PSpace-hard vs Π_2^P **Dichotomy of the QCSP**

Dmitriy Zhuk

Charles University

Lomonosov Moscow State University

agstuhl 2018

 Γ is a set of relations on a finite set A.

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples: $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2),$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$, true

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$, true

 $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y),$

 Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

 $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$ QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$, true

 $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y)$, false

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

 $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}. \text{ QCSP instances:}$ $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2),$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

 $A = \{0, 1, 2\}, \Gamma = \{x \neq y\}. \text{ QCSP instances:}$ $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2), \text{ true}$ $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y), \text{ false}$ $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2), \text{ true}$

 Γ is a set of relations on a finite set A.

$QCSP(\Gamma)$

Given: a sentence

$$\exists y_1 \forall x_1 \ldots \exists y_t \forall x_t (R_1(\ldots) \land \cdots \land R_s(\ldots)),$$

where $R_1, \ldots, R_s \in \Gamma$. Decide: whether it holds.

Examples:

$$A = \{0, 1, 2\}, \Gamma = \{x \neq y\}.$$
 QCSP instances:

 $\forall x \exists y_1 \exists y_2 (x \neq y_1 \land x \neq y_2 \land y_1 \neq y_2)$, true

 $\forall x_1 \forall x_2 \forall x_3 \exists y (x_1 \neq y \land x_2 \neq y \land x_3 \neq y)$, false

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (x_1 \neq y_1 \land y_1 \neq y_2 \land y_2 \neq x_2)$, true

Question

What is the complexity of $QCSP(\Gamma)$ for different Γ ?

• If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

- If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

- If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.
- If Γ consists of linear equations in a finite field then QCSP(Γ) is in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on $\{0,1\}.$ Then

- $QCSP(\Gamma)$ is in P if Γ is preserved by an idempotent WNU operation,
- QCSP(Γ) is PSPACE-complete otherwise.

Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).

Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).

- Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.

- Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.

- Put A' = A ∪ {*}, Γ' is Γ extended to A'. Then QCSP(Γ') is equivalent to CSP(Γ).
- there exists Γ on a 3-element domain such that QCSP(Γ) is coNP-complete.
- there exists Γ on a 4-element domain such that QCSP(Γ) is DP-complete, where DP = NP ∧ coNP.
- there exists Γ on a 10-element domain such that QCSP(Γ) is Θ₂^P-complete.

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on $\{0, 1, 2\}$ containing $\{x = a \mid a \in \{0, 1, 2\}\}$. Then QCSP(Γ) is

- in P, or
- NP-complete, or
- coNP-complete, or
- PSPACE-complete.

It is a game between Existential Player (EP) and Universal Player (UP).

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.
- **QCSP Complexity classes**
- P: All moves are trivial.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial. **NP:** Only EP plays, the play of UP is trivial.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.NP: Only EP plays, the play of UP is trivial.coNP: Only UP plays, the play of EP is trivial.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial. **NP:** Only EP plays, the play of UP is trivial. **coNP:** Only UP plays, the play of EP is trivial. **DP** = **NP** \land **coNP**: Each plays its own game. Yes-instance: EP wins and UP loses.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\textbf{DP}=\textbf{NP} \land \textbf{coNP}:$ Each plays its own game. Yes-instance: EP wins and UP loses.

 $\Theta_2^P = (NP \lor coNP) \land \dots \land (NP \lor coNP)$: Each plays many games (no interaction). Yes-instance: any boolean combination.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

 $\begin{array}{l} \textbf{P}: \mbox{ All moves are trivial.} \\ \textbf{NP: } \mbox{Only EP plays, the play of UP is trivial.} \\ \textbf{coNP: } \mbox{Only UP plays, the play of EP is trivial.} \\ \textbf{DP} = \textbf{NP} \land \textbf{coNP}: \mbox{ Each plays its own game. Yes-instance: EP wins and UP loses.} \\ \textbf{\Theta_2^P} = (\textbf{NP} \lor \textbf{coNP}) \land \dots \land (\textbf{NP} \lor \textbf{coNP}): \mbox{ Each plays many} \end{array}$

games (no interaction). Yes-instance: any boolean combination.

