the study of non-uniform
constraint satisfaction problems (CSPs) is the dichotomy con-
jecture of Feder and Vardi stating that the CSP over a fixed
constraint language is either NP-complete, or tractable. One of
the main achievements in this direction is a result of Bulatov
(LICS’03) confirming the dichotomy conjecture for conservative
CSPs, that is, CSPs over constraint languages containing all
unary relations. Unfortunately, the proof is very long and com-
plicated, and therefore hard to understand even for a specialist.
This paper provides a short and transparent proof.

Keywords-constraint satisfaction problem; list homomorphism
problem; conservative algebra; dichotomy theorem;

INTRODUCTION

The constraint satisfaction problem (CSP) provides a com-
mon framework for many theoretical problems in computer
science as well as for many real-life applications. An instance
of the CSP consists of a number of variables and constraints
imposed on them and the objective is to determine whether
variables can be evaluated in such a way that all the constraints
are met. The CSP can also be expressed as the problem of de-
ciding whether a given conjunctive formula is satisfiable, or as
the problem of deciding whether there exists a homomorphism
between two relational structures.

The general CSP is NP-complete, however certain natural
restrictions on the form of the constraints can ensure tractabil-
ity. This paper deals with so called non-uniform CSP — the
same decision problem as the ordinary CSP, but the set of
allowed constraint relations is fixed. A central open problem
in this area is the dichotomy conjecture of Feder and Vardi [1]
stating that, for every finite, fixed set of constraint relations (a
fixed constraint language), the CSP defined by it is NP-
complete or solvable in polynomial time, i.e. the class of CSPs
exhibits a dichotomy.

Most of recent progress toward the dichotomy conjecture
has been made using the algebraic approach to the CSP [2],
[3], [4]. The main achievements include the algorithm for
CSPs with ”Maltsev constraints” [5] (which was substantially
simplified in [6] and generalized in [7], [8]), the characteriza-
tion of CSPs solvable by local consistency methods [9], [10],
the dichotomy theorem for CSPs over a three element domain

The research was supported by the Grant Agency of the Czech Republic,
grant 201/09/P223 and by the Ministry of Education of the Czech Republic,
grants MSM 0021620839 and MEB 040915.

[11] (which generalizes the Boolean CSP dichotomy theorem
[12]) and the dichotomy theorem for conservative CSPs [13].

The last result proves the dichotomy conjecture of Feder
and Vardi for the CSP over any template which contains all
unary relations. In other words, this Bulatov’s theorem proves
the dichotomy for the CSPs, in which we can restrict the value
of each variable to an arbitrary subset of the domain (that is
why the conservative CSPs are sometimes called list CSPs, or,
in homomorphism setting, list homomorphism problems). This
result is of major importance in the area, but, unfortunately,
the proof is very involved (the full paper has 80 pages and it
has not yet been published), which makes the study of possible
generalizations and further research harder.

This paper provides a new, shorter and more natural proof.
It relies on techniques developed and successfully applied in
[14], [15], [16], [9], [17], [18].

Related work

The complexity of list homomorphism problems has been
studied by combinatorial methods, e.g., in [19], [20]. A
structural distinction between tractable and NP-complete list
homomorphism problem for digraphs was found in [21]. A
finer complexity classification for the list homomorphism
problem for graphs was given in [22]. The conservative case
is also studied for different variants of the CSP, see, e.g., [23],
[24].

Organization of the paper

In Section I we define the CSP and its non-uniform version.
In Section II we introduce the necessary notions concerning
algebras and the algebraic approach to the CSP. In Section
III we collect all the necessary ingredients. One of them is
a reduction to minimal absorbing subuniverses, details are
provided in Section V. Also the core algebraic result is just
stated in this section and its proof covers Section VI. In Section
IV we formulate the algorithm for tractable conservative CSPs
and prove its correctness.

I. CSP

An 𝑛-ary relation on a set 𝐴 is a subset of the 𝑛-th cartesian
power 𝐴𝑛 of the set 𝐴.

Definition I.1. An instance of the constraint satisfaction prob-
lem (CSP) is a triple 𝑃 = (𝑉,𝐴, 𝒞) with

2011 26th Annual IEEE Symposium on Logic in Computer Science

1043-6871/11 $26.00 © 2011 IEEE

DOI 10.1109/LICS.2011.25

301

∙ 𝑉 a nonempty, finite set of variables,
∙ 𝐴 a nonempty, finite domain,
∙ 𝒞 a finite set of constraints, where each constraint is a

pair 𝐶 = (x, 𝑅) with

– x a tuple of distinct variables of length 𝑛, called the
scope of 𝐶, and

– 𝑅 an 𝑛-ary relation on 𝐴, called the constraint
relation of 𝐶.

The question is whether there exists a solution to 𝑃 , that
is, a function 𝑓 : 𝑉 → 𝐴 such that, for each constraint
𝐶 = (x, 𝑅) ∈ 𝒞, the tuple 𝑓(x) belongs to 𝑅.

For purely technical reasons we have made a nonstandard
assumption that the scope of a constraint contains distinct
variables. This clearly does not change the complexity modulo
polynomial-time reductions.

In the non-uniform CSP we fix a domain and a set of
allowed constraints:

Definition I.2. A constraint language Γ is a set of relations
on a finite set 𝐴. The constraint satisfaction problem over
Γ, denoted CSP(Γ), is the subclass of the CSP defined by
the property that any constraint relation in any instance must
belong to Γ.

The following dichotomy conjecture was originally formulated
in [1] only for finite constraint languages. The known results
suggest that even the following stronger version might be true.

Conjecture I.3. For every constraint language Γ, CSP(Γ) is
either tractable, or NP-complete.

Our main theorem, first proved by Bulatov [13], confirms the
dichotomy conjecture for conservative CSPs:

Definition I.4. A constraint language Γ on 𝐴 is called
conservative, if Γ contains all unary relations on 𝐴 (i.e., all
subsets of 𝐴).

Theorem I.5. For every conservative constraint language Γ,
CSP(Γ) is either tractable, or NP-complete.

II. ALGEBRA AND CSP

A. Algebraic preliminaries

An 𝑛-ary operation on a set 𝐴 is a mapping 𝑓 : 𝐴𝑛 → 𝐴. An
operation 𝑓 is called cyclic, if 𝑛 ≥ 2 and 𝑓(𝑎1, 𝑎2, . . . , 𝑎𝑛) =
𝑓(𝑎2, 𝑎3, . . . , 𝑎𝑛, 𝑎1) for any 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ 𝐴. A ternary
operation 𝑚 is called Maltsev, if 𝑓(𝑎, 𝑎, 𝑏) = 𝑓(𝑏, 𝑎, 𝑎) = 𝑏
for any 𝑎, 𝑏 ∈ 𝐴.

A signature is a finite set of symbols with natural num-
bers (the arities) assigned to them. An algebra of a signature
Σ is a pair A = (𝐴, (𝑡A)𝑡∈Σ), where 𝐴 is a set, called the
universe of A, and 𝑡A is an operation on 𝐴 of arity ar(𝑡).
We use a boldface letter to denote an algebra and the same
letter in the plain type to denote its universe. We omit the
superscripts of operations as the algebra is always clear from
the context.

A term operation of A is an operation which can be
obtained from operations in A using composition and the

projection operations. The set of all term operations of A is
denoted by Clo(A).

There are three fundamental operations on algebras of a
fixed signature Σ: forming subalgebras, factoralgebras and
products.

A subset 𝐵 of the universe of an algebra A is called a
subuniverse, if it is closed under all operations (equivalently
term operations) of A. Given a subuniverse 𝐵 of A we can
form the algebra B by restricting all the operations of A to
the set 𝐵. In this situation we say that B is a subalgebra of
A and we write 𝐵 ≤ A or B ≤ A. We call the subuniverse
𝐵 (or the subalgebra B) proper if ∅ ∕= 𝐵 ∕= 𝐴.

We define the product of algebras A1, . . . ,A𝑛 to be the
algebra with the universe equal to 𝐴1 × ⋅ ⋅ ⋅ × 𝐴𝑛 and with
operations computed coordinatewise. The product of 𝑛 copies
of an algebra A is denoted by A𝑛.

An equivalence relation ∼ on the universe of an algebra A
is a congruence, if it is a subalgebra of A2. The corresponding
factor algebra A/ ∼ has, as its universe, the set of ∼-
blocks and operations are defined using (arbitrary chosen)
representatives. Every algebra A has two trivial congruences:
the diagonal congruence ∼= {(𝑎, 𝑎) : 𝑎 ∈ 𝐴} and the full
congruence ∼= 𝐴 × 𝐴. A congruence is proper, if it is not
equal to the full congruence. A congruence is maximal, if the
only coarser congruence of A is the full congruence.

For a finite algebra A the class of all factor algebras of
subalgebras of finite powers of A will be denoted by Vfin(A).

An operation 𝑓 : 𝐴𝑛 → 𝐴 is idempotent, if 𝑓(𝑎, 𝑎, . . . , 𝑎) =
𝑎 for any 𝑎 ∈ 𝐴. An operation 𝑓 : 𝐴𝑛 → 𝐴 is conservative, if
𝑓(𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ {𝑎1, 𝑎2, . . . , 𝑎𝑛} for any 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈
𝐴. An algebra is idempotent (resp. conservative), if all op-
erations of A are idempotent (resp. conservative). In other
words, an algebra is idempotent (resp. conservative), if all one-
element subsets of 𝐴 (resp. all subsets of 𝐴) are subuniverses
of A.

B. Algebraic approach

An operation 𝑓 : 𝐴𝑛 → 𝐴 is compatible with a relation 𝑅 ⊆
𝐴𝑚 if the tuple

(𝑓(𝑎11, 𝑎
2
1, . . . , 𝑎

𝑛
1), 𝑓(𝑎

1
2, 𝑎

2
2, . . . , 𝑎

𝑛
2), . . . , 𝑓(𝑎

1
𝑚, 𝑎

2
𝑚, . . . , 𝑎

𝑛
𝑚)

belongs to 𝑅 whenever (𝑎𝑖1, 𝑎
𝑖
2, . . . , 𝑎

𝑖
𝑚) ∈ 𝑅 for all 𝑖 ≤ 𝑛.

An operation compatible with all relations in a constraint
language Γ is a polymorphism of Γ. The set 𝐴 together with
all polymorphisms of Γ is the algebra of polymorphisms of Γ,
it is denoted Pol Γ, or often just A (we formally define the
signature of A to be identical with the set of its operations).
Note that every relation in Γ is a subalgebra of a power of
A. The set of all subalgebras of powers of A is denoted by
InvA.

In the following discussion we assume, for simplicity, that Γ
contains all singleton unary relations (it is known that CSP can
be reduced to CSP over such a constraint language). Observe
that in such a case the algebra A is idempotent. Moreover, if
Γ is conservative, then A is conservative as well.

302

Already the first results on the algebraic approach to
CSP [2], [3], [4] show that A fully determines the compu-
tational complexity of CSP(Γ), at least for finite constraint
languages. Moreover, a borderline between tractable and NP-
complete CSPs was conjectured in terms of the algebra of
polymorphisms: if there exists a two-element factor algebra
of a subalgebra of A whose every operation is a projection,
then CSP(Γ) is NP-complete, otherwise CSP(Γ) is tractable.
The hardness part of this algebraic dichotomy conjecture is
known [3], [4]:

Theorem II.1. Let Γ be a constraint language containing all
singleton unary relations, and let A = Pol Γ. If A has a
subalgebra with a two-element factor algebra whose every
operation is a projection, then CSP(Γ) is NP-complete.

The algebras, which satisfy this necessary (and conjecturally
sufficient) condition for tractability, are called Taylor algebras,
that is, A is Taylor if no two-element factor algebra of a
subalgebra A has projection operations only. We will use the
following characterization of Taylor algebras from [17], [18]
although the characterization in terms of weak near-unanimity
operations [25] would suffice for our purposes.

Theorem II.2. Let A be a finite idempotent algebra and let
𝑝 > ∣𝐴∣ be a prime number. The following are equivalent.

∙ A is a Taylor algebra.
∙ A has a cyclic term operation of arity 𝑝.

In view of Theorem II.1, the dichotomy for conservative CSPs
will follow when we prove:

Theorem II.3. Let A be a finite conservative Taylor algebra.
Then CSP(InvA) is tractable.

A polynomial time algorithm for solving CSP(InvA), where
A is a finite conservative Taylor algebra, is presented in
Section IV.

III. INGREDIENTS

The building blocks of our algorithm are the (𝑘, 𝑙)-minimality
algorithm (Subsection III-B), a reduction to minimal absorbing
subuniverses (Subsection III-D) and the algorithm for Maltsev
instances (Subsection III-F). Subsection III-A and Subsection
III-C cover necessary notation.

The main new algebraic tool for proving correctness is
stated in Subsection III-E and this is the place where we make
essential use of the assumption that the constraint language is
conservative (the result is not true in general). This theorem
enables us to show that partial solutions of certain restricted
instances can be glued together to obtain a solution of a larger
instance. If one of these smaller instances does not have a
solution then we can delete some elements from the constraint
relations. In this place we use conservativity the second time,
it ensures that the new relations will still be in the constraint
language.

A. Projections and restrictions

Tuples are denoted by boldface letters and their elements
are indexed from 1, for instance a = (𝑎1, 𝑎2, . . . , 𝑎𝑛). For

an 𝑛-tuple a and a tuple k = (𝑘1, . . . , 𝑘𝑚) of elements of
{1, 2, . . . , 𝑛} we define the projection of a to k by

a∣k = (𝑎𝑘1
, 𝑎𝑘2

, . . . , 𝑎𝑘𝑚
).

For a subset 𝐾 ⊆ {1, 2, . . . , 𝑛} we put a∣𝐾 = a∣k, where k
is the list of elements of 𝐾 in the ascending order.

The projection of a set 𝑅 ⊆ 𝐴1 × . . . 𝐴𝑛 to k (resp. 𝐾) is
defined by

𝑅∣k = {a∣k : a ∈ 𝑅} (resp. 𝑅∣𝐾 = {a∣𝐾 : a ∈ 𝑅}).

The set 𝑅 is subdirect in 𝐴1 × ⋅ ⋅ ⋅ × 𝐴𝑛 (denoted by 𝑅 ⊆𝑆

𝐴1×⋅ ⋅ ⋅×𝐴𝑛), if 𝑅∣{𝑖} = 𝐴𝑖 for all 𝑖 = 1, . . . , 𝑛. If, moreover,
A1, . . . ,A𝑛 are algebras of the same signature and 𝑅 is a
subalgebra of their product, we write 𝑅 ≤𝑆 A1 × ⋅ ⋅ ⋅ ×A𝑛.

Let 𝑃 = (𝑉,𝐴, 𝒞) be an instance of the CSP. The projection
of a constraint 𝐶 = ((𝑥1, . . . , 𝑥𝑛), 𝑅) ∈ 𝒞 to a tuple of
variables (𝑥𝑘1

, . . . , 𝑥𝑘𝑚
) is the relation

𝐶∣(𝑥𝑘1
,...,𝑥𝑘𝑚) = {(𝑎𝑘1

, . . . , 𝑎𝑘𝑚
) : a ∈ 𝑅}.

Finally, we introduce two types of restrictions of a CSP
instance. In the variable restriction we delete some of the vari-
ables and replace the constraints with appropriate projections,
in the domain restriction we restrict the value of some of the
variables to specified subsets of the domain.

The variable restriction of 𝑃 to a subset 𝑊 ⊆ 𝑉 is
the instance 𝑃 ∣𝑊 = (𝑊,𝐴, 𝒞′), where 𝒞′ is obtained from
𝒞 by replacing each constraint 𝐶 = (x, 𝑅) ∈ 𝒞 with
(x ∩𝑊,𝐶∣x∩𝑊), where x ∩𝑊 is the subtuple of x formed
by the variables belonging to 𝑊 .

The domain restriction of 𝑃 to a system ℰ = {𝐸𝑥 :
𝑥 ∈ 𝑊} of subsets of 𝐴 indexed by 𝑊 ⊆ 𝑉 is the
instance 𝑃 ∣ℰ = (𝑉,𝐴, 𝒞′), where 𝒞′ is obtained from 𝒞 by
replacing each constraint 𝐶 = ((𝑥1, . . . , 𝑥𝑛), 𝑅) ∈ 𝒞 with
𝐶 ′ = ((𝑥1, . . . , 𝑥𝑛), {a ∈ 𝑅 : ∀𝑖 𝑥𝑖 ∈ 𝑊 ⇒ 𝑎𝑖 ∈ 𝐸𝑥𝑖

}).
If A is a conservative algebra, then every domain restriction
of an instance of CSP(InvA) is an instance of CSP(InvA)
(because all subset of 𝐴 are subalgebras of A).

B. (𝑘, 𝑙)-minimality

The first step in our algorithm will be to ensure a certain
kind of local consistency. The following notion is the most
convenient for our purposes.

Definition III.1. Let 𝑙 ≥ 𝑘 > 0 be natural numbers. An
instance 𝑃 = (𝑉,𝐴, 𝒞) of the CSP is (𝑘, 𝑙)-minimal, if:

∙ Every at most 𝑙-element tuple of distinct variables is the
scope of some constraint in 𝒞,

∙ For every tuple x of at most 𝑘 variables and every pair
of constraints 𝐶1 and 𝐶2 from 𝒞 whose scopes contain
all variables from x, the projections of the constraints 𝐶1

and 𝐶2 to x are the same.

A (𝑘, 𝑘)-minimal instance is also called 𝑘-minimal.

For fixed 𝑘, 𝑙 there is an obvious polynomial time algorithm
for transforming an instance of the CSP to a (𝑘, 𝑙)-minimal
instance with the same set of solutions: First we add dummy

303

constraints to ensure that the first condition is satisfied and then
we gradually remove those tuples from the constraint relations
which falsify the second condition (see [13] for a more detailed
discussion). It is a folklore fact (which is in the literature often
used without mentioning) that an instance of CSP(InvA) is
in this way transformed to an instance of CSP(InvA), that is,
the constraint relations of the new instance are still members
of InvA. See the discussion after Definition III.3 in [9], where
an argument is given for a similar consistency notion.

If an instance 𝑃 is (at least) 1-minimal, then, for each vari-
able 𝑥 ∈ 𝑉 , there is a unique constraint whose scope is (𝑥).
We denote its constraint relation by 𝑆𝑃

𝑥 , i.e. ((𝑥), 𝑆𝑃
𝑥) ∈ 𝒞.

Then the projection of any constraint whose scope contains
𝑥 to (𝑥) is equal to 𝑆𝑃

𝑥 . If, moreover, 𝑃 is an instance of
CSP(InvA), the set 𝑆𝑃

𝑥 is a subuniverse of A and we denote
the corresponding subalgebra of A by S𝑃

𝑥 .
If an instance is 2-minimal, then we have a unique constraint

((𝑥, 𝑥′), 𝑆𝑃
(𝑥,𝑥′)) for each pair of distinct variables 𝑥, 𝑥′ ∈ 𝑉 ,

and 𝐶∣(𝑥,𝑥′) = 𝑆𝑃
(𝑥,𝑥′) for any constraint 𝐶 whose scope con-

tains 𝑥 and 𝑥′. We formally define 𝑆𝑃
(𝑥,𝑥) = {(𝑎, 𝑎) : 𝑎 ∈ 𝑆𝑃

𝑥 }.
(2, 3)-minimal instances have the following useful property.

Lemma III.2. Let 𝑃 be a (2, 3)-minimal instance and let
𝑥, 𝑥′, 𝑥′′ ∈ 𝑉 . Then for any (𝑎, 𝑎′) ∈ 𝑆𝑃

(𝑥,𝑥′) there exists 𝑎′′ ∈
𝐴 such that (𝑎, 𝑎′′) ∈ 𝑆𝑃

(𝑥,𝑥′′) and (𝑎′, 𝑎′′) ∈ 𝑆𝑃
(𝑥′,𝑥′′).

Proof: Let 𝐶 ∈ 𝒞 be a constraint with the scope
(𝑥, 𝑥′, 𝑥′′), say 𝐶 = ((𝑥, 𝑥′, 𝑥′′), 𝑅). The projection of 𝐶 to
(𝑥, 𝑥′) is equal to 𝑆𝑃

(𝑥,𝑥′), therefore there exists 𝑎′′ ∈ 𝐴 such
that (𝑎, 𝑎′, 𝑎′′) ∈ 𝑅. This element satisfies the conclusion of
the lemma.

C. Walking with subsets

Let 𝑅 ⊆ 𝐴1 ×𝐴2 and let 𝐵 ⊆ 𝐴1. We define

𝑅+[𝐵] = {𝑐 ∈ 𝐴2 : ∃ 𝑏 ∈ 𝐵 (𝑏, 𝑐) ∈ 𝑅}.
A qoset is a set 𝐴 together with a quasi-ordering on 𝐴, i.e.

a reflexive, transitive (binary) relation ≤ on 𝐴. The blocks of
the induced equivalence ∼, given by 𝑎 ∼ 𝑏 iff 𝑎 ≤ 𝑏 ≤ 𝑎, are
called components of the qoset. A component 𝐶 is maximal,
if 𝑎 ∼ 𝑐 for any 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶 such that 𝑐 ≤ 𝑎. A subqoset is
a subset of 𝐴 together with ≤ restricted to 𝐴.

For a 1-minimal instance 𝑃 = (𝑉,𝐴, 𝒞) we introduce a
qoset Qoset(𝑃) as follows. The elements are all the pairs
(𝑥,𝐵), where 𝑥 ∈ 𝑉 and 𝐵 is a subset of 𝑆𝑃

𝑥 . We put
(𝑥,𝐵) ≤ (𝑥′, 𝐵′), if there exists a constraint 𝐶 ∈ 𝒞 whose
scope contains {𝑥, 𝑥′} such that 𝐶∣(𝑥,𝑥′)

+
[𝐵] = 𝐵′. The

ordering of the qoset Qoset(𝑃) is the transitive closure of
≤.

If the instance 𝑃 is (2, 3)-minimal, the components of
Qoset(𝑃) are nicely behaved:

Proposition III.3. Let 𝑃 = (𝑉,𝐴, 𝒞) be a (2, 3)-minimal
instance of the CSP and let (𝑥,𝐵) and (𝑥′, 𝐵′) be two
elements of the same component of the qoset Qoset(𝑃). Then
𝑆𝑃
(𝑥,𝑥′)

+
[𝐵] = 𝐵′. In particular, if 𝑥 = 𝑥′, then 𝐵 = 𝐵′.

Proof: Let (𝑥,𝐵) = (𝑥1, 𝐵1), (𝑥2, 𝐵2), . . . , (𝑥𝑘, 𝐵𝑘) =
(𝑥′, 𝐵′) be a sequence of elements of Qoset(𝑃) such that
𝑆𝑃
(𝑥𝑖,𝑥𝑖+1)

+
[𝐵𝑖] = 𝐵𝑖+1 for all 𝑖 = 1, . . . , 𝑘−1. From Lemma

III.2 it follows that

𝑆𝑃
(𝑥1,𝑥𝑖+1)

+
[𝐵1] ⊆ 𝑆𝑃

(𝑥𝑖,𝑥𝑖+1)

+
[
𝑆𝑃
(𝑥1,𝑥𝑖)

+
[𝐵1]

]
,

therefore 𝑆𝑃
(𝑥,𝑥′)

+
[𝐵] ⊆ 𝐵′. Similarly, 𝑆𝑃

(𝑥′,𝑥)
+
[𝐵′] ⊆ 𝐵.

For each 𝑏′ ∈ 𝐵′ (⊆ 𝑆𝑃
𝑥′) there exists 𝑏 ∈ 𝐴 such that

(𝑏, 𝑏′) ∈ 𝑆𝑃
(𝑥,𝑥′)

+
[𝐵]. This element 𝑏 has to belong to 𝐵 (since

𝑆𝑃
(𝑥′,𝑥)

+
[𝐵′] ⊆ 𝐵), which proves the inclusion 𝑆𝑃

(𝑥,𝑥′)
+
[𝐵] ⊇

𝐵′.
Let 𝑃 be a (2, 3)-minimal instance and ℰ = {𝐸𝑥 : 𝑥 ∈ 𝑉 } be
a system of subsets of 𝐴 such that 𝐸𝑥 ⊆ 𝑆𝑃

𝑥 for each 𝑥 ∈ 𝑉 .
A (𝑃, ℰ)-strand is a maximal subset 𝑊 of 𝑉 such that all the
pairs (𝑥,𝐸𝑥), 𝑥 ∈ 𝑊 belong to the same component of the
qoset Qoset(𝑃). The name of this concept is justified by the
previous proposition: For example, any solution 𝑓 : 𝑉 → 𝐴
to 𝑃 with 𝑓(𝑥) ∈ 𝐸𝑥 for some 𝑥 ∈ 𝑊 satisfies 𝑓(𝑥) ∈ 𝐸𝑥

for all 𝑥 ∈𝑊 .

D. Absorbing subuniverses

Definition III.4. Let A be a finite idempotent algebra and
𝑡 ∈ Clo(A). We say that a subalgebra B of A is an absorbing
subalgebra of A with respect to 𝑡 if, for every 𝑘 ≤ ar(𝑡) and
every 𝑎1, . . . , 𝑎ar(𝑡) ∈ 𝐴 such that 𝑎𝑖 ∈ 𝐵 for all 𝑖 ∕= 𝑘, we
have 𝑡(𝑎1, . . . , 𝑎ar(𝑡)) ∈ 𝐵.

We say that B is an absorbing subalgebra of A, or that B
absorbs A (and write B ⊲A), if there exists 𝑡 ∈ Clo(A) such
that B is an absorbing subalgebra of A with respect to 𝑡.

We say that A is an absorption free algebra, if it has no
proper absorbing subalgebras.

We also speak about absorbing subuniverses i.e. universes of
absorbing subalgebras.

Definition III.5. If B ⊲ A and no proper subalgebra of B
absorbs A, we call B a minimal absorbing subalgebra of
A (and write B ⊲⊲ A).

Alternatively, we can say that B is a minimal absorbing
subalgebra of A, if B⊲A and B is an absorption free algebra.
Equivalence of these definitions follows from transitivity of ⊲
(see Proposition III.2 in [17]).

Algorithm 1 finds, for a given (2, 3)-minimal instance 𝑃 of
the CSP, a domain restriction 𝑄 of 𝑃 which is 1-minimal and
satisfies S𝑄

𝑥 ⊲⊲ S𝑃
𝑥 for any 𝑥 ∈ 𝑉 .

The algorithms uses a subqoset AbsQoset(𝑃) of Qoset(𝑃)
formed by the elements (𝑥,𝐵) such that 𝐵 is a proper
absorbing subuniverse of S𝑃

𝑥 .

Theorem III.6. Algorithm 1 is correct and, for a fixed
idempotent algebra A, works in polynomial time.

Proof: The qoset AbsQoset(𝑃) contains at most 2∣𝐴∣∣𝑉 ∣
elements, therefore its maximal component can be found in a
polynomial time. In each while loop at least one of the sets
𝑆𝑃
𝑥 becomes smaller, thus the while loop is repeated at most

∣𝑉 ∣∣𝐴∣ times, and the algorithm is therefore polynomial.

304

Fig. 1. Algorithm 1: Minimal absorbing subuniverses

Input: (2, 3)-minimal instance 𝑃 = (𝑉,𝐴, 𝒞) of CSP(InvA)
Output: ℰ = {𝐸𝑥 : 𝑥 ∈ 𝑉 } such that 𝐸𝑥 ⊲⊲ S𝑃

𝑥 , 𝑥 ∈ 𝑉 , and
𝑃 ∣ℰ is 1-minimal

1: while some 𝑆𝑃
𝑥 has a proper absorbing subuniverse do

2: find a maximal component ℱ = {(𝑥,𝐸𝑥) : 𝑥 ∈𝑊}
of the qoset AbsQoset(𝑃)

3: 𝑃 := 𝑃 ∣ℱ
4: return {𝑆𝑃

𝑥 : 𝑥 ∈ 𝑉 }

The correctness follows from a slightly generalized results
from [9] (the generalized version will be in [10]): In the
beginning of the while loop, 𝑃 is so called Prague strategy.
An analogue of Proposition III.3 remains valid for Prague
strategies (Lemma IV.10 in [9], Lemma V.5 part (iii) in Section
V), in particular, for each variable 𝑥 ∈ 𝑉 , there is at most
one element (𝑥,𝐸𝑥) in the maximal component, therefore the
definition of ℱ in step 2 makes sense. Finally, the restriction
of 𝑃 to ℱ is again a Prague strategy (Theorem IV.15 in [9],
Lemma V.6 in Section V). The details are in Section V.

The presented algorithm as well as the main algorithm re-
quire knowledge of absorbing subuniverses of a given algebra
and its subalgebras. We do not need to provide algorithm for
this because the algebra is fixed. Actually, we do not even
know if it is possible. See remarks in Section VII.

E. Rectangularity

The core result for proving correctness of our algorithm for
conservative CSPs is the “Rectangularity Theorem”. We state
the theorem here, its proof spans Section VI.

We need one more notion. Let 𝐴1, . . . , 𝐴𝑛, 𝐵1, . . . , 𝐵𝑛 be
sets such that 𝐵𝑖 ⊆ 𝐴𝑖 and let 𝑅 ⊆𝑆 𝐴1 × ⋅ ⋅ ⋅ × 𝐴𝑛. We
define a quasi-ordering ⪯ on the set {1, 2, . . . , 𝑛} by

𝑖 ⪯ 𝑗 if 𝑅∣(𝑖,𝑗)+[𝐵𝑖] ⊆ 𝐵𝑗 .

Components of this qoset are called (𝑅,𝐵)-strands.

Theorem III.7. Let A be a finite Taylor algebra, let
A1, . . . ,A𝑛,B1, . . . ,B𝑛 ∈ Vfin(A) be conservative algebras
such that B𝑖 ⊲ ⊲ A𝑖 for all 𝑖, let 𝑅 ≤𝑆 A1 × ⋅ ⋅ ⋅ × A𝑛

and assume that 𝑅 ∩ (𝐵1 × ⋅ ⋅ ⋅ × 𝐵𝑛) ∕= ∅. Then a tuple
a ∈ 𝐵1 × ⋅ ⋅ ⋅ × 𝐵𝑛 belongs to 𝑅 whenever a∣𝐾 ∈ 𝑅∣𝐾 for
each (𝑅,𝐵)-strand 𝐾.

