
PSpace-hard vs ΠP
2 Dichotomy of the QCSP

Dmitriy Zhuk

Charles University

Lomonosov Moscow State University

Dagstuhl 2018

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}.

QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2),

true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y),

false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2),

true

Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for different Γ?

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0, 1, 2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for different Γ?

QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0, 1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE

QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0, 1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P

PSPACE

QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0, 1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE

QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0, 1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0, 1, 2} containing
{x = a | a ∈ {0, 1, 2}}. Then QCSP(Γ) is

▶ in P, or

▶ NP-complete, or

▶ coNP-complete, or

▶ PSPACE-complete.

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0, 1, 2} containing
{x = a | a ∈ {0, 1, 2}}. Then QCSP(Γ) is

▶ in P, or

▶ NP-complete, or

▶ coNP-complete, or

▶ PSPACE-complete.

P

NP

PSPACE
coNP

DP

ΘP
2

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.

DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.

ΘP
2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many

games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

Given a sentence ∃y1∀x1∃y2∀x2 . . . ∃yn∀xn(R1(. . .)∧ · · · ∧Rs(. . .)).

▶ It is a game between Existential Player (EP) and Universal
Player (UP).

▶ A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

QCSP Dichotomy

Theorem [Folklore]

CSP(Γ)

▶ is either NP-complete,

▶ or in P.

Theorem

QCSP(Γ)

- is either PSpace-complete,

- or in ΠP
2 .

▶ Prove hardness

▶ Find fast algorithm

QCSP Dichotomy

Theorem [Folklore]

CSP(Γ)

▶ is either NP-complete,

▶ or in P.

Theorem

QCSP(Γ)

- is either PSpace-complete,

- or in ΠP
2 .

▶ Prove hardness

▶ Find fast algorithm

QCSP Dichotomy

Theorem [Folklore]

CSP(Γ)

▶ is either NP-complete,

▶ or in P.

Theorem

QCSP(Γ)

- is either PSpace-complete,

- or in ΠP
2 .

▶ Prove hardness

▶ Find fast algorithm

QCSP Dichotomy

Theorem [Folklore]

CSP(Γ)

▶ is either NP-complete,

▶ or in P.

Theorem

QCSP(Γ)

- is either PSpace-complete,

- or in ΠP
2 .

▶ Prove hardness

▶ Find fast algorithm

QCSP Dichotomy

Theorem [Folklore]

CSP(Γ)

▶ is either NP-complete,

▶ or in P.

Theorem

QCSP(Γ)

- is either PSpace-complete,

- or in ΠP
2 .

▶ Prove hardness

▶ Find fast algorithm

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2
x1 x2 x3

PSpace-hardness

Let A = {+,−, 0 , 1 }

, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2
x1 x2 x3

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2
x1 x2 x3

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2
x1 x2 x3

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2
x1 x2 x3

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2
x1 x2 x3

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2
x1 x2 x3

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)

y1 y2

x

R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

y1 y2

x

∃u1∃u2R1(y1, u1, x1) ∧ R0(u1, u2, x2) ∧ R1(u2, y2, x3)

y1 y2
x1 x2 x3

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3
x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3

+ −

x1

x3

x2

x1

x3
x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3

+ −

x1

x3

x2

x1

x3
x2

x1

x3

x2

∀x1∀x2∀x3

¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3
x2

x1

x3

x2

∀x1∀x2∀x3

¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3
x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3
x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∀x2∀x3 + −

x1

x3

x2

x1

x3
x2

x1

x3

x2

∀x1∀x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∃x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is coNP-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2
x3

x1

x2
x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2
x3

x1

x2
x3

x1 x2 x3

∀x1∃x2∀x3

¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2
x3

x1

x2
x3

x1 x2 x3

∀x1∃x2∀x3

¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2
x3

x1

x2
x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2
x3

x1

x2
x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2
x3

x1

x2
x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.

∀x1∃y2∀x2∀x3

+

−

x2

x2

y2

−

+

x1

x2
x3

x1

x2
x3

x1 x2 x3

∀x1∃x2∀x3 ¬((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

⇕

¬(∃x1∀x2∃x3 ((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3))

Claim

QCSP(Γ) is PSpace-hard.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)
R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

Theorem

Suppose

1. Γ contains {x = a | a ∈ A}
2. QCSP(Γ) is PSpace-hard.

Then there exist

▶ D ⊆ A

▶ a nontrivial equivalence relation σ on D

▶ B,C ⊊ A with B ∪ C = A

s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)
R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

Theorem

Suppose

1. Γ contains {x = a | a ∈ A}
2. QCSP(Γ) is PSpace-hard.

