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Two problems

Problem (NU problem for algebras)

Given a finite algebra A is it decidable whether A
has an NU operation?

I Some similar problems are undecidable McKenzie; Maróti
I It is decidable Maróti
I In EXPTIME Berman, Idziak, Maróti, Marković, McKenzie,

Valeriote; Maróti, Marković, McKenzie

Problem (NU problem for relational structures)

Given finite relational structure A is it decidable whether Pol(A)
has an NU operation?

I In EXPTIME Barto
I Why? Because for finitely related algebras

A has NU iff A has Jónsson operations
(there is a generalization...)
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Problem (NU problem for relational structures)

Given finite relational structure A is it decidable whether Pol(A)
has an NU operation?

I In EXPTIME Barto

I Why? Because for finitely related algebras
A has NU iff A has Jónsson operations
(there is a generalization...)



Two problems

Problem (NU problem for algebras)

Given a finite algebra A is it decidable whether A
has an NU operation?

I Some similar problems are undecidable McKenzie; Maróti
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Harder (and “better”) problems

Problem (Absorption for algebras)

Given a finite algebra A and B ⊆ A is it decidable
whether B absorbs A?

I It is decidable if |B| = 1 (Horowitz, Valeriote)

I General case still open (likely in EXPTIME)

Problem (Absorption for relational structures)

Given finite relational structure A and B ⊆ A is it decidable
whether B absorbs Pol(A)?

I It is decidable Buĺın if Pol(A) is SD(∧)

I In EXPTIME Barto, Buĺın

I Why? Because of the result in this talk



Absorption (a generalization of NU)

Definition

B absorbs A, written B / A, if ∃ idempotent term t such that
t(B, B, . . . , B, A, B, . . . , B) ⊆ B.

Example: A has an NU iff every singleton absorbs A.

Why do we care about absorption theory?

I it was a useful tool for good new results

I it gave the right proofs (meaning . . . ) for some good old
results

I having NU is quite strong, having nontrivial absorption
somewhere is way weaker (for instance . . . )

The problem of deciding absorption also came up naturally
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directed Jónsson terms

Theorem (Kozik)

For finite A, HSP(A) is congruence distributive iff there are
idempotent terms such that

x ≈ p0(x , y , z), z ≈ pn(x , y , z)

pi (x , y , y) ≈ pi+1(x , x , y)

pi (x , y , x) ≈ x

Fact: HSP(A) is CD iff every singleton is a Jónsson ideal of A

Fact: B / A ⇒ B /j A

Fact: The other implication fails, BUT
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The result

Recall: A is finitely related if Clo(A) = Pol(A) for A with finitely
many relations

Theorem (Barto, Buĺın)

Let A be finitely related. Then B /j A⇒ B / A

Consequences:

I Absorption for relational structures is in EXPTIME

I Generalizes “CD ⇒ NU” result

Proof uses techniques from “CD ⇒ NU” and a paper by Zhuk



The result

Recall: A is finitely related if Clo(A) = Pol(A) for A with finitely
many relations

Theorem (Barto, Buĺın)
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Open problems

Problem

Given finite A and B ⊆ A is it decidable whether B / A.

Hopefully in EXPTIME

Problem

Can we improve the complexity for the algebraic (idempotent
algebraic)/relational version. (In P?) What about Jónsson
absorption?

The relational version known to be in P for

I posets Kun, Szabó 01

I reflexive graphs Larose, Loten, Zádori 05

I reflexive digraphs Maróti, Zádori 12
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Relational characterization of absorption

A . . . finite idempotent algebra

Theorem

A has NU of arity n iff every R ≤ An is determined by projections
to n − 1 coordinates.

A similar characterization

Theorem

B /A wrt. term of arity n iff there is no relation R ≤ An such that

I R does not intersect Bn

I each projection of R to n − 1 coordinates intersect Bn−1

Thank you!
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