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what is this talk about?

I clones ↔ relational clones
I why study clones: almost whole UA + fun
I why study relational clones: CSP
I why we care about ↔: UA ∪ CSP, extensive use in UA

(congruences, description of clones, . . . )

I weighted clones ↔ weighted relational clones
I why study weighted clones: ? + more fun (more math)
I why study weighted relational clones: valued CSP
I why we care about ↔: fun ∪ vCSP, use in UA?

I this talk:
I what is weighted (relational) clone
I what is known + open problems
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clones, relational clones, CSP

I Notation
I D . . . finite set (the domain)
I A . . . set of operations on D
I A . . . set of relations on D

I Def: A is a (function) clone if it contains projections and is
closed under superposition: f , gi ∈ A⇒ f (g1, . . . , gn) ∈ A

I Def: A is a relational clone if it is closed under pp-definitions
I Example: if R1,R2 ∈ A then S defined by

S(x , y) iff (∃z) R1(x , z) ∧ R2(z , y , y) is in A

I Def: CSP over A is the problem to decide whether a
pp-sentence (over A) is true

I Example: Is (∃x , y , z) R1(x , z) ∧ R2(z , y , y) true?
I Complexity does not change if we add pp-definable relation
I ⇒ Complexity depends only on the relational clone of A.
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clones ↔ relational clones

I clones and rel. clones are closed objects in a Galois
correspondence given by:

I Def: f : Dn → D is compatible with R ⊆ Dm if
d1, . . . ,dn ∈ R ⇒ f (d1, . . . ,dn) ∈ R

f f . . . f
↓ ↓ . . . ↓

d1 = (d11, d12, . . . , d1m) ∈ R
d2 = (d21, d22, . . . , d2m) ∈ R

...
...

dn = (dn1, dn2, . . . , dnm) ∈ R

⇓
f (d1, . . . ,dn) = (b1, b2, . . . , bm) ∈ R

I Pol(A) . . . all operations compatible with every R ∈ A
Fact: always a clone

I Inv(A) . . . all relations compatible with every f ∈ A
Fact: always a relational clone

I Theorem: Pol and Inv are mutually inverse bijections

clones ↔ relational clones

Geiger; Bodnarčuk, Kalužnin, Kotov, Romov
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proof for the algebraic side

Theorem (Geiger; Bodnarčuk, Kalužnin, Kotov, Romov)

If A is a clone, then A = Pol(Inv(A)).

Proof.

assume t 6∈ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t

I ! operation f : Dn → D ≈ tuple f of length |D|n

I ⇒ set of n-ary operations ≈ |D|n-ary relation

I Define: R = all n-ary operations in A

I R is compatible with every f ∈ A since
f (g1, . . . , gm) (component-wise application of f )
= f (g1, . . . , gm) (superposition)

I t is not compatible with R since
t(π1, . . . ,πn) = t 6∈ R
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vCSP, weighted relational clones, weighted clones

Cohen, Cooper, Creed, Jeavons, Živný

I relation → weighted relation

I CSP → vCSP

I relational clone → weighted relational clone

I operation → fractional operation, weighting (2 versions)

I clone → weighted clone



relations in a weird way

I Relation R ⊆ Dn can be alternatively defined as a mapping
ρ : Dn → {0,∞} (or to {c ,∞})

I ρ(d) = 0 if d ∈ R (no penalty for using d)
I ρ(d) =∞ if d ∈ R (very high penalty, never use this tuple)

I pp-definitions ≈ minimizing a sum
I Example: S(x , y) iff (∃z) R1(x , z) ∧ R2(z , y , y)
I corresponds to σ(x , y) = minz ρ1(x , z) + ρ2(z , y , y)

I CSP ≈ minimizing a sum (over all variables)
I Example: Is (∃x , y , z) R1(x , z) ∧ R2(z , y , y) true?
I corresponds to Find minx,y ,z ρ1(x , z) + ρ2(z , y , y).
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weighted relation, vCSP

I Def: weighted relation is a mapping ρ : Dn → Q = Q ∪ {∞}
I ρ(d) = 0 (low penalty for using d)
I ρ(d) = 13 (higher penalty)
I ρ(d) =∞ (absolutely forbidden tuple)