Then there exist

▶ D ⊆ A

▶ a nontrivial equivalence relation σ on D

▶ B,C ⊊ A with B ∪ C = A

s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

PSpace-hardness

Let A = {+,−, 0 , 1 }, Γ = {R0,R1, {+}, {−}}.
R0(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 0)
R1(y1, y2, x) = (y1, y2 ∈ {+,−}) ∧ (y1 = y2 ∨ x ̸= 1)

Theorem

Suppose

1. Γ contains {x = a | a ∈ A}
2. QCSP(Γ) is PSpace-hard.

Then there exist

▶ D ⊆ A

▶ a nontrivial equivalence relation σ on D

▶ B,C ⊊ A with B ∪ C = A

s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

QCSP Dichotomy

Theorem [Folklore]

CSP(Γ)

▶ is either NP-complete,

▶ or in P.

Theorem

QCSP(Γ)

- is either PSpace-complete,

- or in ΠP
2 .

▶ Prove hardness

▶ Find fast algorithm

QCSP Dichotomy

Theorem [Folklore]

CSP(Γ)

▶ is either NP-complete,

▶ or in P.

Theorem

QCSP(Γ)

- is either PSpace-complete,

- or in ΠP
2 .

▶ Prove hardness

▶ Find fast algorithm

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Solution

Ψ holds ⇒ ∃f1, . . . , fn such that yi = fi (x1, . . . , xi−1) satisfies Φ for
every x1, . . . , xn.

▶ Denote fi (a1, . . . , ai−1) by y
a1,...,ai−1

i
▶ Write all the constraints

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Solution

Ψ holds ⇒ ∃f1, . . . , fn such that yi = fi (x1, . . . , xi−1) satisfies Φ for
every x1, . . . , xn.

▶ Denote fi (a1, . . . , ai−1) by y
a1,...,ai−1

i
▶ Write all the constraints

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Solution

Ψ holds ⇒ ∃f1, . . . , fn such that yi = fi (x1, . . . , xi−1) satisfies Φ for
every x1, . . . , xn.

▶ Denote fi (a1, . . . , ai−1) by y
a1,...,ai−1

i
▶ Write all the constraints

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Solution

Ψ holds ⇒ ∃f1, . . . , fn such that yi = fi (x1, . . . , xi−1) satisfies Φ for
every x1, . . . , xn.

▶ Denote fi (a1, . . . , ai−1) by y
a1,...,ai−1

i

▶ Write all the constraints

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Solution

Ψ holds ⇒ ∃f1, . . . , fn such that yi = fi (x1, . . . , xi−1) satisfies Φ for
every x1, . . . , xn.

▶ Denote fi (a1, . . . , ai−1) by y
a1,...,ai−1

i
▶ Write all the constraints

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R = R(y1, y

0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧ R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧
R(y1, y

0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧ R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.

y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R = R(y1, y

0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧ R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧
R(y1, y

0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧ R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R = R(y1, y

0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧ R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧
R(y1, y

0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧ R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R =

R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧

R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧
R(y1, y

0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧ R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R =

R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧ R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧

R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧ R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R =

R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧ R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧
R(y1, y

0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧

R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R =

R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧ R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧
R(y1, y

0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧ R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R =

R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧ R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧
R(y1, y

0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧ R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧

R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R =

R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧ R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧
R(y1, y

0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧ R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Reduction to CSP

QCSP Instance

Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
y1

y12

y113

y1114

0 1

y1104

0 1

0 1

y103

y1114

0 1

y1004

0 1

0 1

0 1

y02

y013

y0114

0 1

y0104

0 1

0 1

y003

y0014

0 1

y0004

0 1

0 1

0 1

0 1

ExpCSPn
R = R(y1, y

0
2 , y

00
3 , y000

4 , 0, 0, 0, 0) ∧ R(y1, y
0
2 , y

00
3 , y000

4 , 0, 0, 0, 1) ∧
R(y1, y

0
2 , y

00
3 , y001

4 , 0, 0, 1, 0) ∧ R(y1, y
0
2 , y

00
3 , y001

4 , 0, 0, 1, 1) ∧ . . .

∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 0) ∧ R(y1, y
1
2 , y

11
3 , y111

4 , 1, 1, 1, 1).

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.

▶ Consider a CSP instance of exponential size ExpCSPn
R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

Idea

Complexity class ΠP
2

ΠP
2 is the class of problems U

U(Z) = ∀X |X |<p(|Z |)∃Y |Y |<q(|Z |)V(X ,Y ,Z),

where V ∈ P.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ Put R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ Consider a CSP instance of exponential size ExpCSPn

R .

