Constraint Satisfaction Problem over a Fixed Template

Libor Barto

Charles University in Prague

Highlights of Logic, Games and Automata Prague, 15 September 2015

- Common framework for many real-life problems
- Not the topic of this tutorial
- We will restrict to a tiny subclass CSPs over a finite template
- We will study computational complexity of these problems (mainly NP versus P)

Common framework for some computational problems

- Broad enough to include interesting examples
- Narrow enough to make significant progress (on all problems within a class, rather than just a single computational problem)
- Generalizations to broader classes of problems
- Main achievement: better understanding why problems are easy or hard:
 - Hardness comes from lack of symmetry
 - Symmetries of higher arity are important (not just automorphisms or endomorphisms)
 → universal algebra (not just group or semigroup theory)
- Long term goal: go beyond CSP

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form $R_1(x, y, z), R_2(t, z), R_1(y, y, z), \ldots$ where R_i are relations on a common domain A(subsets of A^k or mappings $A^k \rightarrow \{true, false\}$). Assignment = mapping variables \rightarrow domain

- Satisfiability problem: Is there an assignment satisfying all constraints (a solution)
- Search problem: Find a solution
- Counting CSP: How many solutions are there?
- Max-CSP: Find a map satisfying maximum number of constraints
- ► Approx. Max-CSP: Find a map satisfying 0.7 × Optimum constraints
- Robust CSP: Find an almost satifying assignment given an almost satisfiable instance

Definition

- What is the computational (or descriptive) complexity for fixed A?
- This tutorial: Satisfiability problem for CSP(A)
- Other interesting problems:
 - restrict something else than the set of allowed relations
 - allow infinite A
 - ▶ allow weighted relations: mappigs $A^k \to Q \cup \{\infty\}$
 - (approximate) counting, Max-CSP, Approx Max-CSP

Basic form

- ► Logical version Instance: Sentence \u03c6 in the language of \u03c6 with ∃ and \u03c6 Question: Is \u03c6 true in \u03c6?
- Homomorphism version
 Instance: Relational structure B of the same type as A
 Question: Is there a homomorphism B → A?

Example 3-SAT (NP-complete)

$$\mathcal{A} = (\{0, 1\}; R_{000}, R_{001}, R_{011}, R_{111})$$

 $\begin{array}{ll} R_{000}(x,y,z) \text{ iff } x \lor y \lor z \\ R_{001}(x,y,z) \text{ iff } x \lor y \lor \neg z \\ R_{011}(x,y,z) \text{ iff } x \lor \neg y \lor \neg z \\ R_{111}(x,y,z) \text{ iff } \neg x \lor \neg y \lor \neg z \\ \end{array} \begin{array}{ll} R_{011} = & \text{all triples but } (0,0,0) \\ R_{011} = & \text{all triples but } (0,0,1) \\ R_{011} = & \text{all triples but } (0,1,1) \\ R_{111} = & \text{all triples but } (1,1,1) \end{array}$

Instance: $R_{001}(x_1, x_4, x_7)$, $R_{001}(x_2, x_2, x_6)$, $R_{111}(x_2, x_1, x_5)$ **Meaning:** $x_1 \lor x_4 \lor \neg x_7$, $x_2 \lor x_2 \lor \neg x_6$, $\neg x_2 \lor \neg x_1 \lor \neg x_5$ **Question:** Is there a satisfying assignment $\{x_1, x_2, ...\} \to \{0, 1\}$?

Inst: $\exists x_1, x_2, \dots, R_{001}(x_1, x_4, x_7) \land R_{001}(x_2, x_2, x_6) \land R_{111}(x_2, x_1, x_5)$ **Quest:** Is it true?

Inst:
$$\mathcal{B} = (B; S_{000}, S_{001}, S_{011}, S_{111})$$
, where $B = \{x_1, x_2, ...\}$,
 $S_{000} = \emptyset$, $S_{001} = \{(x_1, x_4, x_6), (x_2, x_2, x_6)\}$,
 $S_{011} = \emptyset$, $S_{111} = \{(x_2, x_1, x_5)\}$
Quest: Is there a homomorphism $\mathcal{B} \to \mathcal{A}$?

