Constraint Satisfaction Problem: what makes the problem easy

Dmitriy Zhuk

International Congress of Matematicians

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and

Example

Check whether there exists a solution $x_{1}, x_{2}, x_{3}, \ldots \in\{0,1\}$.

$$
\begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\ x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\ x_{2}+x_{4}+x_{5}=0 & \bmod 2 \\ x_{2}+x_{3}+x_{5}=1 & \bmod 2\end{cases}
$$

Example

Check whether there exists a solution $x_{1}, x_{2}, x_{3}, \ldots \in\{0,1\}$.

$$
\begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\ x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\ x_{2}+x_{4}+x_{5}=0 & \bmod 2 \\ x_{2}+x_{3}+x_{5}=1 & \bmod 2\end{cases}
$$

Gaussian elimination solves the problem in polynomial time.

Example

Check whether there exists a solution $x_{1}, x_{2}, x_{3}, \ldots \in\{0,1\}$.

$$
\begin{aligned}
& \begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=1 & \bmod 2\end{cases} \\
& \begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=1 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=3 & \end{cases}
\end{aligned}
$$

Example

Check whether there exists a solution $x_{1}, x_{2}, x_{3}, \ldots \in\{0,1\}$.

$$
\begin{aligned}
& \begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=1 & \bmod 2\end{cases} \\
& \begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=1 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=3 & \end{cases}
\end{aligned}
$$

Gaussian elimination solves the problem in polynomial time.

The problem is NP-hard.

Example

Check whether there exists a solution $x_{1}, x_{2}, x_{3}, \ldots \in\{0,1\}$.

$$
\begin{aligned}
& \begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=1 & \bmod 2\end{cases} \\
& \begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=1 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=3 & \text { Gaussian elimination solves the }\end{cases} \\
& \begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=1 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=3 & \bmod 24\end{cases}
\end{aligned}
$$

Example

Check whether there exists a solution $x_{1}, x_{2}, x_{3}, \ldots \in\{0,1\}$.

$$
\begin{aligned}
& \left\{\begin{array}{lll}
x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 & \text { Gaussian elimination solves the } \\
x_{2}+x_{4}+x_{5}=0 & \bmod 2 & \text { problem in polynomial time. } \\
x_{2}+x_{3}+x_{5}=1 & \bmod 2
\end{array}\right. \\
& \left\{\begin{array}{lll}
x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=1 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=3 & \text { The problem is NP-hard. }
\end{array}\right. \\
& \left\{\begin{array}{lll}
x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 & \text { What is the complexity of this } \\
x_{2}+x_{4}+x_{5}=1 & \bmod 2 & \text { problem? } \\
x_{2}+x_{3}+x_{5}=3 & \bmod 24
\end{array}\right.
\end{aligned}
$$

Example

Check whether there exists a solution $x_{1}, x_{2}, x_{3}, \ldots \in\{0,1\}$.

$$
\begin{aligned}
& \begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=1 & \bmod 2\end{cases} \\
& \begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=1 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=3 & \text { Gaussian elimination solves the }\end{cases} \\
& \left\{\begin{array}{lll}
x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\
x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\
x_{2}+x_{4}+x_{5}=1 & \bmod 2 \\
x_{2}+x_{3}+x_{5}=3 & \bmod 24
\end{array}\right. \\
& \text { problem in polynomial time. }
\end{aligned}
$$

$$
p
$$

$$
P
$$

NP
P CSP

NP

What is CSP?

What is CSP?

Constraint Satisfaction Problem
is a triple $\langle\mathbf{X}, \mathbf{D}, \mathbf{C}\rangle$, where

- $\mathbf{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables,
- $\mathbf{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ is a set of the respective domains of values, and
- $\mathbf{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ is a set of constraints,

What is CSP?

Constraint Satisfaction Problem
is a triple $\langle\mathbf{X}, \mathbf{D}, \mathbf{C}\rangle$, where

- $\mathbf{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of variables,
- $\mathbf{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ is a set of the respective domains of values, and
- $\mathbf{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ is a set of constraints,

Almost everything is CSP!!!

CSP example: map coloring

Problem: assign each territory a color such that no two adjacent territories have the same color
Variables: $\quad X=\{W A, N T, Q, N S W, V, S A, T\}$
Domain of variables: $D=\{r, g, b\}$
Constraints: $C=\{S A \neq W A, S A \neq N T, S A \neq Q, \ldots\}$

Another example: sudoku

- Variables:
- Each (open) square
- Domains:
- $\{1,2, \ldots, 9\}$
- Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch of pairwise inequality constraints)

Constraint Satisfaction Problem parameterized by a constraint language

Constraint Satisfaction Problem parameterized by a constraint language
Γ is a set of relations on a finite set A.

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.
Example:
$A=\{0,1,2\}, \Gamma=\{x<y, x \leq y\}$.

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.
Example:
$A=\{0,1,2\}, \Gamma=\{x<y, x \leq y\}$.
CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{4}$,

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.
Example:
$A=\{0,1,2\}, \Gamma=\{x<y, x \leq y\}$.
CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{4}$, No solutions

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.
Example:
$A=\{0,1,2\}, \Gamma=\{x<y, x \leq y\}$.
CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{4}$, No solutions
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{1}$,

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.
Example:
$A=\{0,1,2\}, \Gamma=\{x<y, x \leq y\}$.
CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{4}$, No solutions
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{1}, x_{1}=x_{2}=x_{3}=0$.

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a finite set A.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.
Example:
$A=\{0,1,2\}, \Gamma=\{x<y, x \leq y\}$.
CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{4}$, No solutions
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{1}, x_{1}=x_{2}=x_{3}=0$.

Question

What is the complexity of $\operatorname{CSP}(\Gamma)$ for different Γ ?

Graph coloring (two colors)

Domain $D=\{\square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (two colors)

Domain $D=\{\square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (two colors)

Domain $D=\{\square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (two colors)

Domain $D=\{\square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (two colors)

Domain $D=\{\square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (two colors)

Domain $D=\{\square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (two colors)

- Either we can color every vertex,
- or we can find an odd cycle.

Domain $D=\{\square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (two colors)

- Either we can color every vertex,
- or we can find an odd cycle.

Local consistency check solves the problem.
Domain $D=\{\square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

System of linear equations in a finite field

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+2 x_{3}=0 \quad \bmod 3 \\
x_{1}+2 x_{3}+x_{5}=0 \quad \bmod 3 \\
2 x_{2}+x_{4}+x_{5}=0 \quad \bmod 3 \\
x_{1}+x_{3}+2 x_{5}=1 \quad \bmod 3
\end{array}\right.
$$

Domain $D=\{0,1,2\}$
Constraint language
$\Gamma=\left\{a_{1} x+a_{2} y+a_{3} z=a_{0} \mid a_{0}, a_{1}, a_{2}, a_{3} \in D\right\}$.

System of linear equations in a finite field

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+2 x_{3}=0 \quad \bmod 3 \\
x_{1}+2 x_{3}+x_{5}=0 \quad \bmod 3 \\
2 x_{2}+x_{4}+x_{5}=0 \quad \bmod 3 \\
x_{1}+x_{3}+2 x_{5}=1 \quad \bmod 3
\end{array}\right.
$$

Gaussian elimination solves the problem.
Domain $D=\{0,1,2\}$
Constraint language
$\Gamma=\left\{a_{1} x+a_{2} y+a_{3} z=a_{0} \mid a_{0}, a_{1}, a_{2}, a_{3} \in D\right\}$.

