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Constraint Satisfaction Problem (CSP)

Is it possible to assign domain elements to variables so that
given local constraints are satisfied?

Strategy: (k, k + 1)-consistency algorithm

Derive the strongest possible constraint on each set of k variables
by considering k + 1 variables at a time

How good is the algorithm?

“so so” no contradiction found ⇒ solution exists

“great” every partial solution on ≥ k variables extends to a solution

“good” every partial solution on k variables extends to a solution
= every sharpening of a constraint invalidates some solution

sensitivity
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Instance of the CSP is a list of constraints R(x)

I x is a list of variables, called the scope

I R is a relation on a fixed domain A of appropriate arity

Example: R(x1, x2), S(x2, x4, x2),R(x3, x4), where
R ⊆ {0, 1, 2}2, S ⊆ {0, 1, 2}3

Solution: mapping variables → domain
that satisfies every constraint

Partial solution: partial mapping variables → domain
that satisfies every constraint with fully evaluated scope

Sensitive instance: every sharpening of a constraint
invalidates some solution
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Fix: k ≥ 1

Assume: all constraint relations have arity ≤ k

(k , k + 1)-consistency algorithm produces a (k , k + 1)-instance

I every k-element set of variables is constraint by a single
constraint (and there are no other constraints)

I each partial solution on k variables can be extended to any
additional variable

and

I the algorithm is polynomial

I the (k, k + 1)-instance has the same solution set as the
original one
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Template is

I relational structure A = (A;R1,R2, ...), each Ri ⊆ Aki

I or algebra A = (A; f1, f2, ...), each fi : Aki → A

CSP over A: constraint relations are from A

Examples: 3-SAT, 3-LINp, HORN-3-SAT, 2-SAT

CSP over A: constraint rel’s are compatible with operations in A

Examples:
CSP over ({0, 1}; (x , y , z) 7→ x + y + z (mod 2)) is ∼ LIN2

CSP over ({0, 1}; (x , y) 7→ min(x , y)) is ∼ HORN-SAT
CSP over ({0, 1}; (x , y , z) 7→ majority of x , y , z) is ∼ 2-SAT
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Operation t : Am → A is

I idempotent if (∀a ∈ A) t(a, a, . . . , a) = a

I near unanimity of arity m, or NU(m) if (∀a, b ∈ A)
t(b, a, . . . , a) = t(a, b, a, . . . , a) = · · · = t(a, . . . , a, b)

Theorem ([BKTV])

Let k ≥ 2 and A a finite idempotent algebra. TFAE

(i) A has an NU(k + 2) term operation.

(ii) Every (k , k + 1)-instance of CSP over A2 is sensitive.

I idempotency and square in A2 necessary for (ii) ⇒ (i)

I not necessary for (i) ⇒ (ii)

I more general version for infinite idempotent algebras



How good is the (k , k + 1)-consistency algorithm? 8/11

Consider k ≥ 2, A a finite structure with relations of arity ≤ k

If A has a compatible NU(m) (for some m), the alg. is “so so”

for any instance of CSP over A
if the associated (k , k + 1)-instance is non-trivial,

then there exists a solution [B., Kozik’09, B.’16]

If A has a compatible NU(k + 1), then the algorithm is “great”

for any instance of CSP over A
in the associated (k , k + 1)-instance

every partial solution on ≥ k variables extends to a solution

[Bergman’77, Feder,Vardi’99]

If A has a compatible NU(k + 2), then the algorithm is “good”

for any instance of CSP over A
the associated (k, k + 1)-instance is sensitive [BKTV]

Note: NU(3) ⇒ NU(4) ⇒ NU(5) ⇒ . . .
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I 3-LINp tractable, but not “so so” for any k

I HORN-3-SAT is “so so” but not “good” (for any k)

I 2-SAT is “great” (k ≥ 2)

I the following structure is “good” but not “great” for k = 2

A = ({0, 1}2;R1,R2,R3), where ((a, b), (c, d)) ∈ Ri iff

(i=1) a + b + c + d ≥ 2
(i=2) a = c
(i=3) a = d
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Theorem ([BKTV])

Let k ≥ 2 and A a finite idempotent algebra. TFAE

(i) A has an NU(k + 2) term operation.

(ii) Every (k , k + 1)-instance of CSP(A2) is sensitive.

(ii) ⇒ (i):

I careful choices of (k, k + 1)-instances give “very local”
NU(k + 2)’s

I NU(k + 2) can be assembled from these [Horowitz’13]

(i) ⇒ (ii): we apply a new loop lemma, improvement of [Oľsák’17]

Theorem ([BKTV]): If S ⊆ A2 contains a directed closed walk and
absorbs all the loops, then S has a loop.
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For A with ≤ 2-ary relations compatible with NU(k + 2), k ≥ 2

“so so” after enforcing (2, 3)-consistency, no contradiction found ⇒ solution

“good” after enforcing (k , k + 1)-consistency, every partial solution on k
variables extends to a solution

“great” after enforcing (k + 1, k + 2)-consistency, every partial solution on
≥ k variables extends to a solution

Questions:

I gap between “so so” and “good” – ∃ natural conditions in between?

I “so so” and “great” (holding for every instance) can be
characterized by compatible operations, what about “good”?

I “so so” and “great” have natural versions for higher arity relations,
is there such for “good”?

I characterization of “great” has a generalization to a class of infinite
domain structures (by means of oligopotent quasi-NUs), is it
possible to generalize our result to oligopotent quasi-NUs?


