Alg-universality of set functors

Libor Barto

Charles University in Prague Czech Republic

AAA Bedlewo 2006

Charles University in Prague Czech Republic

4 6 1 1 4

Libor Barto

 Every group is isomorphic to the automorphism group of a distributive lattice. Birkhoff (46)

< 4 P < 4

Charles University in Prague Czech Republic

Libor Barto

Origins

- Every group is isomorphic to the automorphism group of a distributive lattice. Birkhoff (46)
- Every group is isomorphic to the automorphism group of a graph. Frucht (38) finite case, Sabidussi (60) infinite case

Alg-universality of set functors

Origins

- Every group is isomorphic to the automorphism group of a distributive lattice. Birkhoff (46)
- Every group is isomorphic to the automorphism group of a graph. Frucht (38) finite case, Sabidussi (60) infinite case
- Every group is isomorphic to the autohomeomorphism group of a topological space. de Groot (59)

Alg-universality of set functors

Origins

- Every group is isomorphic to the automorphism group of a distributive lattice. Birkhoff (46)
- Every group is isomorphic to the automorphism group of a graph. Frucht (38) finite case, Sabidussi (60) infinite case
- Every group is isomorphic to the autohomeomorphism group of a topological space. de Groot (59)

We say that the category of graphs (resp. distributive lattices, topological spaces) is group-universal.

 Every monoid is isomorphic to the endomorphism monoid of a directed (resp. undirected) graph. Hedrlín, Pultr (64,65)

Charles University in Prague Czech Republic

Libor Barto

 Every monoid is isomorphic to the endomorphism monoid of a directed (resp. undirected) graph. Hedrlín, Pultr (64,65)

We say that the category of graphs (resp. undirected graphs) is monoid-universal

Charles University in Prague Czech Republic

Alg-universality of set functors

Definition

Let \mathbf{L}, \mathbf{K} be categories. A functor $\Phi : \mathbf{L} \to \mathbf{K}$ is *full embedding*, if it is bijective on hom-sets, i.e. for every pair A, B of \mathbf{L} -objects, the mapping $\Phi : \operatorname{Hom}_{\mathbf{L}}(A, B) \to \operatorname{Hom}_{\mathbf{K}}(\Phi A, \Phi B)$ is a bijection.

Charles University in Prague Czech Republic

Libor Barto

Definition

Let \mathbf{L}, \mathbf{K} be categories. A functor $\Phi : \mathbf{L} \to \mathbf{K}$ is *full embedding*, if it is bijective on hom-sets, i.e. for every pair A, B of \mathbf{L} -objects, the mapping $\Phi : \operatorname{Hom}_{\mathbf{L}}(A, B) \to \operatorname{Hom}_{\mathbf{K}}(\Phi A, \Phi B)$ is a bijection.

Example

$$\label{eq:K} \begin{split} &\mathsf{Monoid} = \mathsf{one} \ \mathsf{object} \ \mathsf{category}.\\ &\mathsf{K} \ \mathsf{is} \ \mathsf{monoid}\text{-universal} \ \mathsf{iff} \ \forall \mathsf{L} \ \mathsf{one} \ \mathsf{object} \ \mathsf{category} \ \exists \Phi: \mathsf{L} \to \mathsf{K} \ \mathsf{full}\\ \mathsf{embedding}. \end{split}$$

Definition

- A category ${\boldsymbol{\mathsf{K}}}$ is said to be
 - ▶ group-universal, if $\forall G$ group $\exists A$ object of K s.t. $G \cong Aut(A)$

Charles University in Prague Czech Republic

▲ @ ▶ < ∃ ▶</p>

Libor Barto

Definition

- A category ${\bf K}$ is said to be
 - ▶ group-universal, if $\forall G$ group $\exists A$ object of K s.t. $G \cong Aut(A)$

► monoid-universal, if ∀M monoid ∃A object of K s.t. G ≅ End(A)

