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Is it the end of UA? 2/23

UA (universal algebra) and CSP (constraint satisfaction problems)

I connection discovered about 20 years ago

I central topic in UA

I UA in top TCS conferences (FOCS, STOC) and
journals (JACM, SICOMP)

I the main problem in CSP solved [Bulatov’07]; [Zhuk’07]

I Is it the end of the great period for UA?



It is the beginning! 3/23

Particularly promising: PCSP (Promise CSP)

I active both in TCS (long time) and UA (last 2 years)

I UA relevant

I UA can definitely contribute

I this talk: methods from other fields in UA



Height one identities, CSP, PCSP
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I (identification) minor of f : An → A is
an operation g : Am → A defined by

g(x1, . . . , xm) = f ( variables )

I height one identity is of the form

f ( variables ) = g( variables )

I i.e. equality between identification minors of f and g

I Note: operation symbols on both sides
e.g. f (x , x , y) = x is not height one

I Note: makes sense for f , g : An → B



CSP 6/23

I for finite relational structure A
I CSP(A): given X find X→ A
I . . . a computational problem, one for each A
I Example: Find a 3-coloring of a graph (for A = K3)
I Pol(A) = {f : An → A} polymorphisms
I Fact: it is a clone

I complexity of CSP(A) depends only on
I Pol(A) [Jeavons’98]

I identities in Pol(A) [Bulatov, Jeavons, Krokhin’05]

I height one identities in Pol(A) [B, Opřsal, Pinsker’17]

I CSP(A) is
I hard if polymorphisms don’t satisfy some

“nontrivial” height one identities
I easy if they do
I here “nontrivial” means not satisfiable by projections

[Bulatov’17]; [Zhuk’17]
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I for finite relational structures A,B with A→ B
I PCSP(A): given X such that X→ A find X→ B
I . . . a computational problem, one for each pair A,B
I Example: Find a 4-coloring of a 3-colorable graph
I Pol(A,B) = {f : An → B} polymorphisms
I Observe: general composition does not make sense
I Fact: closed under identification minors

(it is a clonoid(?), minion(?), . . . )

I complexity of PCSP(A,B) depends only on
I Pol(A,B) [Brakensiek, Guruswami’16]

I height one identities in Pol(A,B) [Buĺın, Opřsal]

I PCSP(A,B) is
I hard if polymorphisms don’t satisfy

some “nontrivial” height one identities
I easy if they do
I here “nontrivial” means ???



Cyclic monotone Boolean operations
probabilistic method, analysis of Boolean functions
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Boolean operation f : {0, 1}n → {0, 1} is

I cyclic if f (x1, x2, . . . , xn) = f (x2, . . . , xn, x1)

I fully symmetric if f (x1, x2, . . . , xn) = f (xπ(1), xπ(2), . . . , xπ(n))
for each π ∈ Sn

I threshold if it equals thrα for some α where

thrα(x1, . . . , xn) = 1 iff
∑

xi > αn

I monotone if it preserves ≤ where 0 ≤ 1

Note: threshold = monotone + fully symmetric



Theorem and motivation 10/23

Theorem ([B])

For each k there exists l such that
every cyclic monotone Boolean operation of arity n ≥ l has an
identification minor of arity ≥ k which is a threshold operation.

I ∞-many threshold polymorphisms ⇒ tractability of PCSP
[Brakensiek,Guruswami’16]

I theorem reduces the gap between hardness and tractability for
monotone Boolean PCSPs

I height one identities of “permutation type” seems important

I cyclic operations: especially simple + useful in CSP and vCSP



Analysis of Boolean functions: influence 11/23

Let f : {0, 1}n → {0, 1} and p ∈ [0, 1]

I choose x1, . . . , xn ∈ {0, 1} independently
I xi = 1 with probability p
I xi = 0 with probability 1− p

I Ef (p) = expected value of f (x1, . . . , xn)

I If (p, i) influence of the i-th variable
= probability that f (x1, . . . , xn) changes when xi is changed

I If (p) :=
∑

i If (p, i) total influence

Theorem (“Russo’s Lemma”)

E ′
f (p) = If (p)

Theorem (“KKL Theorem” [Kahn, Kalai, Linial’88])

∃i If (p, i) ≥ C Ef (p)(1− Ef (p)) log n
n



Proof 1/2 12/23

Proving: Cyclic monotone f : {0, 1}n → {0, 1} of sufficiently large
arity n has a threshold minor of arity ≥ 10.

Russo’s Lemma: E ′
f (p) = If (p)

KKL Theorem: ∃i If (p, i) ≥ C Ef (p)(1− Ef (p)) log n/n

I take p such that Ef (p) = 0.5, say Ef (0.36) = 0.5

I f cyclic so If (p, i) = If (p, j) so If (p) = nIf (p, i)

I Russo+KKL: E ′
f (p) = If (p) ≥ CEf (p)(1− Ef (p)) log(n)

I if 0.00001 ≤ Ef (p) ≤ 0.99999 then E ′
f (p) ≥ D log(n)

I n large ⇒
I if p < 0.35 then Ef (p) < 0.00001
I if p > 0.37 then Ef (p) > 0.99999



Proof 2/2 13/23

p < 0.35 ⇒ Ef (p) < 0.00001 p > 0.37 ⇒ Ef (p) > 0.99999

I choose a random 10-ary minor of f
ie. define g(x1, . . . , x10) = f (y1, . . . , yn) where
yi are chosen uniformly independently from {x1, . . . , x10}