I Def: Feas(ρ) = {d : ρ(d) <∞} ⊆ Dn

I W . . . set of weighted relations

I Def: vCSP over W is the problem to minimize a sum
(which uses only weighted relations from W)

I Example: Find minx,y ,z ρ1(x , z) + ρ2(z , y , y).
I Complexity does not change if we add . . . (next slide)
I ⇒ complexity only depends on weighted relational clone of W
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weighted relational clone

I Def: W is a weighted relational clone if
I contains the equality relation

I is closed under addition of constant and non-negative scaling
Example: if ρ ∈W then 2ρ+ 3 ∈W

I is closed under addition and minimization over some
coordinates
Example: if ρ1, ρ2 ∈W then σ defined by

σ(x , y) = minz ρ1(x , z) + ρ2(z , y , y) is in W
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fractional operation

I Def: n-ary fractional operation φ is
a probability distribution over n-ary operations,
written as a formal linear combination of operations

φ =
∑

f :Dn→D

φ(f )f , where 0 ≤ φ(f ) ∈ Q,
∑
f

φ(f ) = 1

I Example: A binary fractional operation on D = {0, 1}

φ = 0.1π1 + 0.4 min +0.5 max

supp(φ) = {π1,min,max}

I Natural example:

φ = 0.5 min +0.5 max

supp(φ) = {min,max}

I Def: Support of φ is supp(φ) = {f : φ(f ) > 0}
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compatibility

I Def: n-ary φ =
∑
φ(f )f is compatible with ρ : Dm → Q if

for any d1, . . . ,dn ∈ Dm

EXPf∼φ ρ( f (d1, . . . ,dn) ) ≤ avg {ρ(d1), . . . , ρ(dn)}

I equivalently∑
f ∈supp(φ)

φ(f ) ρ( f (d1, . . . ,dn) ) ≤ 1

n
ρ(d1) + · · ·+ 1

n
ρ(dn)

I Example: D = {0, 1}, φ = 0.5 min +0.5 max

0.5 ρ(max(d1,d2)) + 0.5 ρ(min(d1,d2)) ≤ 0.5 ρ(d1) + 0.5 ρ(d2)

I Remark (submodularity): Dm ≈ power set of {1, . . . ,m}

0.5 ρ(d1 ∪ d2) + 0.5 ρ(d1 ∩ d2) ≤ 0.5 ρ(d1) + 0.5 ρ(d2)
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good news, bad news

I good news: if φ is compatible with every ρ ∈W, then
φ is compatible with every ρ ∈ wRelClo(W)

I bad news: superposition (defined naturally) does not work

I recall for φ = 0.5 min +0.5 max the inequality was

0.5 ρ(max(d1,d2)) + 0.5 ρ(min(d1,d2)) ≤ 0.5 ρ(d1) + 0.5 ρ(d2)

I this is equivalent to

0.5 ρ(max(d1,d2)) + 0.5 ρ(min(d1,d2))− 0.5 ρ(π1(d1,d2))−
0.5 ρ(π2(d1,d2)) ≤ 0

I solution: work with φ′ = 0.5 min +0.5 max−0.5π1 − 0.5π2
and define compatibility with RHS=0

I in general φ′ = φ− 1/n
∑

i πi
I sum of weights is 0 and

only projections can have
negative weight (otherwise 1st item false)
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weighting

I Def: n-ary weighting φ is
a formal linear combination of operations

φ =
∑

f :Dn→D

φ(f )f , where
∑
f

φ(f ) = 0 and φ(f ) < 0⇒ f = πi

I Example: A binary weighting on the domain D = {0, 1}

φ = 0.5 min +0.5 max−0.5π1 − 0.5π2

I Def: n-ary φ =
∑
φ(f )f is compatible with ρ : Dm → Q if

for any d1, . . . ,dn ∈ Feas(ρ)∑
f ∈supp(φ)

φ(f ) ρ( f (d1, . . . ,dn) ) ≤ 0

I wPol ,wInv defined analogously to Pol, Inv.



