PSpace-hard vs Π_{2}^{P} Dichotomy of the QCSP

Dmitriy Zhuk

Charles University
Lomonosov Moscow State University

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.
QCSP(Г)
Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.
QCSP(Г)
Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$.

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.
QCSP(「)
Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$,

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.
QCSP(「)
Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.
QCSP(Г)
Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$,

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.
QCSP(Г)
Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.
QCSP(Г)
Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$,

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.
QCSP(Г)
Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$, true

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$, true

Question

What is the complexity of $\mathrm{QCSP}(\Gamma)$ for different Γ ?

QCSP Complexity Classes

QCSP Complexity Classes

- If Γ contains all predicates then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.

QCSP Complexity Classes

- If Γ contains all predicates then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then $\operatorname{QCSP}(\Gamma)$ is in P.

QCSP Complexity Classes

- If Γ contains all predicates then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP (Γ) is in P. Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]
Suppose Γ is a constraint language on $\{0,1\}$. Then
- $\operatorname{QCSP}(\Gamma)$ is in P if Γ is preserved by an idempotent WNU operation,
- QCSP(Г) is PSPACE-complete otherwise.

QCSP Complexity Classes

QCSP Complexity Classes

- Put $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ is Γ extended to A^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.

QCSP Complexity Classes

- Put $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ is Γ extended to A^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.

QCSP Complexity Classes

- Put $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ is Γ extended to A^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.
- there exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.

QCSP Complexity Classes

- Put $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ is Γ extended to A^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.
- there exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- there exists Γ on a 4-element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where $\mathrm{DP}=\mathrm{NP} \wedge$ coNP.

QCSP Complexity Classes

- Put $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ is Γ extended to A^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.
- there exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- there exists Γ on a 4-element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where $\mathrm{DP}=\mathrm{NP} \wedge$ coNP.
- there exists Γ on a 10 -element domain such that QCSP (Γ) is Θ_{2}^{P}-complete.

QCSP Complexity Classes

QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on $\{0,1,2\}$ containing $\{x=a \mid a \in\{0,1,2\}\}$. Then $\operatorname{QCSP}(\Gamma)$ is

- in P, or
- NP-complete, or
- coNP-complete, or
- PSPACE-complete.

Given a sentence $\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

Given a sentence $\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

- It is a game between Existential Player (EP) and Universal Player (UP).

Given a sentence $\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

Given a sentence $\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

\mathbf{P} : All moves are trivial.

Given a sentence $\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.

Given a sentence $\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial. $\mathbf{D P}=\mathbf{N P} \wedge \mathbf{c o N P}$: Each plays its own game. Yes-instance: EP wins and UP loses.

Given a sentence $\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
$\mathbf{D P}=\mathbf{N P} \wedge$ coNP: Each plays its own game. Yes-instance: EP wins and UP loses.
$\Theta_{2}^{P}=(\mathbf{N P} \vee \operatorname{coNP}) \wedge \cdots \wedge(\mathbf{N P} \vee \operatorname{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination.

Given a sentence $\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
$\mathbf{D P}=\mathbf{N P} \wedge$ coNP: Each plays its own game. Yes-instance: EP wins and UP loses.
$\Theta_{2}^{P}=(\mathbf{N P} \vee \operatorname{coNP}) \wedge \cdots \wedge(\mathbf{N P} \vee \operatorname{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination.

PSpace: EP and UP play against each other. No restrictions.

Given a sentence $\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
$\mathbf{D P}=\mathbf{N P} \wedge$ coNP: Each plays its own game. Yes-instance: EP wins and UP loses.
$\Theta_{2}^{P}=(\mathbf{N P} \vee \operatorname{coNP}) \wedge \cdots \wedge(\mathbf{N P} \vee \operatorname{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

QCSP Dichotomy

QCSP Dichotomy

Theorem [Folklore]
CSP(Γ)

- is either NP-complete,
- or in P.

QCSP Dichotomy

Theorem [Folklore]
CSP(Γ)

- is either NP-complete,
- or in P.

Theorem
QCSP(Γ)

- is either PSpace-complete,
- or in Π_{2}^{P}.

