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what is this talk about?
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» why study clones: almost whole UA + fun
» why study relational clones: CSP
» why we care about <»: UA U CSP, extensive use in UA
(congruences, description of clones, .. .)

» weighted clones <+ weighted relational clones

» why study weighted clones: ? + more fun (more math)
» why study weighted relational clones: valued CSP
» why we care about «<»: fun U vCSP, use in UA?

» this talk:

» what is weighted (relational) clone
» what is known + open problems
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clones, relational clones, CSP

» Notation

» D .. finite set (the domain)
» A ...set of operations on D
» A ...set of relations on D

» Def: A is a (function) clone if it contains projections and is
closed under superposition: f,g; € A= f(g1,...,8n) €A

» Def: A is a relational clone if it is closed under pp-definitions

» Example: if Ry, Ry € A then S defined by
S(x,y) iff (3z) Ri(x,z) A Ra(z,y,y) isin A

» Def: CSP over A is the problem to decide whether a
pp-sentence (over A) is true
» Example: Is (3x,y,z) Ri(x,z) A Rx(z,y,y) true?
» Complexity does not change if we add pp-definable relation
» = Complexity depends only on the relational clone of A.



clones < relational clones

> clones and rel. clones are closed objects in a Galois
correspondence given by:

> Def: f: D" — D is compatible with R C D™ if
di,...,d, e R=1(dy,...,d;) €R

Foof f

{ { {
di = (du, dio, ..., dim) €R
dy = (do1, dao, , m) €R
dn - (dnla dn2a ’ dnm) S R




clones < relational clones

>

clones and rel. clones are closed objects in a Galois
correspondence given by:

Def: f: D" — D is compatible with R C D™ if
di,...,d, e R=1(dy,...,d;) €R

Pol(A) ...all operations compatible with every R € A
Fact: always a clone

Inv(A) ...all relations compatible with every f € A
Fact: always a relational clone

Theorem: Pol and Inv are mutually inverse bijections
clones < relational clones

Geiger; Bodnarcuk, KaluZnin, Kotov, Romov



proof for the algebraic side

Theorem ( )

If A is a clone, then A = Pol(Inv(A)).

]




proof for the algebraic side

Theorem ( )

If A is a clone, then A = Pol(Inv(A)).

C obvious




proof for the algebraic side

Theorem ( )

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t



proof for the algebraic side

Theorem ( )

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t
» | operation f : D" — D =~ tuple f of length |D|"



proof for the algebraic side

Theorem ( )

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t
» | operation f : D" — D =~ tuple f of length |D|"

» = set of n-ary operations ~ |D|"-ary relation



proof for the algebraic side

Theorem ( )

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t
» | operation f : D" — D =~ tuple f of length |D|"
» = set of n-ary operations ~ |D|"-ary relation

» Define: R = all n-ary operations in A



proof for the algebraic side

Theorem ( )

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t
» | operation f : D" — D =~ tuple f of length |D|"
» = set of n-ary operations ~ |D|"-ary relation
» Define: R = all n-ary operations in A

» R is compatible with every f € A since
f(g1,.-.,8m) (component-wise application of f)

= f(g1,-..,8m) (superposition)



proof for the algebraic side

Theorem ( )

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t

» | operation f : D" — D =~ tuple f of length |D|"

» = set of n-ary operations ~ |D|"-ary relation

» Define: R = all n-ary operations in A

» R is compatible with every f € A since
f(g1,.-.,8m) (component-wise application of f)
= f(g1,...,8m) (superposition)

> t is not compatible with R since
t(wi,...,mn) =t € R



vCSP, weighted relational clones, weighted clones

Cohen, Cooper, Creed, Jeavons, 2ivny

> relation — weighted relation

» CSP — vCSP

> relational clone — weighted relational clone

» operation — fractional operation, weighting (2 versions)
» clone — weighted clone
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» p(d)=0 if de R (no penalty for using d)
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> pp-definitions &~ minimizing a sum
» Example: S(x,y) iff (3z) Ri(x,z) A Ro(z,y,y)
» corresponds to  o(x,y) = min, p1(x,z)+ p2(z,y,y)