PSpace: EP and UP play against each other. No restrictions.

- It is a game between Existential Player (EP) and Universal Player (UP).
- A move is trivial if the optimal move can be calculated in polynomial time.

QCSP Complexity classes

P: All moves are trivial. **NP:** Only EP plays, the play of UP is trivial. **coNP:** Only UP plays, the play of EP is trivial. **DP** = **NP** \land **coNP**: Each plays its own game. Yes-instance: EP wins and UP loses. $\Theta_2^P = (NP \lor coNP) \land \cdots \land (NP \lor coNP)$: Each plays many games (no interaction). Yes-instance: any boolean combination.

What is in the middle?

PSpace: EP and UP play against each other. No restrictions.

QCSP Dichotomy

Theorem [Folklore]

 $CSP(\Gamma)$

- ▶ is either NP-complete,
- ► or in P.

Theorem [Folklore]

 $CSP(\Gamma)$

- ▶ is either NP-complete,
- or in P.

Theorem QCSP(Γ) - is either PSpace-complete, - or in Π_2^P .

Theorem [Folklore]

 $CSP(\Gamma)$

- is either NP-complete,
- or in P.

Theorem

 $QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .

Prove hardness

Theorem [Folklore]

 $CSP(\Gamma)$

- is either NP-complete,
- or in P.

Theorem

 $QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .

Prove hardness

PSpace-hardness Let $A = \{+, -, 0, 1\}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 x
 y_1
 y_2

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 x
 y_1
 y_2
 $R_2(y_1, y_2, x) = (y_2, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

 $\exists u_1 \exists u_2 R_1(y_1, u_1, x_1) \land R_0(u_1, u_2, x_2) \land R_1(u_2, y_2, x_3)$

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

 $\forall x_1 \forall x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

Claim

 $QCSP(\Gamma)$ is coNP-hard.

PSpace-hardness Let $A = \{+, -, 0, 1\}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

PSpace-hardness Let $A = \{+, -, 0, 1\}$, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.

$\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

 $\neg((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

 $\forall x_1 \exists x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

 $\forall x_1 \exists x_2 \forall x_3 \neg ((x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3))$

Claim

 $QCSP(\Gamma)$ is PSpace-hard.

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

Let
$$A = \{+, -, 0, 1\}$$
, $\Gamma = \{R_0, R_1, \{+\}, \{-\}\}$.
 $R_0(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 0)$
 $R_1(y_1, y_2, x) = (y_1, y_2 \in \{+, -\}) \land (y_1 = y_2 \lor x \neq 1)$

Theorem

Suppose

- **1.** Γ contains $\{x = a \mid a \in A\}$
- **2.** $QCSP(\Gamma)$ is PSpace-hard.

Then there exist

 $\blacktriangleright D \subseteq A$

 \blacktriangleright a nontrivial equivalence relation σ on D

▶ $B, C \subsetneq A$ with $B \cup C = A$

s.t. $\sigma(y_1, y_2) \lor B(x)$ and $\sigma(y_1, y_2) \lor C(x)$ are pp-definable over Γ .

Theorem [Folklore]

 $CSP(\Gamma)$

- is either NP-complete,
- or in P.

Theorem

 $QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .

Prove hardness

Theorem [Folklore]

 $CSP(\Gamma)$

- is either NP-complete,
- or in P.

Theorem

 $QCSP(\Gamma)$

- is either PSpace-complete,
- or in Π_2^P .

Prove hardness

Find fast algorithm

QCSP Instance

 $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$

QCSP Instance

$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Solution

 Ψ holds $\Rightarrow \exists f_1, \ldots, f_n$ such that $y_i = f_i(x_1, \ldots, x_{i-1})$ satisfies Φ for every x_1, \ldots, x_n .

QCSP Instance

$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Solution

 Ψ holds $\Rightarrow \exists f_1, \ldots, f_n$ such that $y_i = f_i(x_1, \ldots, x_{i-1})$ satisfies Φ for every x_1, \ldots, x_n .

