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Recap 2/26

CoolFunc: computational problems −→ objects capturing symmetry

kernel of CoolFunc = polynomial time reducibility

undecidable

PSPACE-c

NP-c

P

computational

problems
symmetries

I we “almost” have it for CSPs but
kernel ( polynomial time reducibility

I CSP(A) is equivalent to MinorCond(N,Pol(A))



Relax! 3/26

CSP(A) is often NP-complete

What can we do?

1. Try to satisfy only some fraction of the constraints, eg.

for a satisfiable 3SAT instance,
find an assignment satisfying at least 90% of the clauses

2. Try to satisfy a relaxed version of all constraints, eg.

for a 3-colorable graph,
find a 37-coloring



Approximation

satisfying a fraction of constraints



3SAT is hard to approximate 5/26

Theorem (Håstad’01)

The following problem is NP-complete for every ε > 0
Input: 3SAT instance, eg. (x1 ∨¬x4 ∨ x3)∧ (¬x2 ∨ x5 ∨¬x3)∧ . . .
Answer Yes: it is satisfiable
Answer No: no (7/8 + ε)–fraction of clauses is satisfiable

Corollary: It is NP-hard to satisfy 90% of clauses
of a satisfiable 3SAT instance.

Proof.

Reduction from a version of the Label Cover problem
(known to be NP-hard).

Uses Fourier analysis of Boolean functions.



Label Cover 6/26

LabelCover(N) is CSP([N]; 〈Mφ〉φ), where

I [N] = {1, 2, . . . ,N}
I for each φ : [N]→ [N] we have a relation

Mφ = {(a, φ(a)) : a ∈ [N]}

Additionally

I we have two disjoint sets of variables L,R

I each constraint Mφ(x , y) has x ∈ L, y ∈ R

Example

(∃x1, . . . , y1, . . . ) Mφ(x3, y1) ∧Mφ′(x2, y4) ∧Mφ′′(x5, y1) ∧ . . .



Gap Label Cover 7/26

Definition (GapLabelCover(N , ε))

Input: like LabelCover(N), eg. φ = Mφ(x3, y1)∧Mφ′(x2, y4)∧ . . .
Answer Yes: φ is satisfiable
Answer No: no ε–fraction of constraints is satisfiable

Theorem

For every ε > 0 there exists N such that
GapLabelCover(N, ε) is NP–complete

Proof.

The PCP theorem [Arora, Lund, Motwani, Sudan, Szegedy’98]

Parallel Repetition Thoerem [Raz’98]



Fun fact 8/26

The following two problems are the same!

I (bipartite) MinorCond(N,P) ie. deciding whether a given
minor condition is trivial

I LabelCover(N) ie. deciding whether a given label cover input
is satisfiable

Because:

I interpretation of f and g by projections making the following
equation true
f (x3, x1, x1, x2, x1) = g(x1, x2, x3, x4, x5)

I corresponds to a satisfying assignment of Mφ(f , g) where
φ : 1 7→ 3, 2, 3, 5 7→ 1, 4 7→ 2

I under the correspondence
i ↔ projection onto the ith coordinate

Remark: often implicitely used (“long code”)



A formulation of the Gap Label Cover 9/26

GapLabelCover(N, ε)

Input: bipartite minor condition (symbols of arity N)

Answer Yes: it is trivial

Answer No: no ε–fraction of equations is trivial



PCSP

satisfying a relaxed version of all constraints



Definition 11/26

Fix 2 relational structures in the same language

I A = (A;RA,SA, . . . )

I B = (B;RB,SB, . . . )

I there is a homomorphism A→ B (eg. A ⊆ B,RA ⊆ RB, . . . )

Definition (PCSP(A,B))

Input: pp-sentence φ, eg. (∃x1∃x2 . . . )R(x1, x3) ∧ S(x5, x2) ∧ . . .
Answer Yes: φ satisfied in A
Answer No: φ not satisfied in B

Search version: Find a B-satisfying assignment
given an A-satisfiable input.