Some other Boolean templates

- ▶ **1-in-3-SAT** (NP-complete): $\mathcal{A} = (\{0, 1\}; R),$ $R = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$
- ► NAE-3-SAT (NP-complete): A = ({0,1}; R), R = all triples but {(0,0,0), (1,1,1)}
- ▶ **2-SAT** (in P, NL-complete): $A = (\{0, 1\}; R_{00}, R_{01}, R_{11})$
- ▶ **HORN-3-SAT** (in P, P-complete): $\mathcal{A} = (\{0, 1\}; C_0, C_1, R_{011}, R_{111}), C_0 = \{0\}, C_1 = \{1\},$ $R_{011}(x, y, z)$ iff $y \land z \to x$, $R_{111}(x, y, z)$ iff $y \land z \to \neg x$
- **Digraph unreachability** (in P, NL-complete): $\mathcal{A} = (\{0, 1\}; C_0, C_1, \leq)$
- Graph unreachability (in P, L-complete): $\mathcal{A} = (\{0, 1\}; C_0, C_1, =)$

k-COLOR (L-complete for k ≤ 2, NP-complete for k > 3): A = ({1,...,k}; ≠)

▶
$$\mathbb{Z}_p$$
-**3-LIN** (in P): $\mathcal{A} = (\mathbb{Z}_p; \text{ affine subspaces of } \mathbb{Z}_p^3)$

A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi'93)

For every A, CSP(A) is either in P or NP-complete.

- Evidence (in 93):
 - True for |A| = 2 Schaefer'78
 - ► True if A = (A; R), R is binary and symmetric Hell and Nešetřil'90
- Feder and Vardi suggested that tractability is tied to "closure properties"
- \blacktriangleright \rightarrow algebraic approach Bulatov, Jeavons, Krokhin'00

Reductions

Reductions and universal algebra

- Write CSP(A) ≤ CSP(B) if CSP(A) is "at most as hard as" CSP(B) (precise meaning: log-space reducible)
- Crucial: pp-interpretations give reductions
- pp-interpretations are (indirectly) the main subject of universal algebra

Plan for the rest:

- reductions in relational language
- algebra
- results

Definition

Let \mathcal{A}, \mathcal{B} be relational structures with common domain $\mathcal{A} = \mathcal{B}$. We say that \mathcal{A} pp-defines \mathcal{B} if each relation in \mathcal{B} can be defined by a first order formula which uses relations in $\mathcal{A}, =, \wedge$ and \exists .

Will also use " \mathcal{A} pp-defines a relation R", "R is pp-definable from \mathcal{A} ", etc

Theorem

If \mathcal{A} pp-defines \mathcal{B} , then $CSP(\mathcal{B}) \leq CSP(\mathcal{A})$.

Proof in a moment

Examples and exercises

- ► the template of 3-SAT A = ({0,1}; R₀₀₀, R₀₀₁, R₀₁₁, R₁₁₁) pp-defines
 - each ternary relation
 - each unary and binary relation
 - the 4-ary relation $R_{0000} =$ all tuples but (0, 0, 0, 0)
 - all relations
 - ▶ for each $\mathcal{B} = (\{0, 1\}, ...)$, \mathcal{A} pp-defines \mathcal{B} . Thus $CSP(\mathcal{B}) \leq 3\text{-SAT}$.
- ▶ (the template of) 1-in-3-SAT
 A = ({0,1}; {(0,0,1), (0,1,0), (1,0,0)}) pp-defines
 (the template) of 3-SAT
- ► NAE-SAT A = ({0,1}; all triples but (0,0,0), (1,1,1)) does not pp-define 3-SAT

• it even does not define $C_0 = \{0\}$ – why?

► HORN-SAT A = ({0,1}; C₀, C₁, R₀₁₁, R₁₁₁) does not pp-define 3-SAT - why?

pp-definitions give reductions - proof

Theorem

If \mathcal{A} pp-defines \mathcal{B} , then $\mathrm{CSP}(\mathcal{B}) \leq \mathrm{CSP}(\mathcal{A})$.