• Denote $f_i(a_1,\ldots,a_{i-1})$ by $y_i^{a_1,\ldots,a_{i-1}}$

QCSP Instance

$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Solution

 Ψ holds $\Rightarrow \exists f_1, \ldots, f_n$ such that $y_i = f_i(x_1, \ldots, x_{i-1})$ satisfies Φ for every x_1, \ldots, x_n .

- Denote $f_i(a_1,\ldots,a_{i-1})$ by $y_i^{a_1,\ldots,a_{i-1}}$
- Write all the constraints

QCSP Instance

$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

QCSP Instance

$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi.$$

Put $R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$.

Complexity class Π_2^P

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

Complexity class Π_2^P

 Π^{P}_{2} is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

Complexity class Π_2^P

 Π_2^P is the class of problems \mathcal{U}

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

Given an sentence Ψ = ∃y₁∀x₁∃y₂∀x₂...∃y_n∀x_nΦ.
 Put R(y₁,..., y_n, x₁,..., x_n) = Φ.

Complexity class Π_2^P

 Π^P_2 is the class of problems $\mathcal U$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Complexity class Π_2^P

 $\Pi^{\mathcal{P}}_2$ is the class of problems $\mathcal U$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

1. $QCSP(\Gamma)$ is not PSpace-hard.

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

- **1.** $QCSP(\Gamma)$ is not PSpace-hard.
- **2.** $E \times pCSP_R^n$ has no solutions

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

- **1.** $QCSP(\Gamma)$ is not PSpace-hard.
- **2.** $E \times pCSP_R^n$ has no solutions
- $\Rightarrow \exists$ polynomial-size subinstance of ExpCSP_R^n without a solution.

Complexity class Π_2^P

 Π^P_2 is the class of problems ${\cal U}$

$$\mathcal{U}(Z) = \forall X^{|X| < p(|Z|)} \exists Y^{|Y| < q(|Z|)} \mathcal{V}(X, Y, Z),$$

where $\mathcal{V} \in P$.

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

• Put
$$R(y_1,\ldots,y_n,x_1,\ldots,x_n) = \Phi$$
.

Consider a CSP instance of exponential size ExpCSPⁿ_R.

Theorem

Suppose

- **1.** $QCSP(\Gamma)$ is not PSpace-hard.
- **2.** ExpCSPⁿ_R has no solutions

 $\Rightarrow \exists$ polynomial-size subinstance of ExpCSP_R^n without a solution.

 $\Psi \Leftrightarrow \forall \Omega \subseteq \mathsf{ExpCSP}_R^n \quad {}^{|\Omega| < p(|\Phi|)} \quad (\exists (y_1, y_2^0, y_2^1, y_3^{00}, \dots) \ \Omega)$

• Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$.

Given an sentence Ψ = ∃y₁∀x₁∃y₂∀x₂...∃y_n∀x_nΦ.
 R(y₁,..., y_n, x₁,..., x_n) = Φ.

► Given an sentence
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$$
.
► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$.
► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$
 $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a)).$

► Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$. ► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$. ► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$ $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a)).$ ► Ψ is equivalent to ExpCSPⁿ_R and to ExpCSPⁿ_G. ► Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$. ► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$. ► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$ $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a)).$ ► Ψ is equivalent to ExpCSPⁿ_R and to ExpCSPⁿ_R.

Solving ExpCSPⁿ_{\widetilde{R}}

► Given an sentence $\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$. ► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$. ► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$ $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a)).$ ► Ψ is equivalent to ExpCSPⁿ_R and to ExpCSPⁿ_R.

Solving ExpCSPⁿ_{\tilde{P}}

Check 1-consistency.

► Given an sentence
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$$
.
► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$.
► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$
 $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a)).$
► Ψ is equivalent to ExpCSPⁿ_R and to ExpCSPⁿ_R.

Solving $\operatorname{ExpCSP}^n_{\widetilde{R}}$

Check 1-consistency. If not, we seek for 1-consistency.

► Given an sentence
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$$
.
► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$.
► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$
 $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a))$.
► Ψ is equivalent to ExpCSP_R^n and to $\text{ExpCSP}_{\widetilde{R}}^n$.

