Weighted Clones

Libor Barto

Department of Algebra
Faculty of Mathematics and Physics
Charles University in Prague

AAA 89, February 27, 2015

what is this talk about?

» clones < relational clones

» why study clones: almost whole UA + fun

» why study relational clones: CSP

» why we care about <»: UA U CSP, extensive use in UA
(congruences, description of clones, .. .)

what is this talk about?

» clones < relational clones

» why study clones: almost whole UA + fun

» why study relational clones: CSP

» why we care about <»: UA U CSP, extensive use in UA
(congruences, description of clones, .. .)

» weighted clones <+ weighted relational clones
» why study weighted clones: ? + more fun (more math)
» why study weighted relational clones: valued CSP
» why we care about «<»: fun U vCSP, use in UA?

what is this talk about?

» clones <> relational clones
» why study clones: almost whole UA + fun
» why study relational clones: CSP
» why we care about <»: UA U CSP, extensive use in UA
(congruences, description of clones, .. .)

» weighted clones <+ weighted relational clones

» why study weighted clones: ? + more fun (more math)
» why study weighted relational clones: valued CSP
» why we care about «<»: fun U vCSP, use in UA?

» this talk:

» what is weighted (relational) clone
» what is known + open problems

clones, relational clones, and CSP

clones, relational clones, CSP

» Notation

» D .. finite set (the domain)
» A ...set of operations on D
» A ...set of relations on D

clones, relational clones, CSP

» Notation

» D .. finite set (the domain)
» A ...set of operations on D
» A ...set of relations on D

» Def: A is a (function) clone if it contains projections and is
closed under superposition: f,g; € A= f(g1,...,8n) €A

clones, relational clones, CSP

» Notation

» D .. finite set (the domain)
» A ...set of operations on D
» A ...set of relations on D

» Def: A is a (function) clone if it contains projections and is
closed under superposition: f,g; € A= f(g1,...,8n) €A

» Def: A is a relational clone if it is closed under pp-definitions

» Example: if Ry, Ry € A then S defined by
S(x,y) iff (3z) Ri(x,z) A Ra(z,y,y) isin A

clones, relational clones, CSP

» Notation

» D .. finite set (the domain)
» A ...set of operations on D
» A ...set of relations on D

» Def: A is a (function) clone if it contains projections and is
closed under superposition: f,g; € A= f(g1,...,8n) €A

» Def: A is a relational clone if it is closed under pp-definitions

» Example: if Ry, Ry € A then S defined by
S(x,y) iff (3z) Ri(x,z) A Ra(z,y,y) isin A

» Def: CSP over A is the problem to decide whether a
pp-sentence (over A) is true
» Example: Is (3x,y,z) Ri(x,z) A Rx(z,y,y) true?
» Complexity does not change if we add pp-definable relation
» = Complexity depends only on the relational clone of A.

clones < relational clones

> clones and rel. clones are closed objects in a Galois
correspondence given by:

> Def: f: D" — D is compatible with R C D™ if
di,...,d, e R=1(dy,...,d;) €R

Foof f

{ { {
di = (du, dio, ..., dim) €R
dy = (do1, dao, , m) €R
dn - (dnla dn2a ’ dnm) S R

clones < relational clones

>

clones and rel. clones are closed objects in a Galois
correspondence given by:

Def: f: D" — D is compatible with R C D™ if
di,...,d, e R=1(dy,...,d;) €R

Pol(A) ...all operations compatible with every R € A
Fact: always a clone

Inv(A) ...all relations compatible with every f € A
Fact: always a relational clone

Theorem: Pol and Inv are mutually inverse bijections
clones < relational clones

Geiger; Bodnarcuk, KaluZnin, Kotov, Romov

proof for the algebraic side

Theorem ()

If A is a clone, then A = Pol(Inv(A)).

]

proof for the algebraic side

Theorem ()

If A is a clone, then A = Pol(Inv(A)).

