
Constraint Satisfaction Problem
over a Fixed Template

Libor Barto

Charles University in Prague

Highlights of Logic, Games and Automata
Prague, 15 September 2015

Constraint satisfaction problem (CSP)

I Common framework for many real-life problems

I Not the topic of this tutorial

I We will restrict to a tiny subclass – CSPs over a finite
template

I We will study computational complexity of these problems
(mainly NP versus P)

CSP over a finite template

I Common framework for some computational problems
I Broad enough to include interesting examples
I Narrow enough to make significant progress (on all problems

within a class, rather than just a single computational problem)
I Generalizations to broader classes of problems

I Main achievement: better understanding why problems are
easy or hard:

I Hardness comes from lack of symmetry
I Symmetries of higher arity are important

(not just automorphisms or endomorphisms)
→ universal algebra (not just group or semigroup theory)

I Long term goal: go beyond CSP

Instance of the CSP

Definition

Instance of the CSP is a list of constraints – expression of the form
R1(x , y , z), R2(t, z), R1(y , y , z), . . .

where Ri are relations on a common domain A
(subsets of Ak or mappings Ak → {true, false}).

Assignment = mapping variables → domain

I Satisfiability problem: Is there an assignment satisfying all
constraints (a solution)

I Search problem: Find a solution
I Counting CSP: How many solutions are there?
I Max-CSP: Find a map satisfying maximum number of

constraints
I Approx. Max-CSP: Find a map satisfying 0.7× Optimum

constraints
I Robust CSP: Find an almost satifying assignment given an

almost satisfiable instance

CSP over a fixed template (aka constraint language)

Definition

A = (A;R1,R2, . . . ,Rk): relational structure with A finite
Instance of CSP(A): Expression of the form

R1(x , y , z), R2(t, z), R1(y , y , z), . . .
where each Ri is in A.

I What is the computational (or descriptive) complexity for
fixed A?

I This tutorial: Satisfiability problem for CSP(A)
I Other interesting problems:

I restrict something else than the set of allowed relations
I allow infinite A
I allow weighted relations: mappigs Ak → Q ∪ {∞}
I (approximate) counting, Max-CSP, Approx Max-CSP

3 formulations of CSP(A)

I Basic form
Instance: List of constraints over A
Question: Is there a satisfying assignment variables →
domain?

I Logical version
Instance: Sentence φ in the language of A with ∃ and ∧
Question: Is φ true in A?

I Homomorphism version
Instance: Relational structure B of the same type as A
Question: Is there a homomorphism B → A?

Example 3-SAT (NP-complete)

A = ({0, 1}; R000,R001,R011,R111)

R000(x , y , z) iff x ∨ y ∨ z R000 = all triples but (0, 0, 0)
R001(x , y , z) iff x ∨ y ∨ ¬z R001 = all triples but (0, 0, 1)
R011(x , y , z) iff x ∨ ¬y ∨ ¬z R011 = all triples but (0, 1, 1)
R111(x , y , z) iff ¬x ∨ ¬y ∨ ¬z R111 = all triples but (1, 1, 1)

Instance: R001(x1, x4, x7), R001(x2, x2, x6), R111(x2, x1, x5)
Meaning: x1 ∨ x4 ∨ ¬x7, x2 ∨ x2 ∨ ¬x6, ¬x2 ∨ ¬x1 ∨ ¬x5
Question: Is there a satisfying assignment {x1, x2, . . . } → {0, 1}?

Inst: ∃x1, x2, . . .R001(x1, x4, x7) ∧ R001(x2, x2, x6) ∧ R111(x2, x1, x5)
Quest: Is it true?

Inst: B = (B;S000, S001, S011,S111), where B = {x1, x2, . . . },
S000 = ∅, S001 = {(x1, x4, x6), (x2, x2, x6)},
S011 = ∅, S111 = {(x2, x1, x5)}
Quest: Is there a homomorphism B → A?

