The complexity of the Quantified Constraint Satisfaction Problem on a 3-element set

> Dmitriy Zhuk joint with Barnaby Martin

Lomonosov Moscow State University

AAA 98, Dresden, 21-23 June 2019

European Research Council Established by the European Commission CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

Quantified Constraint Satisfaction Problem

Let A be a finite set, Γ be a set of of all predicates (or relations) on A, called constraint language

QCSP(Γ): Given a sentence $\exists y_1 \forall x_1 \dots \exists y_t \forall x_t (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Examples

 $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$, true

 $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y)$, false

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2), \text{ true}$

Constraint Satisfaction Problem

```
Let A be a finite set,

\Gamma be a set of of all predicates (or relations) on A.

CSP(\Gamma):

Given a formula (R_1(...) \land \cdots \land R_s(...)),

where R_1, \ldots, R_s \in \Gamma.

Decide whether the formula is satisfiable.
```

Constraint Satisfaction Problem

```
Let A be a finite set,

\Gamma be a set of all predicates (or relations) on A.

CSP(\Gamma):

Given a sentence \exists y_1 \dots \exists y_t (R_1(\dots) \land \dots \land R_s(\dots)),

where R_1, \dots, R_s \in \Gamma.

Decide whether it holds.
```

Theorem [Bulatov, Zhuk, 2017]

- CSP(Γ) is solvable in polynomial time (tractable) if there exists a weak near-unanimity operation preserving Γ,
- CSP(Γ) is NP-complete otherwise.

Weak near-unanimity operation (WNU) is an operation satisfying

$$w(y, x, x, \ldots, x) = w(x, y, x, \ldots, x) = \cdots = w(x, x, \ldots, x, y)$$

Few facts about QCSP

- If Γ contains all predicates then QCSP(Γ) is PSpace-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) can be solved in polynomial time (tractable).
- Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- The complexity of QCSP(Γ) can be P, NP-complete, PSpace-complete. What else?

Main Question

What is the complexity of $QCSP(\Gamma)$ for different Γ ?

Easier problem

$QCSP^{2}(\Gamma)$:

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

- We need to check that for all evaluations of x₁,..., x_t there exists a solution of the CSP (R₁(...) ∧ ··· ∧ R_s(...)).
- How many tuples it is sufficient to check?

PGP vs EGP

For an algebra (A; F) (a set of operations F on a set A) $d_F(n)$ is the minimal size of a generating set of A^n .

Examples

- 1. $A = \{0, 1\}, F = \{x \lor y\}, d_F(n) = n + 1$. It is sufficient to have (0, ..., 0) and (0, ..., 0, 1, 0, ..., 0) for any position of 1 to generate $\{0, 1\}^n$.
- 2. $A = \{0, 1\}, F = \{\neg x\}, d_F(n) = 2^{n-1}$. It is sufficient to have all tuples starting with 0 to generate $\{0, 1\}^n$.
 - If d_F(n) is restricted by a polynomial in n, then the algebra has the Polynomially Generated Power (PGP) property
 - If d_F(n) is exponential in n, then the algebra has the Exponentially Generated Power (EGP) property

Theorem[Zhuk, 2015]

Every finite algebra either has PGP, or has EGP.

Easier Problem

 $QCSP^{2}(\Gamma)$:

Given a sentence $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q (R_1(\dots) \land \dots \land R_s(\dots))$, where $R_1, \dots, R_s \in \Gamma$. Decide whether it holds.

Example

If Γ is preserved by $x \lor y$ then it is sufficient to check that $(R_1(\ldots) \land \cdots \land R_s(\ldots))$ is satisfiable for $(x_1, \ldots, x_t) = (0, \ldots, 0)$ and $(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_t) = (0, \ldots, 0, 1, 0, \ldots, 0)$ for $\forall i$.

Theorem

If Pol(Γ) has PGP, then QCSP²(Γ) can be polynomially reduced to CSP($\Gamma \cup \{x = a \mid a \in A\}$).

• $Pol(\Gamma)$ is the set of all operations preserving Γ .