F. Maltsev instances

Our final ingredient is the polynomial time algorithm by Bu-
latov and Dalmau [6] for the CSPs over constraint languages
with a Maltsev polymorphism. Their algorithm can be used
without any change in the following setting:

Theorem III.8. [6] Let A be a finite algebra with a ternary
term operation 𝑚. Then there is a polynomial time algo-
rithm which correctly decides every 1-minimal instance 𝑃 of
CSP(InvA) such that, for every variable 𝑥, 𝑚 is a Maltsev
operation of S𝑃

𝑥 .

IV. ALGORITHM

The algorithm for conservative CSPs is in Figure 2. It uses
a subqoset NafaQoset(𝑃) of the qoset Qoset(𝑃) formed by
the elements (𝑥,𝐵) such that 𝐵 ⊆ 𝑆𝑃

𝑥 and B has a proper
absorbing subalgebra (where B stands for the subalgebra of
A with universe 𝐵).

Fig. 2. Algorithm 2 for solving 𝐶𝑆𝑃 (InvA) for conservative A

Input: Instance 𝑃 = (𝑉,𝐴, 𝒞) of CSP(InvA)
Output: “YES” if 𝑃 has a solution, “NO” otherwise

1: Transform 𝑃 to a (2, 3)-minimal instance with the same
solution set

2: if some subalgebra of 𝑆𝑃
𝑥 has a proper absorbing subal-

gebra then
3: Find a maximal component 𝒟 = {𝐷𝑥 : 𝑥 ∈ 𝑊} of

NafaQoset(𝑃)
4: 𝑄 := (𝑃 ∣𝑊)∣𝒟
5: ℰ := the result of Algorithm 1 for the instance 𝑄
6: for each (𝑄, ℰ)-strand 𝑈 do
7: Use this algorithm for the instance (𝑄∣𝑈)∣{𝐸𝑥:𝑥∈𝑈}
8: if no solution exists then
9: ℱ := {𝑆𝑃

𝑥 − 𝐸𝑥 : 𝑥 ∈ 𝑈}
10: 𝑃 := 𝑃 ∣ℱ
11: goto step 1
12: ℱ := {𝑆𝑃

𝑥 − (𝐷𝑥 − 𝐸𝑥) : 𝑥 ∈𝑊}
13: 𝑃 := 𝑃 ∣ℱ
14: goto step 1
15: Use the algorithm for Maltsev instances (Theorem III.8)

Theorem IV.1. If A is a conservative finite algebra, then
Algorithm 2 is correct and works in polynomial time.

Proof: By induction on 𝑘 we show that the algorithm
works in polynomial time for all instances such that ∣𝑆𝑃

𝑥 ∣ ≤ 𝑘.
The base case of the induction is obvious: if every 𝑆𝑃

𝑥 is
at most one-element, then the algorithm proceeds directly to
Step 15 (where the algorithm answers YES iff every 𝑆𝑃

𝑥 is
one-element).

Step 1 can be done in polynomial time as discussed in
Subsection III-B. In Step 3 the qoset has size at most 2∣𝐴∣∣𝑉 ∣,
therefore its maximal component can be found in polynomial
time. Step 5 is polynomial according to Theorem III.6. There
are at most ∣𝑉 ∣ repetitions of the for cycle in Step 6. Step 7 is
polynomial by the induction hypothesis, since every 𝐸𝑥 is a
minimal absorbing subuniverse of D𝑥 (= S𝑄

𝑥) and D𝑥 has, as
a member of NafaQoset(𝑃), a proper absorbing subuniverse.
Before we return to Step 1 (either in Step 11 or in Step 14)
at least one of the sets 𝑆𝑃

𝑥 becomes strictly smaller. It follows
that there are at most ∣𝐴∣∣𝑉 ∣ returns to the first step. Finally,
the last step is polynomial by Theorem III.8.

Now we show the correctness of the algorithm.
First, we observe that no solution is lost in Step 10. As

the pairs (𝑥,𝐸𝑥), 𝑥 ∈ 𝑈 are in one component of the
qoset Qoset(𝑄) and the instance 𝑄 is the restriction of 𝑃
to elements of the same component of Qoset(𝑃), it follows

305

that all the pairs (𝑥,𝐸𝑥), 𝑥 ∈ 𝑈 lie in the same component
of Qoset(𝑃). Therefore, if 𝑓 : 𝑉 → 𝐴 is a solution to 𝑃
such that 𝑓(𝑥) ∈ 𝐸𝑥 for some 𝑥 ∈ 𝑈 , then 𝑓(𝑥) ∈ 𝐸𝑥 for all
𝑥 ∈ 𝑈 (see Proposition III.3 and the discussion bellow). But
the restriction of such a function 𝑓 to the set 𝑈 would be a
solution to the instance (𝑄∣𝑈)∣{𝐸𝑥:𝑥∈𝑈}, thus we would not
get to this step. We have shown that in Step 10 every solution
to 𝑃 misses all the sets 𝐸𝑥, 𝑥 ∈ 𝑈 , and hence we do not lose
any solution when we restrict 𝑃 to ℱ .

Next, we show that if 𝑃 has a solution before Step 13,
then the restricted instance 𝑃 ∣ℱ has a solution as well. If 𝑓 :
𝑉 → 𝐴 is a solution to 𝑃 such that 𝑓(𝑥) ∕∈ 𝐷𝑥 for some
𝑥 ∈ 𝑊 , then 𝑓(𝑥) ∕∈ 𝐷𝑥 for all 𝑥 ∈ 𝑊 , because (𝑥,𝐷𝑥),
𝑥 ∈ 𝑊 are in the same component of Qoset(𝑃) and we can
use Proposition III.3 as above. In this case 𝑓 is a solution to the
restricted instance. Now we assume that 𝑓 is a solution to 𝑃
such that 𝑓(𝑥) ∈ 𝐷𝑥 for all 𝑥 ∈𝑊 . For each (𝑄, ℰ)-strand 𝑈
let 𝑔𝑈 : 𝑈 → 𝐴 be a solution to the instance (𝑄∣𝑈)∣{𝐸𝑥:𝑥∈𝑈}.
Let ℎ : 𝑉 → 𝐴 be the mapping satisfying ℎ∣𝑉−𝑊 = 𝑓 ∣𝑉−𝑊

and ℎ∣𝑈 = 𝑔𝑈 for each (𝑄, ℰ)-strand 𝑈 . We claim that this
mapping is a solution to the instance 𝑃 ∣ℱ .

Clearly, ℎ(𝑥) ∈ 𝑆𝑃
𝑥 − (𝐷𝑥 − 𝐸𝑥) for every 𝑥 ∈𝑊 .

We define 𝐷𝑥 for 𝑥 ∈ 𝑉 −𝑊 by 𝐷𝑥 = 𝑆𝑃
(𝑦,𝑥)

+
[𝐷𝑦], where

𝑦 is an arbitrarily chosen element of 𝑊 . The definition of 𝐷𝑥

does not depend on the choice of 𝑦: Let 𝑦, 𝑦′ ∈ 𝑊 and take
an arbitrary 𝑎 ∈ 𝑆𝑃

(𝑦,𝑥)

+
[𝐷𝑦]. From the choice of 𝑎 it follows

that there is 𝑏 ∈ 𝐷𝑦 such that (𝑏, 𝑎) ∈ 𝑆𝑃
(𝑦,𝑥). Lemma III.2

provides us with an element 𝑏′ ∈ 𝐴 such that (𝑏′, 𝑎) ∈ 𝑆𝑃
(𝑦′,𝑥)

and (𝑏, 𝑏′) ∈ 𝑆𝑃
(𝑦,𝑦′). The latter fact together with Proposition

III.3 implies 𝑏′ ∈ 𝐷𝑦′ , therefore 𝑎 ∈ 𝑆𝑃
(𝑦′,𝑥)

+
[𝐷𝑦′]. We

have proved the inclusion 𝑆𝑃
(𝑦,𝑥)

+
[𝐷𝑦] ⊆ 𝑆𝑃

(𝑦′,𝑥)
+
[𝐷𝑦′], the

opposite inclusion is proved similarly.
We put 𝐸𝑥 = 𝐷𝑥 for 𝑥 ∈ 𝑉 −𝑊 . Let D𝑥 (resp. E𝑥) denote

the subalgebra of A with universe 𝐷𝑥 (resp. 𝐸𝑥), 𝑥 ∈ 𝑉 . For
any 𝑥 ∈ 𝑉 − 𝑊 and 𝑦 ∈ 𝑊 , the pair (𝑥,𝐷𝑥) is greater
than or equal to (𝑦,𝐷𝑦) in the qoset Qoset(𝑃). Since 𝒟 is a
maximal component and 𝑥 ∕∈𝑊 , it follows that 𝐷𝑥 is outside
the qoset NafaQoset(𝑃) and thus D𝑥 has no proper absorbing
subuniverse. Therefore 𝐸𝑥 ⊲⊲ D𝑥 for all 𝑥 ∈ 𝑉 (for 𝑥 ∈ 𝑊
it follows from the fact that ℰ is the result of Algorithm 1).

Now we are ready to show that ℎ is a solution to 𝑃 , i.e.
ℎ satisfies all the constraints in 𝒞. So, let 𝐶 = (x, 𝑅) ∈ 𝒞,
x = (𝑥1, . . . , 𝑥𝑛) be an arbitrary constraint. For each 𝑖 ∈ 𝑉
let A𝑖 = D𝑥𝑖

and B𝑖 = E𝑥𝑖
, let a = (ℎ(𝑥1), . . . , ℎ(𝑥𝑛)), and

let 𝐿 = {𝑙1, . . . , 𝑙𝑘} := {𝑖 : 𝑥𝑖 ∈ 𝑊}. By the choice of 𝐷𝑥s,
the relation 𝑅 is subdirect in 𝐴1 × ⋅ ⋅ ⋅ ×𝐴𝑛. Since 𝑄∣ℰ is 1-
minimal (it is the result of Algorithm 1), the projection of 𝐶 to
(𝑥𝑙1 , . . . , 𝑥𝑙𝑘) has a nonempty intersection with 𝐵𝑙1×⋅ ⋅ ⋅×𝐵𝑙𝑘 .
By the choice of 𝐸𝑥, 𝑥 ∈ 𝑉 −𝑊 it follows that the relation 𝑅
has a nonempty intersection with 𝐵1×⋅ ⋅ ⋅×𝐵𝑛. For any 𝑖 ∈ 𝐿
and 𝑗 ∈ {1, . . . , 𝑛} − 𝐿 we have 𝑅∣(𝑗,𝑖)+[𝐵𝑗] = 𝐴𝑖 ∕⊆ 𝐵𝑖,
therefore no element of 𝐿 is in the same (𝑅,𝐵)-strand as an
element outside 𝐿. Moreover, 𝑖, 𝑗 ⊆ 𝐿 are in the same (𝑅,𝐵)-
strand if and only if 𝑥𝑖, 𝑥𝑗 are in the same (𝑄, ℰ)-strand, since

𝑅∣(𝑖,𝑗) = 𝑆𝑃
(𝑥𝑖,𝑥𝑗)

. It follows that a∣𝐾 ∈ 𝑅∣𝐾 for each (𝑅,𝐵)-
strand 𝐾 ⊆ 𝐿, and the same is of course true for each (𝑅,𝐵)-
strand 𝐾 ⊆ {1, 2, . . . , 𝑛} − 𝐿 as 𝑓 ∣𝑉−𝑊 = ℎ∣𝑉−𝑊 . We have
checked all the assumptions of Theorem III.7, which gives us
a ∈ 𝑅. In other words, ℎ satisfies the constraint 𝐶.

From the fact that A is conservative it easily follows that
after both Step 10 and Step 13 the restricted instance is still
an instance of CSP(InvA).

Finally, we prove that 𝑃 satisfies the assumptions of Theo-
rem III.8 when we get to Step 15. Note that at this point we
know that no subalgebra of S𝑃

𝑥 has a proper absorbing subalge-
bra. Let 𝑡 be a cyclic term operation of the algebra A (guaran-
teed by Theorem II.2). If 𝑡(𝑎, 𝑎, . . . , 𝑎, 𝑏) = 𝑎 for some 𝑥 ∈ 𝑉 ,
𝑎, 𝑏 ∈ 𝑆𝑃

𝑥 , then 𝑡(𝑎, 𝑎, . . . , 𝑎, 𝑏) = 𝑡(𝑎, 𝑎, . . . , 𝑎, 𝑏, 𝑎) = ⋅ ⋅ ⋅ =
𝑡(𝑏, 𝑎, 𝑎, . . . , 𝑎), and hence {𝑎} is an absorbing subuniverse
of {𝑎, 𝑏} with respect to 𝑡, a contradiction. Therefore, as A
is conservative, 𝑡(𝑎, 𝑎, . . . , 𝑎, 𝑏) = 𝑏 = 𝑡(𝑏, 𝑎, 𝑎, . . . , 𝑎) for
any 𝑥 ∈ 𝑉, 𝑎, 𝑏 ∈ 𝑆𝑃

𝑥 . Now the term operation 𝑚(𝑥, 𝑦, 𝑧) =
𝑡(𝑥, 𝑦, 𝑦, . . . , 𝑦, 𝑧) satisfies the assumptions of Theorem III.8
and the proof is concluded.

V. PRAGUE STRATEGIES

This section fills the gaps in the proof of Theorem III.6.

Definition V.1. Let 𝑃 = (𝑉,𝐴, 𝒞) be a 1-minimal
instance of the CSP. A pattern in 𝑃 is a tuple
(𝑥1, 𝐶1, 𝑥2, 𝐶2, . . . , 𝐶𝑛−1, 𝑥𝑛), where 𝑥1, . . . , 𝑥𝑛 ∈ 𝑉 and,
for every 𝑖 = 1, . . . , 𝑛 − 1, 𝐶𝑖 is a constraint whose scope
contains {𝑥𝑖, 𝑥𝑖+1}. The pattern 𝑤 is closed with base 𝑥, if
𝑥1 = 𝑥𝑛 = 𝑥. We define [[𝑤]] = {𝑥1, . . . , 𝑥𝑛}.

A sequence 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴 is a realization of 𝑤 in 𝑃 , if
(𝑎𝑖, 𝑎𝑖+1) ∈ 𝐶𝑖∣(𝑥𝑖,𝑥𝑖+1) for any 𝑖 ∈ {1, . . . , 𝑛 − 1}. We say
that two elements 𝑎, 𝑎′ ∈ 𝐴 are connected via 𝑤 (in 𝑃), if
there exists a realization 𝑎 = 𝑎1, 𝑎2, . . . , 𝑎𝑛−1, 𝑎𝑛 = 𝑎′ of the
pattern 𝑤.

For two patterns 𝑤 = (𝑥1, 𝐶1, . . . , 𝑥𝑛), 𝑤′ =
(𝑥′1, 𝐶

′
1, . . . , 𝑥

′
𝑚) with 𝑥𝑛 = 𝑥′1 we define their concatenation

by 𝑤𝑣 = (𝑥1, 𝐶1, . . . , 𝑥𝑛, 𝐶
′
1, . . . , 𝑥

′
𝑚). We write 𝑤𝑘 for a

𝑘-fold concatenation of a closed pattern 𝑤 with itself.

Definition V.2. A 1-minimal instance 𝑃 = (𝑉,𝐴, 𝒞) is a
Prague strategy, if for every 𝑥 ∈ 𝑉 , every pair of closed
patterns 𝑣, 𝑤 in 𝑃 with base 𝑥 such that [[𝑣]] ⊆ [[𝑤]], and every
𝑎, 𝑎′ ∈ 𝑆𝑃

𝑥 connected via the pattern 𝑣 in 𝑃 , there exists a
natural number 𝑘 such that 𝑎 is connected to 𝑎′ via the pattern
𝑤𝑘.

First we show that every (2, 3)-minimal instance is a Prague
strategy. We need an auxiliary lemma.

Lemma V.3. Let 𝑃 = (𝑉,𝐴, 𝒞) be a (2, 3)-minimal instance,
let 𝑥, 𝑥′ ∈ 𝑉 and let 𝑤 = (𝑥 = 𝑥1, 𝐶1, 𝑥2, . . . , 𝑥𝑛 = 𝑥′)
be a pattern. Then 𝑎 is connected to 𝑎′ via 𝑤 in 𝑃 for any
𝑎, 𝑎′ ∈ 𝐴 such that (𝑎, 𝑎′) ∈ 𝑆𝑃

(𝑥,𝑥′).

Proof: Using Lemma III.2 we obtain 𝑎2 ∈ 𝐴 such that
(𝑎, 𝑎2) ∈ 𝑆𝑃

(𝑥1,𝑥2)
and (𝑎2, 𝑎′) ∈ 𝑆𝑃

(𝑥2,𝑥𝑛)
. The element 𝑎2 is

the second (after 𝑎) element of a realization of the pattern 𝑤.

306

Similarly, there exists an element 𝑎3 ∈ 𝐴 such that (𝑎2, 𝑎3) ∈
𝑆𝑃
(𝑥2,𝑥3)

and (𝑎3, 𝑎′) ∈ 𝑆𝑃
(𝑥3,𝑥𝑛)

. Repeated applications of this
reasoning produce a realization of the pattern 𝑤 connecting 𝑎
to 𝑎′.

Lemma V.4. Every (2, 3)-minimal instance is a Prague strat-
egy.

Proof: Let 𝑥 ∈ 𝑉 , let 𝑣, 𝑤 be closed patterns in 𝑃 with
base 𝑥 such that [[𝑣]] ⊆ [[𝑤]], and let 𝑎, 𝑎′ ∈ 𝑆𝑃

𝑥 be elements
connected via 𝑣 = (𝑥1, . . . , 𝑥𝑛). Let 𝑎 = 𝑎1, . . . 𝑎𝑛 = 𝑎′ be a
realization of 𝑣. Since 𝑥2 appears in 𝑤 there exists an initial
part of 𝑤, say 𝑤′, starting with 𝑥 and ending with 𝑥2. Since
(𝑎, 𝑎2) ∈ 𝑆𝑃

(𝑥,𝑥2)
we use Lemma V.3 to connect 𝑎 to 𝑎2 via

𝑤′. Since 𝑥3 appears in 𝑤 there exists 𝑤′′ such that 𝑤′𝑤′′

is an initial part of 𝑤2 and such that 𝑤′′ ends in 𝑥3. Since
(𝑎2, 𝑎3) ∈ 𝑆𝑃

(𝑥2,𝑥3)
we use Lemma V.3 again to connect 𝑎2

to 𝑎3 via the pattern 𝑤′′. Now 𝑎1 and 𝑎3 are connected via
the pattern 𝑤′𝑤′′. By continuing this reasoning we obtain the
pattern 𝑤𝑘 (for some 𝑘) connecting 𝑎 to 𝑎′.
Part (iii) of the following lemma generalizes Proposition III.3.

Lemma V.5. Let 𝑃 = (𝑉,𝐴, 𝒞) be a 1-minimal instance. The
following are equivalent.
(𝑖) 𝑃 is a Prague strategy.
(𝑖𝑖) For every 𝑥 ∈ 𝑉 , every pair of closed patterns 𝑣, 𝑤 in 𝑃

with base 𝑥 such that [[𝑣]] ⊆ [[𝑤]], and every 𝑎, 𝑎′ ∈ 𝑆𝑃
𝑥

connected via the pattern 𝑣 in 𝑃 , there exists a natural
number 𝑚 such that, for all 𝑘 ≥ 𝑚, the elemenents 𝑎, 𝑎′

are connected via the pattern 𝑤𝑘;
(𝑖𝑖𝑖) For every two elements (𝑥,𝐵), (𝑥′, 𝐵′) in the same com-

ponent of the qoset Qoset(𝑃) and every constraint 𝐶 ∈ 𝒞
whose scope contains {𝑥, 𝑥′}, we have 𝐶∣(𝑥,𝑥′)

+
[𝐵] =

𝐵′.

Proof: Trivially (𝑖𝑖) =⇒ (𝑖). We do not need the
implication (𝑖𝑖𝑖) =⇒ (𝑖) in this paper, therefore we omit
the proof (see [9]).

For (𝑖) =⇒ (𝑖𝑖) it is clearly enough to prove the claim
for 𝑎 = 𝑎′. To do so, we obtain (using (i)) a natural number 𝑝
such that 𝑎 is connected to 𝑎 via 𝑤𝑝. Let 𝑏 be an element of
𝐴 such that 𝑎 is connected to 𝑏 via 𝑤 and 𝑏 is connected to 𝑎
via 𝑤𝑝−1. We use the property (𝑖) for 𝑎, 𝑏 and the pattern 𝑤𝑝

to find a natural number 𝑞 such that 𝑎 is connected to 𝑏 via
𝑤𝑝𝑞 . From the facts that 𝑎 is connected to 𝑎 via 𝑤𝑝 and also
via 𝑤𝑝𝑞+𝑝−1 (as 𝑎 is connected to 𝑏 via 𝑤𝑝𝑞 and 𝑏 to 𝑎 via
𝑤𝑝−1) we get that 𝑎 is connected to 𝑎 via 𝑤𝑖𝑝+𝑗(𝑝𝑞+𝑝−1) for
arbitrary 𝑖, 𝑗. Since 𝑝 and 𝑝𝑞 + 𝑝 − 1 are coprime, the claim
follows.

For (𝑖) =⇒ (𝑖𝑖𝑖) let (𝑥,𝐵) = (𝑥1, 𝐵1), (𝑥2, 𝐵2),
. . . , (𝑥𝑛, 𝐵𝑛) = (𝑥′, 𝐵′) = (𝑥𝑛+1, 𝐵

′
1), (𝑥𝑛+2, 𝐵

′
2),

. . . , (𝑥𝑚, 𝐵𝑚) = (𝑥,𝐵) be a sequence of elements of
Qoset(𝑃) and 𝐶1, . . . , 𝐶𝑚−1 ∈ 𝒞 be constraints such that
𝐶𝑖∣(𝑥𝑖,𝑥𝑖+1)

+
[𝐵𝑖] = 𝐵𝑖+1 for every 𝑖 = 1, . . . ,𝑚− 1.

Assume that there exists 𝑎, 𝑎′ ∈ 𝐴 such that (𝑎, 𝑎′) ∈
𝐶∣(𝑥,𝑥′) and 𝑎′ ∈ 𝐵′ while 𝑎 ∕∈ 𝐵. We can find an
element 𝑏 ∈ 𝐵 such that 𝑏 is connected to 𝑎′ via the
pattern (𝑥1, 𝐶1, . . . , 𝑥𝑛). The elements 𝑏, 𝑎 are connected

via the pattern (𝑥1, 𝐶1, . . . , 𝐶𝑛−1, 𝑥𝑛, 𝐶, 𝑥1), therefore, by
(i), they must be connected via a power of the pattern
(𝑥1, 𝐶1, . . . , 𝐶𝑚−1, 𝑥𝑚), which contradicts 𝑎 ∕∈ 𝐵. This
contradiction shows that 𝐶∣(𝑥′,𝑥)

+
[𝐵′] ⊆ 𝐵. Similarly

𝐶∣(𝑥,𝑥′)
+
[𝐵] ⊆ 𝐵 and the proof can be finished as in

Proposition III.3.
The following lemma covers the last gap.

Lemma V.6. Let 𝑃 = (𝑉,𝐴, 𝒞) be an instance of CSP(InvA)
which is a Prague strategy and let ℱ = {(𝑥,𝐸𝑥) : 𝑥 ∈ 𝑊}
be a maximal component of the qoset AbsQoset(𝑃). Then the
restriction 𝑄 = 𝑃 ∣ℱ is a Prague strategy.

Proof: It is easy to see that, for any 𝑥, 𝑥′ ∈ 𝑉 , any 𝐵⊲S𝑃
𝑥

and any constraint 𝐶 whose scope contains {𝑥, 𝑥′}, the set
𝐶∣(𝑥,𝑥′)

+
[𝐵] is an absorbing subuniverse of S𝑃

𝑥′ (with respect
to the same term operation of A). Therefore 𝐶∣(𝑥,𝑥′)

+
[𝐸𝑥] =

𝑆𝑃
𝑥′ whenever 𝑥 ∈ 𝑊 and 𝑥′ ∈ 𝑉 −𝑊 . From this fact and

Lemma V.5 part (iii) it follows that 𝑄 is 1-minimal.
To prove that 𝑄 is a Prague strategy let 𝑣 and 𝑤 = (𝑥 =

𝑥1, 𝐶1, 𝑥2, . . . , 𝐶𝑛−1, 𝑥𝑛 = 𝑥) be closed patterns with base 𝑥
such that [[𝑣]] ⊆ [[𝑤]] and let 𝑎, 𝑎′ ∈ 𝑆𝑄

𝑥 be elements connected
via 𝑣 in 𝑄. Let 𝑡 be a 𝑘-ary term operation providing the
absorptions 𝐸𝑥 ⊲ S

𝑃
𝑥 . By Lemma V.5 part (ii) we can find a

natural number 𝑚 such that any two elements 𝑏, 𝑏′, which are
connected in 𝑃 via some closed pattern 𝑣′ with base 𝑥 such
that [[𝑣′]] ⊆ [[𝑤]], are connected via 𝑤𝑚.

We form a matrix with 𝑘 rows and (𝑘𝑚(𝑛−1)+1) columns.
The 𝑖-th row is formed as follows. We find a realization (1)
of the pattern 𝑤(𝑖−1)𝑚 connecting 𝑎 to an element 𝑏 in 𝑄.
This is possible since 𝑄 is 1-minimal. (For 𝑖 = 1 we consider
the empty sequence.) Then we find a realization (3) of the
pattern 𝑤(𝑘−𝑖)𝑚 connecting some element 𝑏′ to 𝑎′ in𝑄. Finally
we find a realization (2) of the pattern 𝑤𝑚 connecting 𝑏 to
𝑏′ in the strategy 𝑃 (which is possible by the last sentence
in the previous paragraph). Finally we join the realizations
(1),(2),(3). When we apply the operation 𝑡 to the columns of
this matrix, we get a realization of the pattern 𝑤𝑘𝑚 connecting
𝑎 = 𝑡(𝑎, . . . , 𝑎) to 𝑎′ = 𝑡(𝑎′, . . . , 𝑎′) in 𝑄, which finishes the
proof.

VI. PROOF OF THEOREM III.7

For the entire section we fix a finite idempotent Taylor algebra
A.

Two absorptions can be provided by different term opera-
tions. A simple trick can unify them:

Lemma VI.1. Let A1,A2,B1,B2 ∈ Vfin(A) and B1 ⊲
A1,B2 ⊲A2. Then there exists a term operation 𝑡 of A such
that both absorptions are with respect to the operation 𝑡. (More
precisely, B1 absorbs A1 with respect to 𝑡A1 and B2 absorbs
A2 with respect to 𝑡A2 .)

Proof: If B𝑖 is an absorbing subalgebra of A𝑖

with respect to an 𝑛𝑖-ary operation 𝑡𝑖, 𝑖 = 1, 2, then
the 𝑛1𝑛2-ary operation defined by 𝑡(𝑎1, . . . , 𝑎𝑛1𝑛2

) =
𝑡1(𝑡2(𝑎1, . . . , 𝑎𝑛2

), 𝑡2(𝑎𝑛2+1, . . .), . . .) satisfies the conclu-
sion.

307

The main tool for proving Theorem III.7 is the Absorption
Theorem (Theorem III.6. in [17]). We require a definition of
a linked subdirect product:

Definition VI.2. Let 𝑅 ⊆𝑆 𝐴1×𝐴2. We say that two elements
𝑎, 𝑎′ ∈ 𝐴1 are 𝑅-linked via 𝑐0, 𝑐1, . . . , 𝑐2𝑛, if 𝑎 = 𝑐0, 𝑐2𝑛 =
𝑎′ and (𝑐2𝑖, 𝑐2𝑖+1) ∈ 𝑅 and (𝑐2𝑖+2, 𝑐2𝑖+1) ∈ 𝑅 for all 𝑖 =
0, 1, . . . , 𝑛− 1.

We say that 𝑅 is linked, if any two elements 𝑎, 𝑎′ ∈ 𝐴1 are
𝑅-linked.

Theorem VI.3. [17], [18] Let A1,A2 ∈ Vfin(A) be absorp-
tion free algebras and let 𝑅 ≤𝑆 A1 × A2 be linked. Then
𝑅 = 𝐴1 ×𝐴2.

We will need the following consequence.

Lemma VI.4. Let A1,A2 ∈ Vfin(A) be absorption free
algebras, let 𝑅 ≤𝑆 A1 × A2 and let 𝛼1 be a maximal
congruence of A1. Then either {𝑅+[𝐶] : 𝐶 is an 𝛼1-block}
is the set of blocks of a maximal congruence 𝛼2 of A2, or
𝑅+[𝐶] = 𝐴2 for every 𝛼1-block 𝐶.

Proof: If the sets 𝑅+[𝐶] are disjoint, then they are blocks
of an equivalence on 𝐴2, and it is straightforward to check that
this equivalence is indeed a maximal congruence of A2.

In the other case we consider the factor algebra A′
1 =

A1/𝛼1 and the subdirect subalgebra 𝑅′ = {([𝑎1]𝛼1
, 𝑎2) :

(𝑎1, 𝑎2) ∈ 𝑅} of A1 ×A2. Since 𝛼1 is maximal, the algebra
A′

1 has only trivial congruences. Also, A′
1 is an absorption free

algebra, because the preimage of any absorbing subalgebra
C ≤ A′

1 is an absorbing subalgebra of A1.
We define a congruence ∼ on A′

1 by [𝑎1] ∼ [𝑎2], if [𝑎1], [𝑎2]
are 𝑅′-linked. As not all of the sets 𝑅+[𝐶] are disjoint, ∼
is not the diagonal congruence, therefore ∼ must be the full
congruence, and it follows that 𝑅′ is linked. By Theorem VI.3
𝑅′ = 𝐴′

1 × 𝐴2. In other words, 𝑅+[𝐶] = 𝐴2 for every 𝛼1-
block 𝐶.
Links are absorbed to absorbing subuniverses:

Lemma VI.5. Let A1,A2 ∈ Vfin(A), let 𝑅 ≤𝑆 A1×A2, let
B1 ⊲A1, B2 ⊲A2 and let 𝑆 = 𝑅∩ (𝐵1×𝐵2) be subdirect in
𝐵1×𝐵2. Then every pair 𝑏1, 𝑏′1 ∈ 𝐵1 of 𝑅-linked elements is
also 𝑆-linked.

