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Q: Why the most general setting?
A: sometimes exactly what’s needed
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Clone

Definition

Operation on A = function An → A, n ≥ 1
Clone on A = set of operations on A closed under forming term
operations

For each clone A on A:

I for each i ≤ n
(x1, . . . , xn) 7→ xi

is in A

I if f ,g are binary operations from A, then

(x , y , z) 7→ f (g(f (z , x), y), g(x , x))

is in A

Notation: For algebra A, Clo(A) = all term operations of A



Compute Clo(A)

I ({0, 1};∨)

I ({0, 1};∨,∧)

I ({0, 1};majority)

I ({0, 1};∨,∧,¬)

I (Zp; x + y)

I (Zp; x − y + z)
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Q: Why clones? A: Abstraction of algebra

I carries important information – subuniverses, congruences

I for some purposes carries all necessary information
(sometimes term equivalent algebras are essentially the same)

Q: Why understand algebras?



Too popular viewpoint

Group theory, Semigroup theory

I group: algebraic structure G = (G ; ·,−1, 1) satisfying . . .
I permutation group: when G happens to be a set of bijections,
· is composition, . . .

I monoid: algebraic structure M = (M; ·, 1) satisfying . . .
I transformation monoid: . . .

Universal algebra
I algebra: any algebraic structure Z = (Z ; some operations )

Rants
I Model theorist: models of purely algebraic signature, why do

you avoid relations?
I Algebraist: groups are complicated enough, nothing

interesting can be said about general algebras
I All: have you ever seen a 37-ary operation? You shouldn’t

study such a nonsense



Alternative viewpoint

concrete abstract

unary invert. symmetries permutation group group
unary symmetries transformation monoid monoid

higher arity symmetries clone abstract clone

I permutation group: Subset of {f : A→ A} closed under
composition and idA and inverses. . .

can be given by a generating unary algebra

I group: Forget concrete mappings, remember composition

I clone: Subset of {f : An → A : n ∈ N} closed under
composition and projections

can be given by a generating algebra

I abstract clone: Forget concrete mappings, remember
composition

aka variety, finitary monad over SET, Lawvere theory
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Q: Why clones? A: General algebras, symmetries

Clones:

I classical algebraic structures → general algebras → clones

I permutation group → clone
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Symmetries of relational structures

Definition

f : An → A is compatible with R ⊆ Ak

(f is a symmetry of R, f is a polymorphism of R,
R is invariant under f )

if f (a1, . . . an) ∈ R whenever a1, . . . , an ∈ R

Notation: For a set of relations A,
Pol(A) = all operations compatible with all relations in A

Fact: Pol(A) is a clone.



Compute Pol(A)

I ({0, 1}; x ∧ y → z , x ∧ y → ¬z)

I ({0, 1}; ≤)

I ({0, 1}; all binary relations)

I ({0, 1, 2}; 6=)

I (Zp; vector subspaces of Z3
p)

I (Zp; affine subspaces of Z3
p)
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Invariant relations of a clone

Notation: For a set of relations A,
Inv(A) = all relations invariant under all operations in A

Fact: It is closed under pp-definitions =
1st order definitions using ∃,=, and

Example: If binary R, S in Inv(A), then

{(x , y , z) : (∃u)(∃v) R(x , u) and S(u, v) and R(y , y)}

is in Inv(A)

Definition

Coclone on A = set of (nonempty) relations on A closed under
pp-definitions



Compute Coclo(A)

I ({0, 1}; x ∧ y → z , x ∧ y → ¬z)

I ({0, 1}; ≤)

I ({0, 1}; all binary relations)

I ({0, 1, 2}; 6=)

I (Zp; vector subspaces of Z3
p)

I (Zp; affine subspaces of Z3
p)



Compute Inv(A)

I ({0, 1};∨)

I ({0, 1};∨,∧)

I ({0, 1};majority)

I ({0, 1};∨,∧,¬)

I (Zp; x + y)

I (Zp; x − y + z)



Clones ↔ Coclones

Theorem ([Geiger]; [Bodnarchuk et al.])

For finite A, Pol, Inv are (mutually inverse) bijections

Clones on A ↔ Coclones on A

Remarks:

I Clo(A) = Pol(Inv(A)), Coclo(A) = Inv(Pol(A))

I Clones determined by invariant relations

I Coclones determined by symmetries

I Understanding clones = understanding coclones

Proof: Regard the set of n-ary operations in A as |A|n-ary relation

From now on: A clone, A corresponding coclone
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Influence: equational conditions → coclones

Theorem ([Maltsev])

A contains a Maltsev operation (m(x , y , y) = m(y , y , x) = x)

iff

Each R in A is rectangular (ab, ab′, a′b ∈ R ⇒ ab′ ∈ R)

Theorem ([Baker,Pixley])

A contains a majority operation
(m(x , x , y) = m(x , y , x) = m(y , x , x) = x)

iff

Each R is determined by its projections to pairs of coordinates.



