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Primitive Positive Definition
B is a set of finitary relations on a set A.
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Primitive Positive Definition
B is a set of finitary relations on a set A.

Definition
A primitive positive formula (pp-formula) over 5:
R(Xl, e 7Xn) =
Elyl L. E|y/ R1(2171, - 7217,,1) FANAN Rk(zk,h - 7Zk,nk)7

where Ry,...,Rk € B, zij € {x1,...., Xn, Y1,-- -, ¥}

Example 1
A=1{0,1,2}
R(x1,x2,x3) =3y(x1 Zy Ax2a Yy AX3 # y)



Primitive Positive Definition
B is a set of finitary relations on a set A.

Definition
A primitive positive formula (pp-formula) over 5:

R(Xl, e 7Xn) =
Elyl L. E|y/ R1(2171, - 7zl,n1) FANAN Rk(zk,h - 7Zk,nk)7

where Ry,...,Rk € B, zij € {x1,...., Xn, Y1,-- -, ¥}

Example 1
A={0,1,2}

R(x1,x0,x3) =3y(x1 Zy Axe £y Ax3 # y)
R ={(a,b,c) | [{a,b,c}| <3}



Primitive Positive Definition
B is a set of finitary relations on a set A.
Definition
A primitive positive formula (pp-formula) over 5:

R(Xl, e 7Xn) =
Elyl L. E|y/ R1(2171, - 7zl,n1) FANAN Rk(zk,h - 7Zk,nk)7

where Ry,...,Rk € B, zij € {x1,...., Xn, Y1,-- -, ¥}

Example 1

A={0,1,2}

R(x1,x2,x3) = Jy(a £y Axe #y Axzs # y)

R ={(a,b,c) | [{a,b,c}| <3}

Example 2

A={0,1}

R(x1,x2) = I1Tya(xa # y1 Axa # y2 Aya < yo)



Primitive Positive Definition
B is a set of finitary relations on a set A.
Definition
A primitive positive formula (pp-formula) over 5:

R(Xl, e 7Xn) =
Elyl L. E|y/ R1(2171, - 7zl,n1) FANAN Rk(zk,h - 7Zk,nk)7

where Ry,...,Rk € B, zij € {x1,...., Xn, Y1,-- -, ¥}

Example 1

A=1{0,1,2}

R(x1,x2,x3) = Jy(a £y Axe #y Axzs # y)
R ={(a,b,c) | [{a,b,c}| <3}

Example 2

A=1{0,1}

R(x1,x2) = dyidya(x1 # y1 Ax2 # y2 A y1 < y2)
R(x1,x2) = (x2 < x1).
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How to measure complexity

How to measure size of a pp-formula?

» Number of existential quantifiers: Q(®).
» Number of constraints : C(®).

Example

d=Ty(xa £y Axa£yAx3#y)
Q(P) =1, C(¢)=3

Definition

For a relation R on a set A and a set of relations B (basis) put
Qp(R) := min{Q(®) | ® pp-defines R}

Cs(R) := min{C(®) | ® pp-defines R}
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Why | am interested in this?

» pp-formulas are very natural
better than circuits and terms

» pp-formulas are more general than circuits
every circuit can be replaced by a pp-definition
of the same size

» CSP is about pp-formulas
if [1 can be pp-defined from I'; then CSP(I';)
can be reduced to CSP(I,)

» we can use Yniversal-Algebra Clone Theory

Galois connection and so on
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Qs(n) :== max{Q(R) | R is an n-ary relation on A}
Cp(n) :== max{C(R) | R is an n-ary relation on A}
Basis

Se =AM\ {(c,c,c)}, B={S. | ce A}

Claim
Any relation on A can be pp-defined over B.