Proof: By Lemma VI.1 there exists a term operation 𝑡
such that both absorptions are with respect to 𝑡. Let 𝑏1, 𝑏′1 ∈
𝐵1 be arbirary. Since 𝑆 is subdirect, there exist 𝑏2, 𝑏′2 ∈ 𝐵2

such that (𝑏1, 𝑏2), (𝑏′1, 𝑏
′
2) ∈ 𝑆. Let 𝑏1, 𝑏′1 be 𝑅-linked via

𝑐0, 𝑐1, . . . , 𝑐2𝑛. Now the following sequence 𝑆-links 𝑏1 to 𝑏′1:

𝑏1 = 𝑡(𝑏1 = 𝑐0, 𝑏1, . . . , 𝑏1), 𝑡(𝑐1, 𝑏2, . . . , 𝑏2), 𝑡(𝑐2, 𝑏1, . . . , 𝑏1),

. . . , 𝑡(𝑏′1 = 𝑐2𝑛, 𝑏1, . . . , 𝑏1), 𝑡(𝑏
′
2, 𝑐1, 𝑏2, . . . , 𝑏2), . . . ,

𝑡(𝑏′1, 𝑏
′
1, 𝑏1, . . . , 𝑏1), 𝑡(𝑏

′
2, 𝑏

′
2, 𝑐1, 𝑏2, . . . , 𝑏2), . . . , . . . ,

𝑡(𝑏′1, . . . , 𝑏
′
1) = 𝑏′1.

A subalgebra of a conservative absorption free algebra which
hits all blocks of a proper congruence is absorption free:

Lemma VI.6. Let A1 ∈ Vfin(A) be a conservative absorption
free algebra and let 𝛼 be a proper congruence of A1. Then
any subalgebra B of A1 which has a nonempty intersection
with every 𝛼-block is an absorption free algebra.

Proof: For a contradiction, consider a proper absorbing
subuniverse 𝐶 of B. Let 𝐷1, . . . , 𝐷𝑘 be all the 𝛼-blocks whose
intersections with 𝐵 and 𝐶 are equal and let 𝐸1, . . . , 𝐸𝑙 be
the remaining 𝛼-blocks which intersect 𝐶 nonempty.

We claim that, for every 𝑚 ≤ 𝑙, the set 𝐹 = 𝐷1∪⋅ ⋅ ⋅∪𝐷𝑘∪
𝐸1 ∪ ⋅ ⋅ ⋅ ∪ 𝐸𝑚 is an absorbing subuniverse of A: Let 𝑡 be a
term operation providing the absorption 𝐶 ⊲B and let a be a
tuple of elements in 𝐴 with all the coordinates in 𝐹 with the
exception of, say, 𝑎𝑖. We take any tuple b such that 𝑏𝑗 𝛼 𝑎𝑗
for all coordinates 𝑗, 𝑏𝑖 ∈ 𝐵 − 𝐶 and 𝑏𝑗 ∈ 𝐶 for all 𝑗 ∕= 𝑖.
As 𝐶 ⊲B, 𝑡(b) is an element of 𝐶 and, due to conservativity,
𝑡(b) ∈ 𝐹 . Therefore 𝑡(a) ∈ 𝐹 as this element is 𝛼-congruent
to 𝑡(b).

For an appropriate choice of 𝑚 ≤ 𝑙, 𝐹 is a proper nonempty
subset of A and 𝐹 ⊲A, a contradiction.
A subdirect product of conservative absorption free algebras
is absorption free:

Lemma VI.7. Let R ≤𝑆 A1 ×A2 × ⋅ ⋅ ⋅ ×A𝑛, where every
A𝑖 ∈ Vfin(A) is a conservative absorption free algebra. Then
R is an absorption free algebra.

Proof: We take a minimal counterexample to the lemma
in the following sense: We assume that the lemma holds true
for every smaller 𝑛, and also for every R′ ≤𝑆 A′

1 × ⋅ ⋅ ⋅ ×
A′

𝑛 such that ∣𝐴′
𝑖∣ ≤ ∣𝐴𝑖∣, 𝑖 = 1, . . . , 𝑛, where at least one

inequality is strict. We can assume that no 𝐴𝑖 is one-element,
otherwise we can employ the minimality assumption and use
the lemma for the projection to the remaining coordinates.

Let 𝑆 be a proper absorbing subuniverse of R. It is easily
seen that the projection of 𝑆 to any coordinate 𝑖 is an absorbing
subuniverse of A𝑖, thus 𝑆 is subdirect. Let 𝛼1 be a maximal
congruence of A1.

For every 𝑖 ∈ {1, 2, . . . , 𝑛} we have two possibilities (see
Lemma VI.4):

(i) {𝑅∣(1,𝑖)+[𝐶] : 𝐶 is an 𝛼1-block} are blocks of a maxi-
mal congruence 𝛼𝑖 of A𝑖

(ii) 𝑅∣(1,𝑖)+[𝐶] = 𝐴𝑖 for every 𝛼1-block 𝐶

Let 𝐺 (resp. 𝑊) denote the set of 𝑖s for which the first (resp.
the second) possibility takes place. By using Lemma VI.4
again, we get that 𝑅∣(𝑖,𝑗)+[𝐶] = 𝐴𝑗 for any 𝑖 ∈ 𝐺, 𝑗 ∈ 𝑊
and any 𝛼𝑖-block 𝐶.

We take an arbitrary tuple (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅 and we aim
to show that this tuple belongs to 𝑆 as well. The proof splits
into two cases.

Assume first that for every 𝑖 ∈ 𝐺, 𝛼𝑖 is the diagonal
congruence. Let 𝐴′

𝑗 = 𝑅∣(1,𝑗)+[{𝑎}], 𝑗 = 1, 2, . . . , 𝑛, let
𝑅′ = 𝑅∩(𝐴′

1×⋅ ⋅ ⋅×𝐴′
𝑛) and let 𝑆′ = 𝑆∩(𝐴′

1×⋅ ⋅ ⋅×𝐴′
𝑛). Note

that 𝐴′
𝑖 is one element (for 𝑖 ∈ 𝐺) or equal to 𝐴𝑖 (for 𝑖 ∈𝑊),

and 𝑆′ absorbs 𝑅′. Therefore 𝑅′ = 𝑆′ (by the minimality
assumption) and hence (𝑎1, . . . , 𝑎𝑛) ∈ 𝑆.

308

Now assume that some 𝛼𝑖, 𝑖 ∈ 𝐺 is not the diagonal
congruence. Take a proper subset 𝐵 of 𝐴𝑖 which contains
𝑎𝑖 and which intersects all 𝛼𝑖-blocks nonempty. Let 𝐴′

𝑗 =

𝑅∣(𝑖,𝑗)+[𝐵], 𝑗 = 1, . . . , 𝑛, and let 𝑅′, 𝑆′ be as in the previous
paragraph. By Lemma VI.6 every A′

𝑗 , 𝑗 ∈ 𝐺 is an absorption
free algebra, and A′

𝑗 = 𝐴𝑗 for 𝑗 ∈ 𝑊 is absorption free as
well. Now, by the minimality assumption, 𝑆′ = 𝑅′, hence
(𝑎1, . . . , 𝑎𝑛) ∈ 𝑆.
The following lemma proves a special case of Theorem III.7.
Note that we do not require A2 to be conservative.

Lemma VI.8. Let A1,A2,B1,B2 ∈ Vfin(A) be algebras
such that A1 is conservative, B1 ⊲⊲ A1 and B2 ⊲⊲ A2. Let
𝑅 ≤𝑆 A1 × A2. If 𝑅 ∩ (𝐵1 × 𝐵2) ∕= ∅ and there exists a
pair (𝑎1, 𝑏2) ∈ 𝑅 such that 𝑎1 ∈ 𝐴1 −𝐵1 and 𝑏2 ∈ 𝐵2, then
𝐵1 ×𝐵2 ⊆ 𝑅.

Proof: Let 𝑆 = 𝑅∩ (𝐵1×𝐵2). As before, the projection
of 𝑆 to the first (resp. second) coordinate is an absorbing
subuniverse of B1 (resp. B2), and, by the assumption, 𝑆 is
nonempty, therefore 𝑆 ≤𝑆 𝐵1×𝐵2. Let 𝑏1 ∈ 𝐵1 be such that
(𝑏1, 𝑏2) ∈ 𝑅. We define a congruence on A1 by putting 𝑐 ∼ 𝑑,
if 𝑐 and 𝑑 are 𝑅-linked.

Let 𝐶 denote the set of all the elements of 𝐵1 which are
not 𝑅-linked to 𝑏1. If 𝐶 is empty, then, by Lemma VI.5, 𝑆 is
linked and therefore 𝑆 = 𝐵1 ×𝐵2 by Theorem VI.3.

Otherwise, 𝐶 is a proper subuniverse of B1 and we claim
that 𝐶⊲B1: Let 𝑡 be a term operation providing the absorption
𝐵1 ⊲A1 and let c be a tuple of elements of 𝐵1 with all the
coordinates but one, say 𝑐𝑖, in 𝐶. Let d be the tuple defined
by 𝑑𝑖 = 𝑎1, and 𝑑𝑗 = 𝑐𝑗 for 𝑗 ∕= 𝑖. As 𝑑𝑖 ∼ 𝑐𝑖 for all 𝑖 we
have 𝑡(c) ∼ 𝑡(d). But 𝑡(d) lies inside 𝐶 (as 𝐵1 absorbs A1

and A1 is conservative), hence also 𝑡(c) ∈ 𝐶.
We have found a proper absorbing subuniverse 𝐶 of B1, a

contradiction.
The next lemma generalizes the previous one. Recall the
definition of the quasi-ordering ⪯ introduced in Subsection
III-E.

Lemma VI.9. Let A1, . . . ,A𝑛,B1, . . . ,B𝑛 ∈ Vfin(A) be al-
gebras such that A1, . . . ,A𝑛−1 are conservative and B𝑖⊲⊲A𝑖

for all 𝑖 = 1, . . . , 𝑛. Let 𝑅 ≤𝑆 A1 × ⋅ ⋅ ⋅ × A𝑛 and assume
𝑅 ∩ (𝐵1 × ⋅ ⋅ ⋅ × 𝐵𝑛) ∕= ∅. If {1, 2, . . . , 𝑛− 1} is an (𝑅,𝐵)-
strand and there exists a tuple (𝑎1, 𝑎2, . . . , 𝑎𝑛−1, 𝑏𝑛) ∈ 𝑅 such
that 𝑏𝑛 ∈ 𝐵𝑛 and 𝑎𝑖 ∈ 𝐴𝑖 −𝐵𝑖 for some (equivalently every)
𝑖 ∈ {1, 2, . . . , 𝑛−1}, then every tuple c ∈ 𝐵1×⋅ ⋅ ⋅×𝐵𝑛 such
that c∣{1,2,...,𝑛−1} ∈ 𝑅∣{1,2,...,𝑛−1} belongs to 𝑅.

Proof: We take a minimal counterexample in the same
sense as in Lemma VI.7, i.e., we assume that the lemma holds
if 𝑛 is smaller and also if some 𝐴𝑖 is smaller.

We may assume that all 𝐵𝑖s are at least two-element and let
us also assume that if some of the algebras B1, . . . ,B𝑛 has
a nontrivial congruence, then B1 has a nontrivial congruence
(otherwise we just change the indices).

Let 𝛼1 be a maximal congruence of B1. By applying
Lemma VI.4 as in the proof of Lemma VI.7 we get that, for
each 𝑖 ∈ {1, 2, . . . , 𝑛− 1}, either 𝑅∣(1,𝑖)+[𝐶] = 𝐵𝑖 for every

𝛼1-block 𝐶, or {𝑅∣+(1,𝑖)[𝐶] : 𝐶 is an 𝛼-block } are blocks of
a maximal congruence 𝛼𝑖 on B𝑖.

Let c ∈ 𝐵1 × ⋅ ⋅ ⋅ × 𝐵𝑛 be an arbitrary tuple such that
c∣{1,2,...,𝑛−1} ∈ 𝑅∣{1,2,...,𝑛−1}.

If 𝛼1 is the diagonal congruence, then we put 𝐷 =
{𝑐1} ∪ (𝐴1 − 𝐵1). Otherwise, we take an arbitrary 𝐷 such
that (𝐴1 − 𝐵1) ∪ {𝑐1} ⊆ 𝐷 ⊊ 𝐴1 and 𝐷 intersects every
𝛼1-block nonempty. Let 𝐴′

𝑖 = 𝑅∣(1,𝑖)+[𝐷], 𝐵′
𝑖 = 𝐵𝑖 ∩ 𝐴′

𝑖,
𝑖 = 1 . . . , 𝑛 and 𝑅′ = 𝑅 ∩ (𝐴′

1 × ⋅ ⋅ ⋅ ×𝐴′
𝑛).

For every 𝑖 ∈ {1, . . . , 𝑛 − 1}, 𝐵′
𝑖 is an absorption free

algebra, either because 𝐵′
𝑖 is a singleton, or 𝐵′

𝑖 intersects every
𝛼𝑖 block nonempty and we can apply Lemma VI.6. From
Lemma VI.8 it follows that 𝐵1×𝐵𝑛 ⊆ 𝑅∣(1,𝑛), therefore 𝐵′

𝑛 =
𝐵𝑛, in particular, (𝑎1, 𝑎2, . . . , 𝑎𝑛−1, 𝑏𝑛) ∈ 𝑅′. Obviously 𝐵′

𝑖

is an absorbing sublagebra of A′
𝑖 for every 𝑖 = 1, . . . , 𝑛.

Now c ∈ 𝑅′ (⊆ 𝑅) follows from the miniminality of our
counterexample.
We are ready to prove Theorem III.7.

Theorem VI.10. Let A1, . . . ,A𝑛,B1, . . . ,B𝑛 ∈ Vfin(A) be
conservative algebras such that B𝑖 ⊲⊲ A𝑖 for all 𝑖 = 1, . . . , 𝑛,
let 𝑅 ≤𝑆 A1×⋅ ⋅ ⋅×A𝑛 and assume that 𝑅∩(𝐵1×. . . , 𝐵𝑛) ∕=
∅. Then a tuple a ∈ 𝐵1 × ⋅ ⋅ ⋅ × 𝐵𝑛 belongs to 𝑅 whenever
a∣𝐾 ∈ 𝑅∣𝐾 for each (𝑅,𝐵)-strand 𝐾.

Proof: We again use the minimality assumption, i.e., we
assume that the theorem holds if 𝑛 is smaller, or if some
𝐴𝑖 is smaller. We can assume that there are at least two
(𝑅,𝐵)-strands and that ∣𝐵𝑖∣ > 1 for all 𝑖 = 1, . . . , 𝑛. Let
a ∈ 𝐵1 × ⋅ ⋅ ⋅ × 𝐵𝑛 be a tuple such that a∣𝐾 ∈ 𝑅∣𝐾 for each
(𝑅,𝐵)-strand 𝐾, but a ∕∈ 𝑅. Note that a∣𝐿 ∈ 𝑅∣𝐿 for every
proper subset 𝐿 of {1, 2, . . . , 𝑛}, because of the minimality
assumption – we can apply the theorem to 𝑅∣𝐿.

Let 𝐷 be a ⪯-minimal (𝑅,𝐵)-strand and let 𝑙 ∕∈ 𝐷. Since
𝑙 ∕⪯ 𝐷, there exists a tuple c ∈ 𝑅 such that 𝑐𝑙 ∈ 𝐵𝑙 and 𝑐𝑖 ∕∈ 𝐵𝑖

for all 𝑖 ∈ 𝐷. Let 𝐸 = {𝑖 ∈ {1, . . . , 𝑛} : 𝑐𝑖 ∕∈ 𝐵𝑖} −𝐷 and
𝐹 = {𝑖 ∈ {1, . . . , 𝑛} : 𝑐𝑖 ∈ 𝐵𝑖}. Clearly, 𝐸 and 𝐹 are unions
of (𝑅,𝐵)-strands.

Our aim now is to find a tuple c′ ∈ 𝑅 such that 𝑐′𝑖 ∈ 𝐴𝑖−𝐵𝑖

for all 𝑖 ∈ 𝐷, and 𝑐′𝑖 ∈ 𝐵𝑖 for all 𝑖 ∕∈ 𝐷. If 𝐸 = ∅, we can
take c′ = c, so suppose otherwise. We consider the following
subset of 𝑅:

𝑅′ = {b ∈ 𝑅 : 𝑏𝑖 ∈ {𝑎𝑖} ∪ (𝐴𝑖 −𝐵𝑖) for all 𝑖 ∈ 𝐷}.
For all 𝑖 ∈ {1, . . . , 𝑛}, let 𝐴′

𝑖 = 𝑅′∣{𝑖}. Let 𝐵′
𝑖 = {𝑎𝑖} for all

𝑖 ∈ 𝐷, and 𝐵′
𝑖 = 𝐵𝑖 for 𝑖 ∕∈ 𝐷.

We have 𝐵′
𝑖 ⊆ 𝐴′

𝑖 for every 𝑖 ∕∈ 𝐷: for any 𝑏 ∈ 𝐵𝑖 we
apply the theorem for 𝑅∣𝐷∪{𝑖} to obtain a tuple e ∈ 𝑅 such
that 𝑒𝑖 = 𝑏 and 𝑒𝑗 = 𝑑𝑗 for every 𝑗 ∈ 𝐷.

We know that a∣𝐷∪𝐸 ∈ 𝑅∣𝐷∪𝐸 , therefore 𝑎∣𝐸 ∈ 𝑅′∣𝐸 .
Similarly, 𝑎∣𝐹 ∈ 𝑅′∣𝐹 .

Observe that any 𝑖 ∈ 𝐸, 𝑗 ∈ 𝐹 are in different (𝑅′, 𝐵′)-
strands, since c ∈ 𝑅′. Therefore, the theorem, used for 𝑅′ and
the minimal absorbing subuniverses 𝐵′

𝑖 of 𝐴′
𝑖, proves a∣𝐸∪𝐹 ∈

𝑅′∣𝐸∪𝐹 . Let c′ be a tuple from 𝑅′ with c′∣𝐸∪𝐹 = a∣𝐸∪𝐹 . The
tuple c′ cannot be equal to a as a ∕∈ 𝑅, therefore 𝑐′𝑖 ∈ 𝐴𝑖−𝐵𝑖

for all 𝑖 ∈ 𝐷, 𝑐′𝑖 ∈ 𝐵𝑖 for 𝑖 ∕∈ 𝐷.

309

Now, when we have the sought after tuple c′, we can finish
the proof by applying Lemma VI.9 for the following choice:
𝑛′ = ∣𝐷∣+1; A′

𝑖 = A𝑑𝑖
and B′

𝑖 = B𝑑𝑖
for 𝑖 = 1, . . . , 𝑙, where

𝐷 = {𝑑1, . . . , 𝑑𝑙}; A′
𝑛′ = 𝑅∣𝐸∪𝐹 ; B′

𝑛′ = 𝑆∣𝐸∪𝐹 , where 𝑆 =
{b ∈ 𝑅 : 𝑏𝑖 ∈ 𝐵𝑖 for all 𝑖 ∈ 𝐸∪𝐹}; 𝑅′ is equal to 𝑅 viewed
as a subset of 𝐴′

1 × ⋅ ⋅ ⋅ × 𝐴′
𝑛′ ; and (𝑎′1, 𝑎

′
2, . . . , 𝑎

′
𝑛′−1, 𝑏

′
𝑛) =

(𝑐𝑑1
, 𝑐𝑑2

, . . . , 𝑐𝑑𝑙
, c′∣𝐸∪𝐹). All the assumptions are satisfied,

the only nontrivial fact is that B′
𝑛′ is absorption free and this

follows from Lemma VI.7.

VII. CONCLUSION

We have presented a new, simple algorithm for solving
tractable CSPs over conservative languages. We believe that
this simplification can help in the final attack on the dichotomy
conjecture. No effort has been made to optimize the algorithm,
we have not computed its time complexity and we have
not compared the complexity with the algorithm of Bulatov.
This can be a topic of further research. We note that some
reductions can be done using a trick from [26], it would be
interesting to see whether this trick can improve the running
time.

As mentioned before, our algorithm uses absorbing subuni-
verses of (subalgebras of) the fixed algebra A and we do not
know if they can be found algorithmically. The dual, relational,
version of this problem is also interesting.

Open problem VII.1. Is the following problem decidable?
On input we are given a finite algebra A with finitely many
operations (resp. a finite constraint language Γ on a finite set
𝐴) and a subset 𝐵 of 𝐴, and we are asking whether 𝐵 is an
absorbing subuniverse of A (resp. Pol Γ).

Finally, we remark that our algorithm can be slightly mod-
ified so that we would consider only some of the absorptions,
namely, the absorptions with respect to a fixed cyclic operation
and the absorptions enforced by Theorem VI.3. From the proof
of this theorem it can be seen that such absorptions can be
found algorithmically.

ACKNOWLEDGMENT

I would like to thank Marcin Kozik, Miklós Maróti and Ralph
McKenzie for helpful discussions and the referees for useful
comments.

REFERENCES

[1] T. Feder and M. Y. Vardi, “The computational structure of
monotone monadic SNP and constraint satisfaction: a study
through Datalog and group theory,” SIAM J. Comput., vol. 28,
no. 1, pp. 57–104 (electronic), 1999. [Online]. Available:
http://dx.doi.org/10.1137/S0097539794266766

[2] P. Jeavons, D. Cohen, and M. Gyssens, “Closure properties of
constraints,” J. ACM, vol. 44, no. 4, pp. 527–548, 1997. [Online].
Available: http://dx.doi.org/10.1145/263867.263489

[3] A. A. Bulatov, A. A. Krokhin, and P. Jeavons, “Constraint satisfaction
problems and finite algebras,” in Automata, languages and programming
(Geneva, 2000), ser. Lecture Notes in Comput. Sci. Berlin: Springer,
2000, vol. 1853, pp. 272–282.

[4] A. Bulatov, P. Jeavons, and A. Krokhin, “Classifying the complexity
of constraints using finite algebras,” SIAM J. Comput., vol. 34,
no. 3, pp. 720–742 (electronic), 2005. [Online]. Available:
http://dx.doi.org/10.1137/S0097539700376676

[5] A. Bulatov, “Mal’tsev constraints are tractable,” Computing Laboratory,
University of Oxford, Oxford, UK, Tech. Rep. PRG-RR-02-05, 2002.

[6] A. Bulatov and V. Dalmau, “A simple algorithm for Mal′tsev
constraints,” SIAM J. Comput., vol. 36, no. 1, pp. 16–27 (electronic),
2006. [Online]. Available: http://dx.doi.org/10.1137/050628957

[7] V. Dalmau, “Generalized majority-minority operations are tractable,”
Log. Methods Comput. Sci., vol. 2, no. 4, pp. 4:1, 14, 2006.

[8] P. M. Idziak, P. Markovic, R. McKenzie, M. Valeriote, and R. Willard,
“Tractability and learnability arising from algebras with few subpowers,”
in LICS. IEEE Computer Society, 2007, pp. 213–224.

[9] L. Barto and M. Kozik, “Constraint satisfaction problems of bounded
width,” in FOCS’09: Proceedings of the 50th Symposium on Foundations
of Computer Science, 2009, pp. 595–603.

[10] ——, “Constraint satisfaction problems solvable by local consistency
methods,” in preparation.

[11] A. A. Bulatov, “A dichotomy theorem for constraint
satisfaction problems on a 3-element set,” J. ACM, vol. 53,
no. 1, pp. 66–120 (electronic), 2006. [Online]. Available:
http://dx.doi.org/10.1145/1120582.1120584

[12] T. J. Schaefer, “The complexity of satisfiability problems,” in Conference
Record of the Tenth Annual ACM Symposium on Theory of Computing
(San Diego, Calif., 1978). New York: ACM, 1978, pp. 216–226.

[13] A. A. Bulatov, “Tractable conservative constraint satisfaction problems,”
Logic in Computer Science, Symposium on, vol. 0, p. 321, 2003.

[14] L. Barto, M. Kozik, and T. Niven, “Graphs, polymorphisms and the
complexity of homomorphism problems,” in STOC ’08: Proceedings of
the 40th annual ACM symposium on Theory of computing. New York,
NY, USA: ACM, 2008, pp. 789–796.

[15] ——, “The CSP dichotomy holds for digraphs with no sources and no
sinks (a positive answer to a conjecture of Bang-Jensen and Hell),”
SIAM J. Comput., vol. 38, no. 5, pp. 1782–1802, 2008/09. [Online].
Available: http://dx.doi.org/10.1137/070708093

[16] L. Barto and M. Kozik, “Congruence distributivity implies bounded
width,” SIAM Journal on Computing, vol. 39, no. 4, pp. 1531–1542,
2009. [Online]. Available: http://link.aip.org/link/?SMJ/39/1531/1

[17] ——, “New conditions for Taylor varieties and CSP,” Logic in Computer
Science, Symposium on, vol. 0, pp. 100–109, 2010.

[18] ——, “Absorbing subalgebras, cyclic terms and the constraint satisfac-
tion problem,” submitted.

[19] T. Feder, P. Hell, and J. Huang, “List homomorphisms and circular arc
graphs,” Combinatorica, vol. 19, pp. 487–505, 1999.

[20] ——, “Bi-arc graphs and the complexity of list homomorphisms,” J.
Graph Theory, vol. 42, pp. 61–80, January 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1380681.1380685

[21] P. Hell and A. Rafiey, “The dichotomy of list homomorphisms for
digraphs,” CoRR, vol. abs/1004.2908, 2010.

[22] L. Egri, A. Krokhin, B. Larose, and P. Tesson, “The complexity of
the list homomorphism problem for graphs,” in 27th International
Symposium on Theoretical Aspects of Computer Science (STACS
2010), ser. Leibniz International Proceedings in Informatics (LIPIcs),
J.-Y. Marion and T. Schwentick, Eds., vol. 5. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2010, pp. 335–346.
[Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2010/2467

[23] R. Takhanov, “A dichotomy theorem for the general minimum
cost homomorphism problem,” in 27th International Symposium on
Theoretical Aspects of Computer Science (STACS 2010), ser. Leibniz
International Proceedings in Informatics (LIPIcs), J.-Y. Marion and
T. Schwentick, Eds., vol. 5. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2010, pp. 657–668. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2010/2493

[24] V. Kolmogorov and S. Zivny, “The complexity of conservative finite-
valued csps,” CoRR, vol. abs/1008.1555, 2010.

[25] M. Maróti and R. McKenzie, “Existence theorems for weakly symmetric
operations,” Algebra Universalis, vol. 59, no. 3-4, pp. 463–489, 2008.
[Online]. Available: http://dx.doi.org/10.1007/s00012-008-2122-9

[26] M. Maróti, “Tree on top of maltsev,” preprint.

310

Appendix F – Near unanimity in
NL

127

Near Unanimity Constraints Have
Bounded Pathwidth Duality

Libor Barto
Mathematics & Statistics Department

McMaster University
Hamilton, Ontario L8S 4L8, Canada

and
Dept. of Algebra, Charles University

Praha 8, Czech Republic
Email: libor.barto@gmail.com

Marcin Kozik
Theoretical Computer Science Department

Faculty of Mathematics & Computer Science
Jagiellonian University
Kraków 30-348, Poland

Email: kozik@tcs.uj.edu.pl

Ross Willard
Pure Mathematics Department

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

Email: rdwillar@uwaterloo.ca

Abstract—We show that if a finite relational structure has a
near unanimity polymorphism, then the constraint satisfaction
problem with that structure as its fixed template has bounded
pathwidth duality, putting the problem in nondeterministic
logspace. This generalizes the analogous result of Dalmau and
Krokhin for majority polymorphisms and lends further support
to a conjecture suggested by Larose and Tesson.

Keywords-constraint satisfaction; polymorphism; near unanim-
ity; pathwidth duality; linear datalog; absorption.

I. INTRODUCTION

The constraint satisfaction problem (CSP) is a well-known
and important protocol for declaring combinatorial problems
arising from artificial intelligence [31]. It is also the source
of deep research problems in theoretical computer science.
In particular, Feder and Vardi [18] identified fixed-template
versions of CSP as worthy of study and formulated their
famous CSP Dichotomy Conjecture: for every template (i.e.,
finite relational structure) B, the problem CSP(B) is either
NP-complete or solvable in polynomial time. Considerable
progress towards resolving this conjecture has been achieved
during the last 12 years, in part because of the success of the
so-called “algebraic approach” championed by Jeavons (e.g.
[23], [11]). In this approach templates are classified according
to their “polymorphisms,” i.e., multi-variable functions that
preserve the relations of the template; these functions connect
CSP to universal algebra and its toolboxes and perspectives.

An important illustration of the power of the algebraic
approach is the recent characterization by the first two authors
of templates having bounded width. These are structures B
for which CSP(B) can be solved in polynomial time by a
standard local consistency checking algorithm. An “obvious”
obstruction to having bounded width is the structure having
relations which encode linear equations over some additive
abelian group [18]. The algebraic perspective gives a precise,
though technical, description ([29], [28]) of the class of
templates which omit the obvious obstruction. In [30] a simple
characterization of this class in terms of polymorphisms was
given, and in [6] this characterization was used to show that
every member of the class does indeed have bounded width.

Having bounded width can be characterized in many equiv-
alent ways, including CSP(B) (here identified with the class
of finite structures that admit a homomorphism to B) having
bounded treewidth duality (see [21], [18], [25], [10], [20],
[29]), or the complement class ¬CSP(B) being definable in
the logic Datalog [18]. (Datalog is a relational query language
whose salient feature is its ability to formulate least-fixed-point
recursive definitions [33], [1].)

A related property is that of CSP(B) having bounded
pathwidth duality; this more restrictive property puts CSP(B)
in the complexity class NL ([14], [15]) and has several equiva-
lent formulations [15], including ¬CSP(B) being definable in
linear Datalog (in which only non-branching recursion is per-
mitted [1]). The “obvious” obstruction to bounded pathwidth
duality, in addition to linear equations over an abelian group,
is Horn 3-SAT ([2], [13]). Again, universal algebra gives a
precise characterization of the class of templates which omit
both obstructions [27], and in light of the available evidence
(especially [26]) it is natural (as [27] noted) to conjecture that
every template in this class has bounded pathwidth duality.

From the algebraic perspective, four reasonable intermediate
steps on the journey to verifying this latter conjecture are:

1) Verify the conjecture on the 2-element domain.
2) Prove it for templates having a majority polymorphism.
3) Prove it for templates having a near unanimity polymor-

phism in 𝑑+ 1 variables for some 𝑑 ≥ 2.
4) Prove it for templates having Jónsson polymorphisms.