QCSP Dichotomy

```
Theorem [Folklore]
CSP( \(\Gamma\) )
    - is either NP-complete,
    - or in P.
```


Theorem

QCSP(Γ)

- is either PSpace-complete,
- or in Π_{2}^{P}.
- Prove hardness
- Find fast algorithm

QCSP Dichotomy

```
Theorem [Folklore]
CSP( \(\Gamma\) )
    - is either NP-complete,
    - or in P.
```


Theorem

QCSP(Γ)

- is either PSpace-complete,
- or in Π_{2}^{P}.
- Prove hardness
- Find fast algorithm

PSpace-hardness

PSpace-hardness

Let $A=\{+,-, 0,1\}$

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

PSpace-hardness

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right)
\end{aligned}
$$

PSpace-hardness

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x
\end{aligned} y_{2}
$$

PSpace-hardness

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x
\end{aligned} y_{2} \xrightarrow[{y_{1} \xrightarrow{x}},]{ }
$$

$$
R_{1}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 1\right)
$$

PSpace-hardness

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,11\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& x
\end{aligned} y_{2}, y_{2} .
$$

PSpace-hardness

$$
\exists u_{1} \exists u_{2} R_{1}\left(y_{1}, u_{1}, x_{1}\right) \wedge R_{0}\left(u_{1}, u_{2}, x_{2}\right) \wedge R_{1}\left(u_{2}, y_{2}, x_{3}\right)
$$

PSpace-hardness

$$
\text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} .
$$

PSpace-hardness

PSpace-hardness

$$
\text { Let } A=\{+,-, 0,1
$$

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$$
\neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

PSpace-hardness

$$
\begin{aligned}
& \text { Let } A=\left\{+,-, 0,1 \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& \forall x_{1} \forall x_{2} \forall x_{3}
\end{aligned}
$$

PSpace-hardness

$$
\forall x_{1} \forall x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

$$
\Uparrow
$$

$$
\neg\left(\exists x_{1} \exists x_{2} \exists x_{3} \quad\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)\right.
$$

PSpace-hardness

$$
\begin{aligned}
& \text { Let } A=\left\{+,-, 0,1 \frac{1}{0}\right\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} \text {. } \\
& \forall x_{1} \forall x_{2} \forall x_{3}
\end{aligned}
$$

Claim

QCSP (Γ) is coNP-hard.

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$$
\neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$$
\neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.

$\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)$

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.
$\forall x_{1} \exists y_{2} \forall x_{2} \forall x_{3}$

$$
\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)
$$

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.
$\forall x_{1} \exists y_{2} \forall x_{2} \forall x_{3}$

$\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)$
I
$\neg\left(\exists x_{1} \forall x_{2} \exists x_{3}\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)\right.$

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.
$\forall x_{1} \exists y_{2} \forall x_{2} \forall x_{3}$

$\forall x_{1} \exists x_{2} \forall x_{3} \neg\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)$
介

$$
\neg\left(\exists x_{1} \forall x_{2} \exists x_{3}\left(\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)\right)\right.
$$

Claim

QCSP (Г) is PSpace-hard.

PSpace-hardness

PSpace-hardness

$$
\begin{aligned}
& \text { Let } A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\} . \\
& R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right) \\
& R_{1}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 1\right)
\end{aligned}
$$

PSpace-hardness

Let $A=\{+,-, 0,1\}, \Gamma=\left\{R_{0}, R_{1},\{+\},\{-\}\right\}$.
$R_{0}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 0\right)$
$R_{1}\left(y_{1}, y_{2}, x\right)=\left(y_{1}, y_{2} \in\{+,-\}\right) \wedge\left(y_{1}=y_{2} \vee x \neq 1\right)$

Theorem

Suppose

1. Γ contains $\{x=a \mid a \in A\}$
2. QCSP (Γ) is PSpace-hard.

Then there exist

- $D \subseteq A$
- a nontrivial equivalence relation σ on D
- $B, C \subsetneq A$ with $B \cup C=A$
s.t. $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$ are pp-definable over Γ.

QCSP Dichotomy

```
Theorem [Folklore]
CSP( \(\Gamma\) )
    - is either NP-complete,
    - or in P.
```


Theorem

QCSP(Γ)

- is either PSpace-complete,
- or in Π_{2}^{P}.
- Prove hardness
- Find fast algorithm

QCSP Dichotomy

```
Theorem [Folklore]
CSP( \(\Gamma\) )
    - is either NP-complete,
    - or in P.
```


Theorem

QCSP(Γ)

- is either PSpace-complete,
- or in Π_{2}^{P}.
- Prove hardness
- Find fast algorithm

Reduction to CSP

Reduction to CSP

QCSP Instance
$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.