Solving ExpCSPⁿ_{\widetilde{R}}

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction \Rightarrow

• Consider a tree-instance of $CSP(\widetilde{R})$ giving a contradiction.

• Consider a tree-instance of $CSP(\widetilde{R})$ giving a contradiction.

Strengthen/Relax/Remove constraints while no solutions

• Consider a tree-instance of $\text{CSP}(\widetilde{R})$ giving a contradiction.

Strengthen/Relax/Remove constraints while no solutions R(y₁,..., y₄, 0, 0, 1, 0)

Consider a tree-instance of CSP(*R̃*) giving a contradiction.
 Strengthen/Relax/Remove constraints while no solutions
 R(y₁,..., y₄,0,0,1,0)
 ∀x *R*(y₁,..., y₄,0,0,1,x)

 Consider a tree-instance of CSP(R̃) giving a contradiction.
 Strengthen/Relax/Remove constraints while no solutions
 R(y₁,..., y₄, 0, 0, 1, 0)
 ∀x R(y₁,..., y₄, 0, 0, 1, x)
 ∃y₄∀x R(y₁,..., y₄, 0, 0, 1, x)

 Consider a tree-instance of CSP(R̃) giving a contradiction.
 Strengthen/Relax/Remove constraints while no solutions
 R(y₁,..., y₄, 0, 0, 1, 0)
 ∀x R(y₁,..., y₄, 0, 0, 1, x)
 ∃y₄∀x R(y₁,..., y₄, 0, 0, 1, x)
 ∀x∃y₄ R(y₁,..., y₄, 0, 0, 1, x)

 Consider a tree-instance of CSP(R) giving a contradiction.
 Strengthen/Relax/Remove constraints while no solutions
 R(y₁,..., y₄, 0, 0, 1, 0)
 ∀x R(y₁,..., y₄, 0, 0, 1, x)
 ∃y₄∀x R(y₁,..., y₄, 0, 0, 1, x)
 ∀x∃y₄ R(y₁,..., y₄, 0, 0, 1, x)
 ∀x'∀x∃y₄ R(y₁,..., y₄, 0, 0, x', x)

• Consider a tree-instance of $CSP(\widetilde{R})$ giving a contradiction. Strengthen/Relax/Remove constraints while no solutions $R(y_1, \dots, y_4, 0, 0, 1, 0)$ $\forall x \ R(y_1, \dots, y_4, 0, 0, 1, x)$ $\exists y_4 \forall x \ R(y_1, \dots, y_4, 0, 0, 1, x) \\ \forall x \exists y_4 \ R(y_1, \dots, y_4, 0, 0, 1, x) \\ \forall x' \forall x \exists y_4 \ R(y_1, \dots, y_4, 0, 0, x', x) \\ \forall x \exists y_4 \ R(y_1, \dots, y_4, 0, 0, x, x) \end{cases}$

• Consider a tree-instance of $CSP(\widetilde{R})$ giving a contradiction.

Strengthen/Relax/Remove constraints while no solutions

 $R(y_{1}, \dots, y_{4}, 0, 0, 1, 0)$ $\forall x \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x)$ $\exists y_{4} \forall x \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x)$ $\forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x)$ $\forall x' \forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, x', x)$ $\forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, x, x)$ $\exists y_3 \forall x \exists y_4 \ R(y_1, \dots, y_4, 0, 0, x, x) \\ \forall x \exists y_3 \exists y_4 \ R(y_1, \dots, y_4, 0, 0, x, x)$

• Consider a tree-instance of $CSP(\widetilde{R})$ giving a contradiction. Strengthen/Relax/Remove constraints while no solutions $\exists y_{4} \forall x \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x) \\ \forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x) \\ \forall x' \forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, x', x) \\ \forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, x, x) \end{cases}$

If there exists a path of length > 2^{2|A|}, then we can pp-define a relations σ(y₁, y₂) ∨ B(x) and σ(y₁, y₂) ∨ C(x).

• Consider a tree-instance of $CSP(\hat{R})$ giving a contradiction.

