Cyclic operations in promise constraint satisfaction problems

Libor Barto

Department of Algebra, Charles University, Prague

Dagstuhl CSP seminar, 3-8 June 2018

European Research Council Established by the European Commission CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No 771005)

- for finite relational structure \mathbb{A}
 - $\operatorname{CSP}(\mathbb{A})$: given \mathbb{X} find $\mathbb{X} \to \mathbb{A}$
 - \blacktriangleright ... a computational problem, one for each $\mathbb A$
 - **Example:** Find a 3-coloring of a graph (for $\mathbb{A} = \mathbb{K}_3$)
 - $Pol(\mathbb{A}) = \{f : \mathbb{A}^n \to \mathbb{A}\}$ polymorphisms
 - Fact: it is closed under composition (it is a clone)
- ▶ complexity of CSP(A) depends only on
 - ► Pol(A) [Jeavons'98]
 - identities in $Pol(\mathbb{A})$ [Bulatov, Jeavons, Krokhin'05]
 - ▶ height one identities in Pol(A) [B, Opršal, Pinsker'17]
- ▶ CSP(A) is
 - hard if polymorphisms don't satisfy some "nontrivial" height one identities
 - easy if they do
 - here "nontrivial" means not satisfiable by projections (aka dictators) [Bulatov'17]; [Zhuk'17]

A course in universal algebra

- identity is universally quantified equation
- (identification) minor of f : Aⁿ → A is an operation g : A^m → A defined by

$$g(x_1,\ldots,x_m) = f($$
 variables $)$

e.g.
$$g(x, y) = f(x, y, x, x, y)$$

height one identity is of the form

$$f($$
 variables $) = g($ variables $)$

▶ i.e. equality between identification minors of f and g

• Note: makes sense for $f, g: A^n \to B$

- \blacktriangleright for finite relational structures \mathbb{A},\mathbb{B} with $\mathbb{A}\to\mathbb{B}$
 - ▶ $PCSP(A, \mathbb{B})$: given X such that $X \to A$ find $X \to \mathbb{B}$
 - ▶ ...a computational problem, one for each pair \mathbb{A}, \mathbb{B}
 - **Example:** Find a 4-coloring of a 3-colorable graph
 - $\mathsf{Pol}(\mathbb{A},\mathbb{B}) = \{f : \mathbb{A}^n \to \mathbb{B}\}$ polymorphisms
 - Observe: general composition does not make sense
 - Fact: closed under identification minors (it is a clonoid (?), minion (?), proclone (?)...)
- complexity of $\mathrm{PCSP}(\mathbb{A},\mathbb{B})$ depends only on
 - ▶ Pol(A, B) [Brakensiek, Guruswami'16]
 - ▶ height one identities in $Pol(\mathbb{A}, \mathbb{B})$ [Bulín, Krokhin, Opršal]
- ▶ PCSP(A, B) is
 - hard if polymorphisms don't satisfy some "nontrivial" height one identities
 - easy if they do
 - here "nontrivial" means ???

hardness:

no nontrivial height one identities + abstract nonsense \Rightarrow reduction from any NP-hard CSP (e.g. Label Cover)

easiness:

nontrivial height one identities \Rightarrow stronger identities (e.g. cyclic $f(x_1, \dots, x_n) = f(x_2, \dots, x_n)$) \Rightarrow algorithm

There is no gap between "nontrivial" in the two cases

6/16

hardness no "nontrivial" height one identities + nonsense
 reduction from NP-hard Gap Label Cover problem

Given a system of height one identities which are satisfiable by projections **Find** an assignment operations \rightarrow projections which satisfies at least 1/100 identities

- identities of "permutation type" seem especially important (see Unique Games)
- easiness "nontrivial" height one identities \Rightarrow algorithm

There is a gap between "nontrivial" in the two cases

- CSP easiness nontrivial identities \Rightarrow stronger identities \Rightarrow algorithm
- ► **PCSP easiness** nontrivial identities ⇒ algorithm

Contributions

- ► missing results: identities ⇒ stronger identities
 Contribution: monotone Boolean cyclic ⇒ threshold
- algorithms in PCSPs based on infinite domain CSPs (LP, Gauss over Z)

Contribution: PCSP(1-in-3, NAE) not solvable using finite domain CSP (in some sense)

Cyclic monotone Boolean operations

Boolean operation $f: \{0,1\}^n \rightarrow \{0,1\}$ is

- cyclic if $f(x_1, x_2, ..., x_n) = f(x_2, ..., x_n, x_1)$
- ► fully symmetric if $f(x_1, x_2, ..., x_n) = f(x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(n)})$ for each $\pi \in S_n$
- threshold if it equals thr_{α} for some α where

$$\operatorname{thr}_{\alpha}(x_1,\ldots,x_n) = 1$$
 iff $\sum x_i > \alpha n$

• monotone if it preserves \leq where $0 \leq 1$

Note: threshold = monotone + fully symmetric

Theorem

For each k there exists I such that every cyclic monotone Boolean operation of arity $n \ge I$ has an identification minor of arity $\ge k$ which is a threshold operation.