Solution

Ψ holds $\Rightarrow \exists f_{1}, \ldots, f_{n}$ such that $y_{i}=f_{i}\left(x_{1}, \ldots, x_{i-1}\right)$ satisfies Φ for every x_{1}, \ldots, x_{n}.

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.

Solution

Ψ holds $\Rightarrow \exists f_{1}, \ldots, f_{n}$ such that $y_{i}=f_{i}\left(x_{1}, \ldots, x_{i-1}\right)$ satisfies Φ for every x_{1}, \ldots, x_{n}.

- Denote $f_{i}\left(a_{1}, \ldots, a_{i-1}\right)$ by $y_{i}^{a_{1}, \ldots, a_{i-1}}$

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.

Solution

Ψ holds $\Rightarrow \exists f_{1}, \ldots, f_{n}$ such that $y_{i}=f_{i}\left(x_{1}, \ldots, x_{i-1}\right)$ satisfies Φ for every x_{1}, \ldots, x_{n}.

- Denote $f_{i}\left(a_{1}, \ldots, a_{i-1}\right)$ by $y_{i}^{a_{1}, \ldots, a_{i-1}}$
- Write all the constraints

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Reduction to CSP

QCSP Instance

$\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Reduction to CSP

QCSP Instance

$$
\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi .
$$

Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Reduction to CSP

QCSP Instance

$$
\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi .
$$

Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

$\operatorname{ExpCSP}_{R}^{n}=R\left(y_{1}, y_{2}^{0}, y_{3}^{00}, y_{4}^{000}, 0,0,0,0\right) \wedge R\left(y_{1}, y_{2}^{0}, y_{3}^{00}, y_{4}^{000}, 0,0,0,1\right) \wedge$

$$
R\left(y_{1}, y_{2}^{0}, y_{3}^{00}, y_{4}^{001}, 0,0,1,0\right) \wedge R\left(y_{1}, y_{2}^{0}, y_{3}^{00}, y_{4}^{001}, 0,0,1,1\right) \wedge \ldots
$$

$$
\wedge R\left(y_{1}, y_{2}^{1}, y_{3}^{11}, y_{4}^{111}, 1,1,1,0\right) \wedge R\left(y_{1}, y_{2}^{1}, y_{3}^{11}, y_{4}^{111}, 1,1,1,1\right) .
$$

Idea

Idea
Complexity class Π_{2}^{P}

Idea

Complexity class Π_{2}^{P}
Π_{2}^{P} is the class of problems \mathcal{U}

$$
\mathcal{U}(Z)=\forall X^{|X|<p(|Z|)} \exists Y^{|Y|<q(|Z|)} \mathcal{V}(X, Y, Z),
$$

where $\mathcal{V} \in \mathrm{P}$.

Idea

Complexity class Π_{2}^{P}
Π_{2}^{P} is the class of problems \mathcal{U}

$$
\mathcal{U}(Z)=\forall X^{|X|<p(|Z|)} \exists Y^{|Y|<q(|Z|)} \mathcal{V}(X, Y, Z)
$$

where $\mathcal{V} \in \mathrm{P}$.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.

Idea

Complexity class Π_{2}^{P}
Π_{2}^{P} is the class of problems \mathcal{U}

$$
\mathcal{U}(Z)=\forall X^{|X|<p(|Z|)} \exists Y^{|Y|<q(|Z|)} \mathcal{V}(X, Y, Z),
$$

where $\mathcal{V} \in \mathrm{P}$.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Idea

Complexity class Π_{2}^{P}

Π_{2}^{P} is the class of problems \mathcal{U}

$$
\mathcal{U}(Z)=\forall X^{|X|<p(|Z|)} \exists Y^{|Y|<q(|Z|)} \mathcal{V}(X, Y, Z)
$$

where $\mathcal{V} \in \mathrm{P}$.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- Consider a CSP instance of exponential size $\operatorname{ExpCSP}_{R}^{n}$.

Idea

Complexity class Π_{2}^{P}

Π_{2}^{P} is the class of problems \mathcal{U}

$$
\mathcal{U}(Z)=\forall X^{|X|<p(|Z|)} \exists Y^{|Y|<q(|Z|)} \mathcal{V}(X, Y, Z)
$$

where $\mathcal{V} \in \mathrm{P}$.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- Consider a CSP instance of exponential size $\operatorname{ExpCSP}_{R}^{n}$.

