
Algebraic theory of
promise constraint satisfaction problems

Libor Barto

Department of Algebra, Charles University, Prague

PGL 2019, Praha, 10 May

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council

(ERC) under the European Unions Horizon 2020 research and

innovation programme (grant agreement No 771005)



Outline 2/26

Constraint Satisfaction Problems (CSPs) over finite template

I class of computational problems

I goal: determine the computational complexity

I 3 step development of algebraic theory

I goal scored (two complexity classes: P, NP-complete)

Promise Constraint Satisfaction Problems (PCSPs)

I larger class of computational problems, goal not scored
I richer on both algorithmic and hardness side

I algorithms need to be infinitary
I hardness requires heavy tools

I algebraic theory for CSP generalizes

I 4th step: 2 Logical computational tasks are equivalent

(Barto), Buĺın, Krokhin, Opřsal: Algebraic approach to promise constraint satisfaction



Two classes of computational problems 3/26

General problem: Given a structure A and 1st order sentence φ
(the same language), decide whether A satisfies φ.

CSP

I fix a finite relational structure

I restrict to primitive positive (pp-) sentences:
(∃x1∃x2 . . . ) R(x1, x3) ∧ S(x5, x2) ∧ R(x3, x3) ∧ . . .

Another problem: Given a structure A and 1st order sentence φ
(different language), decide whether symbols in φ can be
interpreted in A so that A satisfies φ.

Our case: solving functional equations over an algebra

I fix a finite algebraic structure

I restrict to universally quantified conjunction of equations
(∀x1∀x2 . . . )(f (x1, x2) = f (x2, x1)) ∧ (g(x3) = f (x3, x3)) ∧ . . .



CSP



Definition 5/26

Fix A = (A;R, S , . . . ) relational structure

Definition (CSP(A))

Input: pp-sentence φ, eg. (∃x1∃x2 . . . )R(x1, x3) ∧ S(x5, x2) ∧ . . .
Answer Yes: φ satisfied in A
Answer No: φ not satisfied in A

Search version: Find a satisfying assignment.
Search looks harder, but it’s not [Bulatov, Jeavons, Krokhin’05]



Example 1: 3-coloring 6/26

K3 = (A;R) where

I A = {lilac ,mauve, cyclamen}
I R = (binary) inequality relation on A

Input of CSP(K3) is, e.g.

(∃x1∃x2 . . . ∃x4)R(x1, x2)∧R(x1, x3)∧R(x1, x4)∧R(x2, x3)∧R(x2, x4)

Viewpoint

I variables = vertices

I clauses (constraints) = edges

CSP(K3) is the 3-coloring problem for graphs

Fact: It is NP-hard (7-coloring NP-hard, 2-coloring in P)



Examples 2: hypergraph coloring problems 7/26

I NAE2 = ({0, 1};NAE2) where
NAE2 = all but {(0, 0, 0), (1, 1, 1)}

CSP(NAE2) = positive not-all-equal 3-SAT
= 2-coloring problem for 3-uniform hypergraphs

I NAE4 = ({0, 1, 2, 3};NAE4), where NAE4 still ternary

CSP(NAE4) = 4-coloring problem for 3-uniform hypergraphs

I ONETHREE = ({0, 1}; 1in3) where
1in3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

CSP(ONETHREE) = positive 1-in-3 SAT

Fact: All NP-hard



Example 3: systems of linear equations 8/26

EQ5 = (Z5; L0000, L0001, . . . , L4444) where e.g.

L1234 = {(x , y , z) : Z3
5 : 1x + 2y + 3z = 4}

(note: relations are affine subspaces of Z3
5)

CSP(EQ5) = solving systems of linear equations in Z5

Fact: In P



Polymorphisms 9/26

polymorphism of A: mapping f : An → A
compatible with every relation

compatible with R: f applied component-wise to tuples in R
is a tuple in R

Example: f (x1, . . . , x4) = 2x1 + 3x2 + 3x3 + 3x4 f : Z4
5 → Z5

is compatible with each Labcd
because f (v1, . . . , v4) is an affine combination of these

vectors (as 2 + 3 + 3 + 3 = 1)
and Labcd is an affine subspace

Pol(A): the set of all polymorphisms (it is a “clone”)
= set of (multivariable) symmetries of A



Algebraic theory, 1st step 10/26

Jeavons’98: On the algebraic structure of combinatorial problems

Theorem

Complexity of CSP(A) is determined by Pol(A):

If Pol(A) ⊆ Pol(B) then CSP(B) is not harder than CSP(A).