Say
$$\mathcal{A} = (A; R)$$
, $\mathcal{B} = (A; S, T)$, where
 $S(x, y)$ iff $(\exists z) R(x, y, z) \land R(y, y, x)$
 $T(x, y)$ iff $R(x, x, x) \land (x = y)$

- Reduction of $CSP(\mathcal{B})$ to $CSP(\mathcal{A})$:
- Say, our instance is (∃x₁, x₂, x₃, x₄) S(x₃, x₂) ∧ T(x₁, x₄) ∧ S(x₂, x₄)
- Rewrite using the definitions: (∃x₁, x₂, x₃, x₄, y₁, y₂) R(x₃, x₁, y₁) ∧ R(x₂, x₂, x₃) ∧ R(x₁, x₁, x₁) ∧ (x₁ = x₄) ∧ R(x₂, x₄, y₂) ∧ R(x₄, x₄, x₂)
 Get rid of =
 - $\begin{array}{l} (\exists x_1, x_2, x_3, \ y_1, y_2) \ R(x_3, x_1, y_1) \land R(x_2, x_2, x_3) \land \\ R(x_1, x_1, x_1) \ \land R(x_2, x_1, y_2) \land R(x_1, x_1, x_2) \end{array}$
- The new instance has a solution iff the original one does

pp-definitions are not satisfactory

- ▶ 3-COLOR does not pp-define 3-SAT: different domains
- 3-SAT does not pp-define 3-COLOR: even worse, the domain is larger
- solution:
 - each variable of a 3-COLOR instance is encoded as a pair of variables in a Boolean instance
 - a (binary) constraint is encoded as a 4-ary constraint

Informal definition: \mathcal{A} pp-interprets \mathcal{B} if

- ▶ the domain of B is a pp-definable relation (from A) modulo a pp-definable equivalence
- ► the relations in B (regarded as relations on A) are also pp-definable

pp-interpretations

Definition

We say that \mathcal{A} pp-interprets \mathcal{B} if $\exists n \in \mathbb{N}, \exists C \subseteq A^n, \exists f : C \to B$ onto, such that \mathcal{A} pp-defines

- ► C, the kernel of f (regarded as a 2n-ary relation on A), and
- ► the *f*-preimage of every relation in B (*f*-preimage of a *k*-ary relation is regarded as a *nk*-ary relation on A)

Example:
$$\mathcal{A} = (\{0, 1\}; ...)$$
 3-SAT, $\mathcal{B} = (\{1, 2, 3\}, \neq)$ 3-COLOR
 $n = 2, C = \{(0, 1), (1, 0), (1, 1)\},\$
 $f : (0, 1) \mapsto 1, (1, 0) \mapsto 2, (1, 1) \mapsto 3$
 $\blacktriangleright \mathcal{A}$ pp-defines C and the kernel of f
 $\flat f$ -preimage of \neq is
 $\{f^{-1}(1, 2), f^{-1}(1, 3), ...\} =$
 $\{((0, 1), (1, 0)), ((0, 1), (1, 1)), ...,$
regarded as a 4-ary relation: $\{(0, 1, 1, 0), (0, 1, 1, 1), ...\}$

is pp-definable from \mathcal{A} .

Theorem

If \mathcal{A} pp-interprets \mathcal{B} , then $CSP(\mathcal{B}) \leq CSP(\mathcal{A})$.

Remarks

- Proof is easy idea was mentioned
- It seems that finding pp-definitions requires creativity (we will see that it doesn't)
- ► Does not easily show that 3-SAT ≤ NAE-SAT (further reductions will show this easily)

Definition

 \mathcal{A} and \mathcal{B} of the same signature are homomorphically equivalent if there exist homorphisms $\mathcal{A} \to \mathcal{B}$ and $\mathcal{B} \to \mathcal{A}$.

Theorem

If \mathcal{A} and \mathcal{B} are homomorphically equivalent, then $\mathrm{CSP}(\mathcal{A}) = \mathrm{CSP}(\mathcal{B})$

Theorem

Each A is homomorphically equivalent to a unique core, ie. a structure whose each endomorphism is a bijection

Example: If $\exists c \in A$ such that each relation contains a constant tuple (c, \ldots, c) , then the core of A is a singleton structure, and CSP(A) is VERY easy

Reduction to idempotent cores

Theorem

Let $\mathcal{A} = \{(a_1, \ldots, a_n); \ldots\}$ be a core. Let \mathcal{B} be the structure obtained from \mathcal{A} by adding C_{a_1}, \ldots, C_{a_n} . Then $\mathrm{CSP}(\mathcal{B}) \leq \mathrm{CSP}(\mathcal{A})$.