Theorem[B. Martin, C. Carvalho, F.Madelaine, D. Zhuk, 2017] If $Pol(\Gamma \cup \{x = a \mid a \in A\})$ has PGP, then $QCSP(\Gamma)$ can be polynomially reduced to $CSP(\Gamma \cup \{x = a \mid a \in A\})$.

Chen's Conjecture

Chen's Conjecture

If $Pol(\Gamma)$ has EGP, then $QCSP(\Gamma)$ is PSpace-complete.

QCSP Trichotomy Conjecture QCSP(Γ)

- is tractable, if Pol(Γ) has PGP and WNU
- is NP-complete, if Pol(Γ) has PGP and has no WNU
- is PSpace-complete, if Pol(Γ) has EGP

Theorem[B.Martin, 2018]

The conjecture holds for Γ containing all unary predicates (the conservative case).

Demise of Chen's conjecture

- B. Martin and M. Olsak found Γ on 3-element domain such that QCSP(Γ) is coNP-complete.
- D.Zhuk found Γ on 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.
- D.Zhuk found Γ on 10-element domain such that QCSP(Γ) is not tractable, not NP-complete, not coNP-complete, not DP-complete, not PSpace-complete.
- D.Zhuk found Γ having EGP such that QCSP(Γ) is tractable.

QCSP on 3-element domain

Theorem

Suppose Γ is a constraint language on $\{0, 1, 2\}$ containing $\{x = a \mid a \in \{0, 1, 2\}\}$. Then QCSP(Γ) is

- tractable, or
- ▶ NP-complete, or
- ▶ coNP-complete, or
- PSpace-complete.

QCSP on 3-element domain

Theorem

Suppose Γ is a constraint language on $\{0, 1, 2\}$ containing $\{x = a \mid a \in \{0, 1, 2\}\}$. Then QCSP(Γ) is

- 1. tractable, if $Pol(\Gamma)$ has PGP and has a WNU
- 2. NP-complete, if $Pol(\Gamma)$ has PGP and has no WNU
- 3. PSpace-complete, if $Pol(\Gamma)$ has EGP and has no WNU
- PSpace-complete, if Pol(Γ) has EGP and Pol(Γ) does not contain f such that f(x, a) = x and f(x, c) = c, where a, c ∈ {0,1,2}, then QCSP(Γ)
- tractable, if Pol(Γ) contains s_{a,c} and g_{a,c} for some a, c ∈ {0,1,2}
- 6. tractable, if $Pol(\Gamma)$ contains $f_{a,c}$ for some $a, c \in \{0, 1, 2\}$
- 7. coNP-complete otherwise.

New Tractable Cases

$$\begin{split} & \text{Counter-example to Chen's Conjecture} \\ & \Gamma = \left\{ \begin{pmatrix} 0 & 0 & 1 & 1 & 2 & \cdot \\ 0 & 1 & 0 & 1 & \cdot & 2 \\ 0 & 0 & 1 & 1 & \cdot & \cdot \end{pmatrix}, \begin{pmatrix} 0 & 1 & 2 \\ 0 & \cdot & \cdot \end{pmatrix} \right\}. \end{split}$$

- Pol(Γ) has EGP.
- $QCSP(\Gamma)$ can be solved in polynomial time.

Idea of the algorithm

- ► Reduce $QCSP(\Gamma)$ to $QCSP^2(\Gamma)$, i.e. $\forall x_1 \dots \forall x_t \exists y_1 \dots \exists y_q(R_1(\dots) \land \dots \land R_s(\dots))$.
- ► By solving CSP instances calculate a set of evaluations of (x₁,..., x_t) we need to check.
- ► Check that (R₁(...) ∧ ··· ∧ R_s(...)) has a solution for each evaluation of (x₁,..., x_t).

Open Question

What can be the complexity of $QCSP(\Gamma)$?

- for 3-element domain (nonidempotent case)
- for 4-element domain
- for bigger domains.

Can we get a description of the complexity of $QCSP(\Gamma)$ for all Γ ? I don't think so!

What we may try

- Generalize the notion of Polynomially Generated Power Property (PGP).
- Prove that QCSP(Γ) is tractable if and only if Pol(Γ) has generalized PGP and contains WNU.

Thank you for your attention