weighting

I Def: n-ary weighting φ is
a formal linear combination of operations

φ =
∑

f :Dn→D

φ(f )f , where
∑
f

φ(f ) = 0 and φ(f ) < 0⇒ f = πi

I Example: A binary weighting on the domain D = {0, 1}

φ = 0.5 min +0.5 max−0.5π1 − 0.5π2

I Def: n-ary φ =
∑
φ(f )f is compatible with ρ : Dm → Q if

for any d1, . . . ,dn ∈ Feas(ρ)∑
f ∈supp(φ)

φ(f ) ρ( f (d1, . . . ,dn) ) ≤ 0

I wPol ,wInv defined analogously to Pol, Inv.



weighting

I Def: n-ary weighting φ is
a formal linear combination of operations

φ =
∑

f :Dn→D

φ(f )f , where
∑
f

φ(f ) = 0 and φ(f ) < 0⇒ f = πi

I Example: A binary weighting on the domain D = {0, 1}

φ = 0.5 min +0.5 max−0.5π1 − 0.5π2

I Def: n-ary φ =
∑
φ(f )f is compatible with ρ : Dm → Q if

for any d1, . . . ,dn ∈ Feas(ρ)∑
f ∈supp(φ)

φ(f ) ρ( f (d1, . . . ,dn) ) ≤ 0

I wPol ,wInv defined analogously to Pol, Inv.



weighting

I Def: n-ary weighting φ is
a formal linear combination of operations

φ =
∑

f :Dn→D

φ(f )f , where
∑
f

φ(f ) = 0 and φ(f ) < 0⇒ f = πi

I Example: A binary weighting on the domain D = {0, 1}

φ = 0.5 min +0.5 max−0.5π1 − 0.5π2

I Def: n-ary φ =
∑
φ(f )f is compatible with ρ : Dm → Q if

for any d1, . . . ,dn ∈ Feas(ρ)∑
f ∈supp(φ)

φ(f ) ρ( f (d1, . . . ,dn) ) ≤ 0

I wPol ,wInv defined analogously to Pol, Inv.



superposition

I Weighting can be superposed with operations in a natural way
I Example:

I binary φ = 0.3 max +0.2π1 − 0.5π2
I will be superposed with ternary f1 = π3, f2 = max123

I we get

φ(π3,max 123) = 0.3 max(π3,max 123) + 0.2π1(π3,max 123)

− 0.5π2(π3,max 123)

= 0.3 max 123 + 0.2π3 − 0.5 max 123

= 0.2π3 − 0.2 max 123

I Oops, this is not a weighting
(negative weight on a non-projection)
→ this superposition is improper
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one more caveat

I the following two weighted relational clones over D = {0, 1}
have no nonzero compatible weightings

I all weighted relations ρ
I all weighted relations ρ with Feas(ρ) in the smallest relational

clone

I these weighted clones are different

I Solution: Define weighting and weighted clone over a fixed
(normal) clone

I (and adjust the definition of wInv accordingly)
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weighted clones

I Def: Let A be a clone. A weighted clone over A is a set of
weightings W, whose supports are contained in A, and which
is closed under
(1) nonnegative scaling,
(2) addition of weightings, and
(3) proper superposition with operations from A.

I Fact: if φ is a weighting that can be generated from W by
using (1),(2), and all superpositions,
then φ can be generated by (1),(2),(3).

I Corollary: if W is a set of weightings over A, then

wClok(W) =

{∑
i

aiφi (fi1, . . . , fiki ) : ai ≥ 0, φi ∈W, f ij ∈ A

}
∩ {all k-ary weightings}
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algebraic part of the wPol–wInv correspondence

Theorem (Cohen, Cooper, Creed, Jeavons, Živný)

If W is a finitely generated weighted clone over A then
W = wPol(wInvA(W))

Proof.

assume τ 6∈W = wClo(φ1, . . . , φk) (say n-ary).

want: ρ ∈ wInv(W) which is not compatible with τ

I Feas(ρ) := all n-ary operations in A (|D|n-ary)

I τ =
∑k

i=1

∑
f...tuple of n-ary op’s xi ,sφi (f)

I system of LE: variables xi ,s , one equation for each f ∈ A

I does not have a nonnegative solution (since τ 6∈W)

I Farkas’ lemma → yf for each f ∈ A. Put ρ(f ) = yf .

