Constraint Satisfaction Problems Part II: Analysis, Probability, Topology

Libor Barto

Department of Algebra, Charles University, Prague

Caleidoscope, Paris, June 2019

Established by the European Commission

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771005)

 $\begin{array}{rcl} {\rm CoolFunc: \ \, computational \ \, problems \longrightarrow objects \ \, capturing \ \, symmetry} \\ {\rm kernel \ \, of \ \, CoolFunc \ \, = \ \, polynomial \ \, time \ \, reducibility} \end{array}$

- ▶ we "almost" have it for CSPs but kernel ⊊ polynomial time reducibility
- $CSP(\mathbb{A})$ is equivalent to $MinorCond(N, Pol(\mathbb{A}))$

$\operatorname{CSP}(\mathbb{A})$ is often NP-complete

What can we do?

- Try to satisfy only some fraction of the constraints, eg. for a satisfiable 3SAT instance, find an assignment satisfying at least 90% of the clauses
- Try to satisfy a relaxed version of all constraints, eg. for a 3-colorable graph, find a 37-coloring

Approximation

satisfying a fraction of constraints

5/26

Theorem (Håstad'01)

The following problem is NP-complete for every $\epsilon > 0$ Input: 3SAT instance, eg. $(x_1 \lor \neg x_4 \lor x_3) \land (\neg x_2 \lor x_5 \lor \neg x_3) \land \dots$ Answer Yes: it is satisfiable Answer No: no $(7/8 + \epsilon)$ -fraction of clauses is satisfiable

Corollary: It is NP-hard to satisfy 90% of clauses of a satisfiable 3SAT instance.

Proof.

Reduction from a version of the Label Cover problem (known to be NP-hard).

Uses Fourier analysis of Boolean functions.

 $\operatorname{LabelCover}(N)$ is $\operatorname{CSP}([N]; \langle M_{\phi} \rangle_{\phi})$, where

•
$$[N] = \{1, 2, \dots, N\}$$

▶ for each
$$\phi : [N] \rightarrow [N]$$
 we have a relation
 $M_{\phi} = \{(a, \phi(a)) : a \in [N]\}$

Additionally

- ▶ we have two disjoint sets of variables *L*, *R*
- ▶ each constraint $M_{\phi}(x,y)$ has $x \in L$, $y \in R$

Example

$$(\exists x_1,\ldots,y_1,\ldots) M_{\phi}(x_3,y_1) \wedge M_{\phi'}(x_2,y_4) \wedge M_{\phi''}(x_5,y_1) \wedge \ldots$$

Definition (GapLabelCover(N, ϵ))

Input: like LabelCover(N), eg. $\phi = M_{\phi}(x_3, y_1) \wedge M_{\phi'}(x_2, y_4) \wedge \dots$ **Answer Yes:** ϕ is satisfiable **Answer No:** no ϵ -fraction of constraints is satisfiable

Theorem

For every $\epsilon > 0$ there exists N such that GapLabelCover (N, ϵ) is NP-complete

Proof.

The PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy'98] Parallel Repetition Thoerem [Raz'98]

Fun fact

The following two problems are the same!

- ► (bipartite) MinorCond(N, P) ie. deciding whether a given minor condition is trivial
- LabelCover(N) ie. deciding whether a given label cover input is satisfiable

Because:

interpretation of f and g by projections making the following equation true

 $f(x_3, x_1, x_1, x_2, x_1) = g(x_1, x_2, x_3, x_4, x_5)$

- ► corresponds to a satisfying assignment of $M_{\phi}(f,g)$ where $\phi: 1 \mapsto 3, 2, 3, 5 \mapsto 1, 4 \mapsto 2$
- under the correspondence
 - $i \leftrightarrow$ projection onto the *i*th coordinate

Remark: often implicitely used ("long code")

GapLabelCover(N, ϵ)

Input: bipartite minor condition (symbols of arity N) **Answer Yes:** it is trivial **Answer No:** no ϵ -fraction of equations is trivial

PCSP

satisfying a relaxed version of all constraints

Definition

Fix 2 relational structures in the same language

$$\blacktriangleright \mathbb{A} = (A; R^{\mathbb{A}}, S^{\mathbb{A}}, \dots)$$

$$\blacktriangleright \mathbb{B} = (B; R^{\mathbb{B}}, S^{\mathbb{B}}, \dots)$$

▶ there is a homomorphism $\mathbb{A} \to \mathbb{B}$ (eg. $A \subseteq B, R^{\mathbb{A}} \subseteq R^{\mathbb{B}}, \dots$)

Definition $(PCSP(\mathbb{A}, \mathbb{B}))$

Input: pp-sentence ϕ , eg. $(\exists x_1 \exists x_2 \dots) R(x_1, x_3) \land S(x_5, x_2) \land \dots$ **Answer Yes:** ϕ satisfied in \mathbb{A} **Answer No:** ϕ not satisfied in \mathbb{B}