Theorem [Bashirov, 2015]
A5 —n < Qs(n) < |AI(2]Al(n - 3) +1)
Toggriomary < Cs(n) < |AIM(2JA|(JA| = 1)(n—=3) +1)

Tell me if you know better bounds
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R. Willard, Testing expressibility is hard, in D. Cohen (Ed.):
CP 2010, LNCS 6308, 9-23, 2010

For infinitely many n there exist a constraint language I, and a
relation R,, both on a 22-element domain, such that |R,| = n, R,
is expressible from I, but every pp-definition of R, instance
expressing R, has at least 2"/3 variables.

Tell me if you know other results
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0
A=1{0,1,2}, R = |0
0

o = O
o O =
==

)om= (00 7)
B={Ri, R}
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My exponential lower bound

Basis
00112

A={0,1,2}, RR=(0 1 0 1 2 ,R2:<8 1 2)
0 001

B={Ri, R}

Relation o,

0= {Oa 17 2}2 \ {(Oa 1)7 (170)}

On(X1, Y1, %2, Y2, -+« s Xny ¥n) = 0(x1,y1) V -+ - V 0 (Xn, ¥n)

» o, does not contain

(0,1,0,1,0,1,...,0,1)

(1,0,0,1,1,0,...,1,0)

(1,0,1,0,0,1,...,1,0)
Theorem

2" < Qp(on) <2"(n+2)
2" < Cg(om) < 27(n+ 3)
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» Find an operation f preserving BB but not preserving R.

Claim

R is pp-defined from B and f preserves B = f preserves R.

R(x1, x2, ...

—~~

(1 1

ar, a, ...

2 2

(ala az, ...

(af, a5, ...

(Cl, Co, ...

3y (Ri(C)AAR(L))

. Th
—~
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satisfy the formula

satisfy the formula
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» Find a partial operation f preserving B but not preserving R.
Suppose
> R is pp-defined from B

> f preserves B, f doesn't preserve R

R(x1,x2, ...,xp) = 3Jy1 3y ...3ys (Ri(...)A---ARs(...))
:\\ ;\\ [N /1
(af, a3, ...,a}) € R bi b} ... b} satisfy the formula
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How to prove that no pp-definition of polynomial size?

» Find a partial operation f preserving B but not preserving R.

Suppose

> R is pp-defined from B

> f preserves B, f doesn't preserve R

R(Xl7 X2, ...

—_~ o~

1

(a%, a, ...

2

(a3, a3, ...

(C17 Co, ...

7Xn) =

E|y1 E|y2 ..

. b}
. B2

. b.t

ys (R

—~~

S

S

S

~—

. ds

A AR(..))

satisfy the formula

satisfy the formula

satisfy the formula
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Relation o,
0= {Oa 1, 2}2 \ {(Oa 1)7 (170)}
On(X1, Y1, %2, Y2, -+« s Xny ¥n) = 0(x1,y1) V -+ - V 0 (Xn, Yn)

Theorem
Suppose B is preserved by f,(x1, ..., Xn, Y1,-- -y ¥n) =

%, if {x1,..., %} = {0} and {y1,...,yn} = {1}
0, if{x1,...,xp} ={0} and {y1,...,yn} # {1}
L if {x1,..., %} € {{1},{0,1}} and {y1,...,yn} = {1}
2, otherwise
Then Qg(o,) > 2".
Corollary
For B = {R1, R2} we have Qp(c,) > 2"

Corollary

Suppose |B| < oo, B is preserved by all total operations from
PartialClo({f1, f2, f3,... }). Then Qg(c,) is exponential on n.
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Connection with Quantified Constraint Satisfaction
Problem

QCSP(T):

Given a sentence Jy1Vxy ... 3ysVxe(Ri(...) A Rs(...)), where
Ri,...,Rs €T.

Decide whether it holds.

Chen's Conjecture
If Pol(I") has EGP property, then QCSP(I") is PSPACE-complete.

*EGP - we need exponentially many tuples to generate A"

Counter-example
00112

r= 0101.2,<8??>
0011 - -

» Pol(T") has EGP property.
» QCSP(I') can be solved in polynomial time.
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