Proof.

If Pol(A) ⊆ Pol(B), then relations in B can be defined from
relations in A by a pp-formula.

[Geiger’69, Bondarčuk, Kalužnin, Kotov, Romov’60]

This gives a computational reduction of CSP(B) to CSP(A).

So: CSP(EQ5) is in P because EQ5 has a lot of polymorphisms



Systems of functional equations 11/26

System of functional equations is, e.g.

f (g(x , y), z) = g(x , h(y , z))

m(y , x , x) = m(y , y , y)

m(x , x , y) = m(y , y , y)

Solvable in M, where M is a set of functions:
symbols can be interpreted in M so that
each equality is (universally) satisfied

Example: The above system is solvable in Pol(EQ5):

I take f (x , y) = g(x , y) = h(x , y) = x
(note: projections are always polymoprhisms)

I take m(x , y , z) = x − y + z



Algebraic theory, 2nd step 12/26

Bulatov, Jeavons, Krokhin’05: Classifying the complexity of constraints using finite

algebras + Bodirsky’08: PhD thesis

Theorem

Complexity of CSP(A) is determined by
systems of functional equations solvable in Pol(A):

If each system solvable in Pol(A) is solvable in Pol(B),
then CSP(B) is not harder than CSP(A).

Proof.

Previous theorem, pp-definitions → pp-interpretations,
the HSP theorem [Birkhoff’35]

So: CSP(EQ5) is in P because
Pol(EQ5) solves strong systems of functional equations.



Algebraic theory, 3rd step 13/26

Barto, Opřsal, Pinsker’18: The wonderland of reflections

minor condition = system of functional equations, each of the form
symbol(variables) = symbol(variables),
e.g. m(y , x , x) = m(y , y , y), m(x , x , y) = m(y , y , y)

Theorem

Complexity of CSP(A) determined by
minor conditions solvable in Pol(A):

If each minor condition solvable in Pol(A) is solvable in Pol(B),
then CSP(B) is not harder than CSP(A).

Proof.

pp-interpretation → pp-construction,
version of the HSP theorem.



The classification result 14/26

Minor condition is trivial:
solvable in every Pol(A)
= solvable using projections

Corollary

If Pol(A) solves only trivial minor conditions,
then CSP(A) is NP-hard.

Theorem ([Bulatov’19], [Zhuk’19])

If Pol(A) solves some non-trivial minor condition,
then CSP(A) is in P.



PCSP



Definition 16/26

Fix 2 relational structures in the same language

I A = (A;RA,SA, . . . )

I B = (B;RB,SB, . . . )

I there is a homomorphism A→ B

Definition (PCSP(A,B))

Input: pp-sentence φ, eg. (∃x1∃x2 . . . )R(x1, x3) ∧ S(x5, x2) ∧ . . .
Answer Yes: φ satisfied in A
Answer No: φ not satisfied in B

Search version: Find a B-satisfying assignment
given a A-satisfiable input.

(it may be a harder problem, we don’t know)



Example 1: 4-coloring a 3-colorable graph 17/26

Recall: Kn = ({1, 2, . . . , n}; inequality)

PCSP(K3,K4)
Input: a graph
Answer Yes: it is 3-colorable
Answer No: it is not 4-colorable

Search version: Find a 4-coloring of a 3-colorable graph

Fun facts:

I Theorem: it is NP-hard [Brakensiek, Guruswami’16]

(more generally PCSP(Kn,K2n−2) is NP-hard)

I 6-coloring 3-colorable graph: complexity not known

I Conjecture: k-coloring, l-colorable graph always NP-hard
(k ≥ l ≥ 3)