C obvious

proof for the algebraic side

Theorem ()

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t

proof for the algebraic side

Theorem ()

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t
» | operation f : D" — D =~ tuple f of length |D|"

proof for the algebraic side

Theorem ()

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t
» | operation f : D" — D =~ tuple f of length |D|"

» = set of n-ary operations ~ |D|"-ary relation

proof for the algebraic side

Theorem ()

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t
» | operation f : D" — D =~ tuple f of length |D|"
» = set of n-ary operations ~ |D|"-ary relation

» Define: R = all n-ary operations in A

proof for the algebraic side

Theorem ()

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t
» | operation f : D" — D =~ tuple f of length |D|"
» = set of n-ary operations ~ |D|"-ary relation
» Define: R = all n-ary operations in A

» R is compatible with every f € A since
f(g1,.-.,8m) (component-wise application of f)

= f(g1,-..,8m) (superposition)

proof for the algebraic side

Theorem ()

If A is a clone, then A = Pol(Inv(A)).

assume t ¢ A (say n-ary).

want: relation R in Inv(A) which is not compatible with t

» | operation f : D" — D =~ tuple f of length |D|"

» = set of n-ary operations ~ |D|"-ary relation

» Define: R = all n-ary operations in A

» R is compatible with every f € A since
f(g1,.-.,8m) (component-wise application of f)
= f(g1,...,8m) (superposition)

> t is not compatible with R since
t(wi,...,mn) =t € R

vCSP, weighted relational clones, weighted clones

Cohen, Cooper, Creed, Jeavons, 2ivny

> relation — weighted relation

» CSP — vCSP

> relational clone — weighted relational clone

» operation — fractional operation, weighting (2 versions)
» clone — weighted clone

relations in a weird way

> Relation R C D" can be alternatively defined as a mapping
p: D" — {0,00} (or to {c,00})
» p(d)=0 if de R (no penalty for using d)
» p(d) =00 if d€ R (very high penalty, never use this tuple)

relations in a weird way

> Relation R C D" can be alternatively defined as a mapping
p: D" — {0,00} (or to {c,00})
» p(d)=0 if de R (no penalty for using d)
» p(d) =00 if d€ R (very high penalty, never use this tuple)

> pp-definitions &~ minimizing a sum
» Example: S(x,y) iff (3z) Ri(x,z) A Ro(z,y,y)
» corresponds to o(x,y) = min, p1(x,z)+ p2(z,y,y)

relations in a weird way

> Relation R C D" can be alternatively defined as a mapping
p: D" — {0,00} (or to {c,00})
» p(d)=0 if de R (no penalty for using d)
» p(d) =00 if d€ R (very high penalty, never use this tuple)

> pp-definitions &~ minimizing a sum
» Example: S(x,y) iff (3z) Ri(x,z) A Ro(z,y,y)
» corresponds to o(x,y) = min, p1(x,z)+ p2(z,y,y)

» CSP =~ minimizing a sum (over all variables)
» Example: Is (3x,y,2z) Ri(x,z) A Ra(z,y,y) true?
» corresponds to Find miny, ., p1(x,z)+ p2(z,y,y).

weighted relation, vCSP

» Def: weighted relation is a mapping p: D" — Q = QU {00}
» p(d)=0 (low penalty for using d)
» p(d) =13 (higher penalty)
» p(d) =0 (absolutely forbidden tuple)

weighted relation, vCSP

» Def: weighted relation is a mapping p: D" — Q = QU {00}
» p(d)=0 (low penalty for using d)
» p(d) =13 (higher penalty)
» p(d) =0 (absolutely forbidden tuple)

» Def: Feas(p) = {d: p(d) < 0o} C D"

weighted relation, vCSP

» Def: weighted relation is a mapping p: D" — Q = QU {00}
» p(d)=0 (low penalty for using d)
» p(d) =13 (higher penalty)
» p(d) =0 (absolutely forbidden tuple)

» Def: Feas(p) = {d: p(d) < 0o} C D"