- ► **Crucial!** The set of endomorphisms of *A* regarded as an *n*-ary relation, ie.
 - $S = \{(f(a_1), f(a_2), \dots, f(a_n)) : f \in \text{End } \mathcal{A} = \text{Aut } \mathcal{A}\}$ is pp-definable from \mathcal{A} (without \exists): $S(x_1, \dots, x_n) \text{ iff } \bigwedge_{R \text{ in } \mathcal{A}} \bigwedge_{(b_1, \dots, b_k) \in R} R(x_{b_1}, \dots, x_{b_k})$
- Consider an instance of $CSP(\mathcal{B})$
- Introduce new variables x_{a_1}, \ldots, x_{a_n}
- ► Add the constraint S(x_{a1},...,x_{an})
- Replace each $C_a(x)$ by $x = x_a$
- The new instance has a solution iff the orginal does:
 - ▶ ⇒ use inverse of the automorphism determined by values of x_{a_1}, \ldots, x_{a_n}

- ► Exercise: 3-SAT ≤ 3-COLOR: pp-construct 3-SAT from 3-COLOR + singletons
- **Def**: idempotent core ... contains all singleton unary relations
- we can WLOG concentrate on idempotent cores
- **Corollary**: If CSP(A) in P, then finding a solution is in P.

In the following situations, $CSP(\mathcal{B}) \leq CSP(\mathcal{A})$:

- \mathcal{A} pp-interprets \mathcal{B}
- \mathcal{A} is homomorphically equivalent to \mathcal{B}
- \mathcal{A} is a core and \mathcal{B} is obtained by adding singletons

Definition

We say that \mathcal{A} pp-constructs \mathcal{B} if \mathcal{B} can be obtained from \mathcal{A} by (repeated) application of the three constructions above.

So: \mathcal{A} pp-constructs $\mathcal{B} \Rightarrow \operatorname{CSP}(\mathcal{B}) \leq \operatorname{CSP}(\mathcal{A})$

Fun fact: Each known (template of an) NP-complete CSP pp-constructs all structures!

Corollary

If A pp-constructs all structures (equivalently 3-SAT), then CSP(A) is NP-complete

Conjecture (The algebraic dichotomy conjecture The tractability conjecture)

Otherwise \mathcal{A} is in P.

Similar conjectures for the complexity classes L, NL.

Algebra

n-ary operation on A = mapping $A^n \rightarrow A$

Definition

An operation $f : A^n \to A$ is compatible with relation $R \subseteq A^k$ if whenever (a_{ij}) is a $n \times k$ matrix whose all rows are in Rthen f applied to the columns gives a k-tuple from RPolymorphism of \mathcal{A} = operation compatible with all relations in \mathcal{A} Pol \mathcal{A} = the set of all polymorphisms of \mathcal{A}

- Polymorphism of $\mathcal{A} =$ homomorphism $\mathcal{A}^n \to \mathcal{A}$
- Note: unary polymorphism = endomorphism
- Think: symmetry of higher arity

Polymorphisms – examples, exercises

- ▶ $min: \{0,1\}^2 \rightarrow \{0,1\}$ is a polymorphism of HORN-3-SAT, max is not
- ► the majority operation major : {0,1}³ → {0,1}, ie major(x,x,y) ≈ major(x,y,x) ≈ major(y,x,x) ≈ x is a polymorphism of 2-SAT
- b the minority operation minor : {0,1}³ → {0,1}, ie minor(x, y, z) = x - y + z (mod 2) is a polymorpism of Z₂-LIN
- A constant operation all → c (of any arity) is in Pol A iff each relation in A contains a constant tuple (c, c, ..., c)
- F is compatible with all singleton unary relations iff f is idempotent (i.e. f(x,...,x) ≈ x)
- Each projection π_i^n is a polymorphism of every structure
- Pol 3-SAT = projections