(it may be a harder problem, we don’t know)



Example 1: 4-coloring a 3-colorable graph 12/26

Recall: Kn = ({1, 2, . . . , n}; inequality)

PCSP(K3,K4)
Input: a graph
Answer Yes: it is 3-colorable
Answer No: it is not 4-colorable

Search version: Find a 4-coloring of a 3-colorable graph

Fun facts:

I Theorem: it is NP-hard [Brakensiek, Guruswami’16]

(more generally PCSP(Kn,K2n−2) is NP-hard)

I PCSP(Kn,K2n−1) [Buĺın, Krokhin, Opřsal’19]

I 6-coloring 3-colorable graph: complexity not known

I Conjecture: k-coloring, l-colorable graph always NP-hard
(k ≥ l ≥ 3)



Example 2: hypergraph coloring 13/26

Recall: 3NAEk ternary not-all-equal relation on a k-element set

PCSP(3NAE2, 3NAE137)
Input: a 3-uniform hypergraph
Answer Yes: it is 2-colorable
Answer No: it is not 137-colorable

Theorem: It is NP-hard [Dinur,Regev,Smyth’05]

(more generally PCSP(3NAEl , 3NAEk) NP-hard
for every k ≥ l ≥ 2)



Example 3: 1-in-3 vs not-all-equal 14/26

Recall: 1IN3 = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)})

PCSP(1IN3, 3NAE2)
Input: a 3-uniform hypergraph
Answer Yes: there is a 2-coloring such that

exactly one vertex in each hyperedge receives 1
Answer No: it is not 2-colorable

Fact: It is in P. Algorithm for finding a 2-coloring of a Yes input:

I for each hyperedge {x , y , z} write x + y + z = 1

I solve the system over Q \ {1
3} (it is solvable in {0, 1})

I assign x 7→ 1 iff x > 1/3

Note: algorithm uses infinite domain CSP
Theorem: infinity is necessary [Barto’19]



Polymorphisms 15/26

polymorphism of (A,B): mapping f : An → B
compatible with every relation-pair

compatible with (RA,RB): f applied to tuples in RA

is a tuple in RB

Example: f (x1, . . . , x97) = 1 iff
∑

xi
97 > 1

3 f : {0, 1}97 → {0, 1}
is compatible with (1in3, 3NAE2)

Pol(A,B): the set of all polymorphisms (it is a “minion”)
= set of (multivariable) symmetries of (A,B)



Algebraic theory, 4 steps 16/26

1st step (polymorphisms):
can be generalized [Brakensiek, Guruswami’18]

using [Pippenger’02]

2nd step (systems of functional equations):
makes no sense
since polymorphisms can no longer be composed

3rd and 4th step (minor conditions): the same as CSP!

Theorem ([Buĺın, Krokhin, Opřsal’19])

Let M = Pol(A,B). The following computational problems are
equivalent for a large enough N.

(i) CSP(A,B)

(ii) MinorCond(N,M)



Hardness of PCSPs



4-coloring a 3-colorable graph 18/26

Theorem ([Brakensiek, Guruswami’16])

PCSP(K3,K4) is NP-complete

Proof.

I enough to show that Pol(K3,K4) satisfies only trivial minor
conditions.

I equivalently, there is a mapping ξ :M→ N
I if f is of arity n, then ξ(f ) ∈ {1, 2, . . . , n}

(think: an important coordinate of f )

I ξ behaves nicely with minors

I for every f ∈ Pol(K3,K4) of arity n
I there exists t ∈ {1, 2, 3, 4} (a trash color)
I and there exists i ∈ {1, 2, . . . , n} =: ξ(f ) and α such that
I f (x1, . . . , xn) = α(xi ) whenever f (x1, . . . , xn) 6= t



5-coloring a 3-colorable graph 19/26

Theorem ([Buĺın, Krokhin, Opřsal’19])

PCSP(K3,K5) is NP-complete

Proof.