Theorem

Suppose

Idea

Complexity class Π_{2}^{P}

Π_{2}^{P} is the class of problems \mathcal{U}

$$
\mathcal{U}(Z)=\forall X^{|X|<p(|Z|)} \exists Y^{|Y|<q(|Z|)} \mathcal{V}(X, Y, Z),
$$

where $\mathcal{V} \in \mathrm{P}$.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- Consider a CSP instance of exponential size $\operatorname{ExpCSP}_{R}^{n}$.

Theorem

Suppose

1. $\mathrm{QCSP}(\Gamma)$ is not PSpace-hard.

Idea

Complexity class Π_{2}^{P}

Π_{2}^{P} is the class of problems \mathcal{U}

$$
\mathcal{U}(Z)=\forall X^{|X|<p(|Z|)} \exists Y^{|Y|<q(|Z|)} \mathcal{V}(X, Y, Z),
$$

where $\mathcal{V} \in \mathrm{P}$.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- Consider a CSP instance of exponential size $\operatorname{ExpCSP}_{R}^{n}$.

Theorem

Suppose

1. $\operatorname{QCSP}(\Gamma)$ is not PSpace-hard.
2. $\operatorname{ExpCSP}_{R}^{n}$ has no solutions

Idea

Complexity class Π_{2}^{P}

Π_{2}^{P} is the class of problems \mathcal{U}

$$
\mathcal{U}(Z)=\forall X^{|X|<p(|Z|)} \exists Y^{|Y|<q(|Z|)} \mathcal{V}(X, Y, Z),
$$

where $\mathcal{V} \in \mathrm{P}$.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- Consider a CSP instance of exponential size $\operatorname{ExpCSP}_{R}^{n}$.

Theorem

Suppose

1. $\operatorname{QCSP}(\Gamma)$ is not PSpace-hard.
2. $\operatorname{ExpCSP}_{R}^{n}$ has no solutions
$\Rightarrow \exists$ polynomial-size subinstance of $\operatorname{ExpCSP}_{R}^{n}$ without a solution.

Idea

Complexity class Π_{2}^{P}

Π_{2}^{P} is the class of problems \mathcal{U}

$$
\mathcal{U}(Z)=\forall X^{|X|<p(|Z|)} \exists Y^{|Y|<q(|Z|)} \mathcal{V}(X, Y, Z),
$$

where $\mathcal{V} \in \mathrm{P}$.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- Put $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- Consider a CSP instance of exponential size $\operatorname{ExpCSP}_{R}^{n}$.

Theorem

Suppose

1. $\operatorname{QCSP}(\Gamma)$ is not PSpace-hard.
2. $\operatorname{ExpCSP}_{R}^{n}$ has no solutions
$\Rightarrow \exists$ polynomial-size subinstance of $\operatorname{ExpCSP}_{R}^{n}$ without a solution.

$$
\Psi \Leftrightarrow \forall \Omega \subseteq \operatorname{ExpCSP}_{R}^{n} \quad|\Omega|<p(|\Phi|) \quad\left(\exists\left(y_{1}, y_{2}^{0}, y_{2}^{1}, y_{3}^{00}, \ldots\right) \Omega\right)
$$

Given an sentence $\psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.

Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.

- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{ExpCSP}_{R}^{n}$ and to $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.
- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{ExpCSP} P_{R}^{n}$ and to $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Solving ExpCSP $\widetilde{R}_{\widetilde{R}}^{n}$

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{Exp} \operatorname{CSP}_{R}^{n}$ and to $\operatorname{Exp} C S P_{\widetilde{R}}^{n}$.

Solving ExpCSP $\tilde{R}_{\widetilde{R}}^{n}$

Check 1-consistency.

- Given an sentence $\psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{ExpCSP} P_{R}^{n}$ and to $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Solving ExpCSP $\widetilde{R}_{\widetilde{R}}^{n}$

Check 1-consistency. If not, we seek for 1-consistency.

- Given an sentence $\psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{ExpCSP} P_{R}^{n}$ and to $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Solving ExpCSP $\tilde{R}_{\widetilde{R}}^{n}$

Check 1-consistency. If not, we seek for 1-consistency.