Does Clo(A) have Maltsev or majority operation?

I ({0, 1};∨)

I ({0, 1};∨,∧)

I ({0, 1};majority)

I ({0, 1};∨,∧,¬)

I (Zp; x + y)

I (Zp; x − y + z)
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Equational condition

Definition

Equational condition = condition of the form
“there exists operations ... satisfying equations ....”
(infinitely many operations or equations allowed)

Examples: the existence of a Maltsev term, the existence of a
majority term

Remarks:

I Equational conditions are ordered by strength

I Equational condition is nontrivial if it is not satisfied in some
clone

I Clone is equationally nontrivial if it satisfies some nontrivial
equational condition



Is Clo(A) equationally trivial?

I ({0, 1};∨)

I ({0, 1};∨,∧)

I ({0, 1};majority)

I ({0, 1};∨,∧,¬)

I (Zp; x + y)

I (Zp; x − y + z)
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Abstraction: clones → equational conditions

Consider two clones equivalent if they satisfy the same equational
conditions

Abstraction: clone → its equivalence class

Remarks:

I The set of equivalence classes is lattice ordered

I Simple formalization: It is the order induced by clone
homomorphisms
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Idempotent clones

Definition

Clone A is idempotent

if f (x , x , . . . , x) = x for each f in A

⇔ unary part of A is trivial

Why this assumption?

I Complementary to group/semigroup theory

I Many useful equational conditions are idempotent

I Gives some information about general clones
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Equationally nontrivial clones

Theorem ([Birkhoff]; [Bodirsky]; [Bulatov])

For finite idempotent clone A TFAE

(i) Some part of the domain is purely combinatorial:

Formally TRIV ∈ HSP(A) (TRIV is the clone of
projections on a 2-element set)

Equivalently TRIV ∈ HS(A)

(ii) A has the highest expressive power

Formally, A pp-interprets all finite relational structures

(iii) A is equationally trivial

Definition (Just for this talk)

A is a Taylor clone if it is finite, idempotent, and equationally
nontrivial



Taylor term

Theorem ([Taylor])

For an idempotent clone A TFAE

I A is equationally nontrivial

I A satisfies nontrivial height 1 equational condition involving a
single operation symbol:

t(x , , , . . . ) = t(y , , , . . . )

t( , x , , . . . ) = t( , y , , . . . )

...

t(. . . , , , x) = t(. . . , , , y)
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Sometimes it’s exactly what’s needed

Complexity of constraint satisfaction problems (CSPs)
. . . large part of computational complexity

Fixed finite template CSP
I a class of computational problems, one for each finite

relational structure A
CSP(A) = membership in {X : X→ A}

I tiny fraction of computational complexity
(from global perspective)

I very broad class, base case for more optimistic goals

Theorem: [Bulatov, Jeavons, Krokhin] The complexity depends
only on the position of A in the order.
Consequence: If A is not Taylor, the CSP(A) is NP–complete.

THEOREM ([Bulatov]; [Zhuk])

If A is Taylor, then CSP(A) is solvable in polynomial time.
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Tools

Classic:

I Commutator theory [Smith], . . .

I Tame congruence theory [Hobby, McKenzie], . . .

More recent:

I Absorption theory [Barto, Kozik], . . .

I Bulatov’s theory

I Zhuk’s theory



Results on structure of relations

Theorem ([Maróti, McKenzie]; [Barto, Kozik, Niven]; [BK])

If A is Taylor, then:

I There exists n > 1 such that every symmetric n-ary relation in
A contains a constant tuple

I Every linked binary relation in A contains a loop

I For every prime p > |A|, every cyclically-symmetric p-ary
relation in A contains a constat tuple



Consequences for equations

Theorem ([MM], [Kearnes,Marković,McKenzie], [BK])

For an idempotent clone A on finite set TFAE

(i) A is Taylor

(ii) A has a weak near unanimity operation of some arity n > 1

w(x , . . . , x , y) = w(x , . . . , x , y , x) = · · · = w(y , x , . . . x)

(iii) A has a 4-ary Sigger’s operation

t(r , a, r , e) = t(a, r , e, a)

(iv) A has a cyclic operation of each prime arity p > |A|

t(x1, x2, . . . , xp) = t(x2, . . . , xp, x1)

Note: (iii): A weakest nontrivial equation!