Graph coloring (three colors)

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

- Local consistency check doesn't give a contradiction.

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

- Local consistency check doesn't give a contradiction.

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

- Local consistency check doesn't give a contradiction.

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

- Local consistency check doesn't give a contradiction.

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

- Local consistency check doesn't give a contradiction.

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

- Local consistency check doesn't give a contradiction.

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

- Local consistency check doesn't give a contradiction.
- The instance has no solutions.

Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.

Graph coloring (three colors)

- Local consistency check doesn't give a contradiction.
- The instance has no solutions.

The problem is NP-hard.
Domain $D=\{\square, \square, \square\}$
Constraint language $\Gamma=\{\neq\}$.
$N P$
CSP
$N P$

$$
C S P
$$

$N P$

$$
\begin{array}{r|r}
P & C S P \\
N P
\end{array}
$$

$$
\underset{\substack{\text { Graph } \\ \text { 2-Colouring }}}{\text { STI }}
$$

Linear
Equations

Graph
3-Colouring

Reduction from one language to another

Reduction from one language to another

$\operatorname{CSP}(\Gamma)$

Given: a sentence

$$
\exists x_{1} \ldots \exists x_{n} R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Reduction from one language to another

$\operatorname{CSP}(\Gamma)$

Given: a sentence

$$
\exists x_{1} \ldots \exists x_{n} R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s}, 1}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
primitive positive (pp) definition is

$$
R(\ldots)=\exists y_{1} \ldots \exists y_{\ell} R_{1}(\ldots) \wedge \ldots \wedge R_{s}(\ldots)
$$

Reduction from one language to another

$\operatorname{CSP}(\Gamma)$

Given: a sentence

$$
\exists x_{1} \ldots \exists x_{n} R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
primitive positive (pp) definition is

$$
R(\ldots)=\exists y_{1} \ldots \exists y_{\ell} R_{1}(\ldots) \wedge \ldots \wedge R_{s}(\ldots)
$$

Fact [Schaefer, 1978]

Suppose $\left|\Gamma_{1}\right|<\infty,\left|\Gamma_{2}\right|<\infty, \Gamma_{2}$ pp-defines Γ_{1}. Then $\operatorname{CSP}\left(\Gamma_{1}\right)$ is log-space reducible to $\operatorname{CSP}\left(\Gamma_{2}\right)$.

Reduction from one language to another

$\operatorname{CSP}(\Gamma)$

Given: a sentence

$$
\exists x_{1} \ldots \exists x_{n} R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
primitive positive (pp) definition is

$$
R(\ldots)=\exists y_{1} \ldots \exists y_{\ell} R_{1}(\ldots) \wedge \ldots \wedge R_{s}(\ldots)
$$

Fact [Schaefer, 1978]

Suppose $\left|\Gamma_{1}\right|<\infty,\left|\Gamma_{2}\right|<\infty, \Gamma_{2}$ pp-defines Γ_{1}. Then $\operatorname{CSP}\left(\Gamma_{1}\right)$ is log-space reducible to $\operatorname{CSP}\left(\Gamma_{2}\right)$.

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]

Γ_{2} pp-defines Γ_{1} IFF every operation preserving Γ_{2} preserves Γ_{1}

Polymorphisms

Polymorphisms

An operation f preserves a relation R, (equivalently, f is a polymorphism of R)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{S} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{S}, \ldots, a_{n}^{S}\right)\end{array}\right) \in R$

Example

The relation \leq on $\{0,1,2\}$

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$

Example

The relation \leq on $\{0,1,2\}$ is $\left(\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 2 & 1 & 2 & 2\end{array}\right)$

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$

Example

The relation \leq on $\{0,1,2\}$ is $\left(\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 2 & 1 & 2 & 2\end{array}\right)$
An operation f preserves $\leq \operatorname{iff} f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \wedge & \ddots & \wedge \\ a_{1}^{2} & \ldots & a_{n}^{2}\end{array}\right)=\left(\begin{array}{c}b^{1} \\ \wedge \\ b^{2}\end{array}\right)$

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$

Example

The relation \leq on $\{0,1,2\}$ is $\left(\begin{array}{llllll}0 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 2 & 1 & 2 & 2\end{array}\right)$
An operation f preserves $\leq \operatorname{iff} f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \wedge & \ddots & \wedge \\ a_{1}^{2} & \ldots & a_{n}^{2}\end{array}\right)=\left(\begin{array}{c}b^{1} \\ \wedge \\ b^{2}\end{array}\right)$
or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R, (equivalently, f is a polymorphism of R) if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$
CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]
$\operatorname{CSP}(\Gamma)$ is solvable in polynomial time if there is a WNU operation preserving Γ; it is NP-complete otherwise.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

$\operatorname{CSP}(\Gamma)$ is solvable in polynomial time if there is a WNU operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f satisfying $f(x, \ldots, x, y)=f(x, \ldots, x, y, x)=\cdots=f(y, x, \ldots, x)$.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)
if for all $\left(\begin{array}{c}a_{1}^{1} \\ \vdots \\ a_{1}^{s}\end{array}\right), \ldots,\left(\begin{array}{c}a_{n}^{1} \\ \vdots \\ a_{n}^{s}\end{array}\right) \in R$,
$f\left(\begin{array}{ccc}a_{1}^{1} & \ldots & a_{n}^{1} \\ \vdots & \ddots & \vdots \\ a_{1}^{s} & \ldots & a_{n}^{s}\end{array}\right)=\left(\begin{array}{c}f\left(a_{1}^{1}, \ldots, a_{n}^{1}\right) \\ \vdots \\ f\left(a_{1}^{s}, \ldots, a_{n}^{s}\right)\end{array}\right) \in R$

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

$\operatorname{CSP}(\Gamma)$ is solvable in polynomial time if there is a WNU operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f satisfying $f(x, \ldots, x, y)=f(x, \ldots, x, y, x)=\cdots=f(y, x, \ldots, x)$.

Examples: $x \vee y, x \wedge y, x y \vee x z \vee y z, x+y+z, 0, \min (x, y), \ldots$

Hardness part

Hardness part
Theorem [McKenzie, Maróti, 2007]
Suppose 「 is not preserved by a WNU.

Hardness part
Theorem [McKenzie, Maróti, 2007]
Suppose 「 is not preserved by a WNU.

Hardness part

Theorem [McKenzie, Maróti, 2007]

Suppose 「 is not preserved by a WNU. Then there exists $D \subseteq A$,

Hardness part

Theorem [McKenzie, Maróti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists $D \subseteq A, \quad D=B_{0} \sqcup B_{1}$

Hardness part

Theorem [McKenzie, Maróti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists $D \subseteq A, D=B_{0} \sqcup B_{1}$ s.t. $D^{3} \backslash\left(B_{0}^{3} \cup B_{1}^{3}\right)$ is pp-definable from Γ.

Hardness part

Theorem [McKenzie, Maróti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists $D \subseteq A, D=B_{0} \sqcup B_{1}$ s.t. $D^{3} \backslash\left(B_{0}^{3} \cup B_{1}^{3}\right)$ is pp-definable from Γ.

Corollary

Suppose「 is not preserved by a WNU. Then

Hardness part

Theorem [McKenzie, Maróti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists $D \subseteq A, D=B_{0} \sqcup B_{1}$ s.t. $D^{3} \backslash\left(B_{0}^{3} \cup B_{1}^{3}\right)$ is pp-definable from Γ.