Some other Boolean templates

I 1-in-3-SAT (NP-complete): A = ({0, 1};R),
R = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

I NAE-3-SAT (NP-complete): A = ({0, 1};R),
R = all triples but {(0, 0, 0), (1, 1, 1)}

I 2-SAT (in P, NL-complete): A = ({0, 1};R00,R01,R11)

I HORN-3-SAT (in P, P-complete):
A = ({0, 1};C0,C1,R011,R111), C0 = {0}, C1 = {1},
R011(x , y , z) iff y ∧ z → x , R111(x , y , z) iff y ∧ z → ¬x

I Digraph unreachability (in P, NL-complete):
A = ({0, 1};C0,C1,≤)

I Graph unreachability (in P, L-complete):
A = ({0, 1};C0,C1,=)

Examples on larger domains

I k-COLOR (L-complete for k ≤ 2, NP-complete for k > 3):
A = ({1, . . . , k}; 6=)

I Zp-3-LIN (in P): A = (Zp; affine subspaces of Z3
p)

The dichotomy conjecture

A largest natural class of problems with a dichotomy?

Conjecture (The dichotomy conjecture Feder and Vardi’93)

For every A, CSP(A) is either in P or NP-complete.

I Evidence (in 93):
I True for |A| = 2 Schaefer’78
I True if A = (A;R), R is binary and symmetric

Hell and Nešeťril’90

I Feder and Vardi suggested that tractability is tied to “closure
properties”

I → algebraic approach Bulatov, Jeavons, Krokhin’00

Reductions

Reductions and universal algebra

I Write CSP(A) ≤ CSP(B) if
CSP(A) is “at most as hard as” CSP(B)
(precise meaning: log-space reducible)

I Crucial: pp-interpretations give reductions

I pp-interpretations are (indirectly) the main subject of
universal algebra

Plan for the rest:

I reductions in relational language

I algebra

I results

pp-definitions give reductions

Definition

Let A,B be relational structures with common domain A = B.
We say that A pp-defines B if each relation in B can be defined by
a first order formula which uses relations in A, =, ∧ and ∃.

Will also use “A pp-defines a relation R”,
“R is pp-definable from A”, etc

Theorem

If A pp-defines B, then CSP(B) ≤ CSP(A).

Proof in a moment

Examples and exercises

I the template of 3-SAT A = ({0, 1};R000,R001,R011,R111)
pp-defines

I each ternary relation
I each unary and binary relation
I the 4-ary relation R0000 = all tuples but (0, 0, 0, 0)
I all relations
I for each B = ({0, 1}, . . .), A pp-defines B.

Thus CSP(B) ≤ 3-SAT.

I (the template of) 1-in-3-SAT
A = ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) pp-defines
(the template) of 3-SAT

I NAE-SAT A = ({0, 1}; all triples but (0, 0, 0), (1, 1, 1))
does not pp-define 3-SAT

I it even does not define C0 = {0} – why?

I HORN-SAT A = ({0, 1}; C0,C1,R011,R111)
does not pp-define 3-SAT – why?

pp-definitions give reductions - proof

Theorem

If A pp-defines B, then CSP(B) ≤ CSP(A).

I Say A = (A;R), B = (A; S ,T), where
S(x , y) iff (∃z) R(x , y , z) ∧ R(y , y , x)
T (x , y) iff R(x , x , x) ∧ (x = y)

I Reduction of CSP(B) to CSP(A):

I Say, our instance is
(∃x1, x2, x3, x4) S(x3, x2) ∧ T (x1, x4) ∧ S(x2, x4)

I Rewrite using the definitions:
(∃x1, x2, x3, x4, y1, y2) R(x3, x1, y1) ∧ R(x2, x2, x3) ∧
R(x1, x1, x1) ∧ (x1 = x4) ∧ R(x2, x4, y2) ∧ R(x4, x4, x2)

I Get rid of =
(∃x1, x2, x3, y1, y2) R(x3, x1, y1) ∧ R(x2, x2, x3) ∧
R(x1, x1, x1) ∧ R(x2, x1, y2) ∧ R(x1, x1, x2)