$\mathsf{Pol}(\mathcal{A})$ is a clone

 $\mathsf{Pol}(\mathcal{A})$:

- contains all projections
- ▶ is closed under composition, for instance, if f, g ∈ Pol(A) (arity 2, 3), then h (arity 4) defined by h(x₁, x₂, x₃, x₄) = g(x₁, f(x₃, g(x₂, x₂, x₄)), x₃) is in Pol(A)

Definition

A *(function) clone* on A is a set of operations on A which contains all projections and is closed under composition.

compare: transformation monoid

Theorem

Let \mathcal{A}, \mathcal{B} have the same domain. Then \mathcal{A} pp-defines \mathcal{B} iff $Pol(\mathcal{A}) \subseteq Pol(\mathcal{B})$.

For \Leftarrow enough to show: if a relation $R \subseteq A^k$ is compatible with each $f \in Pol(A)$, then A pp-defines R.

•
$$A = \{a_1, \ldots, a_n\}, R = \{(c_{11}, \ldots, c_{1k}), \ldots, (c_{m1}, \ldots, c_{mk})\}$$

- Crucial: The set of *m*-ary polymorphisms of A regarded as an |A^m|-ary relation, ie.
 S = {(f(a₁, a₁,..., a₁),..., f(a_n, a_n,..., a_n)) : f ∈ Pol A} is pp-definable from A (without ∃).
- existentially quantify over all coordinates but those corresponding to (c₁₁,..., c_{m1}), ..., (c_{1k},..., c_{mk})
- the obtained relation contains R (because of projections) and is contained in R (because of compatibility)

- Proof gives pp-definitions whenever they exist
- **Example**: $3-SAT \le 1-in-3-SAT$ now requires no creativity
- pp-definition of R_{ijk} from {(0,0,1), (0,1,0), (1,0,0)} according to the proof:
 - *R_{ijk}* has 7-triples
 - ▶ 7-ary polymorphisms (of 1-in-3-SAT) form a 2⁷-ary relation
 - ▶ its pp-definition will have 2⁷ = 128 variables and 3⁷ = 2187 clauses
 - we existentially quantify 121 variables

- Take $A = (\{0, 1\}; ...)$
- If a constant is in Pol A, then CSP(A) is in P (answer YES)
- otherwise A is a core we can add singletons without changing the complexity
- So, assume A is an idempotent core (contains C_0 , C_1)
- Thus Pol A is idempotent
- ► If Pol A contains only projections, then A pp-interprets everything, therefore CSP(A) is NP-complete
- ▶ Now assume Pol A is nontrivial (contains a non-projection).
- We will show that $CSP(\mathcal{A})$ is in P.

Fact

Each nontrivial idempotent clone on $\{0,1\}$ contains max, min, major, or minor.

Possible proofs:

- ▶ All clones on {0,1} are described look at the list
- Direct elementary proof

Boolean CSPs III

Cases:

- minor $\in \mathsf{Pol}(\mathcal{A})$
 - ► Exercise: each relation compatible with *minor* is an affine subspace of Zⁿ₂
 - Thus $\operatorname{CSP}(\mathcal{A})$ can be solved by Gaussian elimination
- major $\in \mathsf{Pol}(\mathcal{A})$
 - **Exercise:** each relation compatible with *major* is determined by its binary projections, therefore is pp-definable from binary relations
 - Thus $CSP(A) \leq CSP(\{0,1\}; \text{ all binaries}) \leq 2\text{-SAT}$

• $min \in Pol(A)$

- Exercise (hardest): each relation compatible with min is pp-definable from HORN-3-SAT
- Thus $\operatorname{CSP}(\mathcal{A}) \leq \mathsf{HORN}\operatorname{-3-SAT}$
- $max \in Pol(A)$ is dual

- The polynomial solvability of *minor*, *major*, *min*, *max* follows from general results (later)
- We only used algebraic counterpart to pp-definitions (no pp-interpretations), because the domain is small

Now we continue with algebra

Basic constructions with algebras: forming subalgebras, finite powers, quotients, expansions

can be performed with clones: restricting to invariant subsets, forming finite powers, quotients, expansions

