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Quantified Constraint Satisfaction Problem
[ is a set of relations on a finite set A.

Given: a sentence

Ay1Vxg o 3y xe(Ri(c ) A ARs(L.)),

where Ry,...,Rs €T.
Decide: whether it holds.

Examples:
A=1{0,1,2},T = {x # y}. QCSP instances:

Vx3y13ya(x # y1 Ax # ya Ay1 # ya), true
VxiVxoVx3dy(x1 £y Axo # y A x3 £ y), false
Vx13y1VxoTya(x1 # y1 A y1 # Y2 A y2 # x2), true

Question
What is the complexity of QCSP(T') for different I'? J
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» If [ contains all predicates then QCSP(T") is PSPACE-complete.

» If [ consists of linear equations in a finite field then QCSP(T) is in P.
Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]
Suppose [ is a constraint language on {0,1}. Then

» QCSP(I) isin P if [ is preserved by an idempotent WNU operation,

» QCSP(I) is PSPACE-complete otherwise.
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Put A= AU {x}, " is I extended to A". Then QCSP(I") is
equivalent to CSP(I).

there exists [ on a 3-element domain such that QCSP(I') is
coNP-complete.

there exists [ on a 4-element domain such that QCSP(T) is
DP-complete, where DP = NP A coNP. i

there exists [ on a 10-element domain such that DP
QCSP(I) is ©F-complete.

7coN P
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Theorem [Zhuk, Martin, 2019]

Suppose [ is a constraint language on {0,1,2} containing
{x=alaec{0,1,2}}. Then QCSP(T) is
» in P, or
> NP-complete, or
» coNP-complete, or
» PSPACE-complete.

7coN P

PSPACE
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Given a sentence Jy1Vx13yoVxa . .. JynVxa(Ri(. .. ) A ARs(. .. ))J

> It is a game between Existential Player (EP) and Universal
Player (UP).

» A move is trivial if the optimal move can be calculated in
polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

DP = NP A coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.

©F = (NP V coNP) A --- A (NP V coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.
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Let A= {+,—, 0L B} = (R R,{+}.{-}}.
Ro(y1,y2,x) = (y1,y2 € {+, =} A1 =y2 Vx #0)
Ri(y1,y2,x) =, y2 € {+, -} A=y Vx#1)

Theorem
Suppose
1. T contains {x =a|a € A}
2. QCSP(I) is PSpace-hard.
Then there exist
» DCA
» a nontrivial equivalence relation ¢ on D
> BBCCAwithBUC=A
s.t. o(y1,y2) V B(x) and o(y1,y2) V C(x) are pp-definable over I'. )
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Theorem (M5 vs PSpace)
QCSP(IN)
» s either PSpace-hard
> orinNf.

*if T contains {x = a| a € A} then QCSP(I') is PSpace-hard IFF there
exist a nontrivial equivalence relation 0 on D C A, B,C C A, BUC = A,
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There exists ' on a 6-element set such that QCSP(I') is
NS -complete.
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A =1{0,1,2}, variables are of 2 sorts, EP and UP play on different sorts.
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A ={0,1,2}, variables are of 2 sorts, EP and UP play on different sorts.
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N5 -example

N5 -complete problem on {0, 1}

VX1 .. VX 3Xmt1 - - - 3Xn ].IN?)(X,'1 5 X,'Z,X,'3) VAERIVAN 11N3(X,'3,72,X3/_1, X3/) J

A ={0,1,2}, variables are of 2 sorts, EP and UP play on different sorts.
VOV VxOVxd .. ¥xOVxt Ty Tys ... Ty, 1IN3 = (

X5
X1
Xz
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Xoo §
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QCSP Hepta-chotomy

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.
coNP: Only UP plays, the play of EP is trivial.

DP = NP A coNP: Each plays its own game. Yes-instance: EP
wins and UP loses.

©F = (NP V coNP) A --- A (NP V coNP): Each plays many
games (no interaction). Yes-instance: any boolean combination.

I12P: First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.
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Thank you for your attention
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