Strengthen/Relax/Remove constraints while no solutions

 $R(y_{1}, \dots, y_{4}, 0, 0, 1, 0)$ $\forall x \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x)$ $\exists y_{4} \forall x \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x)$ $\forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x)$ $\forall x' \forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, x', x)$ $\forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, x, x)$ $\exists y_{3} \forall x \exists y_{4} R(y_{1}, \dots, y_{4}, 0, 0, x, x) \\ \forall x \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, 0, x, x) \\ \forall x' \forall x \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, x', x, x) \\ \forall x \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, x, x, x) \\ \exists y_{2} \forall x \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, x, x, x) \\ \forall x \exists y_{2} \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, x, x, x) \end{cases}$

- If there exists a path of length > 2^{2|A|}, then we can pp-define a relations σ(y₁, y₂) ∨ B(x) and σ(y₁, y₂) ∨ C(x).
- If any path is of length < 2^{2|A|}, then the tree-instance is of polynomial size.

• Consider a tree-instance of $CSP(\hat{R})$ giving a contradiction.

Strengthen/Relax/Remove constraints while no solutions

 $R(y_{1}, \dots, y_{4}, 0, 0, 1, 0)$ $\forall x \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x)$ $\exists y_{4} \forall x \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x)$ $\forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, 1, x)$ $\forall x' \forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, x', x)$ $\forall x \exists y_{4} \ R(y_{1}, \dots, y_{4}, 0, 0, x, x)$ $\exists y_{3} \forall x \exists y_{4} R(y_{1}, \dots, y_{4}, 0, 0, x, x) \\ \forall x \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, 0, x, x) \\ \forall x' \forall x \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, x', x, x) \\ \forall x \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, x, x, x) \\ \exists y_{2} \forall x \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, x, x, x) \\ \forall x \exists y_{2} \exists y_{3} \exists y_{4} R(y_{1}, \dots, y_{4}, 0, x, x, x) \end{cases}$

- If there exists a path of length > 2^{2|A|}, then we can pp-define a relations σ(y₁, y₂) ∨ B(x) and σ(y₁, y₂) ∨ C(x).
- If any path is of length < 2^{2|A|}, then the tree-instance is of polynomial size. Done!

► Given an sentence
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$$
.
► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$.
► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$
 $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a))$.
► Ψ is equivalent to ExpCSP_R^n and to $\text{ExpCSP}_{\widetilde{R}}^n$.

Solving ExpCSPⁿ_{\widetilde{R}}

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction \Rightarrow

► Given an sentence
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$$
.
► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$.
► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$
 $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a))$.
► Ψ is equivalent to ExpCSP_R^n and to $\text{ExpCSP}_{\widetilde{R}}^n$.

Solving ExpCSPⁿ_{\widetilde{P}}

Check 1-consistency. If not, we seek for 1-consistency.

▶ no 1-consistent reduction ⇒exists a polynomial witness (L1).

Lemma 1

 $\operatorname{Exp}\operatorname{CSP}^n_{\widetilde{R}}$ has no 1-consistent reduction \Rightarrow polynomial-size subinstance of $\operatorname{Exp}\operatorname{CSP}^n_R$ witnesses this.

► Given an sentence
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$$
.
► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$.
► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$
 $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a))$.
► Ψ is equivalent to ExpCSP_R^n and to $\text{ExpCSP}_{\widetilde{R}}^n$.

Solving ExpCSPⁿ_{\tilde{P}}

Check 1-consistency. If not, we seek for 1-consistency.

- ▶ no 1-consistent reduction ⇒exists a polynomial witness (L1).
- exists a 1-consistent reduction

Lemma 1

 $\operatorname{ExpCSP}^n_{\widetilde{R}}$ has no 1-consistent reduction \Rightarrow polynomial-size subinstance of $\operatorname{ExpCSP}^n_R$ witnesses this.

► Given an sentence
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$$
.
► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$.
► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$
 $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a))$.
► Ψ is equivalent to ExpCSP_R^n and to $\text{ExpCSP}_{\widetilde{R}}^n$.