I The new instance has a solution iff the original one does

pp-definitions are not satisfactory

I 3-COLOR does not pp-define 3-SAT: different domains

I 3-SAT does not pp-define 3-COLOR: even worse, the domain
is larger

I solution:
I each variable of a 3-COLOR instance is encoded as a pair of

variables in a Boolean instance
I a (binary) constraint is encoded as a 4-ary constraint

Informal definition: A pp-interprets B if

I the domain of B is a pp-definable relation (from A) modulo a
pp-definable equivalence

I the relations in B (regarded as relations on A) are also
pp-definable

pp-interpretations

Definition

We say that A pp-interprets B if
∃n ∈ N, ∃C ⊆ An, ∃f : C → B onto, such that A pp-defines

I C , the kernel of f (regarded as a 2n-ary relation on A), and

I the f -preimage of every relation in B (f -preimage of a k-ary
relation is regarded as a nk-ary relation on A)

Example: A = ({0, 1}; . . .) 3-SAT, B = ({1, 2, 3}, 6=) 3-COLOR
n = 2, C = {(0, 1), (1, 0), (1, 1)},
f : (0, 1) 7→ 1, (1, 0) 7→ 2, (1, 1) 7→ 3

I A pp-defines C and the kernel of f
I f -preimage of 6= is
{f −1(1, 2), f −1(1, 3), . . . } =
{((0, 1), (1, 0)), ((0, 1), (1, 1)), . . .
regarded as a 4-ary relation: {(0, 1, 1, 0), (0, 1, 1, 1), . . . }
is pp-definable from A.

pp-interpretations give reductions

Theorem

If A pp-interprets B, then CSP(B) ≤ CSP(A).

Remarks

I Proof is easy – idea was mentioned

I It seems that finding pp-definitions requires creativity
(we will see that it doesn’t)

I Does not easily show that 3-SAT ≤ NAE-SAT
(further reductions will show this easily)

Homomorphic equivalence, reduction to cores

Definition

A and B of the same signature are homomorphically equivalent if
there exist homorphisms A → B and B → A.

Theorem

If A and B are homomorphically equivalent, then
CSP(A) = CSP(B)

Theorem

Each A is homomorphically equivalent to a unique core, ie. a
structure whose each endomorphism is a bijection

Example: If ∃c ∈ A such that each relation contains a constant
tuple (c , . . . , c), then the core of A is a singleton structure, and
CSP(A) is VERY easy

Reduction to idempotent cores

Theorem

Let A = {(a1, . . . , an); . . . } be a core.
Let B be the structure obtained from A by adding Ca1 , . . . ,Can .
Then CSP(B) ≤ CSP(A).

I Crucial! The set of endomorphisms of A regarded as an n-ary
relation, ie.
S = {(f (a1), f (a2), . . . , f (an)) : f ∈ EndA = AutA}
is pp-definable from A (without ∃):
S(x1, . . . , xn) iff

∧
R in A

∧
(b1,...,bk)∈R R(xb1 , . . . , xbk)

I Consider an instance of CSP(B)
I Introduce new variables xa1 , . . . , xan
I Add the constraint S(xa1 , . . . , xan)
I Replace each Ca(x) by x = xa
I The new instance has a solution iff the orginal does:

I ⇒ use inverse of the automorphism determined by values of
xa1 , . . . , xan

Remarks

I Exercise: 3-SAT ≤ 3-COLOR: pp-construct 3-SAT from
3-COLOR + singletons

I Def: idempotent core . . . contains all singleton unary relations

I we can WLOG concentrate on idempotent cores

I Corollary: If CSP(A) in P, then finding a solution is in P.

Reductions - recap

In the following situations, CSP(B) ≤ CSP(A):

I A pp-interprets B
I A is homomorphically equivalent to B
I A is a core and B is obtained by adding singletons

Definition

We say that A pp-constructs B if B can be obtained from A by
(repeated) application of the three constructions above.

So: A pp-constructs B ⇒ CSP(B) ≤ CSP(A)

The tractability conjecture

Fun fact: Each known (template of an) NP-complete CSP
pp-constructs all structures!