Theorem
TFAE
(i) \mathcal{A} pp-interprets \mathcal{B}
(ii) Pol ${\cal B}$ can be obtained from Pol ${\cal A}$ using these basic constructions

Basic constructions and clone homomorphisms

Definition

A mapping $\mathsf{Pol}\,\mathcal{A} \to \mathsf{Pol}\,\mathcal{B}$ is a clone homomorphism if it preserves

- arities
- projections
- composition
- Does not depend on the concrete operations in the clones, depends only on the way how they compose
- An arity preserving mapping is a clone homomorphism iff it preserves identities

eg. associative binary operation is mapped to an associative operation

a majority operation is mapped to a majority operation

Theorem

TFAE

- (i) Pol *B* can be obtained from Pol *A* using the basic constructions
- (ii) There exists a clone homomorphism $\operatorname{Pol} \mathcal{A} \to \operatorname{Pol} \mathcal{B}$

Proof: the crucial object is the same as before!

Identities!

Corollary

TFAE

- (i) \mathcal{A} pp-interprets \mathcal{B}
- (ii) $\mathsf{Pol}\,\mathcal{B}$ can be obtained from $\mathsf{Pol}\,\mathcal{A}$ using the basic constructions

(iii) There exists a clone homomorphism $\operatorname{Pol} \mathcal{A} \to \operatorname{Pol} \mathcal{B}$

If this is the case, then $CSP(\mathcal{B}) \leq CSP(\mathcal{A})$.

The complexity of ${\rm CSP}({\cal A})$ depends only on identities satisfied by polymorphisms of ${\cal A}.$

Universal algebra serves in 2 ways:

- toolbox containing heavy hammers
- ► catalog of important identities → guideline to identifying interesting intermediate cases and tools to attack them

The algebraic dichotomy conjecture again

Conjecture

. . .

Let \mathcal{A} be a core. Then $CSP(\mathcal{A})$ is in P if (equivalently):

- (i) \mathcal{A} does not pp-interpret everything
- (ii) the trivial clone cannot be obtained from $\operatorname{Pol} \mathcal A$ by the basic constructions
- (iii) there does not exist a clone homomorphism from $\mathsf{Pol}\,\mathcal{A}$ to the trivial clone

ie. operations $\operatorname{Pol} A$ satisfy some nontrivial identities (=not satisfiable by projections)

(mdxii) Siggers Pol A contains a 4-ary operation t satisfying $t(r, a, r, e) \approx t(a, r, e, a)$

(hchkr) Barto, Kozik Pol A contains a *p*-ary operation t ($\forall p > |A|$ a prime) satisfying $t(x_1, \dots, x_p) \approx t(x_2, \dots, x_p, x_1)$

Theorem

Let $\mathcal{A} = (A; R)$, where R is binary, symmetric. If R has no loops and is non-bipartite, then $CSP(\mathcal{A})$ is NP-complete. Otherwise $CSP(\mathcal{A})$ is in P.

Proof:

- Assume \mathcal{A} is non-bipartite, and a core
- If CSP(A) does not pp-interpret everything, then A has a cyclic polymorphism t_p of each prime arity p > |A|
- Find a closed walk a_1, \ldots, a_p, a_1 for some prime p > |A|
- ► Then (t_p(a₁,..., a_p), t_p(a₂,..., a_p, a₁)) = (c, c) ∈ R since t_p is a polymorphism

- Feder, Vardi: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory
- Bulatov, Jeavons, Krokhin: Classifying the complexity of constraints using finite algebras
- Bodirsky: Constraint satisfaction problems with infinite templates
- Barto: The constraint satisfaction problem and universal algebra
- Barto, Opršal, Pinsker: The wonderland of the double shrink ***title may change***

Results

Results

- Better understanding of pre-algebraic results
- Far broader special cases solved. The dichotomy conjecture is true:
 - ▶ if |A| = 3 Bulatov'06
 - if |A| = 4 Marković et al.
 - ▶ if A contains all unary relations Bulatov'03, Barto'11
 - if A = (A; R) where R is binary, without sources or sinks Barto, Kozik, Niven'09