> W ...set of weighted relations

weighted relation, vCSP

Def: weighted relation is a mapping p: D" — Q = Q U {o0}
» p(d)=0 (low penalty for using d)
» p(d) =13 (higher penalty)
» p(d) =0 (absolutely forbidden tuple)

v

v

Def: Feas(p) = {d: p(d) < oo} C D"

v

W .. .set of weighted relations

v

Def: vCSP over W is the problem to minimize a sum
(which uses only weighted relations from W)
» Example: Find min,, . pi(x,z)+ p2(z,y,y).
» Complexity does not change if we add ... (next slide)
» = complexity only depends on weighted relational clone of W

weighted relational clone

> Def: W is a weighted relational clone if
» contains the equality relation

weighted relational clone

> Def: W is a weighted relational clone if
» contains the equality relation

» is closed under addition of constant and non-negative scaling
Example: if p € W then 2p+3 e W

weighted relational clone

> Def: W is a weighted relational clone if
» contains the equality relation

» is closed under addition of constant and non-negative scaling
Example: if p € Wthen2p+3 €W

» is closed under addition and minimization over some
coordinates
Example: if p1, p2 € W then o defined by
o(x,y) =min; p1(x,2) + pa(z,y,y) isin W

fractional operation

» Def: n-ary fractional operation ¢ is
a probability distribution over n-ary operations,
written as a formal linear combination of operations

d= Y G(f)f, where0<¢(f)eQ, > ¢(f) =1
f

f:D"—=D

fractional operation

» Def: n-ary fractional operation ¢ is
a probability distribution over n-ary operations,
written as a formal linear combination of operations

o= Y o(f)f, where0<o(f)€Q, Y o(f) =1
f:D"—D f
» Example: A binary fractional operation on D = {0,1}

¢ = 0.171 + 0.4 min +0.5 max

fractional operation

» Def: n-ary fractional operation ¢ is
a probability distribution over n-ary operations,
written as a formal linear combination of operations

d= Y G(f)f, where0<¢(f)eQ, > ¢(f) =1
f:D"—D f
» Example: A binary fractional operation on D = {0,1}
¢ = 0.17m1 + 0.4 min 4+0.5 max
> Natural example:

¢ = 0.5min +0.5 max

fractional operation

» Def: n-ary fractional operation ¢ is
a probability distribution over n-ary operations,
written as a formal linear combination of operations

d= Y G(f)f, where0<¢(f)eQ, > ¢(f) =1
f

f:D"—D
» Example: A binary fractional operation on D = {0,1}
¢ =0.1m1 + 0.4min+0.5max supp(¢) = {m1, min, max}
> Natural example:

¢ =0.5min4+0.5max supp(¢) = {min, max}
» Def: Support of ¢ is supp(¢) = {f : #(f) > 0}

compatibility

» Def: n-ary ¢ = > ¢(f)f is compatible with p: D™ — Q if
for any dy,...,d, € D™

EXPrey p(f(dy,...,ds)) <avg {p(d1),...,p(dn)}

compatibility

» Def: n-ary ¢ = > ¢(f)f is compatible with p: D™ — Qif
for any dy,...,d, € D™

EXPrey p(f(dy,...,ds)) <avg {p(d1),...,p(dn)}

> equivalently

—

ST) A, dn)) < pld) o+ ()
fesupp(¢)

compatibility

» Def: n-ary ¢ = > ¢(f)f is compatible with p: D™ — Qif
for any dy,...,d, € D™

EXPrey p(f(dy,...,ds)) <avg {p(d1),...,p(dn)}

> equivalently

—

ST) A, dn)) < pld) o+ ()
fesupp(¢)

» Example: D ={0,1}, » = 0.5min +0.5 max

0.5 p(max(dy, d2)) +0.5 p(min(dy,d2)) < 0.5 p(d1) + 0.5 p(d>)

compatibility

» Def: n-ary ¢ = > ¢(f)f is compatible with p: D™ — Qif
for any dy,...,d, € D™

EXPrey p(f(dy,...,ds)) <avg {p(d1),...,p(dn)}

> equivalently

—

ST) A, dn)) < pld) o+ ()
fesupp(¢)

» Example: D ={0,1}, » = 0.5min +0.5 max
0.5 p(max(di, d2))+ 0.5 p(min(d1,d2)) < 0.5 p(d1)+ 0.5 p(d2)
» Remark (submodularity): D™ =~ power set of {1,..., m}