Corollary

Suppose「 is not preserved by a WNU. Then

- $\operatorname{CSP}($ NAE3 $)$ is \log-space reducible to $\operatorname{CSP}(\Gamma)$

Hardness part

Theorem [McKenzie, Maróti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists $D \subseteq A, D=B_{0} \sqcup B_{1}$ s.t. $D^{3} \backslash\left(B_{0}^{3} \cup B_{1}^{3}\right)$ is pp-definable from Γ.

Corollary

Suppose「 is not preserved by a WNU. Then

- $\operatorname{CSP}($ NAE3 $)$ is \log-space reducible to $\operatorname{CSP}(\Gamma)$
- $\operatorname{CSP}(\Gamma)$ is NP-complete.

Hardness part

Theorem [McKenzie, Maróti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists $D \subseteq A, D=B_{0} \sqcup B_{1}$ s.t. $D^{3} \backslash\left(B_{0}^{3} \cup B_{1}^{3}\right)$ is pp-definable from Γ.

Corollary

Suppose「 is not preserved by a WNU. Then

- $\operatorname{CSP}($ NAE3 $)$ is \log-space reducible to $\operatorname{CSP}(\Gamma)$
- $\operatorname{CSP}(\Gamma)$ is NP-complete.
- $\operatorname{CSP}(\Delta)$ is \log-space reducible to $\operatorname{CSP}(\Gamma)$ for any finite constraint language Δ.

Tractable part

Tractable part

2-SAT

Γ consists of relations $x_{i}=a \vee x_{j}=b$, where $a, b \in\{0,1\}$.

Tractable part

2-SAT

Γ consists of relations $x_{i}=a \vee x_{j}=b$, where $a, b \in\{0,1\}$.

Horn-SAT

Γ consists of relations $x_{1}=1 \vee x_{2}=0 \vee \cdots \vee x_{n}=0$ and $x_{1}=0 \vee \cdots \vee x_{n}=0$ for $n \geq 0$.

Tractable part

2-SAT

Γ consists of relations $x_{i}=a \vee x_{j}=b$, where $a, b \in\{0,1\}$.

Horn-SAT

Γ consists of relations $x_{1}=1 \vee x_{2}=0 \vee \cdots \vee x_{n}=0$ and $x_{1}=0 \vee \cdots \vee x_{n}=0$ for $n \geq 0$.

System of linear equations
Γ consists of relations $a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{0}$.

Tractable part

2-SAT

Γ consists of relations $x_{i}=a \vee x_{j}=b$, where $a, b \in\{0,1\}$.

Horn-SAT

Γ consists of relations $x_{1}=1 \vee x_{2}=0 \vee \cdots \vee x_{n}=0$ and $x_{1}=0 \vee \cdots \vee x_{n}=0$ for $n \geq 0$.

System of linear equations
Γ consists of relations $a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{0}$.
Theorem [Zhuk, 2015]
Suppose R is a multi-sorted relation on $\{0,1\}$.

Tractable part

2-SAT

Γ consists of relations $x_{i}=a \vee x_{j}=b$, where $a, b \in\{0,1\}$.

Horn-SAT

Γ consists of relations $x_{1}=1 \vee x_{2}=0 \vee \cdots \vee x_{n}=0$ and $x_{1}=0 \vee \cdots \vee x_{n}=0$ for $n \geq 0$.

System of linear equations
Γ consists of relations $a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{0}$.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on $\{0,1\}$.
R is preserved by a WNU \Rightarrow

Tractable part

2-SAT

Γ consists of relations $x_{i}=a \vee x_{j}=b$, where $a, b \in\{0,1\}$.

Horn-SAT

Γ consists of relations $x_{1}=1 \vee x_{2}=0 \vee \cdots \vee x_{n}=0$ and $x_{1}=0 \vee \cdots \vee x_{n}=0$ for $n \geq 0$.

System of linear equations

Γ consists of relations $a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{0}$.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on $\{0,1\}$.
R is preserved by a WNU $\Rightarrow R(\ldots)=R_{1}(\ldots) \wedge \cdots \wedge R_{S}(\ldots)$,

Tractable part

2-SAT

Γ consists of relations $x_{i}=a \vee x_{j}=b$, where $a, b \in\{0,1\}$.

Horn-SAT

Γ consists of relations $x_{1}=1 \vee x_{2}=0 \vee \cdots \vee x_{n}=0$ and $x_{1}=0 \vee \cdots \vee x_{n}=0$ for $n \geq 0$.

System of linear equations

Γ consists of relations $a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{0}$.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on $\{0,1\}$.
R is preserved by a WNU $\Rightarrow R(\ldots)=R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)$, where each R_{i} is

- pp-definable from R

Tractable part

2-SAT

Γ consists of relations $x_{i}=a \vee x_{j}=b$, where $a, b \in\{0,1\}$.

Horn-SAT

Γ consists of relations $x_{1}=1 \vee x_{2}=0 \vee \cdots \vee x_{n}=0$ and $x_{1}=0 \vee \cdots \vee x_{n}=0$ for $n \geq 0$.

System of linear equations

Γ consists of relations $a_{1} x_{1}+\cdots+a_{n} x_{n}=a_{0}$.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on $\{0,1\}$.
R is preserved by a WNU $\Rightarrow R(\ldots)=R_{1}(\ldots) \wedge \cdots \wedge R_{S}(\ldots)$, where each R_{i} is

- pp-definable from R
- of the form

$$
\left(x_{1}+\cdots+x_{m}=c\right) \vee\left(x_{m+1}=d_{m+1}\right) \vee \cdots \vee\left(x_{n}=d_{n}\right)
$$

Tractable part
Theorem [Zhuk, 2015]

Tractable part
Theorem [Zhuk, 2015]
R is preserved by a WNU \Rightarrow

Tractable part
Theorem [Zhuk, 2015]
R is preserved by a $\mathrm{WNU} \Rightarrow R(\ldots)=R_{1}(\ldots) \wedge \cdots \wedge R_{S}(\ldots)$,

Tractable part

Theorem [Zhuk, 2015]
R is preserved by a WNU $\Rightarrow R(\ldots)=R_{1}(\ldots) \wedge \cdots \wedge R_{S}(\ldots)$, where each R_{i} is

- pp-definable from R

Tractable part

Theorem [Zhuk, 2015]

R is preserved by a $\mathrm{WNU} \Rightarrow R(\ldots)=R_{1}(\ldots) \wedge \cdots \wedge R_{S}(\ldots)$, where each R_{i} is

- pp-definable from R
- $\exists A_{1}, \ldots, A_{n} \subseteq A$ s. t. $\left(A_{1} \times A_{2} \times \cdots \times A_{n}\right) \cap R_{i}$ can be represented as a disjunction of a linear equation and equalities.

Tractable part

Theorem [Zhuk, 2015]

R is preserved by a $\mathrm{WNU} \Rightarrow R(\ldots)=R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)$, where each R_{i} is

- pp-definable from R
- $\exists A_{1}, \ldots, A_{n} \subseteq A$ s.t. $\left(A_{1} \times A_{2} \times \cdots \times A_{n}\right) \cap R_{i}$ can be represented as a disjunction of a linear equation and equalities.

$$
R \subseteq A^{3}
$$

Tractable part

Theorem [Zhuk, 2015]

R is preserved by a WNU $\Rightarrow R(\ldots)=R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)$, where each R_{i} is

- pp-definable from R
- $\exists A_{1}, \ldots, A_{n} \subseteq A$ s.t. $\left(A_{1} \times A_{2} \times \cdots \times A_{n}\right) \cap R_{i}$ can be represented as a disjunction of a linear equation and equalities.

$$
R \subseteq A^{3}
$$

Tractable part

Theorem [Zhuk, 2015]

R is preserved by a $\mathrm{WNU} \Rightarrow R(\ldots)=R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)$, where each R_{i} is

- pp-definable from R
- $\exists A_{1}, \ldots, A_{n} \subseteq A$ s.t. $\left(A_{1} \times A_{2} \times \cdots \times A_{n}\right) \cap R_{i}$ can be represented as a disjunction of a linear equation and equalities.