Digression to infinite



Weakest nontrivial equation for finite idempotent clones

Recall: From any set of idempotent operations f1, ... on a finite
set A satisfying nontrivial equations

one can build a term operation s such that
s(r , a, r , e) = s(a, r , e, a)

Intuition: A is finite ⇒ composition is not sufficiently free

“Obviously”: It is impossible to find a weakest equations
without the restriction to finite sets



Weakest nontrivial equation for idempotent algebras

Wrong!

Theorem ([Oľsák])

For an idempotent clone A TFAE

I A is equationally nontrivial

I A contains a 6-ary t such that

t(x , x , y , y , y , x) = t(x , y , x , y , x , y) = t(y , x , x , x , y , y)



End of digression



Absorption theory

Definition

Let B ⊆ A be in A.

B absorbs A if ∃ n-ary t in A such that
t(A,B,B, . . . ,B) ⊆ B, t(B,A,B, . . . ,B) ⊆ B, . . .

Theorem

If binary R in A is subdirect and linked, then B = A2 or
A has a proper absorbing set.

Theorem

If B,C are minimal absorbing sets of A,
binary R in A is subdirect and linked, and
R ∩ (B × C ) 6= ∅,
then B × C ⊆ R.



Bulatov’s theory

A → digraph on A, 3 types of edges: semilattice, majority, affine

Definition

(a, b) is a semilattice edge if ∃ binary s in A such that
s(a, b) = s(b, a) = b

(a, b) is a majority edge if . . . [a more complex condition] . . .
(a, b) is an affine edge if . . . [even more complex condition] . . .

Theorem

A is Taylor iff the digraph of B is connected for each subalgebra B.

Theorem

If B,C are minimal affine & semilattice upward-closed subsets of A,
binary R in A is subdirect and linked, and
R ∩ (B × C ) 6= ∅,
then B × C ⊆ R.



Zhuk’s theory

Strong structure theorems on “indecomposable” relations.

Crucial concepts: binary absorption, center, . . .

Definition

A subset B of A is a center of A if [such and such relation] is
compatible with [something weird] and [some other condition].

Theorem

If B,C are minimal centers of A,
binary R in A is subdirect and linked, and
R ∩ (B × C ) 6= ∅,
then R ∩ (B × C ) is subdirect and linked.



Comparison

Methods

I absorption: heavily relational, lightly algebraic

I Bulatov: extremely algebraic, heavily relational

I Zhuk: heavily relational, lightly algebraic

Common: Some results look very similar
(different concepts, same assumptions and conclusions)

But: There is no clear connection, e.g. adding operations to a
clone does not destroy absorption, can change colors, or centers

Also: Bulatov and Zhuk sometimes need to remove some
operations (while remaining Taylor)



Taylor minimal clones

Work of:

I Zarathustra Brady (great write-up on his website)

I B + Bulatov + Kozik + Zhuk (last 2 weeks)

Definition

An idempotent clone is Taylor minimal if

I it is Taylor

I no proper subclone is Taylor

Fact: Each Taylor clone contains a Taylor minimal clone



Fun facts I (no guarantee!!!)

Theorem?

For a Taylor minimal clone A and a unary B in A TFAE

I B is binary absorbing

I for each operation f in A and each essential variable i ,
f (A, . . . ,A,B,A, . . . ,A) ⊆ B

I B is a cube term blocker

I B is semilattice & majority & affine upward-closed



Fun facts II (no guarantee!!!)

Theorem?

For a Taylor minimal clone A and B ⊆ A, (i) ⇒ (ii) ⇒ (iii) . . .

(i) B is ternary absorbing

(ii) B is a center

(iii) B is absorbing

(iv) B is semilattice & affine upward-closed

(v) B is “singleton ternary absorbing”



Fun facts III (no guarantee!!!)

I [Brady] Complete classification of 3-element affine-free Taylor
minimal clones

I Complete classification on small domains possible → source of
examples

I Taylor minimality closed under H,S,P

I 5 omitting colors theorem, e.g.
I semilattice & affine free ⇔ majority ⇔ near-unanimity
I majority & affine free ⇔ 2-semilattice ⇔ binary cyclic

I 1 missing

I many questions...
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What next?

I Organize, unify, simplify, . . .

I → (slightly) infinite

I → weighted

I → clonoids