Corollary

If A pp-constructs all structures (equivalently 3-SAT),
then CSP(A) is NP-complete

Conjecture (The algebraic dichotomy conjecture
The tractability conjecture)

Otherwise A is in P.

Similar conjectures for the complexity classes L, NL.

Algebra

Polymorphism

n-ary operation on A = mapping An → A

Definition

An operation f : An → A is compatible with relation R ⊆ Ak if
whenever (aij) is a n × k matrix whose all rows are in R
then f applied to the columns gives a k-tuple from R

Polymorphism of A = operation compatible with all relations in A

PolA = the set of all polymorphisms of A

I Polymorphism of A = homomorphism An → A
I Note: unary polymorphism = endomorphism

I Think: symmetry of higher arity

Polymorphisms – examples, exercises

I min : {0, 1}2 → {0, 1} is a polymorphism of HORN-3-SAT,
max is not

I the majority operation major : {0, 1}3 → {0, 1}, ie
major(x , x , y) ≈ major(x , y , x) ≈ major(y , x , x) ≈ x
is a polymorphism of 2-SAT

I the minority operation minor : {0, 1}3 → {0, 1}, ie
minor(x , y , z) = x − y + z (mod 2)
is a polymorpism of Z2-LIN

I A constant operation all 7→ c (of any arity) is in PolA iff
each relation in A contains a constant tuple (c , c , . . . , c)

I f is compatible with all singleton unary relations iff
f is idempotent (i.e. f (x , . . . , x) ≈ x)

I Each projection πni is a polymorphism of every structure

I Pol 3-SAT = projections

Pol(A) is a clone

Pol(A):

I contains all projections

I is closed under composition, for instance,
if f , g ∈ Pol(A) (arity 2, 3),
then h (arity 4) defined by
h(x1, x2, x3, x4) = g(x1, f (x3, g(x2, x2, x4)), x3)
is in Pol(A)

Definition

A (function) clone on A is a set of operations on A which contains
all projections and is closed under composition.

compare: transformation monoid

Polymoprhism clones control pp-definitions

Theorem

Let A,B have the same domain. Then A pp-defines B iff
Pol(A) ⊆ Pol(B).

For ⇐ enough to show: if a relation R ⊆ Ak is compatible with
each f ∈ Pol(A), then A pp-defines R.

I A = {a1, . . . , an}, R = {(c11, . . . , c1k), . . . , (cm1, . . . , cmk)}.
I Crucial: The set of m-ary polymorphisms of A regarded as an
|Am|-ary relation, ie.
S = {(f (a1, a1, . . . , a1), . . . , f (an, an, . . . , an)) : f ∈ PolA}
is pp-definable from A (without ∃).

I existentially quantify over all coordinates but those
corresponding to (c11, . . . , cm1), . . . , (c1k , . . . , cmk)

I the obtained relation contains R (because of projections) and
is contained in R (because of compatibility)

Example

I Proof gives pp-definitions whenever they exist

I Example: 3-SAT ≤ 1-in-3-SAT now requires no creativity
I pp-definition of Rijk from {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

according to the proof:
I Rijk has 7-triples
I 7-ary polymorphisms (of 1-in-3-SAT) form a 27-ary relation
I its pp-definition will have 27 = 128 variables and 37 = 2187

clauses
I we existentially quantify 121 variables

Boolean CSPs – Schaefer’s theorem

I Take A = ({0, 1}; . . .)
I If a constant is in PolA, then CSP(A) is in P (answer YES)

I otherwise A is a core – we can add singletons without
changing the complexity

I So, assume A is an idempotent core (contains C0, C1)

I Thus PolA is idempotent

I If PolA contains only projections, then A pp-interprets
everything, therefore CSP(A) is NP-complete

I Now assume PolA is nontrivial (contains a non-projection).

I We will show that CSP(A) is in P.

Boolean CSPs II

Fact

Each nontrivial idempotent clone on {0, 1} contains
max ,min,major , or minor .