Tractable part

$$
\left(x_{1}+\cdots+x_{m}=c\right) \vee\left(x_{m+1}=d_{m+1}\right) \vee \cdots \vee\left(x_{n}=d_{n}\right)
$$

Tractable part

$$
\left(x_{1}+\cdots+x_{m}=c\right) \vee\left(x_{m+1}=d_{m+1}\right) \vee \cdots \vee\left(x_{n}=d_{n}\right)
$$

Toy Algorithm

Tractable part

$$
\left(x_{1}+\cdots+x_{m}=c\right) \vee\left(x_{m+1}=d_{m+1}\right) \vee \cdots \vee\left(x_{n}=d_{n}\right)
$$

Toy Algorithm

1. If $\boldsymbol{x}=\boldsymbol{c}$ then substitute and simplify.

Tractable part

$$
\left(x_{1}+\cdots+x_{m}=c\right) \vee\left(x_{m+1}=d_{m+1}\right) \vee \cdots \vee\left(x_{n}=d_{n}\right)
$$

Toy Algorithm

1. If $x=c$ then substitute and simplify.
2. $(x=a \vee y=b)$ and $(y=c \vee z=d)$, where $b \neq c$, produce $(x=a \vee z=d)$

Tractable part

$$
\left(x_{1}+\cdots+x_{m}=c\right) \vee\left(x_{m+1}=d_{m+1}\right) \vee \cdots \vee\left(x_{n}=d_{n}\right)
$$

Toy Algorithm

1. If $x=c$ then substitute and simplify.
2. $(x=a \vee y=b)$ and $(y=c \vee z=d)$, where $b \neq c$, produce $(x=a \vee z=d)$
3. $(x=a \vee x=a)$ produces $x=a$.

Tractable part

$$
\left(x_{1}+\cdots+x_{m}=c\right) \vee\left(x_{m+1}=d_{m+1}\right) \vee \cdots \vee\left(x_{n}=d_{n}\right)
$$

Toy Algorithm

1. If $x=c$ then substitute and simplify.
2. $(x=a \vee y=b)$ and $(y=c \vee z=d)$, where $b \neq c$, produce $(x=a \vee z=d)$
3. $(x=a \vee x=a)$ produces $x=a$.
4. Take all linear equations L, solve them if $L \Rightarrow\left(x_{i}=c\right)$ produce $x_{i}=c$.

Tractable part

$$
\left(x_{1}+\cdots+x_{m}=c\right) \vee\left(x_{m+1}=d_{m+1}\right) \vee \cdots \vee\left(x_{n}=d_{n}\right)
$$

Toy Algorithm

1. If $x=c$ then substitute and simplify.
2. $(x=a \vee y=b)$ and $(y=c \vee z=d)$, where $b \neq c$, produce $(x=a \vee z=d)$
3. $(x=a \vee x=a)$ produces $x=a$.
4. Take all linear equations L, solve them if $L \Rightarrow\left(x_{i}=c\right)$ produce $x_{i}=c$.
5. Repeat steps 1-4.

Tractable part

$$
\left(x_{1}+\cdots+x_{m}=c\right) \vee\left(x_{m+1}=d_{m+1}\right) \vee \cdots \vee\left(x_{n}=d_{n}\right)
$$

Toy Algorithm

1. If $x=c$ then substitute and simplify.
2. $(x=a \vee y=b)$ and $(y=c \vee z=d)$, where $b \neq c$, produce $(x=a \vee z=d)$
3. $(x=a \vee x=a)$ produces $x=a$.
4. Take all linear equations L, solve them if $L \Rightarrow\left(x_{i}=c\right)$ produce $x_{i}=c$.
5. Repeat steps 1-4.

- Real algorithm is much harder.

To sum up

To sum up

To sum up

To sum up

To sum up

To sum up

To sum up

To sum up

To sum up

To sum up

To sum up

To sum up

		CSP					
Domain	finite						
	infinite						

		CSP					
Domain	finite						
	infinite						

		CSP					
Domain	finite						
	infinite						

Full classification

		CSP					
Domain	finite infinite						

Full classification

Infinite Domain CSP

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.
p
NP
p
NP

Undecidable

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.
CSP(Г)
Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.
CSP(Г)
Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.
CSP(Г)
Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$

CSP instances:

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$

CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{1}<x_{3}$,

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}, n_{s}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$

CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{1}<x_{3}$, has a solution

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$

CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{1}<x_{3}$, has a solution
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{1}$,

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$

CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{1}<x_{3}$, has a solution
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{1}$, has no solutions

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$

CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{1}<x_{3}$, has a solution
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{1}$, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .

CSP instances:
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{1}<x_{3}$, has a solution
$x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{1}$, has no solutions
The instance has a solution IFF there is no oriented cycle.

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.
CSP(Г)
Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .
2. $\operatorname{CSP}(\{x<y<z \vee z<y<x\})$

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .
2. $\operatorname{CSP}(\{x<y<z \vee z<y<x\})$ is NP-complete.

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .
2. $\operatorname{CSP}(\{x<y<z \vee z<y<x\})$ is NP-complete.
3. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x\})$

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .
2. $\operatorname{CSP}(\{x<y<z \vee z<y<x\})$ is NP-complete.
3. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x\})$ is in P .

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .
2. $\operatorname{CSP}(\{x<y<z \vee z<y<x\})$ is NP-complete.
3. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x\})$ is in P .
4. $\operatorname{CSP}(\{x=y<z \vee x=z<y\})$

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .
2. $\operatorname{CSP}(\{x<y<z \vee z<y<x\})$ is NP-complete.
3. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x\})$ is in P .
4. $\operatorname{CSP}(\{x=y<z \vee x=z<y\})$ is NP-complete.

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .
2. $\operatorname{CSP}(\{x<y<z \vee z<y<x\})$ is NP-complete.
3. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x\})$ is in P .
4. $\operatorname{CSP}(\{x=y<z \vee x=z<y\})$ is NP-complete.
5. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x, x=y+1\})$

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .
2. $\operatorname{CSP}(\{x<y<z \vee z<y<x\})$ is NP-complete.
3. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x\})$ is in P .
4. $\operatorname{CSP}(\{x=y<z \vee x=z<y\})$ is NP-complete.
5. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x, x=y+1\})$ is NP-complete.

Infinite Domain CSP

Γ is a set of relations on \mathbb{Q}.

CSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula is satisfiable.

Examples

1. $\operatorname{CSP}(\{x<y\})$ is in P .
2. $\operatorname{CSP}(\{x<y<z \vee z<y<x\})$ is NP-complete.
3. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x\})$ is in P .
4. $\operatorname{CSP}(\{x=y<z \vee x=z<y\})$ is NP-complete.
5. $\operatorname{CSP}(\{x=y<z \vee x=z<y \vee y=z<x, x=y+1\})$ is NP-complete.

Classification for temporal constraint languages [Bodirsky, Kára, 2008]

A full classification of the complexity for constraint languages admitting a first-order definition in($\mathbb{Q} ;<$) (P vs NP-complete).