Charles University in Prague Czech Republic

Libor Barto

Definition

A category ${\bf K}$ is said to be

- ▶ group-universal, if $\forall G$ group $\exists A$ object of K s.t. $G \cong Aut(A)$
- group-universal in a stronger sense, if ∀G group ∃A object of
 K s.t. G ≅ End(A)
- ► monoid-universal, if ∀M monoid ∃A object of K s.t. G ≅ End(A)

Charles University in Prague Czech Republic

Libor Barto

Definition

A category \mathbf{K} is said to be

- ▶ group-universal, if $\forall G$ group $\exists A$ object of K s.t. $G \cong Aut(A)$
- group-universal in a stronger sense, if ∀G group ∃A object of
 K s.t. G ≅ End(A)
- ► monoid-universal, if ∀M monoid ∃A object of K s.t. G ≅ End(A)
- ▶ alg-universal, if $\forall \Sigma$ signature $\exists \Phi : \operatorname{Alg}(\Sigma) \to K$ full embedding

Charles University in Prague Czech Republic

Alg-universality of set functors

Definition

A category ${\bf K}$ is said to be

- ▶ group-universal, if $\forall G$ group $\exists A$ object of K s.t. $G \cong Aut(A)$
- group-universal in a stronger sense, if ∀G group ∃A object of
 K s.t. G ≅ End(A)
- ▶ monoid-universal, if $\forall M$ monoid $\exists A$ object of **K** s.t. $G \cong \operatorname{End}(A)$
- ▶ alg-universal, if $\forall \Sigma$ signature $\exists \Phi : \operatorname{Alg}(\Sigma) \to K$ full embedding
- ▶ universal, if $\forall L$ cocretizable category, $\exists \Phi : L \rightarrow K$ full embedding

Definition

A category ${\bf K}$ is said to be

- ▶ group-universal, if $\forall G$ group $\exists A$ object of K s.t. $G \cong Aut(A)$
- group-universal in a stronger sense, if ∀G group ∃A object of
 K s.t. G ≅ End(A)
- ▶ monoid-universal, if $\forall M$ monoid $\exists A$ object of **K** s.t. $G \cong \operatorname{End}(A)$
- ▶ alg-universal, if $\forall \Sigma$ signature $\exists \Phi : \operatorname{Alg}(\Sigma) \to K$ full embedding
- ▶ universal, if $\forall L$ cocretizable category, $\exists \Phi : L \rightarrow K$ full embedding
- ▶ hyper-universal, if $\forall L$ category $\exists \Phi : L \rightarrow K$ full embedding

Remarks

Every small category can be fully embedded into some Alg(Σ). Hence alg-universality is a stronger property than monoid-universality. But, no natural example (a variety, a quasivariety) of monoid-universal category, which is not alg-universal, is known.

Alg-universality of set functors

Remarks

- Every small category can be fully embedded into some Alg(Σ). Hence alg-universality is a stronger property than monoid-universality. But, no natural example (a variety, a quasivariety) of monoid-universal category, which is not alg-universal, is known.
- The statement "alg-universality = universality"' is equivalent to "the class of measurable cardinals is a set". (Hedrlín, Kučera, Pultr (73))

Alg-universality of set functors

Remarks

- Every small category can be fully embedded into some Alg(Σ). Hence alg-universality is a stronger property than monoid-universality. But, no natural example (a variety, a quasivariety) of monoid-universal category, which is not alg-universal, is known.
- The statement "alg-universality = universality"' is equivalent to "the class of measurable cardinals is a set". (Hedrlín, Kučera, Pultr (73))
- No concrete category is hyper-universal. Every concrete universal category has a factor which is hyper-universal (follows from Trnková (66) and Kučera (71)). We haven't described the factor for any universal category.

 Group-universal categories: Extensive survey: Fung, Kegel, Strambach, *Gruppenuversalität und homogenisierbarkeits*. Ann. Math. Pur. Appl. 141, 1985.