Possible proofs:

I All clones on {0, 1} are described – look at the list

I Direct elementary proof

Boolean CSPs III

Cases:

I minor ∈ Pol(A)
I Exercise: each relation compatible with minor is an affine

subspace of Zn
2

I Thus CSP(A) can be solved by Gaussian elimination

I major ∈ Pol(A)
I Exercise: each relation compatible with major is determined

by its binary projections, therefore is pp-definable from binary
relations

I Thus CSP(A) ≤ CSP({0, 1}; all binaries) ≤ 2-SAT

I min ∈ Pol(A)
I Exercise (hardest): each relation compatible with min is

pp-definable from HORN-3-SAT
I Thus CSP(A) ≤ HORN-3-SAT

I max ∈ Pol(A) is dual

Boolean CSPs IV - remarks

I The polynomial solvability of minor ,major ,min,max follows
from general results (later)

I We only used algebraic counterpart to pp-definitions (no
pp-interpretations), because the domain is small

Now we continue with algebra

pp-interpretations and algebraic constructions

Basic constructions with algebras: forming subalgebras, finite
powers, quotients, expansions

can be performed with clones: restricting to invariant subsets,
forming finite powers, quotients, expansions

Theorem

TFAE

(i) A pp-interprets B
(ii) PolB can be obtained from PolA using these basic

constructions

Basic constructions and clone homomorphisms

Definition

A mapping PolA → PolB is a clone homomorphism if it preserves

I arities

I projections

I composition

I Does not depend on the concrete operations in the clones,
depends only on the way how they compose

I An arity preserving mapping is a clone homomorphism iff it
preserves identities

eg. associative binary operation is mapped to an associative
operation

a majority operation is mapped to a majority operation

Birkhoff’s theorem

Theorem

TFAE

(i) PolB can be obtained from PolA using the basic
constructions

(ii) There exists a clone homomorphism PolA → PolB

Proof: the crucial object is the same as before!

Identities!

Corollary

TFAE

(i) A pp-interprets B
(ii) PolB can be obtained from PolA using the basic

constructions

(iii) There exists a clone homomorphism PolA → PolB
If this is the case, then CSP(B) ≤ CSP(A).

The complexity of CSP(A) depends only on identities
satisfied by polymorphisms of A.

Universal algebra serves in 2 ways:

I toolbox containing heavy hammers

I catalog of important identities → guideline to identifying
interesting intermediate cases and tools to attack them

The algebraic dichotomy conjecture again

Conjecture

Let A be a core. Then CSP(A) is in P if (equivalently):

(i) A does not pp-interpret everything

(ii) the trivial clone cannot be obtained from PolA by the basic
constructions

(iii) there does not exist a clone homomorphism from PolA to the
trivial clone
ie. operations PolA satisfy some nontrivial identities (=not
satisfiable by projections)

. . .

(mdxii) Siggers PolA contains a 4-ary operation t satisfying
t(r , a, r , e) ≈ t(a, r , e, a)

(hchkr) Barto, Kozik PolA contains a p-ary operation t (∀p > |A| a
prime) satisfying
t(x1, . . . , xp) ≈ t(x2, . . . , xp, x1)

Hell and Nešeťril theorem

Theorem

Let A = (A;R), where R is binary, symmetric.
If R has no loops and is non-bipartite, then CSP(A) is
NP-complete.
Otherwise CSP(A) is in P.

Proof:

I Assume A is non-bipartite, and a core

I If CSP(A) does not pp-interpret everything, then A has a
cyclic polymorphism tp of each prime arity p > |A|

I Find a closed walk a1, . . . , ap, a1 for some prime p > |A|
I Then (tp(a1, . . . , ap), tp(a2, . . . , ap, a1)) = (c , c) ∈ R since tp

is a polymorphism

Basics – reading

I Feder, Vardi: The computational structure of monotone
monadic snp and constraint satisfaction: A study through
datalog and group theory

I Bulatov, Jeavons, Krokhin: Classifying the complexity of
constraints using finite algebras