Applicability of known algorithmic principles understood

- Describing all solutions "few subpowers" Idziak, Markovic, McKenzie, Valeriote, Willard'07
- Local consistency (constraint propagation) Barto, Kozik'09, Bulatov
- All known tractable cases solvable by a combination of these two
- Progress on finer complexity classification

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by checking local consistency

More precisely:

- Fix $k \leq I$ (integers)
- (k, l)-algorithm: Derive the strongest constraints on k variables which can be deduced by "considering" l variables at a time.
- If a contradiction is found, answer "no" otherwise answer "yes"
- "no" answers are always correct
- ▶ if "yes" answers are correct for every instance of CSP(A) we say that A has width (k, l).

▶ if A has width (k, l) for some k, l then A has bounded width Various equivalent formulations (bounded tree width duality, Datalog, LFP logic, games) Let $\mathcal{A} = (\{0,1\}; \neq)$ (2-COLOR)

Consider the instance

$$x_1 \neq x_2, x_2 \neq x_3, x_3 \neq x_4, x_4 \neq x_5, x_5 \neq x_1$$

- By looking at {x₁, x₂, x₃} we see (using x₁ ≠ x₂ and x₂ ≠ x₃) that x₁ = x₃.
- By looking at {x₁, x₃, x₄} we see (using x₁ = x₃ and x₃ ≠ x₄) that x₁ ≠ x₄.
- By looking at {x₁, x₄, x₅} we now see (using x₁ ≠ x₄, x₄ ≠ x₅, x₅ ≠ x₁) a contradiction

In fact, A has width (2,3), that is, such reasoning is always sufficient for an instance of CSP(A).

Bounded width

- ► The problems Z_p-LIN do not have bounded width Feder, Vardi'93
- ► If A pp-constructs Z_p-LIN then A does not have bounded width Larose, Zádori'07
- Thus the "obvious" necessary condition for bounded width is that A does not pp-construct Z_p-LIN.
- It is sufficient:

Theorem

The following are equivalent.

- \mathcal{A} does not pp-construct \mathbb{Z}_p -LIN
- Pol(A) contains operations satisfying
- ▶ *A* has bounded width *B*, Kozik'09
- ► *A* has width (2,3) *B*; *Bulatov*

Towards the bounded width theorem

- First universal algebraic steps Feder and Vardi:
 - If Pol \mathcal{A} contains TSI polymorphisms of all arities, then $\mathrm{CSP}(\mathcal{A})$ has width 1

covers HORN-SAT

► If Pol A has a majority polymorphism, then CSP(A) has width (2,3)

covers 2-SAT

- ► More generally: if Pol A has an NU polymorphism, then CSP(A) has bounded width
- *"A* does not pp-construct Z_p-LIN" is a well-known algebraic condition on Pol A
- UA suggested more general intermediate steps (and gave tools)
 - 2-semilattices Bulatov
 - CD(3) Kiss, Valeriote, CD(4) Carvalho, Dalmau, Marković, Maróti, CD Barto, Kozik

 $\mathsf{TSI}=\mathsf{operation}$ whose value depends only on the set of its arguments:

 $\{a_1,\ldots,a_n\}=\{b_1,\ldots,b_n\}\Rightarrow t(a_1,\ldots,a_n)=t(b_1,\ldots,b_n)$

- Assume A has TSI polymorphisms of all arities
- ▶ We will show that CSP(A) has width 1.
- ▶ (1,1)-algorithm more precisely:
 - For each variable x, set $P_x := A$ (meaning: possible values)
 - If a ∈ P_x, R(x, y, z, ...) is a constraint, and no tuple of the form (a, b ∈ P_y, c ∈ P_z, ...) is in R, then remove a from P_x
 - Repeat until no removals are made
 - If $(\exists x) P_x = \emptyset$ for some *x*, return NO SOLUTION
- ▶ Need to show: If $(\forall x) P_x \neq \emptyset$, then there is a solution
- Choose TSI polymorphism of sufficiently big arity
- Apply it to P_x : we get $a_x \in P_x$
- $x \mapsto a_x$ is a solution!