Step 1 was accomplished in [27], [2]. Step 2 was solved by
Dalmau and Krokhin [16], who proved that if B has a majority
polymorphism then CSP(B) has bounded pathwidth duality;
they also posed Steps 3 and 4 as next steps. (In fact, Step 2 is
the first case of Step 3, i.e. with 𝑑 = 2.) The property stated
in Step 3 has been called the 𝑑-mapping property by Feder
and Vardi [18], who also showed that B having this property
is equivalent to B having bounded strict width (implying that
solutions to CSP(B) can be found by a greedy algorithm).

In this paper we verify Step 3. That is, we show (Theorem 7)
that if a template B has a near unanimity polymorphism then

2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science

1043-6871/12 $26.00 © 2012 IEEE

DOI 10.1109/LICS.2012.24

125

CSP(B) has bounded pathwidth duality and hence is in NL.
By a result of the first author [4], this also verifies Step 4.

Our proof is inspired by and follows to some extent the
proof in [16] for the case 𝑑 = 2. However the details are
rather more complicated. In addition, we need (and establish)
a surprising new algebraic fact about absorption (Theorem 6)
which may be of independent interest to universal algebraists.

The plan of this paper is the following. In section II we
summarize the background needed regarding constraint satis-
faction problems and templates, bounded pathwidth duality,
and algebra. The new algebraic result (Theorem 6) is stated at
the end of subsection II-C but its proof is deferred until the
end of section III. In section III the main result (Theorem 7)
is stated and quickly reduced to the “binary” case; then in
subsections III-B and III-C the binary case is proved using
Theorem 6; finally in subsection III-D Theorem 6 is proved.

II. BASIC DEFINITIONS AND TOOLS

A. Structures and Constraint Satisfaction Problems

Everything in this subsection before Definition 1 is standard.
A (relational) vocabulary is any set of relation symbols,

each of which is assigned an integer 𝑛 ≥ 1 called the arity of
the symbol. In this paper all relational vocabularies are finite.

If 𝜏 is a vocabulary, a 𝜏 -structure is an object B consisting
of a non-empty set 𝐵 (the universe of B) and, for each relation
symbol 𝑅 ∈ 𝜏 of arity 𝑛, an 𝑛-ary relation 𝑅B on 𝐵, i.e.,
a subset 𝑅B ⊆ 𝐵𝑛. The relations 𝑅B (𝑅 ∈ 𝜏) are the basic
relations of B. A structure is finite if its universe is finite, and
is binary if every symbol in its vocabulary has arity 1 or 2.

Given two structures A,B with the same vocabulary 𝜏 ,
a homomorphism from A to B is a function ℎ : 𝐴 → 𝐵
which preserves basic relations; that is, for all 𝑅 ∈ 𝜏 of
arity 𝑛 and for all 𝑎1, . . . , 𝑎𝑛 ∈ 𝐴, if (𝑎1, . . . , 𝑎𝑛) ∈ 𝑅A

then (ℎ(𝑎1), . . . , ℎ(𝑎𝑛)) ∈ 𝑅B. Hom(A,B) denotes the set
of homomorphisms from A to B. We write A→ B to assert
Hom(A,B) ∕= ∅.

Given a finite 𝜏 -structure B, the constraint satisfaction
problem with fixed template B (“homomorphism version”) is
the decision problem, denoted CSP(B), which takes as input
an arbitrary finite 𝜏 -structure A and asks whether A→ B.

Given a 𝜏 -structure B with universe 𝐵 and a subset 𝑋 ⊆ 𝐵,
the substructure induced by B on 𝑋 is the 𝜏 -structure B↾𝑋
with universe 𝑋 and relations defined by 𝑅B↾𝑋 = 𝑅B ∩𝑋𝑛

for each 𝑛-ary 𝑅 ∈ 𝜏 .
Given sets 𝐴1, . . . , 𝐴𝑛 and 𝑋 ⊆ 𝐴1 × ⋅ ⋅ ⋅ ×𝐴𝑛, proj𝑖(𝑋)

denotes the projection of 𝑋 onto coordinate 𝑖. We say that 𝑋
is subdirect and write 𝑋 ⊆𝑠𝑑 𝐴1×⋅ ⋅ ⋅×𝐴𝑛 if proj𝑖(𝑋) = 𝐴𝑖

for all 1 ≤ 𝑖 ≤ 𝑛.
Given a 𝜏 -structure B, a relation 𝑆 ⊆ 𝐵𝑛 is ∧-atomic

definable over B if there exists a formula 𝜑(𝑥1, . . . , 𝑥𝑛) in the
language of first-order logic with equality and vocabulary 𝜏
such that (i) 𝜑 is a conjunction of atomic formulas (assertions
“(𝑥𝑖1 , . . . , 𝑥𝑖𝑛) ∈ 𝑅” or “𝑥𝑖 = 𝑥𝑗”) and (ii) 𝑆 is defined by 𝜑,
i.e., {b ∈ 𝐵𝑛 : B ∣= 𝜑(b)} = 𝑆. We say that 𝑆 is primitive
positive (or pp)-definable over B if, for some 𝑚 ≥ 0, 𝑆 is
the projection onto the first 𝑛 coordinates of an (𝑛+𝑚)-ary

∧-atomic-definable relation. If B is a binary structure, we say
that the set of basic relations of B is closed under ∧-atomic
definitions provided every at-most-2-ary relation on 𝐵 which
is ∧-atomic definable over B is already a basic relation of B.

The remaining notions in this subsection are not standard.

Definition 1. Suppose B is a finite binary 𝜏 -structure and 𝐴
is a finite non-empty set. A potato system over B with domain
𝐴 is an indexed system 𝒫 = (𝑃𝑎, 𝐸𝑎,𝑏 : 𝑎, 𝑏 ∈ 𝐴) satisfying
the following. For all 𝑎, 𝑏 ∈ 𝐴:

1) 𝑃𝑎 is a 1-ary basic relation of B.
2) 𝐸𝑎,𝑏 is a 2-ary basic relation of B.
3) 𝐸𝑎,𝑏 ⊆ 𝑃𝑎 × 𝑃𝑏.
4) 𝐸𝑎,𝑎 = {(𝑥, 𝑥) : 𝑥 ∈ 𝑃𝑎}.
5) 𝐸𝑏,𝑎 = {(𝑦, 𝑥) : (𝑥, 𝑦) ∈ 𝐸𝑎,𝑏}.
Potato systems over B are similar to (1,2)-systems defined

in [6]; they differ in that we do not require 𝐸𝑎,𝑏 ⊆𝑠𝑑 𝑃𝑎×𝑃𝑏.

Definition 2. Given a potato system 𝒫 = (𝑃𝑎, 𝐸𝑎,𝑏 : 𝑎, 𝑏 ∈ 𝐴)
over the finite 𝜏 -structure B, the structure associated to 𝒫 is
the 𝜏 -structure A with universe 𝐴 and basic relations defined
as follows:

1) (For 1-ary 𝑅 ∈ 𝜏): 𝑅A := {𝑎 ∈ 𝐴 : 𝑃𝑎 = 𝑅B}.
2) (For 2-ary 𝑅 ∈ 𝜏): 𝑅A := {(𝑎, 𝑏) ∈ 𝐴2 : 𝐸𝑎,𝑏 = 𝑅B}.

A 𝜏 -structure is B-reduced if it is the structure associated to
some potato system over B.

Lemma 1. Suppose B is a finite binary 𝜏 -structure whose
set of basic relations is closed under ∧-atomic definitions. For
every finite 𝜏 -structure A there exists a B-reduced 𝜏 -structure
A∘ having the same domain as A and which satisfies the
following: for all 𝑋 ⊆ 𝐴, Hom(A↾𝑋 ,B) = Hom(A∘↾𝑋 ,B).

B. Bounded Pathwidth Duality

In this section we present the facts we need about pathwidth
duality. The following three definitions are from [14], [15].

Definition 3. Let B be a finite 𝜏 -structure. A set 𝒪 of finite
𝜏 -structures is an obstruction set for CSP(B) if for all finite
𝜏 -structures A, A ∕→ B if and only if there exists C ∈ 𝒪 with
C→ A.

Obstruction sets are useful when their members are simple.
One way they can be simple is by having bounded pathwidth.

Definition 4. A finite 𝜏 -structure C has pathwidth at most
(𝑗, 𝑘) if there is a sequence ℐ = (𝐼0, . . . , 𝐼𝑁) of subsets of 𝐶
such that:

1) ∣𝐼𝑡∣ ≤ 𝑘 for all 𝑡, and ∣𝐼𝑡 ∩ 𝐼𝑡+1∣ ≤ 𝑗 for all 𝑡 < 𝑁 .
2) 𝐼𝑖 ∩ 𝐼𝑗 ⊆ 𝐼ℓ for all 0 ≤ 𝑖 ≤ ℓ ≤ 𝑗 ≤ 𝑁 .
3) For every 𝑅 ∈ 𝜏 of arity 𝑛 and every (𝑐1, . . . , 𝑐𝑛) ∈ 𝑅C

there exists 𝑡 ≤ 𝑁 with {𝑐1, . . . , 𝑐𝑛} ⊆ 𝐼𝑡.

The sequence ℐ is called a (𝑗, 𝑘)-path decomposition of C.

Definition 5. Let B be a finite 𝜏 -structure, let 𝒪 be a set of
finite 𝜏 -structures, and let 0 ≤ 𝑗 ≤ 𝑘.

1) 𝒪 has pathwidth at most (𝑗, 𝑘) if every C ∈ 𝒪 has
pathwidth at most (𝑗, 𝑘).

126

2) CSP(B) has (𝑗, 𝑘)-pathwidth duality if CSP(B) has an
obstruction set of pathwidth at most (𝑗, 𝑘).

3) CSP(B) has bounded pathwidth duality if CSP(B) has
(𝑗′, 𝑘′)-pathwidth duality for some 0 ≤ 𝑗′ ≤ 𝑘′.

The characterization of bounded pathwidth duality that will
be most useful to us in this paper is one involving the following
variation of Dalmau’s “pebble relation games” [15].

Definition 6. Suppose A,B are finite 𝜏 -structures.

1) A solo play of the (𝑗, 𝑘)-PR game on (A,B) is a finite
sequence ℐ = (𝐼0, 𝐼1, . . . , 𝐼𝑁) of subsets of 𝐴 satisfying

a) ∣𝐼𝑡∣ ≤ 𝑘 for all 𝑡 ≤ 𝑁 .
b) For all 𝑡 < 𝑁 , either 𝐼𝑡+1 ⊆ 𝐼𝑡 or 𝐼𝑡 ⊂ 𝐼𝑡+1. If

the latter, then ∣𝐼𝑡∣ ≤ 𝑗.

2) Given a solo play ℐ = (𝐼0, . . . , 𝐼𝑁) of the
(𝑗, 𝑘)-PR game on (A,B), the resulting relations
𝐻0, 𝐻1, . . . , 𝐻𝑁 are defined recursively as follows:

a) 𝐻0 = Hom(A↾𝐼0 ,B).
b) If 𝑡 < 𝑁 and 𝐼𝑡+1 ⊆ 𝐼𝑡, then 𝐻𝑡+1 = 𝐻𝑡↾𝐼𝑡+1

.
c) If 𝑡 < 𝑁 and 𝐼𝑡 ⊂ 𝐼𝑡+1, then 𝐻𝑡+1 = {ℎ ∈

Hom(A↾𝐼𝑡+1
,B) : ℎ↾𝐼𝑡 ∈ 𝐻𝑡}.

3) We write A ↬𝑗,𝑘 B to mean that for every solo play
ℐ = (𝐼0, . . . , 𝐼𝑁) of the (𝑗, 𝑘)-PR game on (A,B), the
final resulting relation 𝐻𝑁 is non-empty.

Solo plays and their resulting relations correspond to plays
of Dalmau’s two-player pebble relation game [15] where
Spoiler chooses each set 𝐼𝑡 and the resulting relation 𝐻𝑡

is Duplicator’s maximum allowable response. In particular,
A ↬𝑗,𝑘 B if and only if Duplicator has a strict (in Dalmau’s
sense) winning strategy for the two-player pebble relation
game played on (A,B). Thus:

Proposition 2. ([15, Theorem 5 and Claim 1, p. 15]) Let B be
a finite 𝜏 -structure and 𝑗 ≤ 𝑘. The following are equivalent:

1) CSP(B) has (𝑗, 𝑘)-pathwidth duality.
2) For all finite 𝜏 -structures A, if A ↬𝑗,𝑘 B then A→ B.

Combining Proposition 2 with Lemma 1 we get:

Corollary 3. Suppose B is a binary 𝜏 -structure whose set of
basic relations is closed under ∧-atomic definitions. For any
0 ≤ 𝑗 ≤ 𝑘, the following are equivalent:

1) CSP(B) has (𝑗, 𝑘)-pathwidth duality.
2) For all finite B-reduced 𝜏 -structures A, if A ↬𝑗,𝑘 B

then A→ B.

C. Algebra

In this section we summarize the algebraic background
needed in this paper. More in-depth treatments may be found
in [12], [8]. Everything preceding Definition 8 is standard.

Given a non-empty set 𝐴, an operation on 𝐴 is any function
𝜙 : 𝐴𝑛 → 𝐴 for some 𝑛 ≥ 1; 𝑛 is the arity of 𝜙. An operation
𝜙 is idempotent if it satisfies the equation 𝜙(𝑥, 𝑥, . . . , 𝑥) = 𝑥
for all 𝑥 ∈ 𝐴. A 3-ary operation 𝜙 : 𝐴3 → 𝐴 is a majority
operation on 𝐴 provided it is idempotent and satisfies the
equations 𝜙(𝑦, 𝑥, 𝑥) = 𝜙(𝑥, 𝑦, 𝑥) = 𝜙(𝑥, 𝑥, 𝑦) = 𝑥 for all

𝑥, 𝑦 ∈ 𝐴. More generally, an 𝑛-ary operation 𝜙 : 𝐴𝑛 → 𝐴 for
𝑛 ≥ 3 is a near unanimity (or NU) operation on 𝐴 provided
it is idempotent and for all 1 ≤ 𝑖 ≤ 𝑛 it satisfies

𝜙(𝑥, . . . , 𝑥︸ ︷︷ ︸
𝑖−1

, 𝑦, 𝑥, . . . , 𝑥︸ ︷︷ ︸
𝑛−𝑖

) = 𝑥 for all 𝑥, 𝑦 ∈ 𝐴.

An algebraic vocabulary is any set (possibly infinite) of
operation symbols, each of which has an assigned arity 𝑛 ≥ 1.
If 𝜏 is an algebraic vocabulary, an algebra of type 𝜏 is an object
𝔸 consisting of a non-empty set 𝐴 (the universe) and, for each
each operation symbol f ∈ 𝜏 of arity 𝑛, an 𝑛-ary operation f𝔸

on 𝐴. The operations f𝔸 (f ∈ 𝜏) are the basic operations of 𝔸.
An algebra is finite if its universe is finite, and is idempotent
if each of its basic operations is idempotent.

Suppose 𝔸 is an algebra of type 𝜏 and 𝑋 ⊆ 𝐴. 𝑋 is a
subuniverse of A if 𝑋 is closed under every basic operation of
A; that is, if f𝔸(𝑋𝑛) ⊆ 𝑋 for all 𝑛-ary f ∈ 𝜏 . We denote this
by 𝑋 ≤ 𝔸; if in addition 𝑋 ⊆𝑠𝑑 𝐴 then we write 𝑋 ≤𝑠𝑑 𝔸.
If ∅ ∕= 𝑋 ≤ 𝔸, the subalgebra of 𝔸 with universe 𝑋 is the
algebra 𝕏 of type 𝜏 whose operations are given by f𝕏 = f𝔸↾𝑋 .

For every 𝑋 ⊆ 𝐴 there is a unique smallest subuniverse of
𝔸 containing 𝑋 , which is denoted Sg𝔸(𝑋).

We use the following device: any set ℱ of operations on 𝐴
can be considered as an algebraic vocabulary in the obvious
way, making (𝐴,ℱ) an algebra of type ℱ.

Two algebras are similar if they have the same vocabulary.
The product of any number of similar algebras is defined
naturally, that is, by defining operations coordinatewise. We
sometimes use the same notation, e.g. 𝜙, for both an operation
symbol and its interpretations in similar algebras 𝔸,𝔹, etc.

Definition 7. Given a structure A with universe 𝐴, an 𝑛-ary
relation 𝑅 on 𝐴, and an 𝑚-ary operation 𝜙 on 𝐴, we say that:

1) 𝜙 preserves 𝑅 provided for all a1, . . . ,a𝑚 ∈ 𝑅, if
c1, . . . , c𝑛 ∈ 𝐴𝑚 are the columns of the matrix whose
rows are a1, . . . ,a𝑚, then (𝜙(c1), . . . , 𝜙(c𝑛)) ∈ 𝑅.

2) 𝜙 is a polymorphism of A if 𝜙 preserves every basic
relation of A.

Let Pol(A) denote the set of all polymorphisms of A. The
polymorphism algebra of A is the algebra 𝔸 = (𝐴,Pol(A))
(of type Pol(A)). It is a well-known fact (e.g., [19], [9], [24])
that if 𝑅 is an arbitrary nonempty 𝑛-ary relation on 𝐴, then
𝑅 is pp-definable over A if and only if 𝑅 ≤ 𝔸𝑛.

The next definition slightly extends a notion from [7], [6].

Definition 8. Suppose 𝔸 is an algebra, 𝐵,𝐶 ≤ 𝔸, and 𝜙
is an 𝑛-ary operation of 𝔸. We say that 𝐵 absorbs 𝐶 with
respect to 𝜙 provided the following condition holds: for all
1 ≤ 𝑖 ≤ 𝑛, all 𝑏1, . . . , 𝑏𝑖−1, 𝑏𝑖+1, . . . , 𝑏𝑛 ∈ 𝐵 and all 𝑐 ∈ 𝐶,
𝜙(𝑏1, . . . , 𝑏𝑖−1, 𝑐, 𝑏𝑖+1, . . . , 𝑏𝑛) ∈ 𝐵. We write 𝐵⊲𝜙𝐶 to mean
𝐵 ⊆ 𝐶 and 𝐵 absorbs 𝐶 with respect to 𝜙.

Here are two easy facts about absorption.

Lemma 4. Suppose 𝜙 is an operation of the algebra 𝔸.

1) If 𝐵 ⊲𝜙 𝐶 ≤ 𝔸 then 𝐵 ∩𝐷 ⊲𝜙 𝐶 ∩𝐷 for any 𝐷 ≤ 𝔸.

127

2) If 𝔸 is idempotent, then 𝜙 is an NU operation if and
only if {𝑎}⊲𝜙 𝐴 for all 𝑎 ∈ 𝐴.

The following claim is a good exercise, or can be extracted
from [7, Lemma 2.5].

Lemma 5. Suppose 𝔹1,ℂ1 are similar algebras, 𝜙 is an
operation symbol in their common vocabulary, 𝑆 ≤ 𝔹1 × ℂ1

with proj1(𝑆) = 𝐵1, and 𝐶0 ⊲𝜙 𝐶1. Define 𝐵0 = {𝑏 ∈ 𝐵1 :
∃𝑐 ∈ 𝐶0 with (𝑏, 𝑐) ∈ 𝑆}. Then 𝐵0 ⊲𝜙 𝐵1.

We need one new result about absorption, whose proof will
be postponed until subsection III-D. Given an algebra 𝔻 and
an integer 𝑛 ≥ 2, define 0(𝑛)𝐷 = {(𝑏, 𝑏, . . . , 𝑏) : 𝑏 ∈ 𝐷} ⊆ 𝐷𝑛,
the set of constant 𝑛-tuples over 𝐷. Note that 0(𝑛)𝐷 ≤ 𝔻𝑛.

Definition 9. Let 𝔻 be an algebra, 𝜙 an operation of 𝔻, and
𝑏 ∈ 𝐷. We call 𝑏 an absorption constant for 𝔻 with respect to
𝜙 provided, for all 𝑛 ≥ 2 and every 𝑅 ≤𝑠𝑑 𝔻𝑛, if 𝑅 absorbs
0
(𝑛)
𝐷 with respect to 𝜙 then (𝑏, 𝑏, . . . , 𝑏) ∈ 𝑅.

Theorem 6. Let 𝔻 be a finite algebra and 𝜙 an idempotent
operation of 𝔻. There exists an absorption constant for 𝔻 with
respect to 𝜙.

III. MAIN RESULT

A. Statement and Reduction to the Binary Case

The main result of this paper is the following.

Theorem 7. Suppose the finite 𝜏 -structure B has a (𝑑 + 1)-
ary NU polymorphism for some 𝑑 ≥ 2. Then CSP(B) has
bounded pathwidth duality and hence is in NL.

The rest of the paper is devoted to proving this theorem.
In this subsection we will reduce it to the case of binary
structures. The first reduction is a variant of one step in the
proof of the well-known “CSP reduction to digraphs” [18,
Theorem 11] (see also e.g. the proof of [5, Theorem 4.4]). It
applies to any structure.

Lemma 8. Suppose 𝜏 is a vocabulary, 𝑛 ≥ 1 is an integer
such that every relation symbol in 𝜏 has arity at most 2𝑛, B is
a finite 𝜏 -structure, and 𝔹 is its polymorphism algebra. There
exists a binary structure B(𝑛) with universe 𝐵𝑛 such that:

1) The polymorphism algebra of B(𝑛) is 𝔹𝑛.
2) For any 0 ≤ 𝑗 ≤ 𝑘, if CSP(B(𝑛)) has (𝑗, 𝑘)-pathwidth

duality, then CSP(B) has (𝑗𝑛, 𝑘𝑛)-pathwidth duality.

The next reduction applies only to structures with an NU
polymorphism. It is the obvious and straightforward general-
ization of [16, Lemma 2] for majority polymorphisms.

Lemma 9. Suppose B is a finite 𝜏 -structure with universe 𝐵
and a (𝑑+1)-ary NU polymorphism for some 𝑑 ≥ 2. Let 𝑠 =
max({arity(𝑅) : 𝑅 ∈ 𝜏} ∪ {𝑑}). There exists a vocabulary
𝜏𝑑 and a 𝜏𝑑-structure B𝑑 with universe 𝐵 satisfying:

1) Every relation symbol in 𝜏𝑑 has arity at most 𝑑.
2) B and B𝑑 have the same polymorphisms.
3) If CSP(B𝑑) has (𝑗, 𝑘)-pathwidth duality, then CSP(B)

has (𝑘, 𝑘 + 𝑠− 𝑑)-pathwidth duality.

Lemmas 8 and 9 reduce the task of proving Theorem 7
to proving it for the special case of binary structures. In
subsections III-C and III-D we will verify this special case
by proving the following.

Proposition 10. Suppose 𝑑 ≥ 2 and B is a binary structure
having a (𝑑+1)-ary NU polymorphism. Let 𝑘 = ∣𝐵∣, 𝑐 =
⌊log3(2𝑑 − 3)⌋ + 2, and 𝑝 = 2𝑐𝑘 − 𝑘 − 1. Then CSP(B)
has (𝑝, 𝑝+1)-pathwidth duality. If 𝑑 = 2 then CSP(B) has
(2𝑘, 2𝑘+1)-pathwidth duality.

Hence we get the following sharpening of Theorem 7.

Corollary 11. Suppose the finite 𝜏 -structure B has a (𝑑+1)-
ary NU polymorphism for some 𝑑 ≥ 2. Let 𝑘, 𝑝 be defined as
in Proposition 10, let 𝑞 = ⌈𝑑/2⌉(𝑝+ 1), and let 𝑠 be defined
as in Lemma 9. Then CSP(B) has (𝑞, 𝑞 + 𝑠 − 𝑑)-pathwidth
duality.

Proof of Theorem 7 and Corollary 11: Given B, Let
B𝑑 be the structure defined in Lemma 9, let 𝑒 = ⌈𝑑/2⌉, and
let (B𝑑)

(𝑒) be the structure obtained from B𝑑 via Lemma 8.
Both B𝑑 and (B𝑑)

(𝑒) inherit (𝑑+ 1)-ary NU polymorphisms
from B. As (B𝑑)

(𝑒) is binary, (B𝑑)
(𝑒) has (𝑝, 𝑝+1)-pathwidth

duality by Proposition 10; hence B has (𝑞, 𝑞+𝑠−𝑑)-pathwidth
duality by Lemmas 8 and 9.

B. 𝐴-Trees

Proposition 10 will be proved via an intricate analysis of
realizations of certain trees in 𝜏 -structures. In this subsection
we define these trees and state some facts about them that will
be needed in subsection III-C.

Following [15], [16], if 𝐺 = (𝑉,𝐸) is an undirected graph,
we denote by pw(𝐺) the least 𝑘 for which 𝐺 has pathwidth
(𝑗, 𝑘) for some 𝑗 ≤ 𝑘, and call pw(𝐺) the pathwidth of 𝐺.
(Note that pw(𝐺) is 1 greater than the usual graph-theoretic
measure of the pathwidth of 𝐺 as defined in [32].)

Definition 10. Let 𝐴 be a non-empty set. An 𝐴-tree is a pair
(𝑇, 𝜒) where 𝑇 = (𝑉,𝐸) is a tree (i.e., a connected undirected
graph with no cycles) and 𝜒 is a coloring of the vertices of 𝑇
by elements of 𝐴 (i.e., 𝜒 : 𝑉 → 𝐴).

Definition 11. Let 𝑇0, . . . , 𝑇𝑛 be trees on disjoint vertex sets.
A tree composition of 𝑇0, . . . , 𝑇𝑛 is any tree 𝑇 that can be
constructed from the union of 𝑇0, . . . , 𝑇𝑛 by identifying some
vertices among the leaves of 𝑇0, . . . , 𝑇𝑛 (enough to connect
the graph, but not so many as to introduce cycles).

If 𝑇 is a tree composition of 𝑇0, . . . , 𝑇𝑛, then the vertices
of 𝑇 which were formed by identifying leaves of the original
trees are called the composition vertices of 𝑇 . The subtrees of
𝑇 corresponding to the original trees 𝑇0, . . . , 𝑇𝑛 are called the
components of 𝑇 . Among the components of 𝑇 we distinguish
the leaf components, which are those which had at most one
leaf identified in the construction of 𝑇 . (Note that, strictly
speaking, the notions in this paragraph are not invariants
of 𝑇 itself, but of a particular composition that produces
𝑇 . Whenever discussing tree compositions we shall assume

128

that such trees come equipped with a record of a particular
composition that produced it.)

Definition 12. Suppose 𝑇 = (𝑉,𝐸) is a tree composition and
𝐿 ⊆ 𝐴. An 𝐴-coloring 𝜒 : 𝑉 → 𝐴 is said to lie over 𝐿 if 𝜒
sends all composition vertices of 𝑇 into 𝐿.

Definition 13. Suppose 𝑑 ≥ 2.

1) 𝒯0
𝑑 is the set of all trees consisting of exactly one edge.

2) For 𝑖 ≥ 1, 𝒯𝑖+1
𝑑 is the set of all tree compositions having

components from 𝒯𝑖
𝑑 and at most 𝑑 leaf components.

Note that 𝒯0
𝑑 ⊆ 𝒯1

𝑑 ⊆ 𝒯2
𝑑 ⊆ ⋅ ⋅ ⋅ . Note also that for 𝑑 = 2 we

have 𝒯1
2 = 𝒯2

2 = ⋅ ⋅ ⋅ = {all paths}; hence every tree in
∪

𝑖 𝒯
𝑖
2

has pathwidth at most 2. For 𝑑 > 2 we have the following:

Lemma 12. Suppose 𝑑 ≥ 3 and 𝑖 ≥ 1. The trees in 𝒯𝑖
𝑑 have

bounded pathwidth. More precisely, every tree 𝑇 ∈ 𝒯𝑖
𝑑 satisfies

pw(𝑇) ≤ 𝑐𝑖 + 𝑐𝑖−1 − 1 where 𝑐 = ⌊log3(2𝑑− 3)⌋+ 2.

Definition 14. Suppose 𝐴 is a non-empty set, 𝐿 ⊆ 𝐴, 𝑑 ≥ 2,
and 𝑖 ≥ 0. 𝒯𝑖

𝑑(𝐴) denotes the set of all 𝐴-trees (𝑇, 𝜒) where
𝑇 ∈ 𝒯𝑖

𝑑. If 𝑖 > 0 we also define 𝒯𝑖
𝑑(𝐴,𝐿) = {(𝑇, 𝜒) ∈

𝒯𝑖
𝑑(𝐴) : 𝜒 lies over 𝐿}.
Note that for 𝑖 > 0 we have 𝒯𝑖

𝑑(𝐴,𝐴) = 𝒯𝑖
𝑑(𝐴), and 𝐿 ⊆

𝐿′ implies 𝒯𝑖
𝑑(𝐴,𝐿) ⊆ 𝒯𝑖

𝑑(𝐴,𝐿
′). Also note that 𝒯𝑖

𝑑(𝐴) =
𝒯𝑖+1
𝑑 (𝐴,∅) for all 𝑖.
We will use 𝐴-trees in the following way. Suppose B is a

binary 𝜏 -structure whose set of basic relations is closed under
∧-atomic definitions. Let 𝒫 = (𝑃𝑎, 𝐸𝑎,𝑏 : 𝑎, 𝑏 ∈ 𝐴) be a
potato system over B indexed by 𝐴. Given an 𝐴-tree (𝑇, 𝜒)
with 𝑇 = (𝑉,𝐸), a realization of (𝑇, 𝜒) in 𝒫 is a function
𝑓 : 𝑉 → 𝐵 satisfying the following:

1) 𝑓(𝑢) ∈ 𝑃𝜒(𝑢) for all 𝑢 ∈ 𝑉 .
2) (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸𝜒(𝑢),𝜒(𝑣) for all {𝑢, 𝑣} ∈ 𝐸.

The proof of the next lemma is straightforward.

Lemma 13. Suppose B and 𝒫 are as above, (𝑇, 𝜒) is an 𝐴-
tree with 𝑇 = (𝑉,𝐸), 𝑈 = {𝑢1, . . . , 𝑢𝑛} is a non-empty subset
of 𝑉 , and for each 𝑣 ∈ 𝑉 we have an associated subset 𝐵𝑣 of
𝐵 which is pp-definable over B. Then the following relations
are pp-definable over B:

1) 𝑅 := {(𝑓(𝑢1), . . . , 𝑓(𝑢𝑛)) ∈ 𝐵𝑛 : 𝑓 is a realization of
(𝑇, 𝜒) in 𝒫 and 𝑓(𝑣) ∈ 𝐵𝑣 for all 𝑣 ∈ 𝑉 }.