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Ψ ⇔ ∀Ω ⊆ ExpCSPn
R

d

|Ω|<p(|Φ|) (∃(y1, y02 , y12 , y003 , . . .) Ω)

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.

▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒

exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.

▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒

exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒

exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒

exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒

exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency.

If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒

exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒

exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒

exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size.

Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)

∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)
∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)

∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)

∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size.

Done!

No 1-consistent reduction

▶ Consider a tree-instance of CSP(R̃) giving a contradiction.

▶ Strengthen/Relax/Remove constraints while no solutions

R(y1, . . . , y4, 0, 0, 1, 0)

∀x R(y1, . . . , y4, 0, 0, 1, x)

∃y4∀x R(y1, . . . , y4, 0, 0, 1, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, 1, x)
∀x ′∀x∃y4 R(y1, . . . , y4, 0, 0, x ′, x)

∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)

∃y3∀x∃y4 R(y1, . . . , y4, 0, 0, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, 0, x , x)

∀x ′∀x∃y3∃y4 R(y1, . . . , y4, 0, x ′, x , x)
∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

∃y2∀x∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)
∀x∃y2∃y3∃y4 R(y1, . . . , y4, 0, x , x , x)

▶ If there exists a path of length > 22|A|, then we can pp-define
a relations σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x).

▶ If any path is of length < 22|A|, then the tree-instance is of
polynomial size. Done!

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒

exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial-size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial-size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒exists a polynomial witness (L1).

▶ exists a 1-consistent reduction

⇒ exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial-size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial-size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

B is a nice subuniverse of D if there exists U ≤ D × An s.t.

1. (∀x1 . . . ∀xs U(y , x1, . . . , xs)) = (y ∈ B)

2. (∀x U(y , x , . . . , x)) = (y ∈ D)

Lemma 3
Suppose
▶ ExpCSPn

R̃
has no solutions

▶ D1,D
0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

Then there exists a nice subuniverse on some Dα
i .

Lemma 4
Suppose
▶ D1,D

0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

▶ there exists a proper nice subuniverse on some Dα
i .

Then there exists a 1-consistent reduction B1,B
0
2 ,B

1
2 , . . . ,B

11...,1
n of

ExpCSPn
R̃
s.t. Bα

i is a nice subuniverse of Dα
i for all i , α.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

B is a nice subuniverse of D

if there exists U ≤ D × An s.t.

1. (∀x1 . . . ∀xs U(y , x1, . . . , xs)) = (y ∈ B)

2. (∀x U(y , x , . . . , x)) = (y ∈ D)

Lemma 3
Suppose
▶ ExpCSPn

R̃
has no solutions

▶ D1,D
0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

Then there exists a nice subuniverse on some Dα
i .

Lemma 4
Suppose
▶ D1,D

0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

▶ there exists a proper nice subuniverse on some Dα
i .

Then there exists a 1-consistent reduction B1,B
0
2 ,B

1
2 , . . . ,B

11...,1
n of

ExpCSPn
R̃
s.t. Bα

i is a nice subuniverse of Dα
i for all i , α.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

B is a nice subuniverse of D if there exists U ≤ D × An s.t.

1. (∀x1 . . . ∀xs U(y , x1, . . . , xs)) = (y ∈ B)

2. (∀x U(y , x , . . . , x)) = (y ∈ D)

Lemma 3
Suppose
▶ ExpCSPn

R̃
has no solutions

▶ D1,D
0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

Then there exists a nice subuniverse on some Dα
i .

Lemma 4
Suppose
▶ D1,D

0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

▶ there exists a proper nice subuniverse on some Dα
i .

Then there exists a 1-consistent reduction B1,B
0
2 ,B

1
2 , . . . ,B

11...,1
n of

ExpCSPn
R̃
s.t. Bα

i is a nice subuniverse of Dα
i for all i , α.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

B is a nice subuniverse of D if there exists U ≤ D × An s.t.

1. (∀x1 . . . ∀xs U(y , x1, . . . , xs)) = (y ∈ B)

2. (∀x U(y , x , . . . , x)) = (y ∈ D)

Lemma 3
Suppose
▶ ExpCSPn

R̃
has no solutions

▶ D1,D
0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

Then there exists a nice subuniverse on some Dα
i .

Lemma 4
Suppose
▶ D1,D

0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

▶ there exists a proper nice subuniverse on some Dα
i .