Describing all solutions - few subpowers

- In Z_p-LIN we can "describe" all solutions we can find polynomially large (wrt # of variables) set of solutions (called generating set) so that the solution set is its affine hull
- Def: Let R be pp-definable from A. X ⊆ R is a generating set of R if R is equal to the closure of R under Pol(A).
- Sequence of papers generalizing the algorithm for Z_p Feder, Vardi; Bulatov; Bulatov, Dalmau; Dalmau culminated in

Theorem (Berman et al, Idziak et al.)

TFAE for an idempotent core \mathcal{A}

- A has at most $2^{poly(n)}$ pp-definable relations of arity n
- Each n-ary pp-definable relation has a generating set of size poly(n).
- ▶ Pol(A) contains operations satisfying

In this case, CSP(A) is in P; moreover, generating set of solutions can be found in P.

Bonuses

 $CSP(\mathcal{A})$: Instance: Sentence ϕ in the language of \mathcal{A} with \exists and \land Question: Is ϕ true in \mathcal{A} ?

What about: Allow some other combination of $\{\exists, \forall, \land, \lor, \neg, =, \neq\}$.

From 2^7 cases only 3 interesting (others reduce to these or are boring)

- ► {∃, ∀, ∧, (=)} (qCSP) open
- ► {∃, ∀, ∧, ∨} (Positive equality free) solved - tetrachotomy P, NP-c, co-NP-c, PSPACE-c B.Martin, F.Madelaine 11

- Task: Find an almost satisfying assignment given an almost satisfiable instance
- More precisely: Find an assignment satisfying at least (1 − g(ε)) fraction of the constraints given an instance which is (1 − ε) satisfiable, where g(ε) → 0 as ε → 0 (g should only depend on A).
- Algorithms for 2-SAT and HORN-SAT based on linear programming and semidefinite programming Zwick'98
- ► Z_p-LIN has no robust polynomial algorithm (assuming P ≠ NP) Hastad'01
- If A pp-constructs Z_p-LIN then CSP(A) has no robust algorithm Dalmau, Krokhin'11

- ► If A pp-constructs Z_p-LIN then CSP(A) has no robust algorithm Dalmau, Krokhin'11
- Conjecture of Guruswami and Zhou: this is the only obstacle

Theorem (B, Kozik'12)

The following are equivalent (assuming $P \neq NP$)

- \mathcal{A} does not pp-construct \mathbb{Z}_p -LIN
- ▶ CSP(A) has a robust polynomial algorithm
- canonical semidefinite programming relaxation correctly decides CSP(A)

- ▶ The complexity is also controlled by Pol(A)
- A necessary condition for tractability found Bulatov, Dalmau'03 (inspiration: the other algorithm for decison CSPs)
- A stronger necessary condition for tractability found Bulatov, Grohe'05
- The stronger condition is sufficient Bulatov'08, Dyer and Richerby'10

- Weighted relation: mapping $A^n \to \mathbb{Q} \cup \{\infty\}$
- Instance: sum, eg $R(x_1, x_2) + S(x_3, x_1, x_2)$
- Task: Minimize the sum
- Includes: Satisfiability, optimization
- Algebraic theory Cohen, Cooper, Creed, Jeavons, Živný
- Classification modulo the algebraic dichotomy conjecture! Kolmogorov, Krokhin, Rolinek
- ► Algorithm: alg. for satisfiability + linear programming

Wrap up

Final remarks

Satisfiability problem

- Easy criterion for hardness
- Complexity depends on indentities
- Theory gives generic reduction between any two NP-complete CSPs (instead of ad hoc reductions)
- Applicability of known algorithms understood
- The dichotomy conjecture still open in general

For other variants (Approx-CSP, Valued CSP, infinite)

- Universal algebra also relevant Cohen, Cooper, Creed, Jeavons, Živný; Raghavendra; Bodirsky, Pinsker
- More or less the same criterion for easiness/hardness
- Easiness comes from "symmetry"
- One needs symmetry of higher arity (e.g. polymorphisms) rather than just automorphisms or endomorphisms

Beyond CSPs

- ▶ ???
- There is ≥ 1 examples Raghavendra

We need lunch!

Thank you!