2) 𝑆 := {𝑏 ∈ 𝐵 : (𝑏, . . . , 𝑏) ∈ 𝑅}.
C. Proof of Proposition 10

In this subsection we prove Proposition 10, modulo the
proof of Theorem 6. Much of the argument in this subsection
is inspired by the proof of [16, Theorem 1].

Let B be a binary 𝜏 -structure having a (𝑑 + 1)-ary NU
polymorphism 𝜙. Because adding (arbitrary) relations to the
vocabulary of B cannot decrease the pathwidth of obstruction
sets for its constraint satisfaction problem, we may assume
that the set of basic relations of B contains every 𝜙-invariant
unary and binary relation on 𝐵. In particular, the set of basic
relations of B contains all 1-element subsets of 𝐵 and is closed
under ∧-atomic definitions. Let 𝑘, 𝑐, 𝑝 be defined as in the

statement of Proposition 10, and let 𝑟 = 𝑝 if 𝑑 ≥ 3 while
𝑟 = 2𝑘 if 𝑑 = 2. Let A be a B-reduced 𝜏 -structure such
that A ↬𝑟,𝑟+1 B. By Corollary 3, to prove Proposition 10 it
suffices to show that A→ B.

Let 𝒫 = (𝑃𝑎, 𝐸𝑎,𝑏 : 𝑎, 𝑏 ∈ 𝐴) be the potato-system to which
A is associated. For each 𝑎 ∈ 𝐴, define a sequence of “levels”
𝑃 0
𝑎 ⊇ 𝑃 1

𝑎 ⊇ 𝑃 2
𝑎 ⊇ ⋅ ⋅ ⋅ within 𝑃𝑎 as follows:

1) 𝑃 0
𝑎 = 𝑃𝑎.

2) If 𝑖 ≥ 0 and (𝑇, 𝜒) ∈ 𝒯 𝑖+1
𝑑 (𝐴) with 𝑇 = (𝑉,𝐸), then

𝑃 𝑖+1
𝑎 (𝑇, 𝜒) is the set of 𝑏 ∈ 𝑃 𝑖

𝑎 for which there exists a
realization 𝑓 of (𝑇, 𝜒) in 𝒫 such that

a) 𝑓 maps 𝑉 into level 𝑖; i.e., 𝑓(𝑢) ∈ 𝑃 𝑖
𝜒(𝑢) for all

𝑢 ∈ 𝑉 .
b) 𝑓 maps each 𝑎-labelled vertex to 𝑏; i.e., 𝑓(𝑢) = 𝑏

for all vertices 𝑢 ∈ 𝑉 such that 𝜒(𝑢) = 𝑎.

3) 𝑃 𝑖+1
𝑎 =

∩{𝑃 𝑖+1
𝑎 (𝑇, 𝜒) : (𝑇, 𝜒) ∈ 𝒯 𝑖+1

𝑑 (𝐴)}.
Lemma 13 implies that each set 𝑃 𝑖

𝑎 is pp-definable over B.

Claim 1. 𝑃 𝑘
𝑎 ∕= ∅ for all 𝑎 ∈ 𝐴.

Proof sketch: For 𝑖 ≥ 0 define 𝑔(𝑖) = 2𝑖 if 𝑑 = 2
and 𝑔(𝑖) = (𝑐+ 1)(𝑐− 1)−1(𝑐𝑖 − 1)− 𝑖 otherwise. We claim
that for all 𝑖 ≥ 0 and all 𝑎 ∈ 𝐴, there exists a solo play
ℐ(𝑖, 𝑎) = (𝐼0, 𝐼1, . . . , 𝐼𝑛) of the (𝑔(𝑖), 𝑔(𝑖) + 1)-PR game on
(A,B) such that 𝑎 ∈ 𝐼𝑗 for all 𝑗 ≤ 𝑛, 𝐼𝑛 = {𝑎}, and the
final resulting relation of ℐ(𝑖, 𝑎) is contained in 𝑃 𝑖

𝑎. This will
suffice, since A ↬𝑟,𝑟+1 B and 𝑔(𝑘) ≤ 𝑟 imply that the final
resulting relation of each ℐ(𝑘, 𝑎) is non-empty.

The proof of the claim is by induction on 𝑖. If 𝑖 = 0,
then we can choose ℐ(0, 𝑎) = (𝐼0) where 𝐼0 = {𝑎}. Now
assume that 𝑖 ≥ 0 and the claim has been verified for 𝑖. For
each 𝑎′ ∈ 𝐴 inductively choose and fix a solo play ℐ(𝑎′) of
the (𝑔(𝑖), 𝑔(𝑖)+ 1)-PR game each of whose sets contains 𝑎′,
whose final set is {𝑎′}, and whose final resulting relation is
contained in 𝑃 𝑖

𝑎′ . Fix 𝑎 ∈ 𝐴.
Call a solo play ℐ = (𝐼0, . . . , 𝐼𝑛) of the (𝑔(𝑖+1), 𝑔(𝑖+1)+

1)-PR game on (A,B) an 𝑎-play if 𝑎 ∈ 𝐼𝑗 for all 𝑗 ≤ 𝑛 and
𝐼𝑛 = {𝑎}. If ℐ, 𝒥 are 𝑎-plays with final resulting relations 𝑅,𝑆
respectively, then the concatenation of ℐ and 𝒥 is also an 𝑎-play
and its final resulting relation is contained in 𝑅 ∩ 𝑆. Thus it
suffices to show that for every (𝑇, 𝜒) ∈ 𝒯 𝑖+1

𝑑 (𝐴) there exists
an 𝑎-play ℐ𝑇,𝜒

𝑎 whose final resulting relation is contained in
𝑃 𝑖+1
𝑎 (𝑇, 𝜒). Fix (𝑇, 𝜒) ∈ 𝒯 𝑖+1

𝑑 (𝐴) with 𝑇 = (𝑉,𝐸).

1) Using Lemma 12 and the comment preceding it, let
(𝐽0, . . . , 𝐽𝑚) be a (𝑡, 𝑡 + 1)-path decomposition of 𝑇
where 𝑡 = 1 if 𝑑 = 2 and 𝑡 = 𝑐𝑖+1 + 𝑐𝑖 − 2 otherwise.

2) Let {𝑎01, . . . , 𝑎0𝑘0
} be an enumeration of 𝜒(𝐽0). For each

1 ≤ 𝑗 ≤ 𝑚, let {𝑎𝑗1, . . . , 𝑎𝑗𝑘𝑗
} be an enumeration of

𝜒(𝐽𝑗) ∖ 𝜒(𝐽𝑗−1).
3) For each 0 ≤ 𝑗 ≤ 𝑚 and 1 ≤ ℓ ≤ 𝑘𝑗 , let ℐ∗𝑎(𝑗, ℓ) be the

play defined as follows: if ℐ(𝑎𝑗ℓ) = (𝐼0, 𝐼1, . . . , 𝐼𝑡) then
ℐ∗𝑎(𝑗, ℓ) = (𝐼∗0 , 𝐼

∗
1 , . . . , 𝐼

∗
𝑡) where 𝐼∗𝑢 = 𝐼𝑢∪𝜒(𝐽𝑗)∪{𝑎}.

(Note in particular that the final set is 𝐼∗𝑡 = 𝜒(𝐽𝑗)∪{𝑎}.)
Also define ℐ∗𝑎(𝑗, 0) to be the 1-step play (𝜒(𝐽𝑗)∪{𝑎}).

4) For each 0 ≤ 𝑗 ≤ 𝑚 let ℐ∗𝑎(𝑗) be the concatenation of
the plays ℐ∗𝑎(𝑗, 0), ℐ

∗
𝑎(𝑗, 1), . . . , ℐ

∗
𝑎(𝑗, 𝑘𝑗).

129

5) Let ℐ𝑇,𝜒
𝑎 be the concatenation of ℐ(𝑎), ℐ∗𝑎(0), . . . , ℐ

∗
𝑎(𝑚),

and the 1-step play ({𝑎}).
Suppose 0 ≤ 𝑗 ≤ 𝑚 and 0 ≤ ℓ ≤ 𝑘𝑗 . Let ℐ★ denote the initial
segment of ℐ𝑇,𝜒

𝑎 consisting of ℐ(𝑎), ℐ𝑇,𝜒
𝑎 (0), . . . , ℐ𝑇,𝜒

𝑎 (𝑗 − 1)
and that portion of ℐ𝑇,𝜒

𝑎 (𝑗) up to and including ℐ∗𝑎(𝑗, ℓ). Note
that the last set of ℐ∗ is 𝜒(𝐽𝑗)∪ {𝑎}. Let 𝑉 ∗ = 𝐽0 ∪ ⋅ ⋅ ⋅ ∪ 𝐽𝑗 ,
let 𝐶 = {𝑎𝑗1, . . . , 𝑎𝑗ℓ}, and let 𝑇 ∗ be the subtree of 𝑇 with
vertex set 𝑉 ∗. It can be shown inductively that if ℎ is in the
final resulting relation of ℐ∗ then ℎ(𝑎) ∈ 𝑃 𝑖

𝑎 and there exists
a realization 𝑓 of the 𝐴-tree (𝑇 ∗, 𝜒↾𝑇∗) such that

1) 𝑓 maps 𝐽0 ∪ ⋅ ⋅ ⋅ ∪ 𝐽𝑗−1 into level 𝑖;
2) 𝑓 maps 𝐽𝑗 ∩ 𝜒−1({𝑎𝑗1, . . . , 𝑎𝑗ℓ}) into level 𝑖;
3) 𝑓(𝑢) = ℎ(𝜒(𝑢)) for all 𝑢 ∈ 𝐽𝑗 .
4) 𝑓 maps all 𝑎-labelled vertices of 𝑇 ∗ to ℎ(𝑎).

In particular, if ℎ is in the penultimate resulting relation of ℐ𝑇,𝜒
𝑎

then ℎ(𝑎) ∈ 𝑃 𝑖+1
𝑎 (𝑇, 𝜒); hence the final resulting relation of

ℐ𝑇,𝜒
𝑎 is contained in 𝑃 𝑖+1

𝑎 (𝑇, 𝜒).
It remains to check that every set in ℐ𝑇,𝜒

𝑎 has size at most
𝑔(𝑖+ 1) + 1. Note that any set in ℐ𝑇,𝜒

𝑎 of maximal size is of
the form 𝐼𝑢 ∪𝜒(𝐽𝑗)∪{𝑎} where 𝐼𝑢 is a set in ℐ(𝑎′) for some
𝑎′ ∈ 𝜒(𝐽𝑗). We have ∣𝐽𝑗 ∣ ≤ 𝑡 + 1 and ∣𝐼𝑢∣ ≤ 𝑔(𝑖) + 1 and
∣𝐼𝑢 ∩ 𝜒(𝐽𝑗)∣ ≥ 1. Thus ∣𝐼𝑢 ∪ 𝜒(𝐽𝑗) ∪ {𝑎}∣ ≤ 𝑔(𝑖) + 𝑡 + 2 =
𝑔(𝑖+ 1) + 1 as required.

Thus for each 𝑎 ∈ 𝐴 we have a chain 𝑃 0
𝑎 ⊇ 𝑃 1

𝑎 ⊇ ⋅ ⋅ ⋅ ⊇ 𝑃 𝑘
𝑎

of 𝑘+1 non-empty subsets of 𝐵, where ∣𝐵∣ = 𝑘. Hence there
exists 𝑟 < 𝑘 such that 𝑃 𝑟

𝑎 = 𝑃 𝑟+1
𝑎 . Let 𝑟𝑎 be the least 𝑟

with this property. Enumerate 𝐴 as {𝑎0, 𝑎1, . . . , 𝑎𝑁} so that
𝑟𝑎0

≥ 𝑟𝑎1
≥ ⋅ ⋅ ⋅ and for each 𝑗 ≤ 𝑁 define rank(𝑗) = 𝑟𝑎𝑗

.
Our aim is to construct a homomorphism ℎ : A→ B, and

we will do this by inductively defining ℎ(𝑎0), ℎ(𝑎1), etc. At
stage 𝑖 we will have defined ℎ(𝑎0), ℎ(𝑎1), . . . , ℎ(𝑎𝑖). In this
context we will consider certain 𝐴-trees and their realizations
in 𝒫. Suppose (𝑇, 𝜒) is an 𝐴-tree and 𝑓 is a realization of
(𝑇, 𝜒) in 𝒫. If Λ𝑇 is the set of leaves of 𝑇 and 𝑈 ⊆ Λ𝑇 ,
then we say that 𝑓 is fixed on 𝑈 up to 𝑖 if for all 𝑢 ∈ 𝑈 , if
𝜒(𝑢) ∈ {𝑎0, . . . , 𝑎𝑖} then 𝑓(𝑢) = ℎ(𝜒(𝑢)). We say that 𝑓 is
fixed up to 𝑖 if it is fixed on Λ𝑇 up to 𝑖.

The inductive property that we will establish at stage 𝑖 is
the following:

1) ℎ(𝑎𝑗) ∈ 𝑃
rank(𝑗)
𝑎𝑗 for all 𝑗 ≤ 𝑖.

2) Let 𝑟 = rank(𝑖) and 𝐿 = {𝑎𝑗 : 𝑗 ≤ 𝑁 , rank(𝑗) = 𝑟}.
Then for every 𝐴-tree (𝑇, 𝜒) ∈ 𝒯 𝑟+1

𝑑 (𝐴,𝐿) with 𝑇 =
(𝑉,𝐸) there exists a realization of (𝑇, 𝜒) in 𝒫 which
sends 𝑉 into level 𝑟 and is fixed up to 𝑖.

This will suffice since at stage 𝑁 we will have fully defined
a function ℎ : 𝐴→ 𝐵 satisfying property 1) above; moreover,
as 𝒯 𝑟+1

𝑑 (𝐴,𝐿) ⊇ 𝒯0
𝑑(𝐴), property 2) above can be applied

as follows: for any 𝑎𝑖, 𝑎𝑗 ∈ 𝐴, if we let (𝑇, 𝜒) be the 2-
vertex 𝐴-tree {𝑢, 𝑣} with 𝜒(𝑢) = 𝑎𝑖 and 𝜒(𝑣) = 𝑎𝑗 , and if 𝑓
is a realization of (𝑇, 𝜒) in 𝒫 which is fixed up to 𝑁 , then
(ℎ(𝑎𝑖), ℎ(𝑎𝑗)) = (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸𝜒(𝑢),𝜒(𝑣) = 𝐸𝑎𝑖,𝑎𝑗

, proving
ℎ is a homomorphism from A to B.

At stage 0 we can define ℎ(𝑎0) to be any element of 𝑃 𝑟
𝑎0

where 𝑟 = rank(0). This works as 𝑃 𝑟
𝑎0

= 𝑃 𝑟+1
𝑎0

, so the

definition of 𝑃 𝑟+1
𝑎0

and the fact that 𝒯 𝑟+1
𝑑 (𝐴,𝐿) ⊆ 𝒯 𝑟+1

𝑑 (𝐴)
imply property 2) above.

Assume that we have finished stage 𝑖−1 and want to define
ℎ(𝑎𝑖). Define 𝑟∗ = rank(𝑖 − 1), 𝐿∗ = {𝑎𝑗 : rank(𝑗) = 𝑟∗},
𝑟 = rank(𝑖), and 𝐿 = {𝑎𝑗 : rank(𝑗) = 𝑟}.
Claim 2. For every 𝐴-tree (𝑇, 𝜒) ∈ 𝒯 𝑟+1

𝑑 (𝐴,𝐿) with 𝑇 =
(𝑉,𝐸) there exists a realization of (𝑇, 𝜒) in 𝒫 which maps 𝑉
into level 𝑟 and is fixed up to 𝑖− 1.

Proof: If 𝑟∗ = 𝑟, then 𝐿∗ = 𝐿 and the claim follows
directly from the inductive property at stage 𝑖 − 1. If on the
other hand 𝑟∗ > 𝑟, then use the fact that 𝒯 𝑟+1

𝑑 (𝐴,𝐿) ⊆
𝒯 𝑟∗+1
𝑑 (𝐴,∅) ⊆ 𝒯 𝑟∗+1

𝑑 (𝐴,𝐿∗) and the inductive property.

Definition 15. Let 𝒯∗ denote the set of all 𝐴-trees (𝑇, 𝜒)
where 𝑇 is an (arbitrary) tree composition of component trees
from 𝒯 𝑟

𝑑 and 𝜒 lies over 𝐿. (Thus 𝒯 𝑟+1
𝑑 (𝐴,𝐿) ⊆ 𝒯∗.)

Claim 3. Suppose (𝑇, 𝜒) ∈ 𝒯∗ with 𝑇 = (𝑉,𝐸).

1) For every leaf 𝑢 of 𝑇 such that 𝜒(𝑢) = 𝑎 ∈ 𝐿, and for
every 𝑏 ∈ 𝑃 𝑟

𝑎 , there exists a realization 𝑓 of (𝑇, 𝜒) in 𝒫

which maps 𝑉 into level 𝑟 and satisfies 𝑓(𝑢) = 𝑏.
2) There exists a realization of (𝑇, 𝜒) in 𝒫 which maps 𝑉

into level 𝑟 and is fixed up to 𝑖− 1.

Proof: (1) Let 𝑇0 = (𝑉0, 𝐸0) be the component of 𝑇 con-
taining 𝑢, let 𝜒0 = 𝜒↾𝑉0

, and note that (𝑇0, 𝜒0) ∈ 𝒯 𝑟+1
𝑑 (𝐴).

Because 𝑎 ∈ 𝐿 we have 𝑃 𝑟
𝑎 = 𝑃 𝑟+1

𝑎 . Thus if 𝑏 ∈ 𝑃 𝑟
𝑎 then by

definition of 𝑃 𝑟+1
𝑎 there exists a realization 𝑓0 of (𝑇0, 𝜒0) in

𝒫 which sends 𝑉0 into level 𝑟 and maps 𝑢 to 𝑏. Consider a
composition vertex 𝑢′ of 𝑇 which lies in 𝑉0 and let 𝑎′ = 𝜒(𝑢′)
and 𝑏′ = 𝑓(𝑢′). We have 𝑎′ ∈ 𝐿 (as 𝜒 lies over 𝐿) and
𝑏′ ∈ 𝑃 𝑟

𝑎′ by our choice of 𝑓 ; hence 𝑏′ ∈ 𝑃 𝑟+1
𝑎′ . If we now let

𝑇1 = (𝑉1, 𝐸1) be another component of 𝑇 containing 𝑢′ and
put 𝜒1 = 𝜒↾𝑉1

, then we can repeat the previous argument to
get a realization 𝑓1 of (𝑇1, 𝜒1) in 𝒫 which sends 𝑉1 into level
𝑟 and maps 𝑢′ to 𝑏′; in particular, 𝑓1(𝑢′) = 𝑓0(𝑢

′). Repeating
this process one component of 𝑇 at a time, we can eventually
construct the required realization 𝑓 of (𝑇, 𝜒).

(2) Let Λ𝑇 denote the set of leaves of 𝑇 . It will suffice to
prove that, for every 𝑈 ⊆ Λ𝑇 , there exists a realization of
(𝑇, 𝜒) in 𝒫 which maps 𝑉 into level 𝑟 and is fixed on 𝑈 up
to 𝑖 − 1. We do this by induction on ∣𝑈 ∣. Assume first that
∣𝑈 ∣ ≤ 𝑑. Let 𝑇 ′ = (𝑉 ′, 𝐸′) be the smallest subtree of 𝑇 which
is a tree composition of (some of) the components of 𝑇 and
contains 𝑈 , and let 𝜒′ = 𝜒↾𝑇 ′ . Also let 𝐶1, . . . , 𝐶𝑚 be the
connected components of 𝑇 ∖ 𝑇 ′. Observe that for each 𝐶𝑗

there exists a composition vertex 𝑢𝑗 of 𝑇 such that
1) 𝑢𝑗 is either a composition vertex or a leaf of 𝑇 ′.
2) The subtree of 𝑇 with vertex set 𝐶𝑗 ∪ {𝑢𝑗} is a tree

composition of (some of the) components of 𝑇 which
are not components of 𝑇 ′. Call this subtree 𝑇𝑗 and let
𝜒𝑗 = 𝜒↾𝑇𝑗

. Note that (𝑇𝑗 , 𝜒𝑗) ∈ 𝒯∗.
𝑇 ′ has at most 𝑑 leaf components and so (𝑇 ′, 𝜒′) ∈

𝒯 𝑟+1
𝑑 (𝐴,𝐿). By Claim 2 there exists a realization 𝑓 ′ of
(𝑇 ′, 𝜒↾𝑇 ′) which maps 𝑉 ′ into level 𝑟 and is fixed up to 𝑖−1;
in particular, 𝑓 ′ is fixed on 𝑈 up to 𝑖 − 1. By applying part

130

(1) to the 𝐴-trees (𝑇𝑗 , 𝜒𝑗) we can extend 𝑓 ′ to the desired
realization 𝑓 of (𝑇, 𝜒).

Assume next that ∣𝑈 ∣ > 𝑑. Choose distinct leaves
𝑢0, 𝑢1, . . . , 𝑢𝑑 ∈ 𝑈 and for each 𝑗 ≤ 𝑑 let 𝑈𝑗 = 𝑈 ∖ {𝑢𝑗}.
By induction, there exist realizations 𝑓𝑗 of (𝑇, 𝜒) in 𝒫 which
map 𝑉 into level 𝑟 and are such that 𝑓𝑗 is fixed on 𝑈𝑗 up to
𝑖− 1. Let 𝑓 : 𝑉 → 𝐵 be defined by

𝑓(𝑣) = 𝜙(𝑓0(𝑣), 𝑓1(𝑣), . . . , 𝑓𝑑(𝑣)).

Because 𝜙 is a polymorphism of B, 𝑓 is a realization of (𝑇, 𝜒)
which sends 𝑉 into level 𝑟. It remains to check that 𝑓 is fixed
on 𝑈 up to 𝑖− 1; this follows from the NU property of 𝜙.

Claim 4. There exists a non-empty set 𝐷 ⊆ 𝑃 𝑟
𝑎𝑖

such that
(i) 𝐷 is pp-definable over B, and (ii) for every (𝑇, 𝜒) ∈ 𝒯∗

with 𝑇 = (𝑉,𝐸), if Δ is the set of all leaves 𝑢 of 𝑇 with
𝜒(𝑢) = 𝑎𝑖, then for every 𝑢 ∈ Δ and every 𝑏 ∈ 𝐷 there exists
a realization 𝑓 of (𝑇, 𝜒) in 𝒫 satisfying:

1) 𝑓 sends 𝑉 into level 𝑟 and is fixed up to 𝑖− 1.
2) 𝑓(𝑣) ∈ 𝐷 for every 𝑣 ∈ Δ.
3) 𝑓(𝑢) = 𝑏.

Proof: Suppose no such set 𝐷 exists. Let 𝐷0 = 𝑃 𝑟
𝑎𝑖

.
As 𝐷0 is a non-empty, is pp-definable over B, but does not
satisfy the statement of the Claim, there must exist an 𝐴-tree
(𝑇0, 𝜒0) ∈ 𝒯∗ with 𝑇0 = (𝑉0, 𝐸0), whose set of leaves 𝑢 with
𝜒0(𝑢) = 𝑎𝑖 is Δ0, and there must exist 𝑢0 ∈ Δ0 and 𝑏0 ∈ 𝐷0,
such that for all realizations 𝑓 of (𝑇0, 𝜒0) in 𝒫, if 𝑓 sends 𝑉0
into level 𝑟 and is fixed up to 𝑖− 1, then 𝑓(𝑢0) ∕= 𝑏0. Define

𝐷1 = {𝑓(𝑢0) : 𝑓 is realization of (𝑇0, 𝜒0) in 𝒫,

sends 𝑉0 into level 𝑟, and is fixed up to 𝑖− 1}.
𝐷1 is non-empty by Claim 3(2), is pp-definable over B by
Lemma 13, satisfies 𝐷1 ⊆ 𝐷0 because 𝑓 maps 𝑉0 into level
𝑟, and satisfies 𝐷1 ∕= 𝐷0 because 𝑏0 ∈ 𝐷0 ∖𝐷1.

Again as 𝐷1 does not satisfy the statement of the Claim,
there must exist an 𝐴-tree (𝑇1, 𝜒1) ∈ 𝒯∗ with 𝑇1 = (𝑉1, 𝐸1),
whose set of leaves 𝑢 with 𝜒1(𝑢) = 𝑎𝑖 is Δ1, and there must
exist 𝑢1 ∈ Δ1 and 𝑏1 ∈ 𝐷1, such that for all realizations 𝑓 of
(𝑇1, 𝜒1) in 𝒫, if 𝑓 sends 𝑉1 into level 𝑟, sends Δ1 into 𝐷1,
and is fixed up to 𝑖− 1, then 𝑓(𝑢1) ∕= 𝑏1. Let (𝑇 ∘1 , 𝜒

∘
1) be the

𝐴-tree with 𝑇 ∘1 = (𝑉 ∘1 , 𝐸
∘
1) obtained by

1) starting with (𝑇1, 𝜒1);
2) gluing to every leaf 𝑢 ∈ Δ1 a copy (𝑇𝑢

0 , 𝜒
𝑢
0) of (𝑇0, 𝜒0)

at the vertex 𝑢0; that is, 𝑢 and the image of 𝑢0 in 𝑇𝑢
0

are identified;
3) adding a new leaf 𝑢∘1 with an edge to 𝑢1, and defining

𝜒∘1(𝑢
∘
1) = 𝑎𝑖.

Note that (i) (𝑇 ∘1 , 𝜒
∘
1) ∈ 𝒯∗, and (ii) if 𝑓 is a realization of

(𝑇 ∘1 , 𝜒
∘
1) in 𝒫 which sends 𝑉 ∘1 into level 𝑟 and is fixed up

to 𝑖 − 1, then 𝑓↾𝑇1
is a realization of (𝑇1, 𝜒1) which sends

𝑉1 into level 𝑟, is fixed up to 𝑖 − 1, and sends Δ1 into 𝐷1;
hence 𝑓(𝑢1) ∕= 𝑏1. As (𝑓(𝑢∘1), 𝑓(𝑢1)) ∈ 𝐸𝑎𝑖,𝑎𝑖

= {(𝑥, 𝑥) :
𝑥 ∈ 𝑃𝑎𝑖

}, this implies 𝑓(𝑢∘1) = 𝑓(𝑢1) ∕= 𝑏1. Thus if we define

𝐷2 = {𝑓(𝑢∘1) : 𝑓 is realization of (𝑇 ∘1 , 𝜒
∘
1) in 𝒫,

sends 𝑉 ∘1 into level 𝑟, and is fixed up to 𝑖− 1},

then again 𝐷2 is non-empty, is pp-definable over B, and is
a proper subset of 𝐷1. By repeating this process we get an
infinite strictly decreasing sequence 𝐷0 ⊋ 𝐷1 ⊋ 𝐷2 ⊋ ⋅ ⋅ ⋅
which is impossible.

We are now ready to define ℎ(𝑎𝑖). Let 𝔹 be the algebra
(𝐵,𝜙) and let 𝔻 be its subalgebra (𝐷,𝜙𝔻) where 𝐷 is given by
Claim 4. Choose any absorption constant 𝛽 for 𝔻 with respect
to 𝜙𝔻 (at least one exists by Theorem 6) and define ℎ(𝑎𝑖) = 𝛽.
We claim that this choice achieves stage 𝑖. What needs to
be shown is that for every 𝐴-tree (𝑇, 𝜒) ∈ 𝒯 𝑟+1

𝑑 (𝐴,𝐿) with
𝑇 = (𝑉,𝐸) there exists a realization of (𝑇, 𝜒) in 𝒫 which:

(†)
⎧⎨
⎩

1. sends 𝑉 into level 𝑟, and
2. is fixed up to 𝑖; that is, is fixed up to 𝑖− 1

and sends every 𝑎𝑖-labelled leaf to 𝛽.

Let (𝑇, 𝜒) be such an 𝐴-tree. Let Δ = {𝑢1, . . . , 𝑢𝑛} be an
enumeration of the set of leaves 𝑢 of 𝑇 satisfying 𝜒(𝑢) = 𝑎𝑖,
and let Γ = {𝑣1, . . . , 𝑣𝑚} be an enumeration of the set of
leaves 𝑢 of 𝑇 satisfying 𝜒(𝑢) ∈ {𝑎0, 𝑎1, . . . , 𝑎𝑖−1}. Define
two subsets of 𝐵𝑛+𝑚:

𝑆+ = {(𝑓(𝑢1), . . . , 𝑓(𝑢𝑛), 𝑓(𝑣1, . . . , 𝑓(𝑣𝑚)) : 𝑓 is a

realization of (𝑇, 𝜒) in 𝒫 sending 𝑉 into level 𝑟},
𝑅+ = {(𝑓(𝑢1), . . . , 𝑓(𝑢𝑛), 𝑓(𝑣1, . . . , 𝑓(𝑣𝑚)) : 𝑓 is a

realization of (𝑇, 𝜒) in 𝒫 sending 𝑉 into level 𝑟

and which is fixed up to 𝑖− 1}.
Let 𝐵0 and 𝐵1 be the projections onto the first 𝑛 coordinates of
𝑅+ and 𝑆+ respectively, and let 𝑅 = 𝐵0∩𝐷𝑛 and 𝑆 = 𝐵1∩
𝐷𝑛. 𝑅+ and 𝑆+ are pp-definable over B by Lemma 13 and so
are subuniverses of 𝔹𝑛+𝑚; we consider them as subuniverses
of 𝔹𝑛 × 𝔹𝑚. Define ℂ1 = 𝔹𝑚 and 𝐶0 = {c} ⊆ 𝐶1 where
c = (ℎ(𝜒(𝑣1)), . . . , ℎ(𝜒(𝑣𝑚))); then 𝑆+ ≤ 𝔹1×ℂ1 and 𝐵0 =
{x ∈ 𝐵1 : ∃y ∈ 𝐶0 with (x,y) ∈ 𝑆+}. Note that 𝐶0 ⊲𝜙 𝐶1

by Lemma 4(2) (because ℂ1 is idempotent and 𝜙ℂ1 is NU);
hence 𝐵0⊲𝜙𝐵1 by Lemma 5 and so 𝑅⊲𝜙𝑆 by Lemma 4(1). 𝑅
is subdirect in 𝐷𝑛 for the following reason: for any 1 ≤ 𝑗 ≤ 𝑛
and 𝑏 ∈ 𝐷, Claim 4 gives a realization 𝑓 of (𝑇, 𝜒) which sends
𝑉 into level 𝑟, is fixed up to 𝑖 − 1, and satisfies 𝑓(𝑢ℓ) ∈ 𝐷
for all 1 ≤ ℓ ≤ 𝑛 and 𝑓(𝑢𝑗) = 𝑏. This 𝑓 puts 𝑏 into proj𝑗(𝑅),
proving 𝑅 ⊆𝑠𝑑 𝐷

𝑛. And 𝑆 contains all constant tuples (over
𝐷), for the following reason: if 𝑏 ∈ 𝐷, then because 𝐷 ⊆
𝑃 𝑟
𝑎𝑖
= 𝑃 𝑟+1

𝑎𝑖
and (𝑇, 𝜒) ∈ 𝒯 𝑟+1

𝑑 (𝐴), there exists a realization
𝑓 of (𝑇, 𝜒) which maps 𝑉 into level 𝑟 and maps every 𝑎𝑖-
labelled leaf to 𝑏. This 𝑓 puts (𝑏, 𝑏, . . . , 𝑏) into 𝑆, as claimed.