I Bodirsky: Constraint satisfaction problems with infinite
templates

I Barto: The constraint satisfaction problem and universal
algebra

I Barto, Opřsal, Pinsker: The wonderland of the double shrink
title may change

Results

Results

I Better understanding of pre-algebraic results
I Far broader special cases solved. The dichotomy conjecture is

true:
I if |A| = 3 Bulatov’06
I if |A| = 4 Marković et al.
I if A contains all unary relations Bulatov’03, Barto’11
I if A = (A;R) where R is binary, without sources or sinks

Barto, Kozik, Niven’09

I Applicability of known algorithmic principles understood
I Describing all solutions – “few subpowers”

Idziak, Markovic, McKenzie, Valeriote, Willard’07
I Local consistency (constraint propagation)

Barto, Kozik’09, Bulatov
I All known tractable cases solvable by a combination of these

two

I Progress on finer complexity classification

Local consistency

Roughly: A has bounded width iff CSP(A) can be solved by
checking local consistency

More precisely:

I Fix k ≤ l (integers)

I (k , l)-algorithm: Derive the strongest constraints on k
variables which can be deduced by “considering” l variables at
a time.

I If a contradiction is found, answer “no”
otherwise answer “yes”

I “no” answers are always correct

I if “yes” answers are correct for every instance of CSP(A)
we say that A has width (k , l).

I if A has width (k , l) for some k , l then A has bounded width

Various equivalent formulations (bounded tree width duality,
Datalog, LFP logic, games)

Example of (2, 3)-consistency

Let A = ({0, 1}; 6=) (2-COLOR)

Consider the instance

x1 6= x2, x2 6= x3, x3 6= x4, x4 6= x5, x5 6= x1

I By looking at {x1, x2, x3} we see (using x1 6= x2 and x2 6= x3)
that x1 = x3.

I By looking at {x1, x3, x4} we see (using x1 = x3 and x3 6= x4)
that x1 6= x4.

I By looking at {x1, x4, x5} we now see (using x1 6= x4, x4 6= x5,
x5 6= x1) a contradiction

In fact, A has width (2, 3), that is, such reasoning is always
sufficient for an instance of CSP(A).

Bounded width

I The problems Zp-LIN do not have bounded width
Feder, Vardi‘93

I If A pp-constructs Zp-LIN then A does not have bounded
width Larose, Zádori’07

I Thus the “obvious” necessary condition for bounded width is
that A does not pp-construct Zp-LIN.

I It is sufficient:

Theorem

The following are equivalent.

I A does not pp-construct Zp-LIN

I Pol(A) contains operations satisfying

I A has bounded width B, Kozik’09

I A has width (2, 3) B; Bulatov

Towards the bounded width theorem

I First universal algebraic steps Feder and Vardi:
I If PolA contains TSI polymorphisms of all arities, then

CSP(A) has width 1

covers HORN-SAT
I If PolA has a majority polymorphism, then CSP(A) has width

(2, 3)

covers 2-SAT
I More generally: if PolA has an NU polymorphism, then

CSP(A) has bounded width

I “A does not pp-construct Zp-LIN” is a well-known algebraic
condition on PolA

I UA suggested more general intermediate steps (and gave
tools)

I 2-semilattices Bulatov
I CD(3) Kiss, Valeriote, CD(4) Carvalho, Dalmau, Marković,

Maróti, CD Barto, Kozik

TSI

TSI = operation whose value depends only on the set of its
arguments:
{a1, . . . , an} = {b1, . . . , bn} ⇒ t(a1, . . . , an) = t(b1, . . . , bn)

I Assume A has TSI polymorphisms of all arities

I We will show that CSP(A) has width 1.
I (1, 1)-algorithm more precisely:

I For each variable x , set Px := A (meaning: possible values)
I If a ∈ Px , R(x , y , z , . . .) is a constraint, and no tuple of the

form (a, b ∈ Py , c ∈ Pz , . . .) is in R,
then remove a from Px

I Repeat until no removals are made
I If (∃x) Px = ∅ for some x , return NO SOLUTION

I Need to show: If (∀x) Px 6= ∅, then there is a solution

I Choose TSI polymorphism of sufficiently big arity

I Apply it to Px : we get ax ∈ Px

I x 7→ ax is a solution!