I the previous criterion is not applicable

I there is a mapping
ξ : Pol(K3,K5)→ Pol(3NAE2, 3NAEenough) that behaves
nicely with minors

I Remark: such a ξ :M→ Pol(3NAE2, 3NAEenough) exists iff
M does not satisfy
t(y , x , x , x , y , y) = t(x , y , x , y , x , y) = t(x , x , y , y , y , x)

I so every minor condition satisfied in Pol(K3,K5) is satisfied in
Pol(3NAE2, 3NAEenough)

I so PCSP(3NAE2, 3NAEenough) reduces to PCSP(K3,K5)



A criterion for hardness 20/26

Theorem

Let M = Pol(A,B). If there exists C ∈ N and a mapping
ξ :M→ P(N) such that

I if f is of arity n, then ξ(f ) ⊆ {1, 2, . . . , n}, |ξ(f )| ≤ C
( think: a small set of important coordinates of f )

I ξ behaves nicely with minors, eg. if

f (x3, x2, x1, x2, x2, x1) = g(x1, x2, x3)

and ξ(f ) = {4, 5, 6}, then ξ(g) ∩ {1, 2} 6= ∅
Then PCSP(A,B) is NP-complete.



Proof of the hardness criterion 21/26

I we have ξ :M→ P(N), want to show that

(a) GapLabelCover(N, 1/C 2) reduces to
(b) MinorCond(N,M) (via trivial reduction)

I Recall:
I Input: bipartite minor condition (symbols of arity N)
I Answer Yes: it is trivial
I Answer No:

(a) no 1/C 2–fraction of equations is trivial
(b) not satisfied in M

I “Yes input → Yes input”: trivial
I “No input → No input”: for contrapositive:

I take a valid interpretation in M
I reinterpret f as the i-th projection, where i ∈ ξ(f ) random
I each equation is satisfied with probability ≥ 1/C 2

I so expected fraction of satisfied equations is ≥ 1/C 2

I so some 1/C 2-fraction is trivial



137-coloring a 2-colorable 3-uniform hypergraph 22/26

Theorem ([Dinur,Regev,Smyth’05])

PCSP(3NAE2, 3NAE137) is NP-complete.

Proof.

I Let f ∈ Pol(3NAE2, 3NAE137) of arity n
I Crucial claim: there exists a set I =: ξ(f ) of coordinates and

c ∈ [137] such that
I |I | < 200
I f (whatever , 1, 1, . . . , 1︸ ︷︷ ︸

I

,whatever) 6= c

I Enough to show: there are two dijoint set J,K of
coordinates such that

I |J| = |K | = (n − 200)/2
I f (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

J

, 0, . . . 0) = f (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
K

, 0, . . . 0)

I since f is a polymorphism



137-coloring a 2-colorable 3-uniform hypergraph 22/26

Theorem ([Dinur,Regev,Smyth’05])

PCSP(3NAE2, 3NAE137) is NP-complete.

Proof.

I Assume the converse: whenever J,K of size (n − 200)/2 are
disjoint, then
f (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸

J

, 0, . . . 0) 6= f (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
K

, 0, . . . 0)

I This gives us a 137-coloring of the following graph
I vertices: subsets of [n] of size (n − 200)/2
I J and K adjacent iff thery are disjoint

I Such a coloring does not exist! [Lovász’78]

I Proof uses algebraic topology,
started Topological Combinatorics



Remarks on the proof 23/26

I Warning: The presented sketch of proof does not quite work

I Often: Important coordinates of functions are determined by
analytical (counting) properties

I Here: Based on topological properties
I close in spirit to the (deeper parts of) CSP theory
I other example where this works: PCSP(C137,K3)

[Krokhin,Opřsal]

I this is the way to go, because

geometry > counting



Summary



Summary 25/26

CSP

I = a version of the LabelCover (and MinorCond) problem

I Complexity captured by a piece of information about
polymorphisms

PCSP is cool and fun

I Basics work but a lot is open: eg. borderlines

I More algorithms needed

I More interesting hardness proofs (PCP, topology)

I Q: What else can we forget about polymorphisms?

Reading
I Barto, Krokhin, Willard: Polymorphisms, and How to Use Them
I other surveys in this Dagstuhl Follow-Up volume
I Barto, Buĺın, Krokhin, Opřsal: Algebraic Approach to Promise

Constraint Satisfaction (coming soon)



Ideal world 26/26

CoolFunc: computational problems −→ objects capturing symmetry

kernel of CoolFunc = polynomial time reducibility

undecidable

PSPACE-c

NP-c

P

computational

problems
symmetries

Thank you!
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