Charles University in Prague Czech Republic

Alg-universality of set functors

- Group-universal categories: Extensive survey: Fung, Kegel, Strambach, *Gruppenuversalität und homogenisierbarkeits*. Ann. Math. Pur. Appl. 141, 1985.
- Group-universal categories in a stronger sense:
 - Clones Barkhudaryan, Trnková (02)
 - Set endofunctors Barto, Zima (05)

Charles University in Prague Czech Republic

- Alg-universal categories:
 - ► Alg(Σ), where $\sum \Sigma \ge 2$; (undirected) graphs Hedrlín, Pultr (66), Vopěnka
 - Semigroups Hedrlín, Lambek (69), Koubek, Sichler (84)
 - (0,1)-lattices Grätzer, Sichler (70), Goralčík, Koubek, Sichler (90)
 - Integeral domains Fried, Sichler (77)

Charles University in Prague Czech Republic

Libor Barto

- Alg-universal categories:
 - ► Alg(Σ), where $\sum \Sigma \ge 2$; (undirected) graphs Hedrlín, Pultr (66), Vopěnka
 - Semigroups Hedrlín, Lambek (69), Koubek, Sichler (84)
 - (0,1)-lattices Grätzer, Sichler (70), Goralčík, Koubek, Sichler (90)
 - Integeral domains Fried, Sichler (77)
- Universal categories:
 - Hypergraphs Hedrlín, Kučera (80)
 - Topological spaces and open continuous maps Pultr, Trnková (80)
 - Topological semigroups Trnková (93)
 - Topological varieties of unary algebras Koubek (03)

Charles University in Prague Czech Republic

Libor Barto

- Alg-universal categories:
 - ► Alg(Σ), where $\sum \Sigma \ge 2$; (undirected) graphs Hedrlín, Pultr (66), Vopěnka
 - Semigroups Hedrlín, Lambek (69), Koubek, Sichler (84)
 - (0,1)-lattices Grätzer, Sichler (70), Goralčík, Koubek, Sichler (90)
 - Integeral domains Fried, Sichler (77)
- Universal categories:
 - Hypergraphs Hedrlín, Kučera (80)
 - Topological spaces and open continuous maps Pultr, Trnková (80)
 - Topological semigroups Trnková (93)
 - Topological varieties of unary algebras Koubek (03)

Pultr, Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, 1980.

Libor Barto

Charles University in Prague Czech Republic

Set functors

Set functor = endofunctor of the category **Set** of all sets and mappings Morphisms between set functors = natural transformations

Charles University in Prague Czech Republic

Libor Barto

Set functors

Set functor = endofunctor of the category **Set** of all sets and mappings Morphisms between set functors = natural transformations

Example

The free functor of a variety.

Charles University in Prague Czech Republic

Alg-universality of set functors

Set functors

Set functor = endofunctor of the category **Set** of all sets and mappings Morphisms between set functors = natural transformations

Example

The free functor of a variety.

The category of all set set functors is not legitimate (too many objects).

Natural legitimate subcategories

- The category of κ-accesible set functors (example: free functors of varieties, every operation of arity less than κ)
- The category of accessible set functors

The category **Clone** - clones and clone homomorphisms = (finitary) varieties and interpretations

Charles University in Prague Czech Republic

▲ @ ▶ ▲ Э

Libor Barto

The category **Clone** - clones and clone homomorphisms = (finitary) varieties and interpretations

A variety can be described in terms of a finitary monad over **Set**. Finitary monad = triple (F, μ, ν) , where F is finitary set functor, $\nu : Id \rightarrow F, \mu : F^2 \rightarrow F + axioms.$

Monad homomorphisms = natural transformations which preserve μ, ν

Monad homomorphisms correspond precisely to interpretations.

Theorem

The category of 7-accessible set endofunctors and natural transformations is alg-universal.

ロト (四) (三) (三) (三) (日) (日)

Charles University in Prague Czech Republic

Libor Barto

Theorem

The category of 7-accessible set endofunctors and natural transformations is alg-universal.

Problems:

- Are accessible set functors universal?
- Are set functors hyper-universal?
- Are clones alg-universal?

Charles University in Prague Czech Republic

Thank you for your attention!

Charles University in Prague Czech Republic

Libor Barto