0.5 p(d1 U d2) + 0.5 p(d1 N d2) <0.5 p(dl) + 0.5 p(dz)

good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» good news: definition of compatibility is beautiful

good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work

good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work
> recall for ¢ = 0.5 min +0.5 max the inequality was
0.5 p(max(dl, d2)) +0.5 p(min(dl, dz)) <0.5 p(dl) +0.5 p(dg)

good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work
> recall for ¢ = 0.5 min +0.5 max the inequality was

0.5 p(max(dy, d2))+0.5 p(min(dy,d2)) < 0.5 p(d1)+ 0.5 p(d>)
> this is equivalent to

0.5 p(max(dy, d2)) + 0.5 p(min(dy,d2)) — 0.5 p(m1(d1, d2)) —
0.5 p(m2(d1,d2)) <0

good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

v

bad news: superposition (defined naturally) does not work

v

recall for ¢ = 0.5 min +0.5 max the inequality was
0.5 p(max(dy, d2))+0.5 p(min(dy,d2)) < 0.5 p(d1)+ 0.5 p(d>)

v

this is equivalent to
0.5 p(max(dy, d2)) + 0.5 p(min(dy,d2)) — 0.5 p(m1(d1, d2)) —
0.5 p(m2(d1,d2)) <0

solution: work with ¢’ = 0.5 min +0.5 max —0.57; — 0.57>
and define compatibility with RHS=0

v

good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work
> recall for ¢ = 0.5 min +0.5 max the inequality was
0.5 p(max(dy, d2))+0.5 p(min(dy,d2)) < 0.5 p(d1)+ 0.5 p(d>)

> this is equivalent to
0.5 p(max(dy, d2)) + 0.5 p(min(dy,d2)) — 0.5 p(m1(d1, d2)) —
0.5 p(m2(d1,d2)) <0

» solution: work with ¢/ = 0.5min+0.5max —0.57; — 0.5m,
and define compatibility with RHS=0

» ingeneral ¢’ = ¢ —1/n) ;7

good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work
> recall for ¢ = 0.5 min +0.5 max the inequality was
0.5 p(max(dy, d2))+0.5 p(min(dy,d2)) < 0.5 p(d1)+ 0.5 p(d>)

> this is equivalent to
0.5 p(max(dy, d2)) + 0.5 p(min(dy,d2)) — 0.5 p(m1(d1, d2)) —
0.5 p(m2(d1,d2)) <0

» solution: work with ¢/ = 0.5min+0.5max —0.57; — 0.5m,
and define compatibility with RHS=0

» ingeneral ¢’ = ¢ —1/n) ;7
» sum of weights is 0 and

good news, bad news

» good news: if ¢ is compatible with every p € W, then
¢ is compatible with every p € wRelClo(W)

» bad news: superposition (defined naturally) does not work
> recall for ¢ = 0.5 min +0.5 max the inequality was

0.5 p(max(dy, d2))+0.5 p(min(dy,d2)) < 0.5 p(d1)+ 0.5 p(d>)
> this is equivalent to

0.5 p(max(dy, d2)) + 0.5 p(min(dy,d2)) — 0.5 p(m1(d1, d2)) —

0.5 p(m2(dy,d2)) <0

» solution: work with ¢/ = 0.5min+0.5max —0.57; — 0.5m,
and define compatibility with RHS=0

» ingeneral ¢’ = ¢ —1/n) ;7

» sum of weights is 0 and only projections can have
negative weight (otherwise 1st item false)

» Def: n-ary weighting ¢ is
a formal linear combination of operations

¢ = Z o(F)f, Wherez¢(f):03nd¢(f)<0¢f:7ri
f

f:D"—D

» Def: n-ary weighting ¢ is
a formal linear combination of operations

¢ = Z o(F)f, Wherez¢(f):03nd¢(f)<0¢f:7ri
f

f:D"—D
» Example: A binary weighting on the domain D = {0,1}

¢ = 0.5min+0.5max —0.5m; — 0.5m>

» Def: n-ary weighting ¢ is
a formal linear combination of operations

¢ = Z o(F)f, Wherez¢(f):03nd¢(f)<0¢f:7ri
f

f:D"—D
» Example: A binary weighting on the domain D = {0,1}
¢ = 0.5min+0.5max —0.5m; — 0.5m>