		CSP					
Domain	finite infinite						

Full classification

		CSP					
Domain	finite infinite						

Full classification

Some classifications

		CSP		Quantifed CSP			
Domain	finite						
	infinite						

Full classification

Some classifications

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

CSP(Г)

Given: a sentence

$$
\exists x_{1} \ldots \exists x_{n} R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.
QCSP(Г)
Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$.

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$,

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$,

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$,

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right),
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$, true

Quantified Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

QCSP(Г)

Given: a sentence

$$
\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.
Examples:
$A=\{0,1,2\}, \Gamma=\{x \neq y\}$. QCSP instances:
$\forall x \exists y_{1} \exists y_{2}\left(x \neq y_{1} \wedge x \neq y_{2} \wedge y_{1} \neq y_{2}\right)$, true
$\forall x_{1} \forall x_{2} \forall x_{3} \exists y\left(x_{1} \neq y \wedge x_{2} \neq y \wedge x_{3} \neq y\right)$, false
$\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(x_{1} \neq y_{1} \wedge y_{1} \neq y_{2} \wedge y_{2} \neq x_{2}\right)$, true
Question
What is the complexity of $\operatorname{QCSP}(\Gamma)$ for different Γ ?

QCSP Complexity Classes

QCSP Complexity Classes

- If Γ contains all predicates then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.

QCSP Complexity Classes

- If Γ contains all predicates then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then $\operatorname{QCSP}(\Gamma)$ is in P .

QCSP Complexity Classes

- If Γ contains all predicates then $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete.
- If Γ consists of linear equations in a finite field then $\operatorname{QCSP}(\Gamma)$ is in P .

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on $\{0,1\}$. Then

- $\operatorname{QCSP}(\Gamma)$ is in P if Γ is preserved by an idempotent WNU operation,
- $\operatorname{QCSP}(\Gamma)$ is PSPACE-complete otherwise.

PSPACE

QCSP Complexity Classes

QCSP Complexity Classes

- Put $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ is Γ extended to \boldsymbol{A}^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.

QCSP Complexity Classes

- Put $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ is Γ extended to \boldsymbol{A}^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.

QCSP Complexity Classes

- Put $A^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ is Γ extended to \boldsymbol{A}^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.
- there exists Γ on a 3-element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.

QCSP Complexity Classes

- Put $\boldsymbol{A}^{\prime}=\boldsymbol{A} \cup\{*\}, \Gamma^{\prime}$ is Γ extended to \boldsymbol{A}^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.
- there exists Γ on a 3 -element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- there exists Γ on a 4 -element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where $\mathrm{DP}=\mathrm{NP} \wedge$ coNP.

QCSP Complexity Classes

$-\operatorname{Put} \boldsymbol{A}^{\prime}=A \cup\{*\}, \Gamma^{\prime}$ is Γ extended to \boldsymbol{A}^{\prime}. Then $\operatorname{QCSP}\left(\Gamma^{\prime}\right)$ is equivalent to $\operatorname{CSP}(\Gamma)$.

- there exists Γ on a 3 -element domain such that $\operatorname{QCSP}(\Gamma)$ is coNP-complete.
- there exists Γ on a 4 -element domain such that $\operatorname{QCSP}(\Gamma)$ is DP-complete, where $\mathrm{DP}=\mathrm{NP} \wedge$ coNP.
- there exists Γ on a 10 -element domain such that $\operatorname{QCSP}(\Gamma)$ is Θ_{2}^{P}-complete.

QCSP Complexity Classes

QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on $\{0,1,2\}$ containing $\{x=a \mid a \in\{0,1,2\}\}$. Then $\operatorname{QCSP}(\Gamma)$ is

- in P , or
- NP-complete, or
- coNP-complete, or
- PSPACE-complete.

QCSP Complexity Classes

Theorem [Zhuk, 2021]
QCSP(Γ)

- is either PSpace-complete,
- or in Π_{2}^{P}.

QCSP Complexity Classes

Theorem [Zhuk, 2021]
QCSP(Γ)

- is either PSpace-complete,
- or in Π_{2}^{P}.

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Г)

- is either PSpace-complete,
- or in Π_{2}^{P}.

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Г)

- is either PSpace-complete,
- or in Π_{2}^{P}.

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Г)

- is either PSpace-complete,
- or in Π_{2}^{P}.

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Г)

- is either PSpace-complete,
- or in Π_{2}^{P}.

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Г)

- is either PSpace-complete,
- or in Π_{2}^{P}.

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Г)

- is either PSpace-complete,
- or in Π_{2}^{P}.

There exists Γ on a 6 -element set such that $\operatorname{QCSP}(\Gamma)$ is Π_{2}^{P}-complete.

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Г)

- is either PSpace-complete,
- or in Π_{2}^{P}.

There exists Γ on a 6 -element set such that $\operatorname{QCSP}(\Gamma)$ is Π_{2}^{P}-complete.

Are there any other complexity classes?

		CSP	Quantifed CSP				
Domain	finite						
	infinite						

Full classification

Some classifications

Full classification
Partial classification (for larger domains)

Some classifications

Full classification
Partial classification (for larger domains)

Some classifications

Infinite Domain QCSP

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.
QCSP(Г)
Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide: whether it holds.

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.
QCSP(Г)
Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide: whether it holds.

Examples

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$

QCSP instances:

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$

QCSP instances:
$\forall x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$,

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$

QCSP instances:
$\forall x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, True

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$

QCSP instances:
$\forall x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, True
$\forall x_{1} \forall x_{4} \exists x_{2} \exists x_{3}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$,

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$

QCSP instances:
$\forall x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, True
$\forall x_{1} \forall x_{4} \exists x_{2} \exists x_{3}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, False

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$ is in P.

QCSP instances:
$\forall x_{1} \exists x_{2} \exists x_{3} \exists x_{4}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, True
$\forall x_{1} \forall x_{4} \exists x_{2} \exists x_{3}\left(x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge x_{3}=x_{4}\right)$, False

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in$. Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$ is in P .

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$ is in P .
2. $\operatorname{QCSP}(\{x=y \vee y=z\})$ is NP-complete.

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$. Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$ is in P .
2. $\operatorname{QCSP}(\{x=y \vee y=z\})$ is NP-complete.
3. $\operatorname{QCSP}(\{x=y \rightarrow z=t\})$ is PSPACE-complete [Bodirsky, Chen, 2010].

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in$.
Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$ is in P .
2. $\operatorname{QCSP}(\{x=y \vee y=z\})$ is NP-complete.
3. $\operatorname{QCSP}(\{x=y \rightarrow z=t\})$ is PSPACE-complete [Bodirsky, Chen, 2010].
4. $\operatorname{QCSP}(\{x=y \rightarrow y=z\})$ is PSPACE-complete [Zhuk, Martin, 2021].

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$ is in P .
2. $\operatorname{QCSP}(\{x=y \vee y=z\})$ is NP-complete.
3. $\operatorname{QCSP}(\{x=y \rightarrow z=t\})$ is PSPACE-complete [Bodirsky, Chen, 2010].
4. $\operatorname{QCSP}(\{x=y \rightarrow y=z\})$ is PSPACE-complete [Zhuk, Martin, 2021].

Classification for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]
A full classification of the complexity for constraint languages whose relations are boolean combinations of equalities. (P, NP-complete, PSPACE-complete)

Infinite Domain QCSP

Γ is a set of relations on \mathbb{Q}.