- no 1-consistent reduction \Rightarrow

No 1-consistent reduction

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions

$$
R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)
$$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions

$$
\begin{array}{r}
R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right) \\
\forall \times R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2}
\end{array}
$$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions $R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$ $\forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2}$
$\exists y_{4} \forall \times R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions $R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$ $\forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\exists y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2}$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions $R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$ $\forall \times R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2}$
$\exists y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x^{\prime} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{2}$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions $R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$ $\forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\exists y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x^{\prime} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{2}$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)^{2}$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions $R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right) \quad \quad \exists y_{3} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$ $\forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\exists y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x^{\prime} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{2}$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions
$R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$

$\forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$$\quad$| $\exists y_{3} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$ |
| :--- |
| $\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)^{2}$ |

$\exists y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x^{\prime} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{2}$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions

$$
\begin{array}{r}
R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right) \\
\forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2} \\
\exists y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right) \\
\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right) \\
\forall x^{\prime} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{2} \\
\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)^{2}
\end{array}
$$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions

$R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$)	$y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$
$\forall \times R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$	$\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x\right.$,
$R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$	$\forall x^{\prime} \forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x^{\prime}, x, x\right)^{2}$
$\exists_{y_{4}} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$	$\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)$

$$
\forall x^{\prime} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)
$$

$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions

$$
\begin{array}{r}
R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right) \\
\forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2} \\
\exists y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2} \\
\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right) \\
\forall x^{\prime} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{2} \\
\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)^{2}
\end{array}
$$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions

$R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$	${ }^{\text {ren }}$
$\forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2}$	$\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0\right.$,
$y_{4} \forall \times R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$	$\forall x^{\prime} \forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x^{\prime}, x, x\right)^{2}$
$\exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1\right.$,	$\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)^{\prime}$
$y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{2}$	${ }_{2} \forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)$
$\exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$	$\forall x \exists y_{2} \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)^{2}$

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions

$R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$	$y_{4} R\left(y_{1}\right.$,
$\forall \times R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2}$	$y_{4} R\left(y_{1}, \ldots, y_{4}\right.$
$y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$	$\forall x^{\prime} \forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x^{\prime}, x, x\right)$
$\exists_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1\right.$,	$\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)^{\prime}$
$\exists_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{\prime}$	$\forall x \exists y_{3} \exists y_{4}$
$\exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$	$\forall x \exists y_{2} \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)$

- If there exists a path of length $>2^{2|A|}$, then we can pp-define a relations $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$.

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions
$R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$
$\forall \times R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2}$
$\exists y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x^{\prime} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{\prime}$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$

$$
\begin{array}{r}
\exists y_{3} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right) \\
\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)^{2} \\
\forall x^{\prime} \forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x^{\prime}, x, x\right) \\
\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)^{2} \\
\exists y_{2} \forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right){ }_{2} \\
\forall x \exists y_{2} \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)^{2}
\end{array}
$$

- If there exists a path of length $>2^{2|A|}$, then we can pp-define a relations $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$.
- If any path is of length $<2^{2|A|}$, then the tree-instance is of polynomial size.

No 1-consistent reduction

- Consider a tree-instance of $\operatorname{CSP}(\widetilde{R})$ giving a contradiction.
- Strengthen/Relax/Remove constraints while no solutions
$R\left(y_{1}, \ldots, y_{4}, 0,0,1,0\right)$
$\forall \times R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)^{2}$
$\exists y_{4} \forall x R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0,1, x\right)$
$\forall x^{\prime} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x^{\prime}, x\right)^{\prime}$
$\forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)$

$$
\begin{array}{r}
\exists y_{3} \forall x \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right) \\
\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0,0, x, x\right)^{2} \\
\forall x^{\prime} \forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x^{\prime}, x, x\right) \\
\forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)^{2} \\
\exists y_{2} \forall x \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right){ }_{2} \\
\forall x \exists y_{2} \exists y_{3} \exists y_{4} R\left(y_{1}, \ldots, y_{4}, 0, x, x, x\right)^{2}
\end{array}
$$

- If there exists a path of length $>2^{2|A|}$, then we can pp-define a relations $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$.
- If any path is of length $<2^{2|A|}$, then the tree-instance is of polynomial size. Done!
- Given an sentence $\psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{ExpCSP} P_{R}^{n}$ and to $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Solving ExpCSP $\tilde{R}_{\widetilde{R}}^{n}$

Check 1-consistency. If not, we seek for 1-consistency.