» Def: n-ary ¢ = > ¢(f)f is compatible with p: D™ — Q if
for any dy,...,d, € Feas(p)

S G(F) p(F(dis-..,ds)) <O

fesupp(¢)

» Def: n-ary weighting ¢ is
a formal linear combination of operations

¢ = Z o(F)f, Wherez¢(f):03nd¢(f)<0¢f:7ri
f

f:D"—D
» Example: A binary weighting on the domain D = {0,1}
¢ = 0.5min+0.5max —0.5m; — 0.5m>

» Def: n-ary ¢ = > ¢(f)f is compatible with p: D™ — Q if
for any dy,...,d, € Feas(p)

S G(F) p(F(dis-..,ds)) <O

fesupp(¢)

» wPol ,winv defined analogously to Pol, Inv.

» Weighting can be superposed with operations in a natural way
» Example:

» binary ¢ = 0.3 max+0.2m; — 0.5m>
» will be superposed with ternary f; = 73, fr = maxyo3

» Weighting can be superposed with operations in a natural way
» Example:

» binary ¢ = 0.3 max+0.2m; — 0.5m>
» will be superposed with ternary f; = 73, fr = maxyo3
> we get

¢(’/T3, max 123) =03 max(7r3, maXx 123) + 0.27‘(1(7‘(’3, max 123)
— 0.5 (3, max 123)
= 0.3max 123 + 0.2m3 — 0.5 max 1o3

S 0.27T3 — 0.2 max 123

» Weighting can be superposed with operations in a natural way
» Example:

» binary ¢ = 0.3 max+0.2m; — 0.5m>
» will be superposed with ternary f; = 73, fr = maxyo3
> we get

¢(7l’3, max 123) =0.3 max(7r3, maXx 123) + 0.27‘(1(7‘(’3, max 123)
— 0.5 (3, max 123)
= 0.3max 123 + 0.2m3 — 0.5 max 1o3

S 0.27T3 — 0.2 max 123

» QOops, this is not a weighting
(negative weight on a non-projection)
— this superposition is improper

one more caveat

» the following two weighted relational clones over D = {0,1}
have no nonzero compatible weightings
> all weighted relations p
» all weighted relations p with Feas(p) in the smallest relational
clone

> these weighted clones are different

one more caveat

v

the following two weighted relational clones over D = {0, 1}
have no nonzero compatible weightings
> all weighted relations p
» all weighted relations p with Feas(p) in the smallest relational
clone

v

these weighted clones are different

v

Solution: Define weighting and weighted clone over a fixed
(normal) clone

v

(and adjust the definition of winv accordingly)

weighted clones

> Def: Let A be a clone. A weighted clone over A is a set of
weightings W, whose supports are contained in A, and which
is closed under
(1) nonnegative scaling,
(2) addition of weightings, and
(3) proper superposition with operations from A.

weighted clones

> Def: Let A be a clone. A weighted clone over A is a set of
weightings W, whose supports are contained in A, and which
is closed under
(1) nonnegative scaling,
(2) addition of weightings, and
(3) proper superposition with operations from A.

» Fact: if ¢ is a weighting that can be generated from W by
using (1),(2), and all superpositions,
then ¢ can be generated by (1),(2),(3).

weighted clones

> Def: Let A be a clone. A weighted clone over A is a set of
weightings W, whose supports are contained in A, and which
is closed under

(1) nonnegative scaling,
(2) addition of weightings, and
(3) proper superposition with operations from A.

» Fact: if ¢ is a weighting that can be generated from W by
using (1),(2), and all superpositions,
then ¢ can be generated by (1),(2),(3).