I ρ is in wInv(W) and not compatible with τ
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remarks

I many lattices of weighted clones
I lattice of weighted clones over a fixed clone A
I lattice of weighted clones (neglect A)

I for non-finitely generated weighted clones
(still on finite domain)

I we need R instead of Q
I we need to consider closed weighted clones

Fulla, Živný
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results and questions

I minimal and maximal clones

I Boolean domain

I nicer weightings

I positive part
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I Thm: Creed, Živný; Thapper, Živný
Every non-trivial weighted clone W contains
a weighting whose support is

I a set of unary operations (not projection), or
I a set of binary idempotent operations (not projections), or
I a set of majority operations, or
I a set of minority operations, or
I a set of majority operations with total weight 2 and a set of

minority operations with total weight 1, or
I a set of k-ary semiprojections (for some k ≥ 3)

I 9 minimal weighted clones on |D| = 2

I 4 minimal weighted clones over the full clone on |D| = 2

I Problem: minimal weighted clones (over a given A)

I Problem: maximal weighted clones (over a given A)

I Problem: criterions for W = all weightings (of A)
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Boolean domain: |D| = 2

I Known: minimal clones

I Known: all weighted clones over some clones at the bottom
of the Post lattice Barto, Vančura

I Problem: find maximal weighted clones (over A)

I Problem: find all weighted clones (over A)

I Problem: weighted clones over A = monotone idempotent
operations

I possibly easier:

1. find all “fake” weighted clones
(negative weights on non-projections allowed)
(btw. Question: is there a relational counterpart?)

2. look at proper weightings in these “weighted clones”



Boolean domain: |D| = 2

I Known: minimal clones

I Known: all weighted clones over some clones at the bottom
of the Post lattice Barto, Vančura
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I Problem: find maximal weighted clones (over A)

I Problem: find all weighted clones (over A)

I Problem: weighted clones over A = monotone idempotent
operations

I possibly easier:

1. find all “fake” weighted clones
(negative weights on non-projections allowed)
(btw. Question: is there a relational counterpart?)

2. look at proper weightings in these “weighted clones”



prettier weightings

I Theorem: Thapper, Živný; Kolmogorov
∀k ≥ 2 ∀W over the full clone
if ∃φ ∈W whose supp. contains a k-ary symmetric op
then ∃φ ∈W whose supp. contains only k-ary symmetric op’s

I Theorem: Kozik, Ochremiak
if ∃φ ∈W whose supp. contains a k-ary cyclic op
then ∃φ ∈W whose supp. contains only k-ary cyclic op’s

I Problem: Assume ∃φ ∈W whose support contains a majority
operation. Does there necessarily ∃φ ∈W with at least
1/3-weight on majorities?

I Problem: Assume ∃φ ∈W whose support contains a Maltsev
operation. Does there necessarily ∃φ ∈W whose support
contains only majorities and Maltsevs?
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positive clone

I Def: Positive clone of W is the union of all supports +
projections

I Notation: Pos(W)

I Fact: always a clone Kozik, Ochremiak

I Theorem: Thapper, Živný; Kolmogorov
∀W over the full clone

binary commutative ∈ Pos(W) iff
k-ary symmetric ∈ Pos(W) iff
k-ary cyclic ∈ Pos(W)

I Problem: what clones are equal to Pos(W) for some W
over a fixed A

I Problem: if W is finitely related, is Pos(W) necessarily
finitely related?
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final remarks

I weighted varieties – works nicely Kozik, Ochremiak

I elements of D can also be weighted – seems useful

I use in (normal) UA??? (some indications)

Reading:

I Živný: The complexity of valued constraint satisfaction problems

I Jeavons, Krokhin, Živný: The complexity of valued constraint
satisfaction

I Cohen, Cooper, Creed, Jeavons, Živný: An algebraic theory of
complexity for discrete optimisation
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complexity for discrete optimisation

Thank you!



final remarks

I weighted varieties – works nicely Kozik, Ochremiak

I elements of D can also be weighted – seems useful

I use in (normal) UA??? (some indications)

Reading:
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