Solving ExpCSPⁿ_{\tilde{P}}

Check 1-consistency. If not, we seek for 1-consistency.

- ▶ no 1-consistent reduction \Rightarrow exists a polynomial witness (L1).
- exists a 1-consistent reduction \Rightarrow exists a solution (L2).

Lemma 1

 $\operatorname{ExpCSP}^{n}_{\widetilde{R}}$ has no 1-consistent reduction \Rightarrow polynomial-size subinstance of $\operatorname{ExpCSP}^{n}_{R}$ witnesses this.

Lemma 2

 $\operatorname{ExpCSP}^n_{\widetilde{R}}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}^n_{\widetilde{R}}$ has a solution.

 $\operatorname{ExpCSP}^n_{\widetilde{R}}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}^n_{\widetilde{R}}$ has a solution.

 $\operatorname{ExpCSP}^n_{\widetilde{R}}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}^n_{\widetilde{R}}$ has a solution.

B is a nice subuniverse of *D*

 $\operatorname{ExpCSP}^n_{\widetilde{R}}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}^n_{\widetilde{R}}$ has a solution.

B is a nice subuniverse of *D* if there exists $\mathcal{U} \leq D \times A^n$ s.t.

1.
$$(\forall x_1 \ldots \forall x_s \ \mathcal{U}(y, x_1, \ldots, x_s)) = (y \in B)$$

2.
$$(\forall x \ \mathcal{U}(y, x, \ldots, x)) = (y \in D)$$

 $\operatorname{ExpCSP}^n_{\widetilde{R}}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}^n_{\widetilde{R}}$ has a solution.

B is a nice subuniverse of *D* if there exists $\mathcal{U} \leq D \times A^n$ s.t.

1.
$$(\forall x_1 \ldots \forall x_s \ \mathcal{U}(y, x_1, \ldots, x_s)) = (y \in B)$$

2.
$$(\forall x \ \mathcal{U}(y, x, \ldots, x)) = (y \in D)$$

Lemma 3

Suppose

 \triangleright ExpCSP^{*n*}_{\widetilde{R}} has no solutions

► $D_1, D_2^0, D_2^1, \dots, D_n^{11\dots,1}$ is a 1-consistent reduction of $\text{ExpCSP}^n_{\widetilde{R}}$.

Then there exists a nice subuniverse on some D_i^{α} .

 $\operatorname{ExpCSP}^n_{\widetilde{R}}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}^n_{\widetilde{R}}$ has a solution.

B is a nice subuniverse of *D* if there exists $\mathcal{U} \leq D \times A^n$ s.t.

1.
$$(\forall x_1 \ldots \forall x_s \ \mathcal{U}(y, x_1, \ldots, x_s)) = (y \in B)$$

2.
$$(\forall x \ \mathcal{U}(y, x, \ldots, x)) = (y \in D)$$

Lemma 3

Suppose

 \triangleright ExpCSP^{*n*}_{\widetilde{R}} has no solutions

• $D_1, D_2^0, D_2^1, \ldots, D_n^{11...,1}$ is a 1-consistent reduction of $\text{ExpCSP}_{\widetilde{R}}^n$. Then there exists a nice subuniverse on some D_i^{α} .

Lemma 4

Suppose

•
$$D_1, D_2^0, D_2^1, \dots, D_n^{11\dots,1}$$
 is a 1-consistent reduction of $\text{ExpCSP}^n_{\widetilde{R}}$.

there exists a proper nice subuniverse on some D^α_i.

Then there exists a 1-consistent reduction $B_1, B_2^0, B_2^1, \ldots, B_n^{11...,1}$ of $\text{ExpCSP}_{\widetilde{R}}^n$ s.t. B_i^{α} is a nice subuniverse of D_i^{α} for all i, α .

► Given an sentence
$$\Psi = \exists y_1 \forall x_1 \exists y_2 \forall x_2 \dots \exists y_n \forall x_n \Phi$$
.
► $R(y_1, \dots, y_n, x_1, \dots, x_n) = \Phi$.
► $\widetilde{R}(y_1, \dots, y_n, x_1, \dots, x_n) =$
 $\bigwedge_{a \in A, i=1,\dots,n} (\exists y'_{i+1} \dots \exists y'_n R(y_1, \dots, y_i, y'_{i+1}, \dots, y'_n, x_1, \dots, x_i, a, \dots, a))$.
► Ψ is equivalent to ExpCSP_R^n and to $\text{ExpCSP}_{\widetilde{R}}^n$.