Search version: Find a B-satisfying assignment given an A-satisfiable input. (it may be a harder problem, we don't know)

```
Recall: \mathbb{K}_n = (\{1, 2, \dots, n\}; \text{ inequality})
```

PCSP(K₃, K₄) Input: a graph Answer Yes: it is 3-colorable Answer No: it is not 4-colorable

Search version: Find a 4-coloring of a 3-colorable graph

Fun facts:

- ► Theorem: it is NP-hard [Brakensiek, Guruswami'16] (more generally PCSP(K_n, K_{2n-2}) is NP-hard)
- $\mathrm{PCSP}(\mathbb{K}_n, \mathbb{K}_{2n-1})$ [Bulín, Krokhin, Opršal'19]
- 6-coloring 3-colorable graph: complexity not known
- ► Conjecture: k-coloring, l-colorable graph always NP-hard (k ≥ l ≥ 3)

Recall: $3NAE_k$ ternary not-all-equal relation on a k-element set

PCSP(3NAE₂, 3NAE₁₃₇) Input: a 3-uniform hypergraph Answer Yes: it is 2-colorable Answer No: it is not 137-colorable

Theorem: It is NP-hard [Dinur,Regev,Smyth'05] (more generally $PCSP(3NAE_l, 3NAE_k)$ NP-hard for every $k \ge l \ge 2$)

Fact: It is in P. Algorithm for finding a 2-coloring of a Yes input:

- for each hyperedge $\{x, y, z\}$ write x + y + z = 1
- solve the system over $\mathbb{Q} \setminus \{\frac{1}{3}\}$ (it is solvable in $\{0,1\}$)
- assign $x \mapsto 1$ iff x > 1/3

Note: algorithm uses infinite domain CSP **Theorem:** infinity is necessary [Barto'19] polymorphism of (\mathbb{A}, \mathbb{B}) : mapping $f : A^n \to B$ compatible with every relation-pair

compatible with $(R^{\mathbb{A}}, R^{\mathbb{B}})$: f applied to tuples in $R^{\mathbb{A}}$ is a tuple in $R^{\mathbb{B}}$

Example: $f(x_1, \dots, x_{97}) = 1$ iff $\frac{\sum x_i}{97} > \frac{1}{3}$ $f : \{0, 1\}^{97} \to \{0, 1\}$ is compatible with $(1in3, 3NAE_2)$

 $\mathsf{Pol}(\mathbb{A}, \mathbb{B})$: the set of all polymorphisms (it is a "minion") = set of (multivariable) symmetries of (\mathbb{A}, \mathbb{B}) 1st step (polymorphisms): can be generalized [Brakensiek, Guruswami'18] using [Pippenger'02]

2nd step (systems of functional equations): makes no sense since polymorphisms can no longer be composed

3rd and 4th step (minor conditions): the same as CSP!

Theorem ([Bulín, Krokhin, Opršal'19])

Let $\mathcal{M} = \mathsf{Pol}(\mathbb{A}, \mathbb{B})$. The following computational problems are equivalent for a large enough N.

- (i) $CSP(\mathbb{A}, \mathbb{B})$
- (ii) MinorCond(N, \mathcal{M})

Hardness of PCSPs

4-coloring a 3-colorable graph

Theorem ([Brakensiek, Guruswami'16])

 $\mathrm{PCSP}(\mathbb{K}_3,\mathbb{K}_4)$ is NP-complete

Proof.

- ► enough to show that Pol(K₃, K₄) satisfies only trivial minor conditions.
- equivalently, there is a mapping $\xi:\mathcal{M}
 ightarrow\mathbb{N}$
 - if f is of arity n, then ξ(f) ∈ {1, 2, ..., n}
 (think: an important coordinate of f)
 - ξ behaves nicely with minors
- for every $f \in \mathsf{Pol}(\mathbb{K}_3, \mathbb{K}_4)$ of arity n
 - there exists $t \in \{1, 2, 3, 4\}$ (a trash color)
 - and there exists $i \in \{1, 2, ..., n\} =: \xi(f)$ and α such that
 - $f(x_1,\ldots,x_n) = \alpha(x_i)$ whenever $f(x_1,\ldots,x_n) \neq t$

18/26

Theorem ([Bulín, Krokhin, Opršal'19])

 $\mathrm{PCSP}(\mathbb{K}_3,\mathbb{K}_5)$ is NP-complete

Proof.