» Corollary: if W is a set of weightings over A, then

1

wClok(W) = {Za,-¢,-(ﬁ1, o fy) 1ai > 0,0 € W, fij € A}

N {all k-ary weightings}

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof similar to unweighted situation 4+ Farkas' lemma:

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof similar to unweighted situation 4+ Farkas' lemma:
Is there a solution with x,y,z > 07

4x — 5y —4z =2
3x—-3y—2z=1

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof similar to unweighted situation 4+ Farkas' lemma:

Is there a solution with x,y,z > 07

4x — 5y —4z =2
3x—-3y—2z=1

No! 2x 1st equation — 3x 2nd equation gives

—x—y—2z=1

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof similar to unweighted situation 4+ Farkas' lemma:

Is there a solution with x,y,z > 07

4x — 5y —4z =2
3x—-3y—2z=1

No! 2x 1st equation — 3x 2nd equation gives
—x—y—2z=1

Farkas’ lemma: if Ax = b,x > o unsolvable then
Jy such thaty’A<o,y'b >0

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof.
assume 7 ¢ W = wClo(¢1, ..., ¢k) (say n-ary).
want: p € winv(W) which is not compatible with 7

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof.

assume 7 ¢ W = wClo(¢1, ..., ¢k) (say n-ary).

want: p € winv(W) which is not compatible with 7
» Feas(p) := all n-ary operations in A (|D|"-ary)

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof.

assume 7 ¢ W = wClo(¢1, ..., ¢k) (say n-ary).

want: p € winv(W) which is not compatible with 7
» Feas(p) := all n-ary operations in A (|D|"-ary)
> T=30 Zf...tuple of n-ary op'sxi,s(ﬁi(f)

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof.

assume 7 ¢ W = wClo(¢1, ..., ¢k) (say n-ary).

want: p € winv(W) which is not compatible with 7
» Feas(p) := all n-ary operations in A (|D|"-ary)

k
> T=) Zf...tuple of n-ary op’in,S¢i(f)
» system of LE: variables x; s, one equation for each f € A

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof.
assume 7 ¢ W = wClo(¢1, ..., ¢k) (say n-ary).
want: p € winv(W) which is not compatible with 7
» Feas(p) := all n-ary operations in A (|D|"-ary)
> T=30 Zf...tuple of n-ary op'sxi,s(ﬁi(f)
» system of LE: variables x; s, one equation for each f € A

» does not have a nonnegative solution (since 7 ¢ W)

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof.
assume 7 ¢ W = wClo(¢1, ..., ¢k) (say n-ary).
want: p € winv(W) which is not compatible with 7
» Feas(p) := all n-ary operations in A (|D|"-ary)
> T=30 Zf...tuple of n-ary op'sxi,s(ﬁi(f)
» system of LE: variables x; s, one equation for each f € A

» does not have a nonnegative solution (since 7 ¢ W)

v

Farkas' lemma — yr for each f € A. Put p(f) = yr.

algebraic part of the wPol-wlnv correspondence

Theorem ()

If W is a finitely generated weighted clone over A then
W = wPol(wlnva(W))

Proof.
assume 7 ¢ W = wClo(¢1, ..., ¢k) (say n-ary).
want: p € winv(W) which is not compatible with 7
» Feas(p) := all n-ary operations in A (|D|"-ary)
> T=30 Zf...tuple of n-ary op'sxi,s(ﬁi(f)
» system of LE: variables x; s, one equation for each f € A

» does not have a nonnegative solution (since 7 ¢ W)

v

Farkas' lemma — yr for each f € A. Put p(f) = yr.

v

pis in winv(W) and not compatible with 7

remarks

> many lattices of weighted clones

> lattice of weighted clones over a fixed clone A
> lattice of weighted clones (neglect A)

remarks

> many lattices of weighted clones

> lattice of weighted clones over a fixed clone A
> lattice of weighted clones (neglect A)

> for non-finitely generated weighted clones
(still on finite domain)

» we need R instead of Q
» we need to consider closed weighted clones

Fulla, Zivny

v

v

v

results and questions

minimal and maximal clones
Boolean domain
nicer weightings

positive part

weighted Rosenberg

» Thm: Creed, Zivny; Thapper, Zivny
Every non-trivial weighted clone W contains
a weighting whose support is