Solving ExpCSP^{*n*}_{\widetilde{P}} (an instance of CSP(\widetilde{R}))

Check 1-consistency. If not, we seek for 1-consistency.

- no 1-consistent reduction \Rightarrow exists a polynomial witness (L1).
- exists a 1-consistent reduction \Rightarrow there exists a solution (L2).

Lemma 1

 $\operatorname{Exp}\operatorname{CSP}^n_{\widetilde{R}}$ has no 1-consistent reduction \Rightarrow polynomial size subinstance of $\operatorname{Exp}\operatorname{CSP}^n_R$ witnesses this.

Lemma 2

 $\operatorname{ExpCSP}^n_{\widetilde{R}}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}^n_{\widetilde{R}}$ has a solution.

Theorem

Suppose

- **1.** $QCSP(\Gamma)$ is not PSpace-hard.
- **2.** $E \times pCSP_R^n$ has no solutions

 $\Rightarrow \exists$ polynomial-size subinstance of ExpCSP_R^n without a solution.

Solving ExpCSP^{*n*}_{\widetilde{R}} (an instance of CSP(\widetilde{R}))

Check 1-consistency. If not, we seek for 1-consistency.

- ▶ no 1-consistent reduction \Rightarrow exists a polynomial witness (L1).
- exists a 1-consistent reduction \Rightarrow there exists a solution (L2).

Lemma 1

 $\begin{aligned} & \mathsf{ExpCSP}^n_{\widetilde{R}} \text{ has no 1-consistent reduction} \Rightarrow \mathsf{polynomial size} \\ & \mathsf{subinstance of } \mathsf{ExpCSP}^n_R \text{ witnesses this.} \end{aligned}$

Lemma 2

 $\operatorname{ExpCSP}^n_{\widetilde{R}}$ has a 1-consistent reduction $\Rightarrow \operatorname{ExpCSP}^n_{\widetilde{R}}$ has a solution.

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

 $QCSP(\Gamma)$

- is either PSpace-hard
- or in Π_2^P .

* if Γ contains $\{x = a \mid a \in A\}$ then QCSP(Γ) is PSpace-hard IFF there exist a nontrivial equivalence relation σ on $D \subseteq A$, $B, C \subsetneq A$, $B \cup C = A$, s.t. $\sigma(y_1, y_2) \lor B(x)$ and $\sigma(y_1, y_2) \lor C(x)$ are pp-definable over Γ .

Lemma

There exists Γ on a 6-element set such that $QCSP(\Gamma)$ is Π_2^P -complete.

$A = \{0, 1, 2\}$, variables are of 2 sorts, EP and UP play on different sorts.

QCSP Hepta-chotomy

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\textbf{DP}=\textbf{NP} \land \textbf{coNP}:$ Each plays its own game. Yes-instance: EP wins and UP loses.

 $\Theta_2^P = (NP \lor coNP) \land \dots \land (NP \lor coNP)$: Each plays many games (no interaction). Yes-instance: any boolean combination.

 Π_2^P : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

QCSP Hepta-chotomy

P: All moves are trivial.

NP: Only EP plays, the play of UP is trivial.

coNP: Only UP plays, the play of EP is trivial.

 $\textbf{DP}=\textbf{NP} \land \textbf{coNP}:$ Each plays its own game. Yes-instance: EP wins and UP loses.

 $\Theta^P_2 = (\mathsf{NP} \lor \mathsf{coNP}) \land \dots \land (\mathsf{NP} \lor \mathsf{coNP}): \text{ Each plays many} \\ \text{games (no interaction). Yes-instance: any boolean combination.}$

 Π_2^P : First, UP plays, then EP plays.

PSpace: EP and UP play against each other. No restrictions.

Thank you for your attention