- the previous criterion is not applicable
- ► there is a mapping ξ : Pol(K₃, K₅) → Pol(3NAE₂, 3NAE_{enough}) that behaves nicely with minors
- ▶ Remark: such a ξ : M → Pol(3NAE₂, 3NAE_{enough}) exists iff M does not satisfy t(y,x,x,x,y,y) = t(x,y,x,y,x,y) = t(x,x,y,y,y,x)
- ▶ so every minor condition satisfied in Pol(K₃, K₅) is satisfied in Pol(3NAE₂, 3NAE_{enough})
- ▶ so PCSP(3NAE₂, 3NAE_{enough}) reduces to PCSP(K₃, K₅)

20/26

Theorem

Let $\mathcal{M} = \mathsf{Pol}(\mathbb{A}, \mathbb{B})$. If there exists $C \in \mathbb{N}$ and a mapping $\xi : \mathcal{M} \to P(\mathbb{N})$ such that

if f is of arity n, then ξ(f) ⊆ {1,2,...,n}, |ξ(f)| ≤ C
 (think: a small set of important coordinates of f)

• ξ behaves nicely with minors, eg. if

 $f(x_3, x_2, x_1, x_2, x_2, x_1) = g(x_1, x_2, x_3)$

and $\xi(f) = \{4, 5, 6\}$, then $\xi(g) \cap \{1, 2\} \neq \emptyset$ Then $PCSP(\mathbb{A}, \mathbb{B})$ is NP-complete.

- we have $\xi: \mathcal{M} \to P(\mathbb{N})$, want to show that
 - (a) GapLabelCover $(N, 1/C^2)$ reduces to
 - (b) MinorCond(N, M) (via trivial reduction)
- Recall:
 - ▶ **Input:** bipartite minor condition (symbols of arity *N*)
 - Answer Yes: it is trivial
 - Answer No:
 - (a) no $1/C^2$ -fraction of equations is trivial
 - (b) not satisfied in \mathcal{M}
- "Yes input \rightarrow Yes input": trivial
- "No input \rightarrow No input": for contrapositive:
 - \blacktriangleright take a valid interpretation in ${\cal M}$
 - ▶ reinterpret f as the *i*-th projection, where $i \in \xi(f)$ random
 - each equation is satisfied with probability $\geq 1/C^2$
 - ▶ so expected fraction of satisfied equations is $\geq 1/C^2$
 - so some $1/C^2$ -fraction is trivial

137-coloring a 2-colorable 3-uniform hypergraph

Theorem ([Dinur,Regev,Smyth'05])

 $PCSP(3NAE_2, 3NAE_{137})$ is NP-complete.

Proof.

- Let $f \in Pol(3NAE_2, 3NAE_{137})$ of arity n
- Crucial claim: there exists a set *I* =: ξ(*f*) of coordinates and c ∈ [137] such that
 - II < 200</p>
 - $f(whatever, \underline{1, 1, \ldots, 1}, whatever) \neq c$

Enough to show: there are two dijoint set J, K of coordinates such that

$$|J| = |K| = (n - 200)/2$$

$$f(0 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0) = f(0$$

$$f(0,\ldots,0,\underbrace{1,\ldots,1}_{J},0,\ldots,0) = f(0,\ldots,0,\underbrace{1,\ldots,1}_{K},0,\ldots,0)$$

since f is a polymorphism

22/26

137-coloring a 2-colorable 3-uniform hypergraph

Theorem ([Dinur,Regev,Smyth'05])

 $PCSP(3NAE_2, 3NAE_{137})$ is NP-complete.

Proof.

Assume the converse: whenever J, K of size (n - 200)/2 are disjoint, then $f(0, \dots, 0, \underbrace{1, \dots, 1}_{I}, 0, \dots 0) \neq f(0, \dots, 0, \underbrace{1, \dots, 1}_{K}, 0, \dots 0)$

22/26

- This gives us a 137-coloring of the following graph
 - vertices: subsets of [n] of size (n 200)/2
 - J and K adjacent iff thery are disjoint
- Such a coloring does not exist! [Lovász'78]
- Proof uses algebraic topology, started Topological Combinatorics

• Warning: The presented sketch of proof does not quite work

- Often: Important coordinates of functions are determined by analytical (counting) properties
- Here: Based on topological properties
 - close in spirit to the (deeper parts of) CSP theory
 - ▶ other example where this works: PCSP(C₁₃₇, K₃) [Krokhin,Opršal]
 - this is the way to go, because

geometry > counting

Summary

Summary

CSP

- ► = a version of the LabelCover (and MinorCond) problem
- Complexity captured by a piece of information about polymorphisms

PCSP is cool and fun

- Basics work but a lot is open: eg. borderlines
- More algorithms needed
- More interesting hardness proofs (PCP, topology)
- Q: What else can we forget about polymorphisms?

Reading

- Barto, Krokhin, Willard: Polymorphisms, and How to Use Them
- other surveys in this Dagstuhl Follow-Up volume
- Barto, Bulín, Krokhin, Opršal: Algebraic Approach to Promise Constraint Satisfaction (coming soon)

CoolFunc: computational problems \rightarrow objects capturing symmetry kernel of CoolFunc = polynomial time reducibility

Thank you!