QCSP(Г)

Given: a sentence $\exists y_{1} \forall x_{1} \ldots \exists y_{t} \forall x_{t}\left(R_{1}(\ldots) \wedge \cdots \wedge R_{s}(\ldots)\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it holds.

Examples

1. $\operatorname{QCSP}(\{x=y\})$ is in P .
2. $\operatorname{QCSP}(\{x=y \vee y=z\})$ is NP-complete.
3. $\operatorname{QCSP}(\{x=y \rightarrow z=t\})$ is PSPACE-complete [Bodirsky, Chen, 2010].
4. $\operatorname{QCSP}(\{x=y \rightarrow y=z\})$ is PSPACE-complete [Zhuk, Martin, 2021].

Classification for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]
A full classification of the complexity for constraint languages whose relations are boolean combinations of equalities. (P, NP-complete, PSPACE-complete)

What is the complexity of $\operatorname{QCSP}(\{x=y \rightarrow z>t\})$?

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP				
Domain	finite infinite						

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP			
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

Valued Constraint Satisfaction Problem

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings $A^{n} \rightarrow \mathbb{Q} \cup\{\infty\}$.

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings $A^{n} \rightarrow \mathbb{Q} \cup\{\infty\}$.

$\operatorname{VCSP}(\Gamma)$

Given: a threshold T and a sum $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)$, where $f_{1}, \ldots, f_{s} \in \Gamma$.
Decide: whether $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)<T$ is satisfiable.

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings $A^{n} \rightarrow \mathbb{Q} \cup\{\infty\}$.

VCSP(Г)

Given: a threshold T and a sum $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)$, where $f_{1}, \ldots, f_{s} \in \Gamma$.
Decide: whether $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)<T$ is satisfiable.
Example
$A=\{0,1\}, f(x, y)=\left\{\begin{array}{ll}1, & \text { if } x=y \\ 0, & \text { otherwise }\end{array}\right.$.

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings $A^{n} \rightarrow \mathbb{Q} \cup\{\infty\}$.

$\operatorname{VCSP}(\Gamma)$

Given: a threshold T and a sum $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)$, where $f_{1}, \ldots, f_{s} \in \Gamma$.
Decide: whether $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)<T$ is satisfiable.

Example

$A=\{0,1\}, f(x, y)=\left\{\begin{array}{ll}1, & \text { if } x=y \\ 0, & \text { otherwise }\end{array}\right.$.

- $f\left(x_{1}, x_{2}\right)+f\left(x_{1}, x_{3}\right)+f\left(x_{2}, x_{3}\right)<2$ is an instance $\operatorname{VCSP}(\{f\})$

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings $A^{n} \rightarrow \mathbb{Q} \cup\{\infty\}$.

$\operatorname{VCSP}(\Gamma)$

Given: a threshold T and a sum $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)$, where $f_{1}, \ldots, f_{s} \in \Gamma$.
Decide: whether $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)<T$ is satisfiable.

Example

$A=\{0,1\}, f(x, y)=\left\{\begin{array}{ll}1, & \text { if } x=y \\ 0, & \text { otherwise }\end{array}\right.$.

- $f\left(x_{1}, x_{2}\right)+f\left(x_{1}, x_{3}\right)+f\left(x_{2}, x_{3}\right)<2$ is an instance $\operatorname{VCSP}(\{f\})$
- $\operatorname{VCSP}(\{f\})$ is equivalent to MAX-CUT problem.

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings $A^{n} \rightarrow \mathbb{Q} \cup\{\infty\}$.

$\operatorname{VCSP}(\Gamma)$

Given: a threshold T and a sum $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)$, where $f_{1}, \ldots, f_{s} \in \Gamma$.
Decide: whether $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)<T$ is satisfiable.

Example

$A=\{0,1\}, f(x, y)=\left\{\begin{array}{ll}1, & \text { if } x=y \\ 0, & \text { otherwise }\end{array}\right.$.

- $f\left(x_{1}, x_{2}\right)+f\left(x_{1}, x_{3}\right)+f\left(x_{2}, x_{3}\right)<2$ is an instance $\operatorname{VCSP}(\{f\})$
- $\operatorname{VCSP}(\{f\})$ is equivalent to MAX-CUT problem.
- $\operatorname{VCSP}(\{f\})$ is NP-complete.

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a finite set A, i.e. mappings $A^{n} \rightarrow \mathbb{Q} \cup\{\infty\}$.

$\operatorname{VCSP}(\Gamma)$

Given: a threshold T and a sum $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)$, where $f_{1}, \ldots, f_{s} \in \Gamma$.
Decide: whether $f_{1}(\ldots)+f_{2}(\ldots)+\cdots+f_{s}(\ldots)<T$ is satisfiable.

Example

$A=\{0,1\}, f(x, y)=\left\{\begin{array}{ll}1, & \text { if } x=y \\ 0, & \text { otherwise }\end{array}\right.$.

- $f\left(x_{1}, x_{2}\right)+f\left(x_{1}, x_{3}\right)+f\left(x_{2}, x_{3}\right)<2$ is an instance $\operatorname{VCSP}(\{f\})$
- $\operatorname{VCSP}(\{f\})$ is equivalent to MAX-CUT problem.
- $\operatorname{VCSP}(\{f\})$ is NP-complete.

Complexity classification
[Kolmogorov, Krokhin, Rolínek, 2015+Bulatov, Zhuk, 2017]
A full classification of the complexity for any finite set of cost functions 「 (P vs NP-complete).

		CSP	Quantified CSP	Valued CSP			
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP			
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP		
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in 「

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in 「

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 1

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 1

- Strong version is $1 \mathrm{IN} 3=\{(1,0,0),(0,1,0),(0,0,1)\}$

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in 「

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 1

- Strong version is $1 \mathrm{IN} 3=\{(1,0,0),(0,1,0),(0,0,1)\}$
- Weak version is NAE3 $=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in 「

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 1

- Strong version is $1 \mathrm{IN} 3=\{(1,0,0),(0,1,0),(0,0,1)\}$
- Weak version is NAE3 $=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$
- $\operatorname{CSP}(\{\operatorname{NAE} 3\})$ and $\operatorname{CSP}(\{1 \mathrm{IN} 3\})$ are $\mathrm{NP}-$ hard, but $\operatorname{PCSP}(\{1 \mathrm{IN} 3, \mathrm{NAE} 3\})$ is in P

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in 「

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 1

- Strong version is $1 \mathrm{IN} 3=\{(1,0,0),(0,1,0),(0,0,1)\}$
- Weak version is NAE3 $=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$
- $\operatorname{CSP}(\{\operatorname{NAE} 3\})$ and $\operatorname{CSP}(\{1 \mathrm{IN} 3\})$ are NP-hard, but $\operatorname{PCSP}(\{1 \mathrm{IN} 3, \mathrm{NAE} 3\})$ is in P (promise helps).

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in 「

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 1

- Strong version is $1 \operatorname{IN} 3=\{(1,0,0),(0,1,0),(0,0,1)\}$
- Weak version is NAE3 $=\{0,1\}^{3} \backslash\{(0,0,0),(1,1,1)\}$
- $\operatorname{CSP}(\{\operatorname{NAE} 3\})$ and $\operatorname{CSP}(\{1 \mathrm{IN} 3\})$ are NP-hard, but $\operatorname{PCSP}(\{1 \mathrm{IN} 3, \mathrm{NAE} 3\})$ is in P (promise helps).