» CSP =~ minimizing a sum (over all variables)
» Example: Is (3x,y,2z) Ri(x,z) A Ra(z,y,y) true?
» corresponds to  Find miny, ., p1(x,z)+ p2(z,y,y).
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weighted relation, vCSP

Def: weighted relation is a mapping p: D" — Q = Q U {o0}
» p(d)=0 (low penalty for using d)
» p(d) =13 (higher penalty)
» p(d) =0 (absolutely forbidden tuple)

v

v

Def: Feas(p) = {d: p(d) < oo} C D"

v

W .. .set of weighted relations

v

Def: vCSP over W is the problem to minimize a sum
(which uses only weighted relations from W)
» Example: Find min,, . pi(x,z)+ p2(z,y,y).
» Complexity does not change if we add ... (next slide)
» = complexity only depends on weighted relational clone of W
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weighted relational clone

> Def: W is a weighted relational clone if
» contains the equality relation

» is closed under addition of constant and non-negative scaling
Example: if p € Wthen2p+3 €W

» is closed under addition and minimization over some
coordinates
Example: if p1, p2 € W then o defined by
o(x,y) =min; p1(x,2) + pa(z,y,y) isin W
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fractional operation

» Def: n-ary fractional operation ¢ is
a probability distribution over n-ary operations,
written as a formal linear combination of operations

d= Y G(f)f, where0<¢(f)eQ, > ¢(f) =1
f

f:D"—D
» Example: A binary fractional operation on D = {0,1}
¢ =0.1m1 + 0.4min+0.5max  supp(¢) = {m1, min, max}
> Natural example:

¢ =0.5min4+0.5max  supp(¢) = {min, max}
» Def: Support of ¢ is supp(¢) = {f : #(f) > 0}
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compatibility

» Def: n-ary ¢ = > ¢(f)f is compatible with p: D™ — Qif
for any dy,...,d, € D™

EXPrey p(f(dy,...,ds)) <avg {p(d1),...,p(dn)}

> equivalently

—

ST ) A, dn)) < pld) o+ ()
fesupp(¢)

» Example: D ={0,1}, » = 0.5min +0.5 max
0.5 p(max(di, d2))+ 0.5 p(min(d1,d2)) < 0.5 p(d1)+ 0.5 p(d2)
» Remark (submodularity): D™ =~ power set of {1,..., m}

0.5 p(d1 U d2) + 0.5 p(d1 N d2) <0.5 p(dl) + 0.5 p(dz)



good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)



good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» good news: definition of compatibility is beautiful



good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work



good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work
> recall for ¢ = 0.5 min +0.5 max the inequality was
0.5 p(max(dl, d2)) +0.5 p(min(dl, dz)) <0.5 p(dl) +0.5 p(dg)



good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work
> recall for ¢ = 0.5 min +0.5 max the inequality was

0.5 p(max(dy, d2))+0.5 p(min(dy,d2)) < 0.5 p(d1)+ 0.5 p(d>)
> this is equivalent to

0.5 p(max(dy, d2)) + 0.5 p(min(dy,d2)) — 0.5 p(m1(d1, d2)) —
0.5 p(m2(d1,d2)) <0



good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)
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bad news: superposition (defined naturally) does not work

v

recall for ¢ = 0.5 min +0.5 max the inequality was
0.5 p(max(dy, d2))+0.5 p(min(dy,d2)) < 0.5 p(d1)+ 0.5 p(d>)

v

this is equivalent to
0.5 p(max(dy, d2)) + 0.5 p(min(dy,d2)) — 0.5 p(m1(d1, d2)) —
0.5 p(m2(d1,d2)) <0

solution: work with ¢’ = 0.5 min +0.5 max —0.57; — 0.57>
and define compatibility with RHS=0
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good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work
> recall for ¢ = 0.5 min +0.5 max the inequality was

0.5 p(max(dy, d2))+0.5 p(min(dy,d2)) < 0.5 p(d1)+ 0.5 p(d>)
> this is equivalent to