- no 1-consistent reduction \Rightarrow
- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{ExpCSP} P_{R}^{n}$ and to $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Solving ExpCSP $\tilde{R}_{\widetilde{R}}^{n}$

Check 1-consistency. If not, we seek for 1-consistency.

- no 1-consistent reduction \Rightarrow exists a polynomial witness (L1).

Lemma 1

$\operatorname{Exp} \operatorname{CSP}_{\widetilde{R}}^{n}$ has no 1 -consistent reduction \Rightarrow polynomial-size subinstance of $\operatorname{ExpCSP}{ }_{R}^{n}$ witnesses this.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{ExpCSP} P_{R}^{n}$ and to $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Solving ExpCSP $\tilde{R}_{\widetilde{R}}^{n}$

Check 1-consistency. If not, we seek for 1-consistency.

- no 1-consistent reduction \Rightarrow exists a polynomial witness (L1).
- exists a 1-consistent reduction

Lemma 1

$\operatorname{Exp} \operatorname{CSP}_{\widetilde{R}}^{n}$ has no 1 -consistent reduction \Rightarrow polynomial-size subinstance of $\operatorname{ExpCSP}{ }_{R}^{n}$ witnesses this.

- Given an sentence $\Psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{ExpCSP} P_{R}^{n}$ and to $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Solving ExpCSP $\tilde{R}_{\widetilde{R}}^{n}$

Check 1-consistency. If not, we seek for 1-consistency.

- no 1-consistent reduction \Rightarrow exists a polynomial witness (L1).
- exists a 1-consistent reduction \Rightarrow exists a solution (L2).

Lemma 1

$\operatorname{Exp} \operatorname{CSP}_{\widetilde{R}}^{n}$ has no 1 -consistent reduction \Rightarrow polynomial-size subinstance of $\operatorname{ExpCSP}{ }_{R}^{n}$ witnesses this.

Lemma 2

$\operatorname{ExpCSP}{ }_{\widetilde{R}}^{n}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has a solution.

Lemma 2

$\operatorname{ExpCSP} P_{\widetilde{R}}^{n}$ has a 1 -consistent reduction $\Rightarrow \operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has a solution.

Lemma 2
$\operatorname{ExpCSP}{ }_{\widetilde{R}}^{n}$ has a 1 -consistent reduction $\Rightarrow \operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has a solution.
B is a nice subuniverse of D

Lemma 2
$\operatorname{ExpCSP} P_{\widetilde{R}}^{n}$ has a 1 -consistent reduction $\Rightarrow \operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has a solution.
B is a nice subuniverse of D if there exists $\mathcal{U} \leq D \times A^{n}$ s.t.

1. $\left(\forall x_{1} \ldots \forall x_{s} \mathcal{U}\left(y, x_{1}, \ldots, x_{s}\right)\right)=(y \in B)$
2. $(\forall x \mathcal{U}(y, x, \ldots, x))=(y \in D)$

Lemma 2

$\operatorname{ExpCSP} P_{\widetilde{R}}^{n}$ has a 1 -consistent reduction $\Rightarrow \operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has a solution.
B is a nice subuniverse of D if there exists $\mathcal{U} \leq D \times A^{n}$ s.t.

1. $\left(\forall x_{1} \ldots \forall x_{s} \mathcal{U}\left(y, x_{1}, \ldots, x_{s}\right)\right)=(y \in B)$
2. $(\forall x \mathcal{U}(y, x, \ldots, x))=(y \in D)$

Lemma 3

Suppose

- $\operatorname{ExpCSP} \tilde{R}_{\widetilde{R}}^{n}$ has no solutions
- $D_{1}, D_{2}^{0}, D_{2}^{1}, \ldots, D_{n}^{11 \ldots, 1}$ is a 1 -consistent reduction of $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Then there exists a nice subuniverse on some D_{i}^{α}.

Lemma 2

$\operatorname{ExpCSP} P_{\widetilde{R}}^{n}$ has a 1 -consistent reduction $\Rightarrow \operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has a solution.
B is a nice subuniverse of D if there exists $\mathcal{U} \leq D \times A^{n}$ s.t.