In summary, 𝑅 and 𝑆 are subuniverses of 𝔻𝑛; 𝑅 is subdirect
in 𝐷𝑛; 𝑆 contains all constant tuples; and 𝑅⊲𝜙 𝑆. As 𝛽 is an
absorption constant for 𝔻 with respect to 𝜙𝔻, it follows that the
constant tuple (𝛽, . . . , 𝛽) is in 𝑅. This witnesses the existence
of the desired realization of (𝑇, 𝜒) satisfying (†), completing
the proof that stage 𝑖 can be achieved in the construction of
ℎ : A→ B, and thus completes the proof of Proposition 10.

D. Proof of Theorem 6

Theorem 6 (restated). Let 𝔻 be a finite algebra and 𝜙 an
idempotent operation of 𝔻. There exists an absorption constant

131

for 𝔻 with respect to 𝜙.

Proof: We may assume that 𝔻 = (𝐷,𝜙). We argue by
induction on ∣𝐷∣. The claim is clearly true if ∣𝐷∣ = 1, so
we may assume ∣𝐷∣ ≥ 2. For 𝑛 ≥ 2 let 𝒜𝑛 = {𝑅 ≤𝑠𝑑 𝔻𝑛 :

𝑅 absorbs 0(𝑛)𝐷 with respect to 𝜙} and let 𝒜 =
∪∞

𝑛=2 𝒜𝑛. We
must prove the existence of 𝑏 ∈ 𝐷 such that (𝑏, . . . , 𝑏) ∈ 𝑅
for all 𝑅 ∈ 𝒜.

Let 𝒫 be the set of all subuniverses of 𝔻 (including ∅ and
𝐷) and let 𝒫+ = 𝒫 ∖ {∅, 𝐷}. Observe that 𝒫+ ∕= ∅, as 𝒫+

contains all the 1-element subsets of 𝐷. Suppose there exists
𝑆 ∈ 𝒫+ such that, for all 𝑛 ≥ 2, we have 𝑅 ∩ 𝑆𝑛 ⊆𝑠𝑑 𝑆𝑛

for all 𝑅 ∈ 𝒜𝑛. Let 𝕊 be the subalgebra of 𝔻 with universe 𝑆
and note that 𝜙↾𝑆 is an idempotent operation of 𝕊. Hence by
the inductive hypothesis, 𝕊 has an absorption constant 𝑏 with
respect to 𝜙↾𝑆 . For any 𝑛 ≥ 2 and 𝑅 ∈ 𝒜𝑛, let 𝑅 = 𝑅 ∩ 𝑆𝑛;
then 𝑅 ≤𝑠𝑑 𝕊𝑛 by our choice of 𝑆 and 𝑅 absorbs 0(𝑛)𝑆 with
respect to 𝜙↾𝑆 by Lemma 4(1); hence (𝑏, . . . , 𝑏) ∈ 𝑅 ⊆ 𝑅.
Thus 𝑏 is an absorption constant for 𝔻, completing the proof.

Hence it suffices to prove that there exists 𝑆 ∈ 𝒫+ such
that, for all 𝑛 ≥ 2, we have 𝑅 ∩ 𝑆𝑛 ⊆𝑠𝑑 𝑆

𝑛 for all 𝑅 ∈ 𝒜𝑛.
Let 𝜏 be the following algebraic vocabulary: for each 𝑛 ≥ 2,
𝑅 ∈ 𝒜𝑛 and 1 ≤ 𝑖 ≤ 𝑛, let f𝑅,𝑖 be an (𝑛 − 1)-ary operation
symbol and let 𝜏 = {f𝑅,𝑖 : 𝑛 ≥ 2, 𝑅 ∈ 𝒜𝑛, 1 ≤ 𝑖 ≤ 𝑛}. Now
define ℙ to be the algebra with universe 𝒫 and vocabulary 𝜏
where, for 𝑛 ≥ 2, 𝑅 ∈ 𝒜𝑛, 1 ≤ 𝑖 ≤ 𝑛 and 𝐶1, . . . , 𝐶𝑛−1 ∈ 𝒫,

f ℙ𝑅,𝑖(𝐶1, . . . ,𝐶𝑛−1) = {𝑥 ∈ 𝐷 : ∃𝑐1 ∈ 𝐶1, . . . ,∃𝑐𝑛−1 ∈ 𝐶𝑛−1

such that (𝑐1, . . . , 𝑐𝑖−1, 𝑥, 𝑐𝑖, . . . , 𝑐𝑛−1) ∈ 𝑅}.
For convenience, we also let f ℙ𝑅 denote f ℙ𝑅,1 whenever 𝑅 ∈ 𝒜.
Note that

1) {f ℙ𝑅,𝑖 : 𝑛 ≥ 2, 𝑅 ∈ 𝒜𝑛, 1 ≤ 𝑖 ≤ 𝑛} = {f ℙ𝑅 : 𝑅 ∈ 𝒜}.
That is, every basic operation of ℙ can be written as f ℙ𝑅
for some 𝑅 ∈ 𝒜.

2) Every operation of ℙ is monotone with respect to ⊆; that
is, if 𝑅 ∈ 𝒜𝑛 and 𝐵𝑖, 𝐶𝑖 ∈ 𝒫 with 𝐵𝑖 ⊆ 𝐶𝑖 for 1 ≤ 𝑖 ≤
𝑛− 1, then f ℙ𝑅(𝐵1, . . . , 𝐵𝑛−1) ⊆ f ℙ𝑅(𝐶1, . . . , 𝐶𝑛−1).

3) If 𝑅 = 0
(3)
𝐷 , then 𝑅 ∈ 𝒜3 and f ℙ𝑅(𝐶1, 𝐶2) = 𝐶1 ∩ 𝐶2.

That is, ∩ is a basic operation of ℙ.
4) ∅ is a “zero” element for ℙ; that is, for all 𝑛 ≥ 2, 𝑅 ∈

𝒜𝑛, and 𝐶1, . . . , 𝐶𝑛−1 ∈ 𝒫, if ∅ ∈ {𝐶1, . . . , 𝐶𝑛−1}
then f ℙ𝑅(𝐶1, . . . , 𝐶𝑛−1) = ∅.

5) f ℙ𝑅(𝐷, . . . ,𝐷) = 𝐷 for all 𝑅 ∈ 𝒜.
Define a quasi-ordering ≼ on 𝒫 as follows: 𝐶1 ≼ 𝐶2 if and

only if 𝐶1 is an element of the subuniverse of ℙ generated
by {𝐶2, 𝐷}, i.e., 𝐶1 ∈ Sgℙ({𝐶2, 𝐷}). Also define 𝐶1 ∼ 𝐶2

to mean 𝐶1 ≼ 𝐶2 and 𝐶2 ≼ 𝐶1. Thus ∼ is an equivalence
relation on 𝒫 and ≼ naturally induces a partial ordering ≤
of the set 𝒫/∼ of ∼-equivalence classes. Note that {∅} and
{𝐷} are ∼-classes; furthermore, {𝐷} is the unique minimum
element of (𝒫/∼,≤), and {∅} is a minimal element of the
poset obtained from (𝒫/∼,≤) by deleting {𝐷}. If we delete
both {𝐷} and {∅}, we obtain the poset 𝒬 := (𝒫+/∼,≤).

Choose and fix a minimal element 𝑀 of 𝒬. Let 𝑀min denote
the set of members of 𝑀 which are minimal with respect to
⊆. Also let 𝑋 =

∪{𝐶 : 𝐶 ∈𝑀min}.

Claim 5.
1) Suppose 𝑛 ≥ 2, 𝑅 ∈ 𝒜𝑛, 𝐶1, . . . , 𝐶𝑛−1 ∈ 𝑀 ∪ {𝐷},

and let 𝐴 = f ℙ𝑅(𝐶1, . . . , 𝐶𝑛−1). If 𝐴 ∕= ∅, then 𝐴 ∈
𝑀 ∪ {𝐷}; hence there exists 𝐶 ∈𝑀min with 𝐶 ⊆ 𝐴.

2) For all 𝐶1 ∈𝑀min and 𝐶2 ∈𝑀 ∪{𝐷}, if 𝐶1∩𝐶2 ∕= ∅

then 𝐶1 ⊆ 𝐶2.

Proof: (1) With 𝑛,𝑅,𝐶1, . . . , 𝐶𝑛−1, 𝐴 as in the statement
of the Claim, assume 𝐴 ∕∈ {∅, 𝐷}, i.e., 𝐴 ∈ 𝒫+, and pick any
𝐶 ∈𝑀 . Since 𝐶𝑖 ≼ 𝐶 for each 𝑖, we get 𝐴 ≼ 𝐶, so 𝐴 ∈𝑀
as 𝐶/∼ =𝑀 is a minimal member of 𝒬.

(2) This follows from (1) and the fact that ∩ is a basic
operation of ℙ.

Claim 6. For all 𝑛 ≥ 2 and 𝑅 ∈ 𝒜𝑛, 𝑅 ∩𝑋𝑛 ⊆𝑠𝑑 𝑋
𝑛.

Proof: We will show proj1(𝑅∩𝑋𝑛) = 𝑋 , the argument
for the other coordinates being similar. Pick any 𝐶 ∈ 𝑀min.
We will show, by induction on 1 ≤ 𝑖 ≤ 𝑛, that there exist 𝐶𝑗 ∈
𝑀min for 2 ≤ 𝑗 ≤ 𝑖 such that 𝐶 ⊆ f ℙ𝑅(𝐶2, . . . , 𝐶𝑖, 𝐷, . . . , 𝐷).
When 𝑖 = 1 the claim is simply that 𝐶 ⊆ f ℙ𝑅(𝐷, . . . ,𝐷),
which is true by a previous observation. Assume now that
1 ≤ 𝑖 < 𝑛 and the claim has been verifed for 𝑖 and must be
proved for 𝑖+ 1. Thus we have 𝐶2, . . . , 𝐶𝑖 ∈𝑀min such that

𝐶 ⊆ f ℙ𝑅(𝐶2, . . . , 𝐶𝑖, 𝐷, . . . , 𝐷). (1)

Equation (1) implies f ℙ𝑅,𝑖+1(𝐶,𝐶2, . . . , 𝐶𝑖, 𝐷, . . . , 𝐷) ∕= ∅;
hence by Claim 5 we can choose 𝐶𝑖+1 ∈𝑀min with

𝐶𝑖+1 ⊆ f ℙ𝑅,𝑖+1(𝐶,𝐶2, . . . , 𝐶𝑖, 𝐷, . . . , 𝐷). (2)

Similarly, equation (2) implies

𝐶 ∩ f ℙ𝑅(𝐶2, . . . , 𝐶𝑖, 𝐶𝑖+1, 𝐷, . . . , 𝐷) ∕= ∅

and hence 𝐶 ⊆ f ℙ𝑅(𝐶2, . . . , 𝐶𝑖+1, 𝐷, . . . , 𝐷) by Claim 5, as
desired, which completes the inductive argument. When 𝑖 =
𝑛 this gives 𝐶 ⊆ f ℙ𝑅(𝐶2, . . . , 𝐶𝑛) ⊆ f ℙ𝑅(𝑋, . . . ,𝑋), which
implies 𝐶 ⊆ proj1(𝑅 ∩ 𝑋𝑛). As 𝐶 ∈ 𝑀min was arbitrary,
this proves proj1(𝑅 ∩𝑋𝑛) = 𝑋 .

Corollary 7. Suppose 𝑅 ∈ 𝒜𝑛 and 𝐵1, . . . , 𝐵𝑛−1 ∈ 𝒫. Let
𝐵 = f ℙ𝑅(𝐵1, . . . , 𝐵𝑛−1).

1) For all (𝑏1, . . . , 𝑏𝑛−1) ∈ 𝐵1 × ⋅ ⋅ ⋅ × 𝐵𝑛−1 and 𝑏 ∈ 𝐷,
if (𝑏, 𝑏1, . . . , 𝑏𝑛−1) ∈ 𝑅 then 𝑏 ∈ 𝐵.

2) For all 𝑏 ∈ 𝐵 there exists (𝑏1, . . . , 𝑏𝑛−1) ∈ 𝐵1 × ⋅ ⋅ ⋅ ×
𝐵𝑛−1 such that (𝑏, 𝑏1, . . . , 𝑏𝑛−1) ∈ 𝑅.

3) For all 𝑥 ∈ 𝑋 there exists (𝑥1, . . . , 𝑥𝑛−1) ∈ 𝑋𝑛−1 such
that (𝑥, 𝑥1, . . . , 𝑥𝑛−1) ∈ 𝑅.

Proof: (1) and (2) follow from the definition of f ℙ𝑅, while
(3) follows from Claim 6.

Observe that if 𝑀min contains just one member 𝐶, then
𝑋 = 𝐶 ∈ 𝒫+ and so by Claim 6 we could choose 𝑆 = 𝐶 and
the proof of Theorem 6 would be complete. For the remainder
of the proof, let 𝑀min = {𝐶1, . . . , 𝐶𝑘} be an enumeration of
𝑀min and assume for the sake of contradiction that 𝑘 ≥ 2.

Definition 16. An evaluated term tree for ℙ consists of a
finite ordered directed tree 𝑇 = (𝑉,𝐸), an assignment to each

132

non-leaf node 𝑣 of an operation symbol f𝑅 ∈ 𝜏 whose arity
equals the number of children of 𝑣, and a map 𝐴 : 𝑉 → 𝒫

satisfying the following recursive condition: if 𝑣 is a non-leaf
node, 𝑣1, . . . , 𝑣𝑡 are its children (listed in increasing order),
and f𝑅 is the operation symbol assigned to 𝑣, then

𝐴(𝑣) = f ℙ𝑅(𝐴(𝑣1), . . . , 𝐴(𝑣𝑡)).

We call 𝐴(𝑣) the value of the evaluated term tree at 𝑣.

Note that if 𝑇1, 𝑇2 are evaluated term trees for ℙ, 𝑣 is a leaf
of 𝑇1, and the value of 𝑇1 at 𝑣 is equal to the value of 𝑇2 at
its root, then 𝑇2 may be glued to 𝑇1 by identifying the root
of 𝑇2 with 𝑣.

Evaluated term trees witness subuniverse generation in ℙ;
that is, if 𝐵1, . . . , 𝐵𝑛, 𝐶 ∈ ℙ, then 𝐶 ∈ Sgℙ(𝐵1, . . . , 𝐵𝑛) if
and only if there exists an evaluated term tree whose root has
value 𝐶 and whose leaves have values in {𝐵1, . . . , 𝐵𝑛, 𝐷}.
Claim 8. For any 𝑖, 𝑗 ∈ {1, . . . , 𝑘} with 𝑖 ∕= 𝑗 there exists an
evaluated term tree 𝑇𝑖,𝑗 for ℙ satisfying the following:

1) The value at each leaf is in {𝐶𝑖, 𝐷}. At least one leaf
has value 𝐶𝑖.

2) The value at the root is 𝐶𝑗 .

Proof: The existence of a tree satisfying (2) and the first
sentence of (1) follows from the fact that 𝐶𝑖 ≼ 𝐶𝑗 . That at
least one leaf has value 𝐶𝑖 follows from the fact that {𝐷} is
a subuniverse of ℙ.

We now construct a special evaluated term tree 𝑇 for ℙ as
follows. We start with 𝑇2 := 𝑇2,1. To each leaf of 𝑇2 whose
value is 𝐶2 we glue a copy of 𝑇3,2; call the resulting evaluated
term tree 𝑇3. Then to each leaf of 𝑇3 whose value is 𝐶3 we
glue a copy of 𝑇4,3, to get 𝑇4, etc. After we have constructed
𝑇𝑘, we glue to each leaf whose value is 𝐶𝑘 a copy of 𝑇1,𝑘, to
get 𝑇 . Here are the salient properties of 𝑇 :

1) The value at each leaf is in {𝐶1, 𝐷}.
2) The value at the root is 𝐶1.
3) For every 1 ≤ 𝑖 ≤ 𝑘 and every path from the root to

a leaf whose value is 𝐶1, some node on the path has
value in 𝐶𝑖.

Let 𝑉 denote the set of nodes of 𝑇 , 𝑟 the root, Λ the set of
leaves, and Λ1 the set of leaves whose value is 𝐶1. Also let
𝐴 : 𝑉 → ℙ be the value map.

Definition 17. A map 𝛼 : 𝑉 → 𝐷 is called a selection
map (for 𝑇). Suppose 𝛼 is a selection map, 𝑢 is an arbitrary
node, and 𝑣 is a non-leaf node of 𝑇 . Let f𝑅 be the operation
symbol in 𝜏 assigned to 𝑣 with 𝑅 ∈ 𝒜𝑛, let 𝑣1, . . . , 𝑣𝑛−1 be
the children of 𝑣 listed in increasing order, and let 𝛼(v) =
(𝛼(𝑣), 𝛼(𝑣1), . . . , 𝛼(𝑣𝑛−1)). We say that:

1) 𝛼 respects values at 𝑢 if 𝛼(𝑢) ∈ 𝐴(𝑢).
2) 𝛼 quasi-respects values at 𝑢 if 𝛼(𝑢) ∈ 𝑋 .
3) 𝛼 respects relations at 𝑣 if 𝛼(v) ∈ 𝑅.
4) 𝛼 quasi-respects relations at 𝑣 if 𝛼(v) ∈ 𝑅 ∪ 0(𝑛)𝐷 .

Note that, by Corollary 7(1), if 𝛼 is a selection map which
respects values at all 𝐶1-valued leaves and respects relations

at all non-leaf nodes, then 𝛼 respects values at all nodes. In
particular, 𝛼(𝑟) ∈ 𝐶1. Conversely:

Claim 9.

1) For all 𝑎 ∈ 𝐶1 there exists a selection map 𝛼𝑎 which
respects values at all nodes, respects relations at all
non-leaf nodes, and satisfies 𝛼𝑎(𝑟) = 𝑎.

2) For all 𝑎 ∈ 𝑋 there exists a selection map 𝛽𝑎 which
quasi-respects values at all nodes, respects relations at
all non-leaf nodes, and satisfies 𝛽𝑎(𝑟) = 𝑎.

3) For all 𝑎 ∈ 𝑋 there exists a selection map 𝛾𝑎 which
respects values at all 𝐶1-valued leaves, quasi-respects
relations at all non-leaf nodes, and satisfies 𝛾𝑎(𝑟) = 𝑎.

Proof: (1) We inductively define 𝛼𝑎, starting at the root.
Of course, 𝛼𝑎(𝑟) = 𝑎. Suppose now that 𝑣 is a non-leaf node
and 𝛼𝑎(𝑣) ∈ 𝐴(𝑣). Let f𝑅 be the operation symbol assigned
to 𝑣 with 𝑅 ∈ 𝒜𝑛, and let 𝑣1, . . . , 𝑣𝑛−1 be the children of 𝑣
in increasing order. As 𝐴(𝑣) = f ℙ𝑅(𝐴(𝑣1), . . . , 𝐴(𝑣𝑛−1)), by
Corollary 7(2) there exists (𝑐1, . . . , 𝑐𝑛−1) ∈ 𝐴(𝑣1) × ⋅ ⋅ ⋅ ×
𝐴(𝑣𝑛−1) such that (𝛼𝑎(𝑣), 𝑐1, . . . , 𝑐𝑛−1) ∈ 𝑅. We can thus
define 𝛼𝑎(𝑣𝑖) = 𝑐𝑖 and continue inductively.

(2) is proved similarly, using Corollary 7(3).
(3) Suppose 𝑎 ∈ 𝐶𝑖. Let 𝑉𝑖 denote the set of nodes of 𝑇 such

that the path from 𝑣 to the root includes a node having value
𝐶𝑖. We will construct 𝛾𝑎 so that it will inductively satisfy the
following additional property: 𝛾𝑎 has constant value 𝑎 on 𝑉 ∖𝑉𝑖
and respects values on 𝑉𝑖. By one of the salient properties of
𝑇 , this will imply that 𝛾𝑎 respects values at 𝐶1-valued leaves.

We start by defining 𝛾𝑎(𝑟) = 𝑎. Suppose now that 𝑣 is a
non-leaf node and 𝛾𝑎(𝑣) has already been defined. Let f𝑅 be
the operation assigned to 𝑣 with 𝑅 ∈ 𝒜𝑛, and let 𝑣1, . . . , 𝑣𝑛−1

be the children of 𝑣 in increasing order. If 𝑣 ∈ 𝑉𝑖 then
inductively we have 𝛾𝑎(𝑣) ∈ 𝐴(𝑣), so we define 𝛾𝑎 at the
children of 𝑣 exactly as in the definition of 𝛼𝑎; thus 𝛾𝑎 respects
relations at 𝑣. If instead 𝑣 ∈ 𝑉 ∖ 𝑉𝑖, then inductively we have
𝛾𝑎(𝑣) = 𝑎, and we define 𝛾𝑎(𝑣′) = 𝑎 for all children 𝑣′ of 𝑣;
thus 𝛾𝑎 quasi-respects relations at 𝑣. It remains to check that
the inductive property is maintained by this construction. The
only problem to consider is if 𝑣 ∈ 𝑉 ∖𝑉𝑖 but a child 𝑣′ of 𝑣 is
in 𝑉𝑖. If this is the case, then it must be that 𝑣′ has value 𝐶𝑖.
As the construction assigns 𝛾𝑎(𝑣′) = 𝑎 and as 𝑎 ∈ 𝐶𝑖, there
is no problem.

Recall that 𝜙 is the basic operation of 𝔻 referenced in the
statement of Theorem 6. Let 𝑚 be its arity.

Claim 10. For all 0 ≤ 𝑗 ≤ 𝑚,

𝜙(𝐶1, . . . , 𝐶1︸ ︷︷ ︸
𝑚−𝑗

, 𝑋, . . . , 𝑋︸ ︷︷ ︸
𝑗

) ⊆ 𝐶1.

Proof: By induction on 𝑗. When 𝑗 = 0 the claim is
simply that 𝜙(𝐶1, . . . , 𝐶1) ⊆ 𝐶1, which is true because
𝐶1 is a subuniverse of 𝔻. Suppose 𝑗 < 𝑚 and the claim
is true for 𝑗. To prove that it is true for 𝑗 + 1, let ℓ =
𝑚 − 𝑗 − 1 and assume 𝑎1, . . . , 𝑎ℓ ∈ 𝐶1 and 𝑥0, 𝑥1 . . . , 𝑥𝑗 ∈
𝑋 . It suffices to prove 𝜙(𝑎1, . . . , 𝑎ℓ, 𝑥0, . . . , 𝑥𝑗) ∈ 𝐶1. Let

133

𝛼𝑎1
, . . . , 𝛼𝑎ℓ

, 𝛽𝑥1
, . . . , 𝛽𝑥𝑗

, 𝛾𝑥0
be selection maps for 𝑇 con-

structed according to Claim 9. Define 𝛿 : 𝑉 → 𝐷 by

𝛿(𝑣) = 𝜙(𝛼𝑎1
(𝑣), . . . , 𝛼𝑎ℓ

(𝑣), 𝛾𝑥0
(𝑣), 𝛽𝑥1

(𝑣), . . . , 𝛽𝑥𝑗
(𝑣)).

𝛿 is a selection map. Suppose 𝑣 is a 𝐶1-valued leaf of 𝑇 . Then
𝛼𝑎𝑖

(𝑣) ∈ 𝐶1 for all 1 ≤ 𝑖 ≤ ℓ, 𝛾𝑥0
(𝑣) ∈ 𝐶1, and 𝛽𝑥𝑖

(𝑣) ∈ 𝑋
for all 1 ≤ 𝑖 ≤ 𝑗. Thus 𝛿(𝑣) ∈ 𝜙(𝐶, . . . , 𝐶, 𝐶︸ ︷︷ ︸

ℓ+1

, 𝑋, . . . , 𝑋︸ ︷︷ ︸
𝑗

) ⊆

𝐶1 by the inductive assumption. This proves that 𝛿 respects
values at 𝐶1-valued leaves.

Suppose next that 𝑣 is a non-leaf node of 𝑇 . Let f𝑅 be the
operation symbol assigned to 𝑣 with 𝑅 ∈ 𝒜𝑛, let 𝑣1, . . . , 𝑣𝑛−1

be the children of 𝑣 listed in increasing order, and for any
selection map 𝜂 let 𝜂(v) = (𝜂(𝑣), 𝜂(𝑣1), . . . , 𝜂(𝑣𝑛−1)). Then
𝛼𝑎𝑖

(v) ∈ 𝑅 for 1 ≤ 𝑖 ≤ ℓ, 𝛽𝑥𝑖
(v) ∈ 𝑅 for 1 ≤ 𝑖 ≤ 𝑗,

𝛾𝑥0
(v) ∈ 𝑅 ∪ 0(𝑛)𝐷 , and

𝛿(v) = 𝜙𝔻
𝑛

(𝛼𝑎1
(v), . . . , 𝛼𝑎ℓ

(v), 𝛾𝑥0
(v), 𝛽𝑥1

(v), . . . , 𝛽𝑥𝑗
(v))

∈ 𝜙𝔻
𝑛

(𝑅, . . . , 𝑅,𝑅 ∪ 0(𝑛)𝐷 , 𝑅, . . . , 𝑅) ⊆ 𝑅,

where the last inclusion follows because 𝑅 absorbs 0(𝑛)𝐷 with
respect to 𝜙. This proves that 𝛿 respects relations at all non-
leaf nodes.

It follows from the observation preceding Claim 9 that 𝛿
respects values at all nodes. In particular, 𝛿 respects values at
the root, i.e., 𝛿(𝑟) = 𝜙(𝑎1, . . . , 𝑎ℓ, 𝑥0, . . . , 𝑥𝑗) ∈ 𝐶1, which
finishes the proof of the Claim.

In particular, Claim 10 yields 𝜙(𝑋, . . . ,𝑋) ⊆ 𝐶1, while
𝑋 ⊆ 𝜙(𝑋, . . . ,𝑋) because 𝜙 is idempotent. Thus 𝑋 ⊆ 𝐶1,
implying 𝑋 = 𝐶1. This contradicts our assumption that
∣𝑀min∣ ≥ 2 and thus completes the proof of Theorem 6.

IV. CONCLUSION

We have proved that for every finite relational structure
B having a near-unanimity polymorphism, the corresponding
constraint satisfaction problem CSP(B) has bounded path-
width duality; equivalently, ¬CSP(B) is definable in linear
Datalog, and as a consequence, CSP(B) is in the complexity
class NL. This answers a question from [16].

The natural algebraic conjecture alluded to in the introduc-
tion, suggested by Larose and Tesson [27], is the following: if
B is core and 𝔹𝑒 is the idempotent reduct of the polymorphism
algebra of B, then CSP(B) has bounded pathwidth duality if
and only if the variety generated by 𝔹𝑒 “omits types 1, 2 and
5” in the sense of tame congruence theory. A characterization
of this property in terms of idempotent polymorphisms of B is
given by [22, Theorem 9.11]. Our result lends further support
to this conjecture which, however, remains open.

ACKNOWLEDGMENT

L. Barto was supported by the Grant Agency of the Czech
Republic, grant 201/09/P223 and by the Ministry of Education
of the Czech Republic, grant MSM 0021620839. M. Kozik
was supported by the Foundation for Polish Science, grant
No. HOM/2008/7 (supported by MF EOG) and National
Science Center grant DEC-2011/01/B/ST6/01006. R. Willard
was supported by the NSERC of Canada.

REFERENCES

[1] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

[2] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer, The
complexity of satifiability problems: Refining Schaefer’s theorem, Proc.
30th Math. Found. Comp. Sci. (2005), 71–82.

[3] K. Baker and A. Pixley, Polynomial interpolation and the Chinese
remainder theorem for algebraic systems, Math. Z. 143 (1975), 165–174.

[4] L. Barto, Finitely related algebras in congruence distributive varieties
have near unanimity terms, Canad. J. Math., published electronically Dec.
2011, doi:10.4153/CJM-2011-087-3, 19 pp.

[5] L. Barto and M. Kozik, Congruence distributivity implies bounded width,
SIAM J. Comput. 39 (2009), 1531–1542.

[6] L. Barto and M. Kozik, Constraint satisfaction problems of bounded
width, Proceedings of the 50th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2009), 595–603, IEEE Computer Soc., 2009.

[7] L. Barto and M. Kozik, Absorbing subalgebras, cyclic terms and the
constraint satisfaction problem, Logical Methods in Computer Science 8
(1:07) (2012), 1–26.

[8] C. Bergman, Universal Algebra, CRC Press, Boca Raton, 2012.
[9] V.G. Bodnarčuk, L.A. Kalužnin, V.N. Kotov, and B.A. Romov, Galois

theory for Post algebras. I, Cybernetics and Systems Analysis 5 (1969),
243–252.

[10] A. Bulatov, A graph of a relational structure and constraint satisfaction
problems, LICS ‘04 (2004), 448–457.

[11] A. Bulatov, A. Krokhin, and P. Jeavons, Classifying the complexity of
constraints using finite algebras, SIAM J. Comput. 34 (2005), 720–742.

[12] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra,
Springer-Verlag, New York, 1981.

[13] S. Cook and R. Sethi, Storage requirements for deterministic polynomial
time recognizable languages, J. Compu. System Sci. 13 (1976), 25–37.

[14] V. Dalmau, Constraint satisfaction problems in non-deteministic loga-
rithmic space, LNCS 2380 (2002), 414–425.

[15] V. Dalmau, Linear datalog and bounded path duality of relational
structures, Logical Methods in Computer Science 1 (2005), 1–32.