0.5 p(max(dy, d2)) + 0.5 p(min(dy,d2)) — 0.5 p(m1(d1, d2)) —

0.5 p(m2(dy,d2)) <0

» solution: work with ¢/ = 0.5min+0.5max —0.57; — 0.5m,
and define compatibility with RHS=0

» ingeneral ¢’ = ¢ —1/n) ;7

» sum of weights is 0 and only projections can have
negative weight (otherwise 1st item false)
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» Def: n-ary weighting ¢ is
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» Def: n-ary weighting ¢ is
a formal linear combination of operations

¢ = Z o(F)f, Wherez¢(f):03nd¢(f)<0¢f:7ri
f

f:D"—D
» Example: A binary weighting on the domain D = {0,1}
¢ = 0.5min+0.5max —0.5m; — 0.5m>

» Def: n-ary ¢ = > ¢(f)f is compatible with p: D™ — Q if
for any dy,...,d, € Feas(p)

S G(F) p(F(dis-..,ds)) <O

fesupp(¢)

» wPol ,winv defined analogously to Pol, Inv.
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» Weighting can be superposed with operations in a natural way
» Example:

» binary ¢ = 0.3 max+0.2m; — 0.5m>
» will be superposed with ternary f; = 73, fr = maxyo3
> we get

¢(7l’3, max 123) =0.3 max(7r3, maXx 123) + 0.27‘(1(7‘(’3, max 123)
— 0.5 (3, max 123)
= 0.3max 123 + 0.2m3 — 0.5 max 1o3

S 0.27T3 — 0.2 max 123

» QOops, this is not a weighting
(negative weight on a non-projection)
— this superposition is improper
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» the following two weighted relational clones over D = {0,1}
have no nonzero compatible weightings
> all weighted relations p
» all weighted relations p with Feas(p) in the smallest relational
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> these weighted clones are different



one more caveat

v

the following two weighted relational clones over D = {0, 1}
have no nonzero compatible weightings
> all weighted relations p
» all weighted relations p with Feas(p) in the smallest relational
clone

v

these weighted clones are different

v

Solution: Define weighting and weighted clone over a fixed
(normal) clone

v

(and adjust the definition of winv accordingly)
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weighted clones

> Def: Let A be a clone. A weighted clone over A is a set of
weightings W, whose supports are contained in A, and which
is closed under

(1) nonnegative scaling,
(2) addition of weightings, and
(3) proper superposition with operations from A.

» Fact: if ¢ is a weighting that can be generated from W by
using (1),(2), and all superpositions,
then ¢ can be generated by (1),(2),(3).

» Corollary: if W is a set of weightings over A, then

1

wClok(W) = {Za,-¢,-(ﬁ1, o fy) 1ai > 0,0 € W, fij € A}

N {all k-ary weightings}



algebraic part of the wPol-wlnv correspondence

Theorem ( )

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))



algebraic part of the wPol-wlnv correspondence

Theorem ( )

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof similar to unweighted situation 4+ Farkas' lemma:



algebraic part of the wPol-wlnv correspondence

Theorem ( )

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof similar to unweighted situation 4+ Farkas' lemma:
Is there a solution with x,y,z > 07

4x — 5y —4z =2
3x—-3y—2z=1



algebraic part of the wPol-wlnv correspondence

Theorem ( )

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof similar to unweighted situation 4+ Farkas' lemma:

Is there a solution with x,y,z > 07

4x — 5y —4z =2
3x—-3y—2z=1

No! 2x 1st equation — 3x 2nd equation gives

—x—y—2z=1



algebraic part of the wPol-wlnv correspondence

Theorem ( )

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof similar to unweighted situation 4+ Farkas' lemma:

Is there a solution with x,y,z > 07

4x — 5y —4z =2
3x—-3y—2z=1

No! 2x 1st equation — 3x 2nd equation gives
—x—y—2z=1

Farkas’ lemma: if Ax = b,x > o unsolvable then
Jy such thaty’A<o,y'b >0
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algebraic part of the wPol-wlnv correspondence

Theorem ( )

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof.
assume 7 ¢ W = wClo(¢1, ..., ¢k) (say n-ary).
want: p € winv(W) which is not compatible with 7
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algebraic part of the wPol-wlnv correspondence

Theorem ( )