Describing all solutions – few subpowers

I In Zp-LIN we can “describe” all solutions – we can find
polynomially large (wrt # of variables) set of solutions (called
generating set) so that the solution set is its affine hull

I Def: Let R be pp-definable from A. X ⊆ R is a generating
set of R if R is equal to the closure of R under Pol(A).

I Sequence of papers generalizing the algorithm for Zp Feder,
Vardi; Bulatov; Bulatov, Dalmau; Dalmau culminated in

Theorem (Berman et al, Idziak et al.)

TFAE for an idempotent core A
I A has at most 2poly(n) pp-definable relations of arity n

I Each n-ary pp-definable relation has a generating set of size
poly(n).

I Pol(A) contains operations satisfying

In this case, CSP(A) is in P; moreover, generating set of solutions
can be found in P.

Bonuses

Bonus I: Other connectives

CSP(A) :
Instance: Sentence φ in the language of A with ∃ and ∧
Question: Is φ true in A?

What about: Allow some other combination of
{∃,∀,∧,∨,¬,=, 6=}.

From 27 cases only 3 interesting (others reduce to these or are
boring)

I {∃,∧, (=)} (CSP)
open

I {∃,∀,∧, (=)} (qCSP)
open

I {∃,∀,∧,∨} (Positive equality free)
solved - tetrachotomy P, NP-c, co-NP-c, PSPACE-c
B.Martin, F.Madelaine 11

Bonus II: Robust approximation

I Task: Find an almost satisfying assignment given an almost
satisfiable instance

I More precisely: Find an assignment satisfying at least
(1− g(ε)) fraction of the constraints given an instance which
is (1− ε) satisfiable, where g(ε)→ 0 as ε→ 0 (g should only
depend on A).

I Algorithms for 2-SAT and HORN-SAT based on linear
programming and semidefinite programming Zwick’98

I Zp-LIN has no robust polynomial algorithm
(assuming P 6= NP) Hastad’01

I If A pp-constructs Zp-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

Bonus II: Robust approximation 2

I If A pp-constructs Zp-LIN then CSP(A) has no robust
algorithm Dalmau, Krokhin’11

I Conjecture of Guruswami and Zhou: this is the only obstacle

Theorem (B, Kozik’12)

The following are equivalent (assuming P 6= NP)

I A does not pp-construct Zp-LIN

I CSP(A) has a robust polynomial algorithm

I canonical semidefinite programming relaxation correctly
decides CSP(A)

Bonus III: Counting CSP

I The complexity is also controlled by Pol(A)

I A necessary condition for tractability found
Bulatov, Dalmau’03
(inspiration: the other algorithm for decison CSPs)

I A stronger necessary condition for tractability found
Bulatov, Grohe’05

I The stronger condition is sufficient
Bulatov’08, Dyer and Richerby’10

Bonus IV: Valued CSP

I Weighted relation: mapping An → Q ∪ {∞}
I Instance: sum, eg R(x1, x2) + S(x3, x1, x2)

I Task: Minimize the sum

I Includes: Satisfiability, optimization

I Algebraic theory Cohen, Cooper, Creed, Jeavons, Živný

I Classification modulo the algebraic
dichotomy conjecture! Kolmogorov, Krokhin,
Rolinek

I Algorithm: alg. for satisfiability + linear programming

Wrap up

Final remarks

Satisfiability problem
I Easy criterion for hardness
I Complexity depends on indentities
I Theory gives generic reduction between any two NP-complete

CSPs (instead of ad hoc reductions)
I Applicability of known algorithms understood
I The dichotomy conjecture still open in general

For other variants (Approx-CSP, Valued CSP, infinite)
I Universal algebra also relevant Cohen, Cooper, Creed,

Jeavons, Živný; Raghavendra; Bodirsky, Pinsker
I More or less the same criterion for easiness/hardness
I Easiness comes from “symmetry”
I One needs symmetry of higher arity (e.g. polymorphisms)

rather than just automorphisms or endomorphisms

Beyond CSPs
I ???
I There is ≥ 1 examples Raghavendra

We need lunch!

Thank you!