I Aim: P(g = thr0.35) > 0

I Exp(g(1, 1, 1, 0, 0, 0, . . . , 0)) = Ef (3/10) < 0.00001

I Exp(g(1, 1, 1, 1, 0, 0, . . . , 0)) = Ef (4/10) > 0.99999

I Expected value of

V := g(1, 1, 1, 0, 0, . . . , 0) + g(1, 1, 0, 1, 0, . . . , 0) + · · ·+
(1− g(1, 1, 1, 1, 0, . . . , 0)) + (1− g(1, 1, 1, 0, 1, 0, . . . , 0)) + . . .

is at most
(10

3

)
0.00001 +

(10
4

)
0.00001 < 1

I So P(V = 0) > 0

I But P(V = 0) = P(g = thr0.35)



Blockers
Topological combinatorics, PCP theory
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Let f : [3]n → [5] where [i ] = {1, 2, . . . , i}

I f ∈ Pol(K3,K5) if
f (x1, . . . , xn) 6= f (y1, . . . , yn) whenever (∀i) xi 6= yi

I subset of coordinates I ⊆ {1, . . . , n} blocks h : [3]2 → [5]
if no minor of the form

g(x , y) = f (z1, . . . , zn) with zi = x for i ∈ I

and zi ∈ {x , y} otherwise

is equal to h



Theorem and motivation 16/23

Theorem ([Dinur, Regev, Smyth’05] + [B] + [Opřsal])

Each f ∈ Pol(K3,K5) has a “small” subset of coordinates I that
blocks some h : [3]2 → [5]. (small means e.g. |I | ≤ 106)

I “unique blocking with singleton I” characterizes
NP-hardness of CSP:
CSP(A) is NP-hard iff there exists a set of binary functions ∃H such that for each f ∈ Pol(A)

there exists a unique i such that {i} blocks each h ∈ H.

I blocking with larger I (as in Theorem) + some form of
uniqueness sufficient for NP-hardness of PCSP

I Theorem is a substantial part of the proof that
it is NP-hard to 5–color a 3–colorable graph



Theorem and history 17/23

Theorem ([Dinur, Regev, Smyth’05] + [B] + [Opřsal])

Each f ∈ Pol(K3,K5) has a “small” subset of coordinates I that
blocks some h : [3]2 → [5]. (small means e.g. |I | ≤ 106)

I topological combinatorics founded by a proof of Kneser’s
conjecture [Lovász’78]

I many alternative proofs of Kneser’s conjecture
[Barány’78], [Greene’02], [Matoušek’04], . . .

I Theorem + PCP theory → NP-hardness of
PCSP(NAE,k-NAE) [Dinur, Regev, Smyth’05]

I universal algebraic version [B]

I PCSP(K3,K5) is NP-hard [Opřsal]



LSB theorem: a version of Borsuk–Ulam 18/23

I k–sphere Sk = {x ∈ Rk+1 : ||x|| = 1}
I open hemisphere centered at a = H(a) = {x ∈ Sk : a · x > 0}
I great (k − 1)–sphere in Sk = {x ∈ Sk : a · x = 0}

Theorem (LSB theorem [Lusternik, Schnirelmann’30])

If Sk is covered by k + 1 open sets, then one of these sets contains
both a and −a for some a.



No Oľsák 19/23

f : A6 → B is Oľsák operation if

t(y , x , x , x , y , y) =

t(x , y , x , y , x , y) =

t(x , x , y , y , y , x)

Theorem ([Opřsal])

There is no Oľsák operation in Pol(K3,K5)

Proof: Otherwise

t(1, 2, 3, 2, 3, 1), t(2, 3, 1, 3, 1, 2), t(3, 1, 2, 1, 2, 3),

t(2, 1, 1, 1, 2, 2), t(3, 2, 2, 2, 3, 3), t(1, 3, 3, 3, 1, 1)

would form a 6-clique in K5



Proof 1/2 20/23

Theorem: Each f ∈ Pol(K3,K5) has a small subset of coordinates
I that blocks some h : [3]2 → [5].

I take f : [3]n → [5] ∈ Pol(K3,K5)

I k := # of binary operations in Pol(K3,K5) minus 1

I distribute n points p1, . . . , pn on Sk in general position,
ie. no k + 1 points lie on s great (k − 1)-sphere

I for Q ⊆ [n] let f [Q] be the binary minor f (x/y , ...) where
x ’s are at positions in Q and y ’s are at the other positions

I for each binary h ∈ Pol(K3,K5) let

Uh = {a ∈ Sk : f [{i : pi ∈ H(a)}] = h}
I LSB theorem: some Uh contains a and −a for some a

cheating!
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I let’s ignore it (can be repaired)

I we have a ∈ Sk such that
f [{i : pi ∈ H(a)}] = h = f [{i : pi ∈ H(−a)}]

I after reordering of variables

f (y , y , . . . , y , x , x , . . . , x , y , y , . . . , y) = h

f (y , y , . . . , y , y , y , . . . , y , x , x , . . . , x) = h

where the initial segment of x ’s is small
since pi ’s are in general position

I this set of coordinates blocks h since otherwise

f (x , x , . . . , x , x/y , . . . , x/y , x/y , . . . , x/y) = h

and a suitable 6-ary minor would be an Oľsák operation
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September 2–7, 2018

Špindler̊uv Mlýn, Czechia

http://www.karlin.mff.cuni.cz/~ssaos

Register and pay by June 15th
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Summary

I universal algebra can help in a large part of mathematics

I there is so much beautiful math useful in universal algebra

Reading

I G. Kalai: Boolean Functions: Influence, threshold and noise

I R. O’Donnell: Analysis of Boolean functions

I M. de Longueville: 25 years proof of the Kneser conjecture -
The advent of topological combinatorics

I J. Matoušek: Using the Borsuk-Ulam Theorem

Thank you!
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