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof.
assume 7 ¢ W = wClo(¢1, ..., ¢k) (say n-ary).
want: p € winv(W) which is not compatible with 7
» Feas(p) := all n-ary operations in A (|D|"-ary)
> T=30 Zf...tuple of n-ary op'sxi,s(ﬁi(f)
» system of LE: variables x; s, one equation for each f € A

» does not have a nonnegative solution (since 7 ¢ W)

v

Farkas' lemma — yr for each f € A. Put p(f) = yr.

v

pis in winv(W) and not compatible with 7
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remarks

> many lattices of weighted clones

> lattice of weighted clones over a fixed clone A
> lattice of weighted clones (neglect A)

> for non-finitely generated weighted clones
(still on finite domain)

» we need R instead of Q
» we need to consider closed weighted clones

Fulla, Zivny
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results and questions

minimal and maximal clones
Boolean domain
nicer weightings

positive part



weighted Rosenberg

» Thm: Creed, Zivny; Thapper, Zivny
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vV vy vy
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a set of binary idempotent operations (not projections), or
a set of majority operations, or

a set of minority operations, or

a set of majority operations with total weight 2 and a set of
minority operations with total weight 1, or

a set of k-ary semiprojections (for some k > 3)
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weighted Rosenberg

» Thm: Creed, Zivny; Thapper, Zivny
Every non-trivial weighted clone W contains
a weighting whose support is

v
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v

>

vV vy vy

>

a set of unary operations (not projection), or

a set of binary idempotent operations (not projections), or
a set of majority operations, or

a set of minority operations, or

a set of majority operations with total weight 2 and a set of
minority operations with total weight 1, or

a set of k-ary semiprojections (for some k > 3)

9 minimal weighted clones on |D| = 2

4 minimal weighted clones over the full clone on |D| =2

Problem: minimal weighted clones (over a given A)

Problem: maximal weighted clones (over a given A)

Problem: criterions for W = all weightings (of A)
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Boolean domain: |D| = 2

» Known: minimal clones

» Known: all weighted clones over some clones at the bottom
of the Post lattice  Barto, Vancura
» Problem: find maximal weighted clones (over A)
» Problem: find all weighted clones (over A)
> Problem: weighted clones over A = monotone idempotent
operations
> possibly easier:
1. find all “fake” weighted clones
(negative weights on non-projections allowed)

(btw. Question: is there a relational counterpart?)
2. look at proper weightings in these “weighted clones”
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prettier weightings

» Theorem: Thapper, Zivny; Kolmogorov
Vk > 2 YW over the full clone
if 3¢ € W whose supp. contains a k-ary symmetric op
then 3¢ € W whose supp. contains only k-ary symmetric op’s

» Theorem: Kozik, Ochremiak
if 3¢ € W whose supp. contains a k-ary cyclic op
then 3¢ € W whose supp. contains only k-ary cyclic op’s

» Problem: Assume J¢ € W whose support contains a majority
operation. Does there necessarily 3¢ € W with at least
1/3-weight on majorities?

» Problem: Assume 3¢ € W whose support contains a Maltsev
operation. Does there necessarily 3¢ € W whose support
contains only majorities and Maltsevs?
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positive clone

» Def: Positive clone of W is the union of all supports +
projections

» Notation: Pos(W)

» Fact: always a clone Kozik, Ochremiak

» Theorem: Thapper, Zivny; Kolmogorov
YW over the full clone

binary commutative € Pos(W) iff
k-ary symmetric € Pos(W) iff
k-ary cyclic € Pos(W)

» Problem: what clones are equal to Pos(W) for some W
over a fixed A

» Problem: if W is finitely related, is Pos(W) necessarily
finitely related?
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final remarks

» weighted varieties — works nicely Kozik, Ochremiak
» elements of D can also be weighted — seems useful

» use in (normal) UA??? (some indications)

Reading:
» Zivny: The complexity of valued constraint satisfaction problems

» Jeavons, Krokhin, 2ivny: The complexity of valued constraint
satisfaction

» Cohen, Cooper, Creed, Jeavons, zivny: An algebraic theory of
complexity for discrete optimisation

Thank you!