Example 2: hypergraph coloring 18/26

Recall: NAEk ternary not-all-equal relation on a k-element set

PCSP(NAE2,NAE137)
Input: a 3-uniform hypergraph
Answer Yes: it is 2-colorable
Answer No: it is not 137-colorable

Theorem: It is NP-hard [Dinur,Regev,Smyth’05]

(more generally PCSP(NAEl ,NAEk) NP-hard for k ≥ l ≥ 2)

Proof uses the PCP theorem and
Lovász’s thoerem on Kneser’s graphs



Example 3: 1-in-3 vs not-all-equal 19/26

Recall: ONETHREE = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

PCSP(ONETHREE,NAE2)
Input: a 3-uniform hypergraph
Answer Yes: there is a 2-coloring such that

exactly one vertex in each hyperedge receives 1
Answer No: it is not 2-colorable

Fact: It is in P. Algorithm for finding a 2-coloring of a Yes input:

I for each hyperedge {x , y , z} write x + y + z = 1

I solve the system over Q \ {1
3} (it is solvable in {0, 1})

I assign x 7→ 1 iff x > 1/3

Note: algorithm uses infinite domain CSP
Theorem: infinity is necessary [Barto’19]



Polymorphisms 20/26

polymorphism of (A,B): mapping f : An → B
compatible with every relation-pair

compatible with (RA,RB): f applied to tuples in RA

is a tuple in RB

Example: f (x1, . . . , x97) = 1 iff
∑

xi
97 > 1

3 f : {0, 1}97 → {0, 1}
is compatible with (1in3,NAE2)

Pol(A,B): the set of all polymorphisms (it is a “minion”)
= set of (multivariable) symmetries of (A,B)



Algebraic theory, 3 steps 21/26

1st step (polymorphisms):
can be generalized [Brakensiek, Guruswami’18]

using [Pippenger’02]

2nd step (systems of functional equations):
makes no sense
since polymorphisms can no longer be composed

3nd step (minor conditions):
can be generalized [Buĺın, Opřsal, Krokhin’19]

alternative proof (the 4th step)
interesting for several reasons, e.g.

direct and simple, without Pippenger or Birhoff
gives a link to the PCP theory



Algebraic theory, 4th step 22/26

Theorem ([Buĺın, Opřsal, Krokhin’19])

LetM = Pol(A,B).
The following computational problems are equivalent.

(i) PCSP(A,B).

(ii) Given a minor condition, answer Yes if it’s trivial, and answer
No if it’s not solvable inM

Consequence: Complexity of PCSP(A,B) determined by
minor conditions solvable in Pol(A,B).

Consequence: PCSP(K3,K5) is NP-hard
(more generally PCSP(Kn,K2n−1))
Proof uses the above theorem,

hardness of hypergraph coloring,
and little extra work



Proof 1: Reduction from PCSP 23/26

Given input of PCSP(ONETHREE,NAE2), eg.

(∃a, b, c , d) R(c , a, b) ∧ R(a, d , c)

transform it to a minor condition, eg.

f1(x1, x0, x0) = gc(x0, x1)

f1(x0, x1, x0) = ga(x0, x1)

f1(x0, x0, x1) = gb(x0, x1)

f2(x1, x0, x0) = ga(x0, x1)

f2(x0, x1, x0) = gd(x0, x1)

f2(x0, x0, x1) = gc(x0, x1)

“Yes input → Yes input”: easy
“No input → No input”: for contrapositive use y 7→ gy (0, 1).



Proof 2: Reduction to PCSP 24/26

Given a minor condition

we formulate it as an instance of PCSP(A,B)

This is abstract nonsense:

I look at functions as tuples (their tables)

I then “f is a polymorphism” is a pp-sentence

I equations are coded by merging variables



Summary 25/26

PCSP is cool and fun because

I complexity still determined by symmetry

I proving membership in P requires more algorithms
than in CSP

I proving hardness seems to require interesting math
(that did not show up in CSP):
PCP theory, algebraic topology



Thank you!


	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 
	hours: 
	separatortime: :
	minutes: 