>

vV vy vy

>

a set of unary operations (not projection), or

a set of binary idempotent operations (not projections), or
a set of majority operations, or

a set of minority operations, or

a set of majority operations with total weight 2 and a set of
minority operations with total weight 1, or

a set of k-ary semiprojections (for some k > 3)

» 9 minimal weighted clones on |D| =2

» 4 minimal weighted clones over the full clone on |D| = 2

weighted Rosenberg

» Thm: Creed, Zivny; Thapper, Zivny
Every non-trivial weighted clone W contains
a weighting whose support is

>

vV vy vy

>

a set of unary operations (not projection), or

a set of binary idempotent operations (not projections), or
a set of majority operations, or

a set of minority operations, or

a set of majority operations with total weight 2 and a set of
minority operations with total weight 1, or

a set of k-ary semiprojections (for some k > 3)

» 9 minimal weighted clones on |D| =2

» 4 minimal weighted clones over the full clone on |D| = 2

» Problem: minimal weighted clones (over a given A)

weighted Rosenberg

» Thm: Creed, Zivny; Thapper, Zivny
Every non-trivial weighted clone W contains
a weighting whose support is

v

v

v

v

>

vV vy vy

>

a set of unary operations (not projection), or

a set of binary idempotent operations (not projections), or
a set of majority operations, or

a set of minority operations, or

a set of majority operations with total weight 2 and a set of
minority operations with total weight 1, or

a set of k-ary semiprojections (for some k > 3)

9 minimal weighted clones on |D| = 2

4 minimal weighted clones over the full clone on |D| =2

Problem: minimal weighted clones (over a given A)

Problem: maximal weighted clones (over a given A)

weighted Rosenberg

» Thm: Creed, Zivny; Thapper, Zivny
Every non-trivial weighted clone W contains
a weighting whose support is

v

v

v

v

v

>

vV vy vy

>

a set of unary operations (not projection), or

a set of binary idempotent operations (not projections), or
a set of majority operations, or

a set of minority operations, or

a set of majority operations with total weight 2 and a set of
minority operations with total weight 1, or

a set of k-ary semiprojections (for some k > 3)

9 minimal weighted clones on |D| = 2

4 minimal weighted clones over the full clone on |D| =2

Problem: minimal weighted clones (over a given A)

Problem: maximal weighted clones (over a given A)

Problem: criterions for W = all weightings (of A)

Boolean domain: |D| = 2

» Known: minimal clones

» Known: all weighted clones over some clones at the bottom
of the Post lattice Barto, Vancura

Boolean domain: |D| = 2

» Known: minimal clones

» Known: all weighted clones over some clones at the bottom
of the Post lattice Barto, Vancura

» Problem: find maximal weighted clones (over A)

Boolean domain: |D| = 2

» Known: minimal clones

» Known: all weighted clones over some clones at the bottom
of the Post lattice Barto, Vancura

» Problem: find maximal weighted clones (over A)
» Problem: find all weighted clones (over A)

> Problem: weighted clones over A = monotone idempotent
operations

Boolean domain: |D| = 2

» Known: minimal clones

» Known: all weighted clones over some clones at the bottom
of the Post lattice Barto, Vancura
» Problem: find maximal weighted clones (over A)
» Problem: find all weighted clones (over A)
> Problem: weighted clones over A = monotone idempotent
operations
> possibly easier:
1. find all “fake” weighted clones
(negative weights on non-projections allowed)

(btw. Question: is there a relational counterpart?)
2. look at proper weightings in these “weighted clones”

prettier weightings

» Theorem: Thapper, Zivny; Kolmogorov
Vk > 2 YW over the full clone
if 3¢ € W whose supp. contains a k-ary symmetric op
then 3¢ € W whose supp. contains only k-ary symmetric op’s

prettier weightings

» Theorem: Thapper, Zivny; Kolmogorov
Vk > 2 YW over the full clone
if 3¢ € W whose supp. contains a k-ary symmetric op
then 3¢ € W whose supp. contains only k-ary symmetric op’s