[16] V. Dalmau and A. Krokhin, Majority constraints have bounded pathwidth
duality, Euro. J. Combin. 29 (2008), 821–837.

[17] J. A. Ellis, I. H. Sudborough, and J. S. Turner, The vertex separation
and search number of a graph, Inform. Comput. 113 (1994), 50-79.

[18] T. Feder and M. Vardi, The computational structure of monotone
monadic SNP and constraint satisfaction: a study through Datalog and
group theory, SIAM J. Comput. 28 (1998), 57–104.

[19] D. Geiger, Closed systems of functions and predicates, Pacific J. Math.
27 (1968), 95–100.

[20] P. Hell and J. Nešetřil, Graphs and Homomorphisms, Oxford University
Press, 2004.

[21] P. Hell, J. Nešetřil, and X. Zhu, Duality and polynomial testing of tree
homomorphisms, Trans. Amer. Math. Soc. 348 (1996), 147–156.

[22] D. Hobby and R. McKenzie, The Structure of Finite Algebras, American
Mathematical Society, Providence, 1988.

[23] P. Jeavons, On the algebraic structure of combinatorial problems, The-
oret. Comput. Sci. 200 (1998), 185—204.

[24] P. Jeavons, D. Cohen, and M. Gyssens, How to determine the expressive
power of constraints, Constraints 4 (1999), 113–131.

[25] Ph. Kolaitis and M.Vardi, Conjunctive-query containment and constraint
satisfaction, J. Comput. System Sci. 61 (2000), 302–332.

[26] A. Krokhin and B. Larose, Solving order constraints in logarithmic
space, STACS‘03, LNCS 2607 (2003), 379–390.

[27] B. Larose and P. Tesson, Universal algebra and hardness problems for
constraint satisfaction problems, Theoret. Comput. Sci. 410 (2009), 1629–
1647.

[28] B. Larose, M. Valeriote, and L. Zádori, Omitting types, bounded width
and the ability to count, Internat. J. Algebra Comput. 19 (2009), 647–668.

[29] B. Larose and L. Zádori, Bounded width problems and algebras, Algebra
Universalis 56 (2007), 439–466.

[30] M. Maróti and R. McKenzie, Existence theorems for weakly symmetric
operations, Algebra Universalis 59 (2008), 463–489.

[31] U. Montanari, Networks of constraints: Fundamental properties and
applications to picture processing, Information Science 7 (1974), 95–132.

[32] N. Robertson and P. Seymour, Graph minors. I. Excluding a forest, J.
Combin. Theory Ser. B 35 (1983), 39–61.

[33] J. Ullman, Principles of Database and Knowledge-base Systems, Vol. 1,
Computer Science Press, 1988.

134

Appendix G – Robust satisfiability

138

Robust Satisfiability of Constraint Satisfaction Problems

Libor Barto
Department of Mathematics and Statistics

McMaster Universty
and

Department of Algebra
Charles University in Prague

Sokolovská 83, 18675 Praha 8, Czech Republic
libor.barto@gmail.com

Marcin Kozik
Theoretical Computer Science Department

Faculty of Mathematics and Computer Science
Jagiellonian University

ul. Prof. St. Lojasiewicza 6
30-348 Krakow, Poland

Marcin.Kozik@uj.edu.pl

ABSTRACT
An algorithm for a constraint satisfaction problem is called
robust if it outputs an assignment satisfying at least (1 −
g(ε))-fraction of the constraints given a (1 − ε)-satisfiable
instance, where g(ε) → 0 as ε → 0, g(0) = 0. Guruswami
and Zhou conjectured a characterization of constraint lan-
guages for which the corresponding constraint satisfaction
problem admits an efficient robust algorithm. This paper
confirms their conjecture.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical algorithms and problems

General Terms
Theory, Algorithms

Keywords
constraint satisfaction problem, bounded width, approxima-
tion, robust satisfiability, universal algebra

1. INTRODUCTION
The constraint satisfaction problem (CSP) provides a com-

mon framework for many theoretical problems in computer
science as well as for many real-life applications. An instance
of the CSP consists of a number of variables and constraints
imposed on them, and the objective is to efficiently find an
assignment for variables with desired properties, or at least
to decide whether such an assignment exists. In the deci-
sion problem for CSP we want to decide if there is an as-
signment satisfying all the constraints, in Max-CSP we wish
to find an assignment satisfying maximum number of con-
straints, in the approximation version of Max-CSP we seek
for an assignment which is in some sense close to the opti-
mal one. This paper deals with an interesting special case,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

robust satisfiability of the CSP: Given an instance which is
almost satisfiable (say (1 − ε)-fraction of the constraint can
be satisfied), we want to efficiently find an almost satisfying
assignment (which satisfies at least (1−g(ε))-fraction of the
constraints, where limε→0 g(ε) = 0).

Most of the computational problems for the CSP are hard
in general, therefore we have to put some restrictions on the
instance. In this paper we restrict the constraint language,
that is, all constraint relations must come from a fixed, fi-
nite set of relations on the domain. Robust satisfiability
was in this setting first suggested and studied in a paper by
Zwick [24]. The motivation is that in certain practical situ-
ations instances might be close to satisfiable (for example, a
small fraction of constraints might have been corrupted by
noise) and an algorithm that is able to satisfy most of the
constraints could be useful.

Zwick [24] concentrated on Boolean CSPs. He designed
a semidefinite programming (SDP) based algorithm which

finds (1−O(ε1/3))-satisfying assignment for (1−ε)-satisfiable
instances of 2-SAT and linear programming (LP) based algo-
rithm which finds (1−O(1/ log(1/ε)))-satisfying assignment
for (1−ε)-satisfiable instances of Horn-k-Sat (the number k
refers to the maximum numbers of variables in a Horn con-
straint). The quantitative dependence on ε was improved
for 2-SAT to (1 − O(

√
ε)) in [7]. For CUT, a special case of

2-SAT, the Goemans-Williamson algorithm [11] also achieves
(1 − O(

√
ε)). The same dependence was proved more gen-

erally for Unique-Games(q) [6] (where q refers to the size of

the domain), which improved (1 − O(5
√
ε log1/2(1/ε))) ob-

tained in [17]. For Horn-2-Sat the exponential loss can be
replaced by (1 − 3ε) [16] and even (1 − 2ε) [12]. These
bounds for Horn-k-Sat (k ≥ 3), Horn-2-Sat, 2-SAT, and
Unique-Games(q) are actually essentially optimal [17, 18,
12] assuming Khot’s Unique Games Conjecture [17].

On the negative side, if the decision problem for CSP is
NP-complete, then given a satisfiable instance it is NP-hard
to find an assignment satisfying α-fraction of the constraints
for some constant α < 1 (see [16] for the Boolean case and
[14] for the general case). In particular these problems can-
not admit an efficient robust satisfiability algorithm (assum-
ing P 6= NP). However NP-completeness of the decision
problem is not the only obstacle for robust algorithms. In
[13] H̊astad proved a strikingly optimal hardness result: for
E3-LIN(q) (linear equations over Zq where each equation
contains precisely 3 variables) it is NP-hard to find an as-
signment satisfying (1/q+ε)-fraction of the constraints given

an instance which is (1− ε)-satisfiable. Note that the trivial
random algorithm achieves 1/q in expectation.

As observed in [24] the above results cover all Boolean
CSPs, because, by Schaefer’s theorem [23], E3-LIN(q), Horn-
k-Sat and 2-SAT are essentially the only CSPs with tractable
decision problem. What about larger domains? A natu-
ral property which distinguishes Horn-k-Sat, 2-SAT, and
Unique-Games(q) from E3-LIN(q) and NP-complete CSPs
is bounded width [9]. Briefly, a CSP has bounded width if
the decision problem can be solved by checking local con-
sistency of the instance. These problems were characterized
independently by the authors [1] and Bulatov [3]. It was
proved that, in some sense, the only obstacle to bounded
width is E3-LIN(q) – the same problem which is difficult
for robust satisfiability. These facts motivated Guruswami
and Zhou to conjecture [12] that the class of bounded width
CSPs coincide with the class of CSPs admitting a robust
satisfiability algorithm.

A partial answer to the conjecture for width one prob-
lems was recently independently given by Kun, O’Donnell,
Tamaki, Yoshida and Zhou [19] (where they also show that
width 1 characterizes problems robustly decidable by the
canonical linear programming relaxation), and Dalmau and
Krokhin [8] (where they also consider some problems be-
yond width 1). This paper confirms the Guruswami and
Zhou conjecture in full generality. The proof uncovers an in-
teresting connection between the outputs of SDP (and LP)
relaxations and Prague strategies – a consistency notion cru-
cial for the bounded width characterization [1].

2. PRELIMINARIES

Definition 1. An instance of the CSP is a triple I = (V,D,
C) with V a finite set of variables, D a finite domain, and
C a finite list of constraints, where each constraint is a pair
C = (S,R) with S a tuple of variables of length k, called
the scope of C, and R an k-ary relation on D (i.e. a subset
of Dk), called the constraint relation of C.

A finite set of relations Γ on D is called a constraint lan-
guage. An instance of CSP(Γ) is an instance of the CSP
such that all the constraint relations are from Γ.

An assignment for I is a mapping F : V → D. We say
that F satisfies a constraint C = (S,R) if F (S) ∈ R (where
F is applied component-wise). The value of F , Val(F, I), is
the fraction of constraints it satisfies. The optimal value of
I is Opt(I) = maxF :V →D Val(F, I).

The decision problem for CSP(Γ) asks whether an input in-
stance I of CSP(Γ) has a solution, i.e. an assignment which
satisfies all the constraints. It is known [4] that if CSP(Γ)
is tractable, then there exists a polynomial algorithm for
finding an assignment F with Val(F, I) = 1.

Definition 2. Let Γ be a constraint language and let α, β
be real numbers. An algorithm (α, β)-approximates CSP(Γ),
if it outputs an assignment F with Val(F, I) ≥ α for every
instance I of CSP(Γ) such that Opt(I) ≥ β.

We say that CSP(Γ) admits a robust satisfiability algo-
rithm if there exists a function g : [0, 1] → [0, 1] such that
limε→0 g(ε) = 0, g(0) = 0, and a polynomial algorithm
which (1 − g(ε), 1 − ε)-approximates CSP(Γ) for every ε ∈
[0, 1].

Bounded width and the Guruswami-Zhou con-
jecture
A natural notion with distinguishes known CSPs which ad-
mit a robust satisfiability algorithm (like Horn-k-Sat, 2-
SAT, and Unique-Games(q)) from those which do not (like
E3-LIN(q), NP-complete CSPs) is bounded width.

Informally, CSP(Γ) has bounded width if the decision
problem for CSP(Γ) can be solved by checking local consis-
tency. More specifically, for fixed integers (k, l), the (k, l)-
algorithm derives the strongest constraints on k variables
which can be deduced by looking at l variables at a time.
During the process we may obtain a contradiction (i.e. an
empty constraint relation), in this case I has no solution.
We say that CSP(Γ) has width (k, l) if this procedure is
sound, that is, an instance has a solution if and only if the
(k, l)-consistency algorithm does not derive a contradiction.
We say that CSP(Γ) has width k, if it has width (k, l) for
some l. Finally, we say that CSP(Γ) has bounded width if
it has width k for some k. We refer to [9, 21, 5] for formal
definitions and background.

Conjecture 3 (Guruswami,Zhou [12]). CSP(Γ) ad-
mits a robust satisfiability algorithm if and only if CSP(Γ)
has bounded width.

One implication of the Guruswami-Zhou conjecture follows
from known results. In [1] and [3] it was proved that E3-
LIN(q) is essentially the only obstacle for bounded width
– if Γ cannot “encode linear equations”, then CSP(Γ) has
bounded width (here we do not need to assume P 6= NP).
Therefore, if CSP(Γ) does not have bounded width, then
Γ can encode linear equations and, consequently, CSP(Γ)
admits no robust satisfiability algorithm by H̊astad’s result
[13] (assuming P 6= NP). Details will be presented in [8].

This paper proves the other implication:

Theorem 4. If CSP(Γ) has bounded width then it admits
a robust satisfiability algorithm. The randomized version of
this algorithm returns an assignment satisfying, in expec-
tation, (1 − O(log log(1/ε)/log(1/ε)))-fraction of the con-
straints given a (1 − ε)-satisfiable instance.

LP and SDP relaxations
Essentially the only known way to design efficient approxi-
mation algorithms is through linear programming (LP) re-
laxations and semidefinite programming (SDP) relaxations.
For instance, the robust satisfiability algorithm for Horn-

k-Sat [24] uses LP relaxation while the robust satisfiability
algorithms for 2-SAT and Unique-Games(q) [24, 7] are SDP-
based.

Recently, robust satisfiability algorithm was devised in
[19] and independently [8] for all CSPs of width 1 (this cov-
ers Horn-k-Sat, but not 2-SAT or Unique-Games(q)). The
latter one uses a reduction to Horn-k-Sat while the former
uses an LP relaxation directly. In fact, it is shown in [19]
that, in some sense, LP relaxations can be used precisely for
width 1 CSPs.

Our algorithm is based on the canonical SDP relaxation
[22]. We will use it only for instances with unary and binary
constraints (a reduction is provided in the appendix). In
this case we can formulate the relaxation as follows.

Definition 5. Let Γ be a constraint language over D con-
sisting of at most binary relations and let I = (V,D, C) be

an instance of CSP(Γ) with m constraints. The goal for the
canonical SDP relaxation of I is to find (|V ||D|)-dimensional
real vectors xa, x ∈ V, a ∈ D maximizing

1

m





∑

(x,R)∈C

∑

a∈R

||xa||2 +
∑

((x,y),R)∈C

∑

(a,b)∈R

xayb



 (1)

subject to

(SDP1) xayb ≥ 0 for all x, y ∈ V, a, b ∈ D

(SDP2) xaxb = 0 for all x ∈ V, a, b ∈ D, a 6= b, and

(SDP3)
∑

a∈D xa =
∑

a∈D ya,
∣

∣

∣

∣

∑

a∈D xa

∣

∣

∣

∣

2
= 1

for all x, y ∈ V .

The dot products xayb can be thought of as weights and the
goal is to find vectors so that maximum weight is given to
pairs (or elements) in constraint relations. It will be conve-
nient to use the notation

xA =
∑

a∈A

xa

for a variable x ∈ V and a subset A ⊆ D, so that condition
(SDP3) can be written as xD = yD, ||xD||2 = 1. The
contribution of one constraint to (1) is by (SDP3) at most
1 and it is the greater the less weight is given to pairs (or
elements) outside the constraint relation.

The optimal value for the sum (1), SDPOpt(I), is always
at least Opt(I). There are algorithms that outputs vectors
with (1) ≥ SDPOpt(I)−δ which are polynomial in the input
size and log(1/δ).

Polymorphisms
Much of the recent progress on the complexity of the decision
problem for CSP was achieved by the algebraic approach
[4]. The crucial notion linking relations and operations is a
polymorphism:

Definition 6. An l-ary operation f on D is a polymor-
phism of a k-ary relation R, if

(f(a1
1, . . . , a

l
1), f(a1

2, . . . , a
l
2), . . . , f(a1

k, . . . , a
l
k)) ∈ R

whenever (a1
1, . . . , a

1
k), (a2

1, . . . , a
2
k), . . . , (al

1, . . . , a
l
k) ∈ R.

We say that f is a polymorphism of a constraint language
Γ, if it is a polymorphism of every relation in Γ. The set of
all polymorphisms of Γ will be denoted by Pol(Γ)

We say that Γ is a core, if all its unary polymorphisms are
bijections.

The complexity of the decision problem for CSP(Γ) (modulo
log-space reductions) depends only on equations satisfied by
operations in Pol(Γ) (see [4, 20]). Moreover, equations also
determine whether CSP(Γ) has bounded width [21]. The
following theorem [10] states one such an equational charac-
terization:

Theorem 7. Let Γ be a core constraint language. Then
the following are equivalent.

• CSP(Γ) has bounded width.

• Pol(Γ) contains a 3-ary operation f1 and a 4-ary op-
eration f2 such that, for all a, b ∈ D,

f1(a, a, b) = f1(a, b, a) = f1(b, a, a) =

= f2(a, a, a, b) = · · · = f2(b, a, a, a)

and f1(a, a, a) = a.

We remark that the problem of deciding whether CSP(Γ)
has bounded width, given Γ as an input, is tractable (the
problem is obviously in NP).

3. PRAGUE INSTANCES
The proof of the characterization of bounded width CSPs

in [1] relies on a certain consistency notion called Prague
strategy. It turned out that Prague strategies are related to
outputs of canonical SDP relaxations and this connection is
what made our main result possible.

The notions defined below will be used only for certain
types of instances and constraint languages. Therefore, in
the remainder of this section we assume that Λ is a con-
straint language on a domain D, Λ contains only binary
relations, J = (V,D, CJ) is an instance of CSP(Λ) such
that every pair of distinct variables is the scope of at most
one constraint ((x, y), PJ

x,y), and if ((x, y), PJ
x,y) ∈ CJ then

((y, x), PJ
y,x) ∈ CJ , where PJ

y,x = {(b, a) : (a, b) ∈ PJ
x,y}.

(We usually omit the superscripts for Px,y’s and C.)
The most basic consistency notion for CSP instances is

1-minimality.

Definition 8. The instance J is called 1-minimal, if there
exist subsets PJ

x ∈ D, x ∈ V such that, for every con-
straint ((x, y), PJ

x,y), the constraint relation PJ
x,y is subdirect

in PJ
x × PJ

y , i.e. the projection of PJ
x,y to the first (resp.

second) coordinate is equal to PJ
x (resp. PJ

y).

The subset PJ
x is uniquely determined by the instance (if x

is in the scope of some constraint).

Weak Prague instance
We will work with a weakening of the notion of a Prague
strategy which we call a weak Prague instance. First we
need to define steps and patterns.

Definition 9. A step (in J) is a pair of variables (x, y)
which is the scope of a constraint in CJ . A pattern from x
to y is a sequence of variables p = (x = x1, x2, . . . , xk = y)
such that every (xi, xi+1), i = 1, . . . , k − 1 is a step.

For a pattern p = (x1, . . . , xk) we put −p = (xk, . . . , x1).
If p = (x1, . . . , xk), q = (y1, . . . , yl), xk = y1 then the con-
catenation of p and q is the pattern p+q = (x1, x2, . . . , xk =
y1, y2, . . . , yk). For a pattern p from x to x and a natural
number k, kp denotes the k-time concatenation of p with
itself.

For a subset A ⊆ D and a step p = (x, y) we define A+ p
to be the projection of the constraint relation Px,y onto the
second coordinate after restricting the first coordinate to A,
that is, A + p = {b ∈ D : (∃ a ∈ A) (a, b) ∈ Px,y}. For a
general pattern p, the set A+ p is defined step by step.

Definition 10. J is a weak Prague instance if

(P1) J is 1-minimal,

(P2) for every A ⊆ PJ
x and every pattern p from x to x, if

A+ p = A then A− p = A, and

(P3) for any patterns p1, p2 from x to x and every A ⊆ PJ
x ,

if A+ p1 + p2 = A then A+ p1 = A.

The instance J is nontrivial, if PJ
x 6= ∅ for every x ∈ V .

To clarify the definition let us consider the following digraph:
vertices are all the pairs (A,x), where x ∈ V and A ⊆ PJ

x ,
and ((A, x), (B, y)) forms an edge iff (x, y) is a step and A+
(x, y) = B. Condition (P3) means that no strong component
contains (A,x) and (A′, x) with A 6= A′, condition (P2) is
equivalent to the fact that every strong component contains
only undirected edges. Also note that 1-minimality implies
A ⊆ A+ p− p for any pattern from x.

A simple example of a weak Prague instance (which is
not a Prague strategy) is V = {x, y, z}, D = {0, 1}, Px,y =
Px,z = {(0, 0), (1, 1)}, Py,z = {(0, 0), (0, 1), (1, 0), (1, 1)}.

If we change Py,z to {(0, 1), (1, 0)} the conditions (P1)
and (P2) hold but {0} + (x, y, z, x) + (x, y, z, x) = {0} and
{0} + (x, y, z, x) = {1}.

If, on the other hand, we set Py,z to {(0, 0), (1, 0), (1, 1)}
then (P1) and (P3) hold while {0} + (x, y, z, x) = {0}, but
{0} − (x, y, z, x) = {0, 1}.

The main result of this paper relies on the following the-
orem which is a slight generalization of a result in [1].

Theorem 11. [2] If CSP(Λ) has bounded width and J is
a nontrivial weak Prague instance of CSP(Λ), then J has a
solution (and a solution can be found in polynomial time).

SDP and Prague instances
We now show that one can naturally associate a weak Prague
instance to an output of the canonical SDP relaxation. This
material will not be used in what follows, it is included to
provide some intuition for the proof of the main theorem.

Let xa, x ∈ V , a ∈ D be arbitrary vectors satisfying
(SDP1), (SDP2) and (SDP3). (These vectors do not need
to come as a result of the canonical SDP relaxation of a CSP
instance.) We define a CSP instance J by

J = (V,D, {((x, y), Px,y) : x, y ∈ V, x 6= y}),
Px,y = {(a, b) : xayb > 0},

and we show that it is a weak Prague instance.
The instance is 1-minimal with PJ

x = {a ∈ D : xa 6= 0}.
To prove this it is enough to verify that the projection of Px,y

to the first coordinate is equal to PJ
x . If (a, b) ∈ Px,y, then

clearly xa cannot be the zero vector, therefore a ∈ PJ
x . On

the other hand, if a ∈ PJ
x then 0 < ||xa||2 = xaxD = xayD

and thus at least one of the dot products xayb, b ∈ D is
nonzero and (a, b) ∈ Px,y .

To check (P2) and (P3) we note that, for any x, y ∈ V, x 6=
y and A ⊆ PJ

x , the vector yA+(x,y) has either a strictly
greater length than xA, or xA = yA+(x,y), and the latter
happens iff A + (x, y, x) = A (see Claim 12.3, in fact, one
can check that yA+(x,y) is obtained by adding to xA an
orthogonal vector whose size is greater than zero iff A +
(x, y, x) 6= A). By induction, for any pattern p from x to y,
the vector yA+p is either strictly longer than xA, or xA =
yA+p and A+p−p = A. Now (P2) follows immediately and
(P3) is also easily seen: If A + p + q = A then necessarily
xA = xA+p which is possible only if A = A+ p.

We end this section with several remarks.

• To prove property (P2) we only need to consider the
lengths of the vectors. In fact, this property will be
satisfied when we start with the canonical linear pro-
gramming relaxation (and define the instance J in a
similar way). This is not the case for property (P3).

• The above weak Prague instance is in fact a Prague
strategy in the sense of [1]. This means that every
pair of variables is the scope of a (unique) constraint
and all strong components of the digraph introduced
after Definition 10 are complete graphs.

• There were attempts to show that the instance J satis-
fies a still stronger consistency property – it is a (2, 3)-
strategy. A (2, 3)-strategy is a 1-minimal instance such
that every pair of variables is the scope of a constraint,
and Px,y is a subset of the composition of the rela-
tions Px,z and Pz,y for every x, y, z. The following
example shows that it is not the case. Consider V =
{x, y, z}, D = {0, 1} and vectors x0 = (1/2, 1/2, 0),
x1 = (1/2,−1/2, 0), y0 = (1/4,−1/4,

√
2/4), y1 =

(3/4, 1/4,−
√

2/4), z0 = (1/4, 1/4,
√

2/4), z1 = (3/4,
−1/4,

√
2/4). The constraint relations are then Px,y =

{(0, 1), (1, 0), (1, 1)} = Py,x, Px,z = {(0, 0), (0, 1), (1,
1)} = P−1

z,x , Py,z = {(0, 0), (0, 1), (1, 0), (1, 1)} = Pz,y.
The pair (0, 0) ∈ Py,z is not in the composition of the
relations Py,x and Px,z since there is no a ∈ {0, 1} such
that (0, a) ∈ Py,x and (a, 0) ∈ Px,z.

• Finally, we note that if I is an instance of the CSP with
SDPOpt(I) = 1 and we define J using vectors with
the sum (1) equal to 1, then a solution of J is necessar-
ily a solution to I. Showing that“SDPOpt(I) = 1” im-
plies “I has a solution” was suggested as a first step to
prove the Guruswami-Zhou conjecture. The above ex-
ample explains that it is not straightforward to achieve
this goal using (2, 3)-strategies.

4. PROOF
The main result, Theorem 4, is a consequence of the fol-

lowing theorem. The reduction, derandomization and omit-
ted details are given in the appendix.

Theorem 12. Let Γ be a core constraint language over D
containing at most binary relations. If CSP(Γ) has bounded
width, then there exists a randomized algorithm which given
an instance I of CSP(Γ) and an output of the canonical SDP
relaxation with value at least 1−1/n4n (where n is a natural
number) produces an assignment with value at least 1−K/n,
where K is a constant depending on |D|. The running time
is polynomial in m (the number of constraints) and nn.

Proof. Let I = (V,D, C) be an instance of CSP(Γ) with
m constraints and let xa, x ∈ V , a ∈ D be vectors satisfying
(SDP1), (SDP2), (SDP3) such that the sum (1) is at least
1 − 1/n4n. Without loss of generality we assume that n >
|D|.

Let us first briefly sketch the idea of the algorithm. The
aim is to define an instance J in a similar way as in the pre-
vious section (J is defined after Claim 12.1), but instead of
all pairs with nonzero weight we only include pairs of weight
greater than a threshold (chosen in Step 1). This guaran-
tees that every solution to J satisfies all the constraints of
I which do not have large weight on pairs outside the con-
straint relation (the bad constraints are removed in Step 3).
The instance J (more precisely, its algebraic closure) has
a solution by Theorem 11 as soon as we ensure that it is
a weak Prague instance. Property (P1) is dealt with in a
similar way as in [19]: We keep only constraints with a gap
– all pairs have either smaller weight than the threshold, or

significantly larger (Step 2). This also gives a property sim-
ilar to the one in the motivating discussion in the previous
section: The vector yA+(x,y) is either significantly longer
than xA or these vectors are almost the same. However,
large amount of small differences can add up, so we need to
continue taming the instance. In Steps 4 and 5 we divide
the unit ball into layers and remove some constraints so that
almost the same vectors of the form xA, yA+(x,y) never lie
in different layers. This already guarantees property (P2).
For property (P3) we use“cutting by hyperplanes” idea from
[11]. We choose sufficiently many hyperplanes so that every
pair xA, xB of different vectors in the same layer is cut (the
bad variables are removed in Step 7) and we do not allow
almost the same vectors for different variables to cross the
hyperplane (Step 8).

The description of the algorithm follows.

1. Choose r ∈ {1, 2, . . . , n− 1} uniformly at random.

2. Remove from C all the unary constraints (x,R) such
that ||xa||2 ∈ [n−4r−4, n−4r) for some a ∈ D and all
the binary constraints ((x, y), R) such that xayb ∈
[n−4r−4, n−4r) for some a, b ∈ D.

3. Remove from C all the unary constraints (x,R) such
that ||xa||2 ≥ n−4r for some a 6∈ R and all the binary
constraints ((x, y), R) such that xayb ≥ n−4r for some
(a, b) 6∈ R.

Let

u1 = 2|D|2n−4r−4 and u2 = n−4r − u1.

For two real numbers γ, ψ 6= 0 we denote by γ ÷ ψ the
greatest integer i such that γ − iψ > 0 and this difference is
denoted by γ mod ψ.

4. Choose s ∈ [0, u2] uniformly at random.

5. Remove from C all the binary constraints ((x, y),R)
such that | ||xA||2 − ||yB||2 | ≤ u1 and (||xA||2 − s) ÷
u2 6= (||yB||2 − s) ÷ u2 for some A,B ⊆ D.

The remaining part of the algorithm uses the following def-
initions. For all x ∈ V let

Px = {a ∈ D : ||xa||2 ≥ n−4r}.
For a vector w we put

h(w) = (||w||2 − s) ÷ u2

and

t(w) =
⌈

π(logn)n2r min{
√

(h(w) + 2)u2, 1}
⌉

.

We say that w1 and w2 are almost the same if h(w1) =
h(w2) and ||w1 −w2||2 ≤ u1.

6. Choose unit vectors q1, q2, . . . , q⌈π(log n)n2n⌉ indepen-

dently and uniformly at random.

7. We say that a variable x ∈ V is uncut if there ex-
ists A,B ⊆ Px, A 6= B such that h(xA) = h(xB) and
sgn xAqi = sgn xBqi for every 1 ≤ i ≤ t(xA) (in
words, no hyperplane determined by the first t(xA) =
t(xB) vectors qi cuts the vectors xA, xB). Remove
from C all the constraints whose scope contains an un-
cut variable.

8. Remove from C all the binary constraints ((x, y),R)
for which there exist A ⊆ Px, B ⊆ Py such that xA,
yB are almost the same and sgn xAqi 6= sgn yBqi for
some 1 ≤ i ≤ t(xA).

9. Return a solution of I.

Claim 12.1. Expected fraction of constraints removed in
steps 2, 3, 5, 7 and 8 is at most K/n for some constant K.

Remark. The constant K depends exponentially on the
size of the domain |D|.

Proof. Step 2. For each binary constraint there are
|D|2 choices for a, b ∈ D and therefore at most |D|2 bad
choices for r. For a unary constraint the number of bad
choices is at most |D|. Thus the probability that a given
constraint will be removed is at most |D|2/(n − 1) and it
follows that the expected fraction of removed constraints is
at most |D|2/(n− 1).

Step 3. The contribution of every removed constraint to
the sum (1) is at most 1−n−4r ≤ 1−n−4n+4. If more than
γ-fraction of the constraints is removed than the sum is at
most 1/m((1−γ)m+γm(1−n−4n+4)) = 1−γn−4n+4. Since
(1) ≥ 1 − 1/n4n, we have γ ≤ 1/n4.

Step 5. For every constraint ((x, y),R) and every A,B ⊆
D such that | ||xA||2 − ||yB||2 | ≤ u1, ||xA|| ≤ ||yB||, the
inequality (||xA||2−s)÷u2 < (||yB||2−s)÷u2 can be satisfied
only if (||yB||2 − s) mod u2 < u1. The bad choices for
s thus cover at most (u1/u2)-fraction of the interval [0, u2].
As u1/u2 < K1/n

4 (for a suitable constant K1 depending on
|D|), the probability of a bad choice is at mostK1/n

4. There

are 4|D| pairs of subsets A,B ⊆ D, therefore the probability
that the constraint is removed is less than K14

|D|/n4 and so
is the expected fraction of removed constraints.