1. $\left(\forall x_{1} \ldots \forall x_{s} \mathcal{U}\left(y, x_{1}, \ldots, x_{s}\right)\right)=(y \in B)$
2. $(\forall x \mathcal{U}(y, x, \ldots, x))=(y \in D)$

Lemma 3

Suppose

- $\operatorname{Exp} \operatorname{CSP}_{\widetilde{R}}^{n}$ has no solutions
- $D_{1}, D_{2}^{0}, D_{2}^{1}, \ldots, D_{n}^{11 \ldots, 1}$ is a 1 -consistent reduction of $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Then there exists a nice subuniverse on some D_{i}^{α}.

Lemma 4

Suppose

- $D_{1}, D_{2}^{0}, D_{2}^{1}, \ldots, D_{n}^{11 \ldots, 1}$ is a 1-consistent reduction of $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.
- there exists a proper nice subuniverse on some D_{i}^{α}.

Then there exists a 1 -consistent reduction $B_{1}, B_{2}^{0}, B_{2}^{1}, \ldots, B_{n}^{11 \ldots, 1}$ of $\operatorname{ExpCSP} \tilde{R}_{\widetilde{R}}^{n}$ s.t. B_{i}^{α} is a nice subuniverse of D_{i}^{α} for all i, α.

- Given an sentence $\psi=\exists y_{1} \forall x_{1} \exists y_{2} \forall x_{2} \ldots \exists y_{n} \forall x_{n} \Phi$.
- $R\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=\Phi$.
- $\widetilde{R}\left(y_{1}, \ldots, y_{n}, x_{1}, \ldots, x_{n}\right)=$
$\bigwedge_{a \in A, i=1, \ldots, n}\left(\exists y_{i+1}^{\prime} \ldots \exists y_{n}^{\prime} R\left(y_{1}, \ldots, y_{i}, y_{i+1}^{\prime}, \ldots, y_{n}^{\prime}, x_{1}, \ldots, x_{i}, a, \ldots, a\right)\right)$.
- Ψ is equivalent to $\operatorname{ExpCSP}_{R}^{n}$ and to $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$.

Solving $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$ (an instance of $\operatorname{CSP}(\widetilde{R})$)

Check 1-consistency. If not, we seek for 1 -consistency.

- no 1-consistent reduction \Rightarrow exists a polynomial witness (L1).
- exists a 1-consistent reduction \Rightarrow there exists a solution (L2).

Lemma 1

$\operatorname{ExpCSP} \widetilde{R}_{\widetilde{R}}^{n}$ has no 1 -consistent reduction \Rightarrow polynomial size subinstance of $\operatorname{ExpCSP}{ }_{R}^{n}$ witnesses this.

Lemma 2

$\operatorname{ExpCSP}{ }_{\widetilde{R}}^{n}$ has a 1 -consistent reduction $\Rightarrow \operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has a solution.

Theorem

Suppose

1. $\operatorname{QCSP}(\Gamma)$ is not PSpace-hard.
2. $\operatorname{ExpCSP}_{R}^{n}$ has no solutions
$\Rightarrow \exists$ polynomial-size subinstance of $\operatorname{ExpCSP}_{R}^{n}$ without a solution.

Solving $\operatorname{ExpCSP}_{\widetilde{R}}^{n}$ (an instance of $\operatorname{CSP}(\widetilde{R})$)

Check 1-consistency. If not, we seek for 1-consistency.

- no 1-consistent reduction \Rightarrow exists a polynomial witness (L1).
- exists a 1-consistent reduction \Rightarrow there exists a solution (L2).

Lemma 1

$\operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has no 1-consistent reduction \Rightarrow polynomial size subinstance of $\operatorname{ExpCSP}{ }_{R}^{n}$ witnesses this.

Lemma 2

$\operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}_{\widetilde{R}}^{n}$ has a solution.

Theorem (Π_{2}^{P} vs PSpace)

QCSP(Г)

- is either PSpace-hard
- or in Π_{2}^{P}.
* if Γ contains $\{x=a \mid a \in A\}$ then $\operatorname{QCSP}(\Gamma)$ is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A, B, C \subsetneq A, B \cup C=A$, s.t. $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$ are pp-definable over Γ.

Theorem (Π_{2}^{P} vs PSpace)

QCSP(Г)

- is either PSpace-hard
- or in Π_{2}^{P}.
* if Γ contains $\{x=a \mid a \in A\}$ then $\operatorname{QCSP}(\Gamma)$ is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A, B, C \subsetneq A, B \cup C=A$, s.t. $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$ are pp-definable over Γ.