Theorem [Ficak, Kozik, Olsák, Stankiewicz, 2019])

A classification of the complexity of $\operatorname{PCSP}(\Gamma)$ for Γ consising of symmetric relations on $\{0,1\}$.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 2 ((K, L)-colorability)
Given a graph G.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 2 ((K, L)-colorability)
Given a graph G. Distinguish between two cases

- the graph is K-colorable;
- the graph is not even L-colorable;

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 2 (($K, L)$-colorability)
Given a graph G. Distinguish between two cases

- the graph is K-colorable;
- the graph is not even L-colorable;

Open questions

- What is the complexity of $(3,6)$-colorability?

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in 「

PCSP(Г)

Given a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)$, Distinguish between two cases:

- Strong version is satisfied
- Weak version is not satisfied

Example 2 (($K, L)$-colorability)
Given a graph G. Distinguish between two cases

- the graph is K-colorable;
- the graph is not even L-colorable;

Open questions

- What is the complexity of $(3,6)$-colorability?
- What is the complexity of $(3,1000000000)$-colorability?

		CSP	Quantified CSP	Valued CSP	Promise CSP		
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP		
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

Counting Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

Counting-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Find the number of solutions.

Counting Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

Counting-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Find the number of solutions.

Theorem [Bulatov, 2008]
A classification of the complexity of Counting-CSP(Г) for every Γ.

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint							

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						

Full classification
Partial classification (for larger domains)

Some classifications

Surjective Constraint Satisfaction Problem

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.
SCSP(Г)
Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula has a surjective solution, that is, a solution such that $\left\{x_{1}, \ldots, x_{n}\right\}=A$.

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.
$\operatorname{SCSP}(\Gamma)$
Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula has a surjective solution, that is, a solution such that $\left\{x_{1}, \ldots, x_{n}\right\}=A$.

Example

$A=\{0,1,2\}, \Gamma=\{x \leq y\}$.

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula has a surjective solution, that is, a solution such that $\left\{x_{1}, \ldots, x_{n}\right\}=A$.

Example

$A=\{0,1,2\}, \Gamma=\{x \leq y\}$. Surjective CSP instances:
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{4}$,

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula has a surjective solution, that is, a solution such that $\left\{x_{1}, \ldots, x_{n}\right\}=A$.

Example

$A=\{0,1,2\}, \Gamma=\{x \leq y\}$. Surjective CSP instances:
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{4}, x_{1}=0, x_{2}=1, x_{3}=x_{4}=2$.

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula has a surjective solution, that is, a solution such that $\left\{x_{1}, \ldots, x_{n}\right\}=A$.

Example

$A=\{0,1,2\}, \Gamma=\{x \leq y\}$. Surjective CSP instances:
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{4}, x_{1}=0, x_{2}=1, x_{3}=x_{4}=2$.
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{1}$,

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula has a surjective solution, that is, a solution such that $\left\{x_{1}, \ldots, x_{n}\right\}=A$.

Example

$A=\{0,1,2\}, \Gamma=\{x \leq y\}$. Surjective CSP instances:
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{4}, x_{1}=0, x_{2}=1, x_{3}=x_{4}=2$.
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{1}$, No surjective solutions

Surjective Constraint Satisfaction Problem
Γ is a set of relations on A.

SCSP(Г)

Given: a conjunction of relations, i.e. a formula

$$
R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n}}\right)
$$

where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether the formula has a surjective solution, that is, a solution such that $\left\{x_{1}, \ldots, x_{n}\right\}=A$.

Example

$A=\{0,1,2\}, \Gamma=\{x \leq y\}$. Surjective CSP instances:
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{4}, x_{1}=0, x_{2}=1, x_{3}=x_{4}=2$.
$x_{1} \leq x_{2} \wedge x_{2} \leq x_{3} \wedge x_{3} \leq x_{1}$, No surjective solutions

Question

What is the complexity of the $\operatorname{SCSP}(\Gamma) ?$

Surjective Graph Homomorphism Problem

Surjective Graph Homomorphism Problem

Let H be a finite graph.

Surjective Graph Homomorphism Problem

Let H be a finite graph.

SurjHom (H):

Given: a graph G.
Decide: whether there exists a surjective homomorphism from G to H.

Surjective Graph Homomorphism Problem

Let H be a finite graph.

SurjHom (H) :

Given: a graph G.
Decide: whether there exists a surjective homomorphism from G to H.

Graph H

Surjective Graph Homomorphism Problem

Let H be a finite graph.

SurjHom (H) :

Given: a graph G.
Decide: whether there exists a surjective homomorphism from G to H.

Graph H

$\operatorname{SurjHom}(H)$ is equivalent to $\operatorname{SCSP}(\{x+y \neq 0 \bmod 3\})$.

History

- The complexity was described for a two-element domain [Creignou, N., and Hébrard, 1997].
- The complexity was described for a two-element domain [Creignou, N., and Hébrard, 1997].
- The complexity of $\operatorname{SurjHom}(H)$ was described for all graphs of size 4 other than $\mathcal{C}_{4}^{\text {ref }}[\mathrm{S}$. Dantas, Figueiredo, Gravier, Klein, 2005]

History

- The complexity was described for a two-element domain [Creignou, N., and Hébrard, 1997].
- The complexity of $\operatorname{SurjHom}(H)$ was described for all graphs of size 4 other than $\mathcal{C}_{4}^{\text {ref }}[\mathrm{S}$. Dantas, Figueiredo, Gravier, Klein, 2005]
- the complexity of $\operatorname{SurjHom}(H)$ was described for partially reflexive forests [Golovach, Paulusma, Song, 2011]

History

- The complexity was described for a two-element domain [Creignou, N., and Hébrard, 1997].
- The complexity of $\operatorname{SurjHom}(H)$ was described for all graphs of size 4 other than $\mathcal{C}_{4}^{\text {ref }}[\mathrm{S}$. Dantas, Figueiredo, Gravier, Klein, 2005]
- the complexity of $\operatorname{SurjHom}(H)$ was described for partially reflexive forests [Golovach, Paulusma, Song, 2011]
- $\operatorname{SurjHom}\left(\mathcal{C}_{4}^{\text {ref }}\right)$ is NP-complete [Martin, Paulusma, Vikas, 2011]

History

- The complexity was described for a two-element domain [Creignou, N., and Hébrard, 1997].
- The complexity of $\operatorname{SurjHom}(H)$ was described for all graphs of size 4 other than $\mathcal{C}_{4}^{\text {ref }}[\mathrm{S}$. Dantas, Figueiredo, Gravier, Klein, 2005]
- the complexity of $\operatorname{SurjHom}(H)$ was described for partially reflexive forests [Golovach, Paulusma, Song, 2011]
- $\operatorname{SurjHom}\left(\mathcal{C}_{4}^{\text {ref }}\right)$ is NP-complete [Martin, Paulusma, Vikas, 2011]
- $\operatorname{SurjHom}\left(\mathcal{C}_{6}\right)$ is NP-complete [Vikas, 2017]

History

- The complexity was described for a two-element domain [Creignou, N., and Hébrard, 1997].
- The complexity of $\operatorname{SurjHom}(H)$ was described for all graphs of size 4 other than $\mathcal{C}_{4}^{\text {ref }}[\mathrm{S}$. Dantas, Figueiredo, Gravier, Klein, 2005]
- the complexity of $\operatorname{SurjHom}(H)$ was described for partially reflexive forests [Golovach, Paulusma, Song, 2011]
- $\operatorname{SurjHom}\left(\mathcal{C}_{4}^{\text {ref }}\right)$ is NP-complete [Martin, Paulusma, Vikas, 2011]
- $\operatorname{SurjHom}\left(\mathcal{C}_{6}\right)$ is NP-complete [Vikas, 2017]
- The No-Rainbow Problem is NP-complete [Zhuk, 2020] $\operatorname{SCSP}(\{(a, b, c) \mid\{a, b, c\} \neq\{0,1,2\}\})$.