 ∞ -many threshold polymorphisms \Rightarrow tractability of PCSP [Brakensiek,Guruswami'16]

Corollary

Let $\mathbb{A} \to \mathbb{B}$ be Boolean, containing \leq . If $\mathsf{Pol}(\mathbb{A}, \mathbb{B})$ contains ∞ -many cyclic operations, then $\mathrm{PCSP}(\mathbb{A}, \mathbb{B})$ is tractable.

How far from dichotomy for monotone Boolean PCPS?

Analysis of Boolean functions: influence

11/16

Let $f: \{0,1\}^n \to \{0,1\}$ monotone and $p \in [0,1]$

- choose $x_1, \ldots, x_n \in \{0, 1\}$ independently
 - $x_i = 1$ with probability p
 - $x_i = 0$ with probability 1 p
- $E_f(p) = \text{expected value of } f(x_1, \ldots, x_n)$
- ► $I_f(p, i)$ influence of the *i*-th variable = probability that $f(x_1, ..., x_n)$ changes when x_i is changed
- $I_f(p) := \sum_i I_f(p, i)$ total influence

Theorem ("Russo's Lemma")

 $E_f'(p) = I_f(p)$

Theorem ("KKL Theorem" [Kahn, Kalai, Linial'88])

 $\exists i \ I_f(p,i) \geq C \ E_f(p)(1-E_f(p)) \ \frac{\log n}{n}$

Proving: Cyclic monotone $f : \{0,1\}^n \to \{0,1\}$ of sufficiently large arity *n* has a threshold minor of arity ≥ 10 .

Russo's Lemma: $E'_f(p) = I_f(p)$ **KKL Theorem:** $\exists i \ I_f(p,i) \ge C \ E_f(p)(1 - E_f(p)) \ \log n/n$

- take p such that $E_f(p) = 0.5$, say $E_f(0.36) = 0.5$
- f cyclic so $I_f(p,i) = I_f(p,j)$ so $I_f(p) = nI_f(p,i)$
- ► Russo+KKL: $E'_f(p) = I_f(p) \ge CE_f(p)(1 E_f(p)) \log(n)$
- ▶ if $0.00001 \le E_f(p) \le 0.99999$ then $E'_f(p) \ge D \log(n)$
- *n* large \Rightarrow
 - if p < 0.35 then $E_f(p) < 0.00001$
 - if p > 0.37 then $E_f(p) > 0.99999$

Proof 2/2

$p < 0.35 \Rightarrow E_f(p) < 0.00001$ $p > 0.37 \Rightarrow E_f(p) > 0.99999$

choose a random 10-ary minor of f
 ie. define g(x₁,...,x₁₀) = f(y₁,...,y_n) where
 y_i are chosen uniformly independently from {x₁,...,x₁₀}

• Aim:
$$P(g = thr_{0.35}) > 0$$

- $\operatorname{Exp}(g(1,1,1,0,0,0,\ldots,0)) = E_f(3/10) < 0.00001$
- $\operatorname{Exp}(g(1,1,1,1,0,0,\ldots,0)) = E_f(4/10) > 0.99999$
- Expected value of

$$egin{aligned} &\mathcal{V} := g(1,1,1,0,0,\ldots,0) + g(1,1,0,1,0,\ldots,0) + \cdots + \ &(1-g(1,1,1,1,0,\ldots,0)) + (1-g(1,1,1,0,1,0,\ldots,0)) + \ldots \end{aligned}$$

is at most $\binom{10}{3} 0.00001 + \binom{10}{4} 0.00001 < 1$

▶ So P(V = 0) > 0

• But
$$P(V = 0) = P(g = thr_{0.35})$$

Finite domain CSP is insufficient for PCSP

Result

 $\mathrm{PCSP}(\mathbb{A},\mathbb{B})$ tractable (e.g. $\infty\text{-many threshold polymorphisms})$

- $\mathbb{A} = (\{0,1\}; \{(1,0,0), (0,1,0), (0,0,1)\})$ (1-in-3)
- $\mathbb{B} = (\{0,1\}; \{0,1\}^3 \setminus \{(0,0,0),(1,1,1)\}$ (NAE)

Theorem

There is no tractable finite-domain $CSP(\mathbb{C})$ such that height one identities satisfied in $Pol(\mathbb{C})$ are satisfiable in $Pol(\mathbb{A}, \mathbb{B})$.

Proof:

Relational counterpart of height one identities:

[Bulín, Krokhin, Opršal]

pp-interpretation + generalization of homomorphic equivalence
 (in [Brakensiek,Guruswami'08] called "promise embedding")

cyclic operations + work

Questions

- what is "nontrivial height one identities"?
- are existing guesses sufficient, at least for
 - monotone Boolean PCSPs?
 - Boolean PCSPs?
 - ▶ $PCSP(\mathbb{K}_n, \mathbb{K}_m)$

Questions

- what is "nontrivial height one identities"?
- are existing guesses sufficient, at least for
 - monotone Boolean PCSPs?
 - Boolean PCSPs?
 - ▶ $PCSP(\mathbb{K}_n, \mathbb{K}_m)$

Thank you!