PSPACE

Theorem (Π_{2}^{P} vs PSpace)

QCSP(Г)

- is either PSpace-hard
- or in Π_{2}^{P}.
* if Γ contains $\{x=a \mid a \in A\}$ then $\operatorname{QCSP}(\Gamma)$ is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A, B, C \subsetneq A, B \cup C=A$, s.t. $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$ are pp-definable over Γ.

Theorem (Π_{2}^{P} vs PSpace)

QCSP(Г)

- is either PSpace-hard
- or in Π_{2}^{P}.
* if Γ contains $\{x=a \mid a \in A\}$ then $\operatorname{QCSP}(\Gamma)$ is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A, B, C \subsetneq A, B \cup C=A$, s.t. $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$ are pp-definable over Γ.

Theorem (Π_{2}^{P} vs PSpace)

QCSP(Г)

- is either PSpace-hard
- or in Π_{2}^{P}.
* if Γ contains $\{x=a \mid a \in A\}$ then $\operatorname{QCSP}(\Gamma)$ is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A, B, C \subsetneq A, B \cup C=A$, s.t. $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$ are pp-definable over Γ.

Theorem (Π_{2}^{P} vs PSpace)

QCSP(Г)

- is either PSpace-hard
- or in Π_{2}^{P}.
* if Γ contains $\{x=a \mid a \in A\}$ then $\operatorname{QCSP}(\Gamma)$ is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A, B, C \subsetneq A, B \cup C=A$, s.t. $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$ are pp-definable over Γ.

Theorem (Π_{2}^{P} vs PSpace)

QCSP(Г)

- is either PSpace-hard
- or in Π_{2}^{P}.
* if Γ contains $\{x=a \mid a \in A\}$ then $\operatorname{QCSP}(\Gamma)$ is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A, B, C \subsetneq A, B \cup C=A$, s.t. $\sigma\left(y_{1}, y_{2}\right) \vee B(x)$ and $\sigma\left(y_{1}, y_{2}\right) \vee C(x)$ are pp-definable over Γ.

Lemma

There exists Γ on a 6 -element set such that $\operatorname{QCSP}(\Gamma)$ is Π_{2}^{P}-complete.
Π_{2}^{P}-example

Π_{2}^{P}-example

$A=\{0,1,2\}$, variables are of 2 sorts, EP and UP play on different sorts.

Π_{2}^{P}-example

$A=\{0,1,2\}$, variables are of 2 sorts, EP and UP play on different sorts. $\forall x_{1}^{0} \forall x_{1}^{1} \forall x_{2}^{0} \forall x_{2}^{1} \ldots \forall x_{m}^{0} \forall x_{m}^{1} \exists y_{1} \exists y_{2} \ldots \exists y_{n}$ $x_{i}^{0} \rightarrow$
$x_{1}^{1} \rightarrow$ AND
$x_{2}^{0} \rightarrow$ AND
$x_{2}^{1} \rightarrow$

Π_{2}^{P}-example
$A=\{0,1,2\}$, variables are of 2 sorts, EP and UP play on different sorts.

Π_{2}^{P}-example

Π_{2}^{P}-complete problem on $\{0,1\}$

$\forall x_{1} \ldots \forall x_{m} \exists x_{m+1} \ldots \exists x_{n} 1 \operatorname{IN} 3\left(x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right) \wedge \cdots \wedge 1 \operatorname{IN} 3\left(x_{i_{1 /-2}}, x_{3 /-1}, x_{3 l}\right)$
$A=\{0,1,2\}$, variables are of 2 sorts, EP and UP play on different sorts.

QCSP Hepta-chotomy

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
$\mathbf{D P}=\mathbf{N P} \wedge$ coNP: Each plays its own game. Yes-instance: EP wins and UP loses.
$\Theta_{2}^{P}=(\mathbf{N P} \vee \operatorname{coNP}) \wedge \cdots \wedge(\mathbf{N P} \vee \operatorname{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination. Π_{2}^{P} : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

QCSP Hepta-chotomy

P: All moves are trivial.
NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.
$\mathbf{D P}=\mathbf{N P} \wedge$ coNP: Each plays its own game. Yes-instance: EP wins and UP loses.
$\Theta_{2}^{P}=(\mathbf{N P} \vee \operatorname{coNP}) \wedge \cdots \wedge(\mathbf{N P} \vee \operatorname{coNP})$: Each plays many games (no interaction). Yes-instance: any boolean combination. Π_{2}^{P} : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

Thank you for your attention