Then there exists a 1-consistent reduction B1,B
0
2 ,B

1
2 , . . . ,B

11...,1
n of

ExpCSPn
R̃
s.t. Bα

i is a nice subuniverse of Dα
i for all i , α.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

B is a nice subuniverse of D if there exists U ≤ D × An s.t.

1. (∀x1 . . . ∀xs U(y , x1, . . . , xs)) = (y ∈ B)

2. (∀x U(y , x , . . . , x)) = (y ∈ D)

Lemma 3
Suppose
▶ ExpCSPn

R̃
has no solutions

▶ D1,D
0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

Then there exists a nice subuniverse on some Dα
i .

Lemma 4
Suppose
▶ D1,D

0
2 ,D

1
2 , . . . ,D

11...,1
n is a 1-consistent reduction of ExpCSPn

R̃
.

▶ there exists a proper nice subuniverse on some Dα
i .

Then there exists a 1-consistent reduction B1,B
0
2 ,B

1
2 , . . . ,B

11...,1
n of

ExpCSPn
R̃
s.t. Bα

i is a nice subuniverse of Dα
i for all i , α.

▶ Given an sentence Ψ = ∃y1∀x1∃y2∀x2 . . . ∃yn∀xnΦ.
▶ R(y1, . . . , yn, x1, . . . , xn) = Φ.
▶ R̃(y1, . . . , yn, x1, . . . , xn) =∧
a∈A,i=1,...,n(∃y ′i+1 . . . ∃y ′n R(y1, . . . , yi , y

′
i+1, . . . , y

′
n, x1, . . . , xi , a, . . . , a)).

▶ Ψ is equivalent to ExpCSPn
R and to ExpCSPn

R̃
.

Solving ExpCSPn
R̃
(an instance of CSP(R̃))

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒ exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

Theorem

Suppose

1. QCSP(Γ) is not PSpace-hard.

2. ExpCSPn
R has no solutions

⇒ ∃ polynomial-size subinstance of ExpCSPn
R without a solution.

Solving ExpCSPn
R̃
(an instance of CSP(R̃))

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒ exists a polynomial witness (L1).

▶ exists a 1-consistent reduction ⇒ there exists a solution (L2).

Lemma 1

ExpCSPn
R̃
has no 1-consistent reduction ⇒ polynomial size

subinstance of ExpCSPn
R witnesses this.

Lemma 2

ExpCSPn
R̃
has a 1-consistent reduction ⇒ ExpCSPn

R̃
has a solution.

Theorem (ΠP
2 vs PSpace)

QCSP(Γ)

▶ is either PSpace-hard

▶ or in ΠP
2 .

* if Γ contains {x = a | a ∈ A} then QCSP(Γ) is PSpace-hard IFF there
exist a nontrivial equivalence relation σ on D ⊆ A, B,C ⊊ A, B ∪C = A,
s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Theorem (ΠP
2 vs PSpace)

QCSP(Γ)

▶ is either PSpace-hard

▶ or in ΠP
2 .

* if Γ contains {x = a | a ∈ A} then QCSP(Γ) is PSpace-hard IFF there
exist a nontrivial equivalence relation σ on D ⊆ A, B,C ⊊ A, B ∪C = A,
s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

P

NP

coNP

DP

ΘP
2

ΠP
2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Theorem (ΠP
2 vs PSpace)

QCSP(Γ)

▶ is either PSpace-hard

▶ or in ΠP
2 .

* if Γ contains {x = a | a ∈ A} then QCSP(Γ) is PSpace-hard IFF there
exist a nontrivial equivalence relation σ on D ⊆ A, B,C ⊊ A, B ∪C = A,
s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Theorem (ΠP
2 vs PSpace)

QCSP(Γ)

▶ is either PSpace-hard

▶ or in ΠP
2 .

* if Γ contains {x = a | a ∈ A} then QCSP(Γ) is PSpace-hard IFF there
exist a nontrivial equivalence relation σ on D ⊆ A, B,C ⊊ A, B ∪C = A,
s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Theorem (ΠP
2 vs PSpace)

QCSP(Γ)

▶ is either PSpace-hard

▶ or in ΠP
2 .

* if Γ contains {x = a | a ∈ A} then QCSP(Γ) is PSpace-hard IFF there
exist a nontrivial equivalence relation σ on D ⊆ A, B,C ⊊ A, B ∪C = A,
s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Theorem (ΠP
2 vs PSpace)

QCSP(Γ)

▶ is either PSpace-hard

▶ or in ΠP
2 .