» Theorem: Kozik, Ochremiak
if 3¢ € W whose supp. contains a k-ary cyclic op
then 3¢ € W whose supp. contains only k-ary cyclic op’s

prettier weightings

» Theorem: Thapper, Zivny; Kolmogorov
Vk > 2 YW over the full clone
if 3¢ € W whose supp. contains a k-ary symmetric op
then 3¢ € W whose supp. contains only k-ary symmetric op’s

» Theorem: Kozik, Ochremiak
if 3¢ € W whose supp. contains a k-ary cyclic op
then 3¢ € W whose supp. contains only k-ary cyclic op’s

> Problem: Assume 3¢ € W whose support contains a majority
operation. Does there necessarily 3¢ € W with at least
1/3-weight on majorities?

prettier weightings

» Theorem: Thapper, Zivny; Kolmogorov
Vk > 2 YW over the full clone
if 3¢ € W whose supp. contains a k-ary symmetric op
then 3¢ € W whose supp. contains only k-ary symmetric op’s

» Theorem: Kozik, Ochremiak
if 3¢ € W whose supp. contains a k-ary cyclic op
then 3¢ € W whose supp. contains only k-ary cyclic op’s

» Problem: Assume J¢ € W whose support contains a majority
operation. Does there necessarily 3¢ € W with at least
1/3-weight on majorities?

» Problem: Assume 3¢ € W whose support contains a Maltsev
operation. Does there necessarily 3¢ € W whose support
contains only majorities and Maltsevs?

positive clone

» Def: Positive clone of W is the union of all supports +
projections

» Notation: Pos(W)
» Fact: always a clone Kozik, Ochremiak

positive clone

» Def: Positive clone of W is the union of all supports +
projections

» Notation: Pos(W)
» Fact: always a clone Kozik, Ochremiak

» Theorem: Thapper, Zivny; Kolmogorov
VYW over the full clone
binary commutative € Pos(W) iff
k-ary symmetric € Pos(W) iff
k-ary cyclic € Pos(W)

positive clone

» Def: Positive clone of W is the union of all supports +
projections

» Notation: Pos(W)
» Fact: always a clone Kozik, Ochremiak

» Theorem: Thapper, Zivny; Kolmogorov
VYW over the full clone
binary commutative € Pos(W) iff
k-ary symmetric € Pos(W) iff
k-ary cyclic € Pos(W)
» Problem: what clones are equal to Pos(W) for some W
over a fixed A

positive clone

» Def: Positive clone of W is the union of all supports +
projections

» Notation: Pos(W)

» Fact: always a clone Kozik, Ochremiak

» Theorem: Thapper, Zivny; Kolmogorov
YW over the full clone

binary commutative € Pos(W) iff
k-ary symmetric € Pos(W) iff
k-ary cyclic € Pos(W)

» Problem: what clones are equal to Pos(W) for some W
over a fixed A

» Problem: if W is finitely related, is Pos(W) necessarily
finitely related?

final remarks

> weighted varieties — works nicely Kozik, Ochremiak

final remarks

> weighted varieties — works nicely Kozik, Ochremiak

» elements of D can also be weighted — seems useful

final remarks

» weighted varieties — works nicely Kozik, Ochremiak
» elements of D can also be weighted — seems useful

» use in (normal) UA??? (some indications)

final remarks

» weighted varieties — works nicely Kozik, Ochremiak
» elements of D can also be weighted — seems useful

» use in (normal) UA??? (some indications)

Reading:
» Zivny: The complexity of valued constraint satisfaction problems

» Jeavons, Krokhin, 2ivny: The complexity of valued constraint
satisfaction

» Cohen, Cooper, Creed, Jeavons, zivny: An algebraic theory of
complexity for discrete optimisation

final remarks

» weighted varieties — works nicely Kozik, Ochremiak
» elements of D can also be weighted — seems useful

» use in (normal) UA??? (some indications)

Reading:
» Zivny: The complexity of valued constraint satisfaction problems

» Jeavons, Krokhin, 2ivny: The complexity of valued constraint
satisfaction

» Cohen, Cooper, Creed, Jeavons, zivny: An algebraic theory of
complexity for discrete optimisation

Thank you!