Before analyzing Steps 7 and 8 let us observe that, for any
vector w such that 1 ≥ ||w|| ≥ n−4r,

π(log n)n2r ||w|| ≤ t(w) ≤ 2π(log n)n2r ||w|| + 1.

The first inequality follows from

√

(h(w) + 2)u2 =

√

u2((||w||2 + 2u2 − s) ÷ u2) ≥

≥

√

u2
||w||2 + u2 − s

u2
≥ ||w||

and the second inequality follows from

√

(h(w) + 2)u2 ≤

√

u2
(||w||2 + 2u2 − s)

u2
≤

≤
√

||w||2 + 2u2 ≤
√

||w||2 + 2 ||w||2 < 2 ||w|| .
Step 7. Consider two different subsets A,B of Px such

that h(xA) = h(xB). Suppose that A \ B 6= ∅, the other
case is symmetric. Let θ be the angle between xA and xB.
As xA −xA∩B(= xA\B), xB −xA∩B and xA∩B are pairwise
orthogonal, the angle θ is greater than or equal to the angle
θA between xA and xA∩B. (Given three pairwise orthogonal
vectors v1,v2,v3, the angle between v1 + v2 and v1 + v3 is
always greater than or equal to the angle between v1+v2 and
v1. This is a straightforward calculation using, for instance,
dot products. In our situation v1 = xA∩B, v2 = xA\B

and v3 = xB\A.) We have sin θA =
∣

∣

∣

∣xA\B

∣

∣

∣

∣ / ||xA||. Since

A ⊆ Px, we get
∣

∣

∣

∣xA\B

∣

∣

∣

∣ ≥
√
n−4r = n−2r and then sin θA =

∣

∣

∣

∣xA\B

∣

∣

∣

∣ / ||xA|| ≥ n−2r/ ||xA||, so θ ≥ θA ≥ n−2r/ ||xA||.
The probability that qi does not cut xA and xB is thus

at most 1 − n−2r/π ||xA|| and the probability that none of
the vectors q1, . . . ,qt(xA) cut them is at most

(

1 − n−2r

π ||xA||

)t(xA)

≤
[

(

1 − 1

πn2r ||xA||

)πn2r ||xA||
]log n

≤

≤
(

1

2

)log n

=
1

n
.

The first inequality uses that t(xA) ≥ (log n)n2r ||xA|| which
we observed above. In the second inequality we have used
that (1 − 1/η)η ≤ 1/2 whenever η ≥ 2.

For a single variable there are at most 4|D| choices for
A,B ⊆ Px, therefore the probability that x is uncut is at
most 4|D|/n. The scope of every constraint contains at most
2 variables, hence the probability that a constraint is re-
moved is at most 2 · 4|D|/n and the expected fraction of the
constraints removed in this step has the same upper bound.

Step 8. Assume that ((x, y), R) is a binary constraint
and A ⊆ Px, B ⊆ Py are such that xA and yB are almost
the same. Let θ be the angle between xA and yB and θA be
the angle between yB and yB − xA. By the law of sines we
have ||xA|| /(sin θA) = ||yB − xA|| /(sin θ), and

θ ≤ 2 sin θ =
2 ||yB − xA||

||xA||
sin(θA) ≤ 2 ||yB − xA||

||xA||
≤ 2

√
u1

||xA||
,

where the first inequality follows from θ ≤ π/2 (the dif-
ference of xA and yB has length at most

√
u1 while both

vectors have length at least n−2r >
√
u1). Therefore, the

probability that vectors xA and yB are cut by some of the
vectors qi, 1 ≤ i ≤ t(xA) is at most

t(xA)
2
√
u1

||xA||
≤ (2π(logn)n2r ||xA|| + 1)

2
√

2|D|2n−4r−4

||xA||
≤

≤ K2(log n)n−2 ≤ K2

n
,

where K2 is a constant. There are at most 4|D| choices for
A,B, so the probability that our constraint will be removed
is less than K24

|D|/n.

Now we define the instance J and proceed to show that J is
a weak Prague instance. Let S denote the set of pairs which
are the scope of some binary constraint of I after Step 8 and
let S−1 = {(x, y) : (y, x) ∈ S}. We put

J = (V,D, {((x, y), PJ
x,y) : (x, y) ∈ S ∪ S−1}),

PJ
x,y = {(a, b) : xayb ≥ n−4r}.

Claim 12.2. The instance J is 1-minimal and PJ
x = Px.

Proof. Let (x, y) ∈ S and take an arbitrary constraint
((x, y),R) which remained in C.

First we prove that Px,y ⊆ Px × Py for every a, b ∈ D.
Indeed, if (a, b) ∈ Px,y then xayb ≥ n−4r , therefore ||xa||2 =
xaxD = xayD ≥ n−4r , so a ∈ Px. Similarly, b ∈ Py .

On the other hand, if a ∈ Px then n−4r ≤ ||xa||2 = xayD,
thus there exist b ∈ D such that xayb ≥ n−4r/|D| ≥ n−4r−4

(we have used n4 ≥ |D|). But then xayb ≥ n−4r, otherwise

the constraint ((x, y),R) would be removed in Step 2. This
implies that (a, b) ∈ Px,y. We have shown that the projec-
tion of Px,y to the first coordinate contains Px. Similarly,
the second projection contains Py, so Px,y is subdirect in
Px × Py.

For verification of properties (P2) and (P3) the following
observation will be useful.

Claim 12.3. Let (x, y) ∈ S ∪ S−1, A ⊆ Px, B = A +
(x, y). If A = B + (y, x), then the vectors xA and yB are
almost the same. In the other case, i.e. if A B + (y, x),
then h(yB) > h(xA).

Proof. The number ||yB − xA||2 is equal to

yByB − xAyB − xAyB + xAxA =

= xDyB − xAyB − xAyB + xAyD = xD\AyB + xAyD\B.

No pair (a, b), with a ∈ A and b ∈ D \ B, is in PJ
x,y so the

dot product xayb is smaller than n−4r . Then in fact xayb <
n−4r−4 otherwise all the constraints with scope (x, y) would
be removed in Step 2. It follows that the second summand
is always at most |D|2n−4r−4 and the first summand has the
same upper bound in the case B + (y, x) = A.

Moreover, ||yB||2 − ||xA||2 is equal to

yByB − xAxA = xDyB − xAyD =

= xDyB − xAyB − xAyD\B = xD\AyB − xAyD\B.

If B + (y, x) = A then we have a difference of two nonneg-
ative numbers less than or equal |D|2n−4r−4, therefore the
absolute value of this expression is at most u1. But then
h(xA) = h(yB), otherwise all constraint with scope (x, y)
or (y, x) would be removed in Step 5. Using the previous
paragraph, it follows that xA and yB are almost the same.

If B + (y, x) properly contains A then the first summand
xD\AyB is greater than or equal to n−4r, so the whole

expression is at least n−4r − |D|2n−4r−4 > u2 and thus
h(yB) > h(xA).

Claim 12.4. J is a weak Prague instance.

Proof. (P2). Let A ⊆ Px and let p = (x1, . . . , xi) be a
pattern in J from x to x (i.e. x1 = xi = x). By the previous
claim h(xA) = h((xi)A+(x1,...,xi)) ≥ h((xi−1)A+(x1,...,xi−1))
≥ · · · ≥ h((x2)A+(x1,x2)) ≥ h(xA). It follows that all these
inequalities must in fact be equalities and, by applying the
claim again, we get that the vectors (xj)A+(x1,x2,...,xj) and
(xj+1)A+(x1,x2,...,xj+1) are almost the same and, moreover,
A+ (x1, x2, . . . , xj+1) + (xj+1, xj) = A+ (x1, x2, . . . , xj) for
every 1 ≤ j < i. Therefore A+ p− p = A as required.

(P3). Let A ⊆ Px, let p1 = (x1, . . . , xi), p2 be two
patterns from x to x such that A + p1 + p2 = A and let
B = A+p1. For contradiction assume A 6= B. The same ar-
gument as above proves that the vectors (xj)A+(x1,x2,...,xj)

and (xj+1)A+(x1,x2,...,xj+1) are almost the same for every
1 ≤ j < i, and then h(xA) = h(xB). There exists k ≤
t(xA) such that sgn xAqk 6= sgn xBqk, otherwise x is un-
cut and all constraints whose scope contains x would be
removed in Step 7. But this leads to a contradiction, since
sgn (xj)A+(x1,...,xj)qk = sgn (xj+1)A+(x1,...,xj+1)qk for all
1 ≤ j < i, otherwise the constraints with scope (xj , xj+1)
would be removed in Step 8.

Observe that every solution F to J satisfies all the con-
straints which remained in I after Step 8: For every unary
constraint (x,R) we have Px ⊆ R (from Step 3) and for ev-
ery binary constraint ((x, y),R) we have Px,y ⊆ R. Since
we have removed at most (K/n)-fraction of the constraints
from C, the mapping F is an assignment for the original in-
stance I of value at least 1 −K/n. Also, the instance J is
nontrivial because, for each x ∈ V , there exists at least one
a ∈ D with ||xa||2 > 1/n4 (recall that we assume n > |D|).

The only problem is that the CSP over the constraint
language of J (consisting of PJ

x,y’s) does not necessarily have
bounded width. This is why we form the algebraic closure
J ′ of J :

J ′ = (V,D, {((x, y), PJ ′

x,y) : (x, y) ∈ S ∪ S−1}),
PJ ′

x,y = {(f(a1, a2, . . .), f(b1, b2, . . .)) : f ∈ Pol(Γ),

(a1, b1), (a2, b2), · · · ∈ PJ
x,y}

The new instance still has the property that PJ ′

x (which is
equal to {f(a1, a2, . . .) : f ∈ Pol(Γ), a1, a2, · · · ∈ Px}) is a

subset of R for every unary constraint (x,R), and PJ ′

x,y ⊆ R
for every binary constraint ((x, y),R), since the constraint
relations are preserved by every polymorphism of Γ. More-
over, every polymorphism of Γ is a polymorphism of the con-
straint language Λ′ of J ′, therefore CSP(Λ′) has bounded
width (see Theorem 7 for instance; technically, Λ′ does not
need to be a core, but we can simply add all the singleton
unary relations).

Claim 12.5. The instance J ′ is a weak Prague instance.

Proof. See Proposition 16 in the appendix.

Therefore J ′ (and thus I after Step 8) has a solution by
Theorem 11. This concludes the proof.

5. OPEN PROBLEMS
The quantitative dependence of g on ε is not very far from

the (UGC-) optimal bound for Horn-k-Sat. Is it possible to
get rid of the extra log log(1/ε)?

A straightforward derandomization using a result from
[15] has g(ε) = O(log log(1/ε)/

√

log(1/ε)). How to improve
it to match the randomized version?

It was observed by Andrei Krokhin that the quantita-
tive dependence is, at least to a large extent, also con-
trolled by the polymorphisms of the constraint language.
The problems 2-SAT, Unique-Games(q) suggest that major-
ity or, more generally, near-unanimity polymorphisms could
be responsible for polynomial behavior.

The simplest example of polymorphism which does not
imply any known stronger property for decision CSPs other
than bounded width is the 2-semilattice operation f on a
three element domain D = {0, 1, 2} defined by f(0, 0) =
f(0, 1) = f(1, 0) = 0, f(1, 1) = f(1, 2) = f(2, 1) = 1,
f(2, 2) = f(2, 0), f(0, 2) = 2. This might be a source for
possible hardness results.

Finally, we believe that the connection between SDP, LP
and consistency notions deserves further investigation.

6. ACKNOWLEDGMENTS
The first author was supported by the Grant Agency of the

Czech Republic, grant 201/09/P223 and by the Ministry of
Education of the Czech Republic, grant MSM 0021620839.

The second author was supported by the Foundation for
Polish Science,grant HOM/2008/7 (supported by MF EOG),
and Ministry of Science and Higher Education of Poland,
grant N206 357036.

7. REFERENCES
[1] L. Barto and M. Kozik. Constraint satisfaction

problems of bounded width. In FOCS’09: Proceedings
of the 50th Symposium on Foundations of Computer
Science, pages 595–603, 2009.

[2] L. Barto and M. Kozik. Constraint satisfaction
problems solvable by local consistency methods. 2012.
submitted.

[3] A. Bulatov. Bounded relational width. 2009.
manuscript.

[4] A. Bulatov, P. Jeavons, and A. Krokhin. Classifying
the complexity of constraints using finite algebras.
SIAM J. Comput., 34:720–742, March 2005.

[5] A. A. Bulatov, A. Krokhin, and B. Larose. Complexity
of constraints. chapter Dualities for Constraint
Satisfaction Problems, pages 93–124. Springer-Verlag,
Berlin, Heidelberg, 2008.

[6] M. Charikar, K. Makarychev, and Y. Makarychev.
Near-optimal algorithms for unique games. In
Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, STOC ’06, pages
205–214, New York, NY, USA, 2006. ACM.

[7] M. Charikar, K. Makarychev, and Y. Makarychev.
Near-optimal algorithms for maximum constraint
satisfaction problems. ACM Trans. Algorithms,
5:32:1–32:14, July 2009.

[8] V. Dalmau and A. Krokhin. Robust satisfiability for
CSPs: algorithmic and hardness results. 2011. in
preparation.

[9] T. Feder and M. Y. Vardi. The computational
structure of monotone monadic SNP and constraint
satisfaction: A study through datalog and group
theory. SIAM J. Comput., 28:57–104, February 1999.

[10] R. Freese, M. Kozik, A. Krokhin, M. Maróti,
R. McKenzie, and R. Willard. On Maltsev conditions
associated with omitting certain types of local
structures. 2011. in preparation.

[11] M. X. Goemans and D. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite
programming. Journal of the ACM, 42:1115–1145,
1995.

[12] V. Guruswami and Y. Zhou. Tight bounds on the
approximability of almost-satisfiable Horn SAT and
exact hitting set. In D. Randall, editor, SODA, pages
1574–1589. SIAM, 2011.

[13] J. H̊astad. Some optimal inapproximability results. J.
ACM, 48:798–859, July 2001.

[14] P. Jonsson, A. Krokhin, and F. Kuivinen. Hard
constraint satisfaction problems have hard gaps at
location 1. Theor. Comput. Sci., 410:3856–3874,
September 2009.

[15] Z. S. Karnin, Y. Rabani, and A. Shpilka. Explicit
dimension reduction and its applications. Electronic
Colloquium on Computational Complexity (ECCC),
16:121, 2009.

[16] S. Khanna, M. Sudan, L. Trevisan, and D. P.
Williamson. The approximability of constraint
satisfaction problems. SIAM J. Comput.,
30(6):1863–1920, 2000.

[17] S. Khot. On the power of unique 2-prover 1-round
games. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, pages 767–775.
ACM Press, 2002.

[18] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell.
Optimal inapproximability results for MAX-CUT and
other 2-variable CSPs? SIAM J. Comput., 37:319–357,
April 2007.

[19] G. Kun, R. O’Donnell, S. Tamaki, Y. Yoshida, and
Y. Zhou. Linear programming, width-1 CSPs and
robust satisfaction. 2011. manuscript.

[20] B. Larose and P. Tesson. Universal algebra and
hardness results for constraint satisfaction problems.
Theor. Comput. Sci., 410:1629–1647, April 2009.

[21] B. Larose and L. Zádori. Bounded width problems and
algebras. Algebra Universalis, 56(3-4):439–466, 2007.

[22] P. Raghavendra. Optimal algorithms and
inapproximability results for every CSP? In STOC’08,
pages 245–254, 2008.

[23] T. J. Schaefer. The complexity of satisfiability
problems. In Conference Record of the Tenth Annual
ACM Symposium on Theory of Computing (San
Diego, Calif., 1978), pages 216–226. ACM, New York,
1978.

[24] U. Zwick. Finding almost-satisfying assignments. In
Proceedings of the thirtieth annual ACM symposium
on Theory of computing, STOC ’98, pages 551–560,
New York, NY, USA, 1998. ACM.

APPENDIX

A. REDUCTION TO CORE CONSTRAINT
LANGUAGES WITH UNARY AND
BINARY RELATIONS

The reduction is given in the following proposition.

Proposition 13. Let Γ be a constraint language on the
domain D which contains relations of maximum arity l and
such that CSP(Γ) has bounded width. Then there exists a
core constraint language Γ′ on D′ containing only at most
binary relations such that CSP(Γ′) has bounded width and
such that the following holds: If CSP(Γ′) admits a robust sat-
isfiability algorithm which is (1 − g(ε), 1− ε)-approximating
(for every ε), then CSP(Γ) admits a robust satisfiability al-
gorithm which is (1 − (l + 1)g(ε), 1 − ε)-approximating.

Proof. First we form the core of Γ: We take a unary
polymorphism f ∈ Pol(Γ) with minimal image (with respect

to inclusion) and put Γc = {Rc = R∩ f(D)arity(R) : R ∈ Γ},
Dc = f(D). Then Γc is a core constraint language. It is
known that CSP(Γ) has bounded width iff CSP(Γc) does
(see [21]), therefore CSP(Γc) has bounded width.

Next we define the constraint language Γ′. The domain is
D′ = (Dc)l. For every relation Rc ∈ Γc of arity k we add to
Γ′ the unary relation R′ defined by

(a1, . . . , al) ∈ R′ iff (a1, . . . , ak) ∈ Rc,

for every k ≤ l we add the binary relation

Ek = {((a1, . . . , al), (b1, . . . , bl)) : a1 = bk},
and for every (a1, . . . , al) ∈ D′ we add the singleton unary
relation {(a1, . . . , al)}. The singletons ensure that Γ′ is a
core. That CSP(Γ′) has bounded width can be seen, for
instance, from Theorem 7: If fc

1 , f
c
2 are polymorphisms of Γc

from this theorem, then the corresponding operations f ′
1, f

′
2

acting coordinate-wise on D′ satisfy the same equations and
it is straightforward to check that f ′

1, f
′
2 are polymorphisms

of Γ′.
Now, let I = (V,D, C) be an instance of CSP(Γ) with

Opt(I) = ε. We transform I to an instance I′ of CSP(Γ′)
as follows. We keep the original variables and for every
constraint C = ((x1, . . . , xk), R) in C we introduce a new
variable xC and add k + 1 constraints

((xC), R′), ((x1, xC), E1), ((x2, xC), E2), . . . , ((xk, xC), Ek).
(2)

If F : V → D is an assignment for I of value 1 − ε then
F c = fF has at least the same value (as f preserves the
constraint relations), and the assignment F ′ for I′ defined
by

F ′(x) = (F c(x), ?, . . . , ?) for x ∈ V,

F ′(xC) = (F c(x1), . . . , F
c(xk), ?, . . . , ?)

for C = ((x1, . . . , xk), R)

(where ? stands for an arbitrary element of A) has value at
least 1−ε, since all the binary constraints in I′ are satisfied,
and the constraint (xC , R

′) is satisfied whenever F satisfies
C.

We run the robust algorithm for CSP(Γ′) to get an assign-
ment G′ for I′ with value at least 1 − g(ε), and we define
G(x), x ∈ V to be the first coordinate of G′(x). Note that,
for any constraint C of I, if G′ satisfies all the constraints
(2) then G satisfies C. Therefore the value of G is at least
1 − (l + 1)g(ε).

B. PROOF OF THEOREM 4 USING THEO-
REM 12

Let Γ be a core constraint language with at most binary
relations (which we can assume by Proposition 13) such that
CSP(Γ) has bounded width. Let I be an instance of CSP(Γ)
with m constraints and let 1 − ε = Opt(I).

We first check whether I has a solution. This can be done
in polynomial time since CSP(Γ) has bounded width. If a
solution exists we can find it in polynomial time (see the
note after Definition 1).

In the other case we know that ε ≥ 1/m. We run the
SDP relaxation with precision δ = 1/m and obtain vectors
with the sum (1) equal to v ≥ SDPOpt(I) − 1/m. Finally,
we execute the algorithm provided in Theorem 12 with the
following choice of n.

n =

⌊

log ω

4 log log ω

⌋

, where ω = min

{

1

1 − v
,m

}

.

The assumption is satisfied, because v ≥ 1− 1/n4n is equiv-
alent to n4n ≤ 1/(1 − v) and

n4n = 24n log n ≤ 24
log ω

4 log log ω
log

log ω
4 log log ω < 2

log ω
log log ω

log log ω =

= ω ≤ 1

1 − v
.

The algorithm runs in time polynomial in m as nn < n4n ≤
ω ≤ m. To estimate the fraction of satisfied constraints,
observe that v ≥ Opt(I) − 1/m = 1 − ε − 1/m ≥ 1 − 2ε,
so 1/(1 − v) ≥ 1/2ε, and also m ≥ 1/ε, therefore ω ≥ 1/2ε.
The fraction of satisfied constraints is at least 1 −K/n and

n

K
≥ 1

K

(

log ω

4 log log ω
− 1

)

≥ K3
log(1/2ε)

log log(1/2ε)
≥

≥ K4
log(1/ε)

log log(1/ε)
,

where K3,K4 are suitable constants. Therefore the fraction
of satisfied constraints is at least

1 −O

(

log log(1/ε)

log(1/ε)

)

.

C. DERANDOMIZATION
We start by describing the changes in Theorem 12. The

statement remains the same except the algorithm will be

polynomial in m and 2n2 log2 n.
The random choices in Step 1 and Step 4 can be easily

avoided: In Step 1 we can try all (n− 1) possible choices for
r and in Step 4 we can try all choices for s from some suffi-
ciently dense finite set, for instance {0, u2/n

4, 2u2/n
4, . . . }.

The only difference is that bad choices for s could cover a
slightly bigger part of the interval than u1/u2 and we would
get a slightly worse constant K1.

For derandomization of Step 6 we first slightly change the
constant in the definition of t(w), say t(w) = ⌈4(log n) . . .⌉ .
Next we use Theorem 1.3. from [15] from which it follows
that we can efficiently find a set Q of unit vectors such that

|Q| = (|V ||D|)1+o(1)2O(log2(1/κ))

and such that, for any vectors v, w with angle θ between
them, the probability that a randomly chosen vector from
Q cuts v and w differs from θ/π by at most κ. We choose
κ = 1/n2n = 1/22n log n, therefore

|Q| ≤ K5m
K6 2n2 log2 n,

where we have used |V | = O(m) which is true whenever
every variable is in the scope of some constraint (we can
clearly assume this without loss of generality).

Now if we choose q1,q2,q⌈4(log n)n2n⌉ uniformly at ran-

dom from Q, the estimates derived in Steps 7 and 8 remain
almost unchanged: The probability that qi does not cut
xA and xB in Step 7 is at most 1 − n−2r/π ||xA|| + κ ≤
1 − n−2r/4 ||xA|| (for a sufficiently large n), and the proba-
bility that vectors xA and yB are cut by some qi in Step 8
is at most K′

2/n (for any K′
2 > K2).

Of course we cannot try all possible
⌈

4(log n)n2n
⌉

-tuples
of vectors from Q as there are too many. However, we can
apply the method of conditional expectations – we choose
the vectors one by one keeping an estimate of the expected
number of constraints removed below K/n.

Finally, the proof of the deterministic version of Theo-
rem 4 remains almost the same except we need to ensure

that 2n2 log2 n is polynomial in m. Therefore we need to
choose a smaller value for n, say

n =

⌊ √
log ω

log log ω

⌋

,

then the algorithm outputs an assignment satisfying at least
(

1 −O

(

log log(1/ε)√
log(1/ε)

))

-fraction of the constraints.

D. ALGEBRAIC CLOSURE OF A WEAK
PRAGUE INSTANCE

Proposition 16 below justifies Claim 12.5. But first we
collect some useful facts about Prague instances.

It will be convenient to replace (P2) with an alternative
condition:

Lemma 14. Let J be a 1-minimal instance. Then (P2) is
equivalent to the following condition.

(P2*) For every step (x, y), every A ⊆ Px and every pattern p
from y to x, if A+(x, y)+p = A then A+(x, y, x) = A.

Proof. (P2*) ⇒ (P2). If p = (x = x1, x2, . . . , xk = x) is
a pattern from x to x such that A + p = A, then repeated
application of (P2*) gives us

A+p− p =

= [A+ (x1, x2, . . . , xk−1)] + (xk−1, xk, xk−1)

+ (xk−1, xk−2, . . . , x1)

= A+ (x1, x2, . . . , xk−1) + (xk−1, xk−2, . . . , x1)

= [A+ (x1, x2, . . . , xk−2)] + (xk−2, xk−1, xk−2)

+ (xk−2, xk−3, . . . , x1)

= A+ (x1, x2, . . . , xk−2) + (xk−2, xk−3, . . . x1)

= . . .

= A,

where the second equality uses (P2*) for the set A+(x1, x2,
. . . , xk−1). The assumption of (P2*) is provided by a cyclic
shift of the pattern p. The fourth equality uses (P2*) for
the set A+ (x1, . . . , xk−2) and so on.

(P2) ⇒ (P2*). By applying (P2) to the pattern (x, y) + p
we get A+ (x, y) + p− p+ (y, x) = A. From 1-minimality it
follows thatA+(x, y) ⊆ A+(x, y)+p−p, henceA+(x, y, x) =
(A+ (x, y))+ (y, x) ⊆ (A+ (x, y)+ p− p) + (y, x) = A. The
other inclusion follows again from 1-minimality.

The next lemma shows that when we start with an element
and keep adding a pattern from x to x, the process will
stabilize.

Lemma 15. Let J be a weak Prague instance, x ∈ V , a ∈
Px, and let p be a pattern from x to x. Then there exists a
natural number l such that the set [a]p := {a} + lp satisfies
[a]p + p = [a]p and a ∈ [a]p.

Proof. Because the domain is finite there exist positive
integers l and l′ such that {a} + lp + l′p = a + l′p. As
[a]p +p+(l′ −1)p = [a]p it follows from (P3) that [a]p +p =
[a]p. By 1-minimality, a is in {a}+ lp− lp which is equal to
[a]p by (P2).

Proposition 16. Let J = (V,D, {Px,y : (x, y) ∈ S}) be
a weak Prague instance and let F be a set of operations on
D. Then J ′ = (V,D, {P ′

x,y : (x, y) ∈ S}), where

P ′
x,y = {(f(a1, a2, . . .), f(b1, b2, . . .)) : f ∈ F ,

(a1, b1), (a2, b2), · · · ∈ Px,y},
is a weak Prague instance.

Proof. It is apparent that J ′ is 1-minimal with

PJ
x = P ′

x := {f(a1, a2, . . .) : f ∈ F , a1, a2, · · · ∈ Px}.
In what follows, by A +′ p we mean the addition computed
in the instance J ′ while A+ p is computed in J .

Before proving (P2*) and (P3) we make a simple observa-
tion.

Claim 16.1. If f ∈ F is an operation of arity k, x ∈ V , p
is a pattern from x, and A1, . . . , Ak ⊆ Px, B ⊆ P ′

x are such
that f(A1, A2, . . . , Ak) ⊆ B, then f(A1 + p,A2 + p, . . . Ak +
p) ⊆ B +′ p.

(By f(A1, . . . , Ak) we mean the set

{f(a1, . . . , ak) : a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak}.)

Proof. It is enough to prove the claim for a single step
p = (x, y). The rest follows by induction. If b ∈ f(A1 +
(x, y), . . . , Ak + (x, y)) then there exist elements b1 ∈ A1 +
(x, y), . . . , bk ∈ Ak + (x, y) so that f(b1, b2, . . . , bk) = b.
As bi ∈ Ai + (x, y) there are elements ai ∈ Ai such that
(ai, bi) ∈ Px,y for all 1 ≤ i ≤ k. But then (f(a1, a2, . . . , al),
f(b1, b2, . . . , bk)) is in P ′

x,y and f(a1, a2, . . . , ak) ∈ f(A1, A2,
. . . , Ak) ⊆ B, therefore b = f(b1, b2, . . . , bk) ∈ A+′(x, y).

To prove (P2*) for J ′ let (x, y) be a step, A ⊆ P ′
x, let p be a

pattern from y to x such that A+′ (x, y)+′ p = A, and let a
be an arbitrary element of A+′ (x, y, x). As A+′ (x, y, x) =
(A +′ (x, y)) +′ (y, x), there exist b ∈ A +′ (x, y) such that
(a, b) ∈ P ′

x,y. By definition of P ′
x,y, we can find f ∈ F (say,

of arity k), elements a1, a2, . . . , ak in Px, and b1, . . . , bk in
Py so that (f(a1, a2, . . . , ak), f(b1, b2, . . . , bk)) = (a, b) and
(ai, bi) ∈ Px,y for all 1 ≤ i ≤ k.

We consider the sets [b1]q , [b2]q, . . . , [b2]q from Lemma 15
for the pattern q = p+(x, y). We take l to be the maximum
of the numbers for b1, . . . , bk from this lemma, so [bi]q =
bi + lq. We get

ai ∈ {bi} + (y, x) ⊆ [bi]q + (y, x) =

= [bi]q + p+ (x, y) + (y, x) = [bi]q + p,

where the first step follows from (ai, bi) ∈ Px,y, the inclusion
and the first equality from Lemma 15, and the second equal-
ity from (P2*) for the instance J (as ([bi]q +p)+(x,y)+p =
[bi]q + p). Thus a = f(a1, a2, . . . , ak) is an element of

f([b1]q + p,[b2]q + p, . . . , [bk]q + p) =

= f({b1} + lq + p, . . . , {bk} + lq + p)

and this set is contained in (A +′ (x, y)) +′ lq +′ p = A +′

(x, y) +′ l(p + (x, y)) +′ p = A by Claim 16.1 applied with
Ai = {bi} and the pattern lq+p. We have shown that every
element a of A +′ (x, y, x) lies in A. The other inclusion
follows from 1-minimality.

To prove (P3) let x ∈ V , A ⊆ P ′
x and let p, q be patterns

such that A +′ p +′ q = A. We first show that A ⊆ A +′

p. Let a ∈ P ′
x, take f ∈ F , a1, a2, . . . , ak ∈ Px such that

f(a1, . . . , ak) = a, and find l so that [ai]p+q = ai + l(p+ q).
From (P3) for J and Lemma 15 it follows that [ai]p+q +p =
[ai]p+q . By Claim 16.1,a ∈ f([a1]p+q , [a2]p+q , . . . , [ak]p+q) =
f([a1]p+q + p, [a2]p+q + p, . . . , [ak]p+q + p) ⊆ A+′ l(p+ q) +′

p = A +′ p. The same argument used for A +′ p instead
of A and the patterns q + p, q instead of p + q, p proves
A+′ p ⊆ A+′ p+′ q = A.