* if Γ contains {x = a | a ∈ A} then QCSP(Γ) is PSpace-hard IFF there
exist a nontrivial equivalence relation σ on D ⊆ A, B,C ⊊ A, B ∪C = A,
s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

Theorem (ΠP
2 vs PSpace)

QCSP(Γ)

▶ is either PSpace-hard

▶ or in ΠP
2 .

* if Γ contains {x = a | a ∈ A} then QCSP(Γ) is PSpace-hard IFF there
exist a nontrivial equivalence relation σ on D ⊆ A, B,C ⊊ A, B ∪C = A,
s.t. σ(y1, y2) ∨ B(x) and σ(y1, y2) ∨ C (x) are pp-definable over Γ.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP
2 -complete.

ΠP
2 -example

ΠP
2 -complete problem on {0, 1}

∀x1 . . . ∀xm∃xm+1 . . . ∃xn 1IN3(xi1 , xi2 , xi3) ∧ · · · ∧ 1IN3(xi3l−2
, x3l−1, x3l)

A = {0, 1, 2}, variables are of 2 sorts, EP and UP play on different sorts.

∀x01∀x11∀x02∀x12 . . . ∀x0m∀x1m∃y1∃y2 . . . ∃yn

1IN3 =
(

1 0 0 2
0 1 0 2
0 0 1 2

)
AND =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 0 0 1 ∀ ∀

)
OR =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 1 1 1 ∀ ∀

)

ΠP
2 -example

ΠP
2 -complete problem on {0, 1}

∀x1 . . . ∀xm∃xm+1 . . . ∃xn 1IN3(xi1 , xi2 , xi3) ∧ · · · ∧ 1IN3(xi3l−2
, x3l−1, x3l)

A = {0, 1, 2}, variables are of 2 sorts, EP and UP play on different sorts.

∀x01∀x11∀x02∀x12 . . . ∀x0m∀x1m∃y1∃y2 . . . ∃yn

1IN3 =
(

1 0 0 2
0 1 0 2
0 0 1 2

)
AND =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 0 0 1 ∀ ∀

)
OR =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 1 1 1 ∀ ∀

)

ΠP
2 -example

ΠP
2 -complete problem on {0, 1}

∀x1 . . . ∀xm∃xm+1 . . . ∃xn 1IN3(xi1 , xi2 , xi3) ∧ · · · ∧ 1IN3(xi3l−2
, x3l−1, x3l)

A = {0, 1, 2}, variables are of 2 sorts, EP and UP play on different sorts.

∀x01∀x11∀x02∀x12 . . . ∀x0m∀x1m∃y1∃y2 . . . ∃yn

1IN3 =
(

1 0 0 2
0 1 0 2
0 0 1 2

)
AND =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 0 0 1 ∀ ∀

)
OR =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 1 1 1 ∀ ∀

)

ΠP
2 -example

ΠP
2 -complete problem on {0, 1}

∀x1 . . . ∀xm∃xm+1 . . . ∃xn 1IN3(xi1 , xi2 , xi3) ∧ · · · ∧ 1IN3(xi3l−2
, x3l−1, x3l)

A = {0, 1, 2}, variables are of 2 sorts, EP and UP play on different sorts.

∀x01∀x11∀x02∀x12 . . . ∀x0m∀x1m∃y1∃y2 . . . ∃yn 1IN3 =
(

1 0 0 2
0 1 0 2
0 0 1 2

)
AND =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 0 0 1 ∀ ∀

)
OR =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 1 1 1 ∀ ∀

)

ΠP
2 -example

ΠP
2 -complete problem on {0, 1}

∀x1 . . . ∀xm∃xm+1 . . . ∃xn 1IN3(xi1 , xi2 , xi3) ∧ · · · ∧ 1IN3(xi3l−2
, x3l−1, x3l)

A = {0, 1, 2}, variables are of 2 sorts, EP and UP play on different sorts.

∀x01∀x11∀x02∀x12 . . . ∀x0m∀x1m∃y1∃y2 . . . ∃yn 1IN3 =
(

1 0 0 2
0 1 0 2
0 0 1 2

)
AND =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 0 0 1 ∀ ∀

)
OR =

(
0 1 0 1 2 ∀
0 0 1 1 ∀ 2
0 1 1 1 ∀ ∀

)

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

ΠP
2 : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

ΠP
2 : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

QCSP Hepta-chotomy

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
DP = NP ∧ coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.
ΘP

2 = (NP ∨ coNP) ∧ · · · ∧ (NP ∨ coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

ΠP
2 : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

Thank you for your attention

	Introduction
	QCSP Dichotomy
	Pspace Hardness
	Pi2P-membership.

	Example