History

- The complexity was described for a two-element domain [Creignou, N., and Hébrard, 1997].
- The complexity of $\operatorname{SurjHom}(H)$ was described for all graphs of size 4 other than $\mathcal{C}_{4}^{\text {ref }}[\mathrm{S}$. Dantas, Figueiredo, Gravier, Klein, 2005]
- the complexity of $\operatorname{SurjHom}(H)$ was described for partially reflexive forests [Golovach, Paulusma, Song, 2011]
- $\operatorname{SurjHom}\left(\mathcal{C}_{4}^{\text {ref }}\right)$ is NP-complete [Martin, Paulusma, Vikas, 2011]
- $\operatorname{SurjHom}\left(\mathcal{C}_{6}\right)$ is NP-complete [Vikas, 2017]
- The No-Rainbow Problem is NP-complete [Zhuk, 2020] $\operatorname{SCSP}(\{(a, b, c) \mid\{a, b, c\} \neq\{0,1,2\}\})$.
- The complexity cannot be described in terms of polymorphisms [Zhuk, 2020]

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						

Full classification
Partial classification (for larger domains)

Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP		
D	finite							
D	infinite							
	surjective							
Global	balanced							
Constraint								

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications

Balanced CSP

Γ is a set of relations on a finite set A.

Balanced CSP

Γ is a set of relations on a finite set A.

Balanced-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a balanced solution, i.e., a solution with equal number of every element.

Balanced CSP

Γ is a set of relations on a finite set A.

Balanced-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a balanced solution, i.e., a solution with equal number of every element.

Balanced-CSP $(=)$ on $\{0,1\}$

Given an instance $x_{i_{1}}=x_{j_{1}} \wedge \cdots \wedge x_{i_{s}}=x_{j_{s}}$. Decide whether it has a solution with equal number of 0 and 1 .

Balanced CSP

Γ is a set of relations on a finite set A.

Balanced-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a balanced solution, i.e., a solution with equal number of every element.

Balanced-CSP $(=)$ on $\{0,1\}$

Given an instance $x_{i_{1}}=x_{j_{1}} \wedge \cdots \wedge x_{i_{s}}=x_{j_{s}}$. Decide whether it has a solution with equal number of 0 and 1 .

Balanced- $\operatorname{CSP}(\leq)$ on $\{0,1\}$

Given an instance $x_{i_{1}} \leq x_{j_{1}} \wedge \cdots \wedge x_{i_{s}} \leq x_{j_{s}}$. Decide whether it has a solution with equal number of 0 and 1 .

Balanced CSP

Γ is a set of relations on a finite set A.

Balanced-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a balanced solution, i.e., a solution with equal number of every element.

Balanced- $\operatorname{CSP}(=)$ on $\{0,1\}$
 solvable in polynomial time

Given an instance $x_{i_{1}}=x_{j_{1}} \wedge \cdots \wedge x_{i_{s}}=x_{j_{s}}$. Decide whether it has a solution with equal number of 0 and 1 .

Balanced- $\operatorname{CSP}(\leq)$ on $\{0,1\}$

Given an instance $x_{i_{1}} \leq x_{j_{1}} \wedge \cdots \wedge x_{i_{s}} \leq x_{j_{s}}$. Decide whether it has a solution with equal number of 0 and 1 .

Balanced CSP

Γ is a set of relations on a finite set A.

Balanced-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a balanced solution, i.e., a solution with equal number of every element.

Balanced- $\operatorname{CSP}(=)$ on $\{0,1\}$
 solvable in polynomial time

Given an instance $x_{i_{1}}=x_{j_{1}} \wedge \cdots \wedge x_{i_{s}}=x_{j_{s}}$. Decide whether it has a solution with equal number of 0 and 1 .

Balanced-CSP (\leq) on $\{0,1\} \quad$ NP-complete

Given an instance $x_{i_{1}} \leq x_{j_{1}} \wedge \cdots \wedge x_{i_{s}} \leq x_{j_{s}}$. Decide whether it has a solution with equal number of 0 and 1 .

Balanced CSP

Γ is a set of relations on a finite set A.

Balanced-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a balanced solution, i.e., a solution with equal number of every element.

Balanced- $\operatorname{CSP}(=)$ on $\{0,1\}$
 solvable in polynomial time

Given an instance $x_{i_{1}}=x_{j_{1}} \wedge \cdots \wedge x_{i_{s}}=x_{j_{s}}$. Decide whether it has a solution with equal number of 0 and 1 .

Balanced-CSP (\leq) on $\{0,1\} \quad$ NP-complete

Given an instance $x_{i_{1}} \leq x_{j_{1}} \wedge \cdots \wedge x_{i_{s}} \leq x_{j_{s}}$. Decide whether it has a solution with equal number of 0 and 1 .

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classification of the complexity of Balanced-CSP($\Gamma)$ and Cardinality- $\operatorname{CSP}(\Gamma)$ for each Γ on $\{0,1\}$.

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP		
D	finite							
D	infinite							
	surjective							
Global	balanced							
Constraint								

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective balanced						

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality						

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications

Global cardinality constraint

Γ is a set of relations on a finite set A.

Cardinality-CSP(Γ)

Given: a mapping $\pi: A \rightarrow \mathbb{N}$ and a formula
$R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where
$R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a solution containing each element $a \in A$ exactly $\pi(a)$ times.

Global cardinality constraint

Γ is a set of relations on a finite set A.

Cardinality-CSP(Г)

Given: a mapping $\pi: A \rightarrow \mathbb{N}$ and a formula
$R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where
$R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a solution containing each element $a \in A$ exactly $\pi(a)$ times.

Cardinality-CSP(Linear Equations in \mathbb{Z}_{2})

Given a system of linear equations in \mathbb{Z}_{2} and $k \in \mathbb{N}$.
Decide whether there exists a solution with exactly $k 1 \mathrm{~s}$.

Global cardinality constraint

Γ is a set of relations on a finite set A.

Cardinality-CSP(Г)

Given: a mapping $\pi: A \rightarrow \mathbb{N}$ and a formula
$R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where
$R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a solution containing each element $a \in A$ exactly $\pi(a)$ times.

Cardinality-CSP(Linear Equations in \mathbb{Z}_{2}) NP-complete

Given a system of linear equations in \mathbb{Z}_{2} and $k \in \mathbb{N}$.
Decide whether there exists a solution with exactly $k 1 \mathrm{~s}$.

Global cardinality constraint

Γ is a set of relations on a finite set A.

Cardinality-CSP(Г)

Given: a mapping $\pi: A \rightarrow \mathbb{N}$ and a formula
$R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where
$R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a solution containing each element $a \in A$ exactly $\pi(a)$ times.

Cardinality-CSP(Linear Equations in \mathbb{Z}_{2}) NP-complete

Given a system of linear equations in \mathbb{Z}_{2} and $k \in \mathbb{N}$.
Decide whether there exists a solution with exactly $k 1 \mathrm{~s}$.

Theorem [Bulatov, Marx, 2009]

A classification of the complexity of Cardinality-CSP(Γ) for each Γ.

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality						

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality						

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality modulo M						

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications

Global modular constraint

Mod $_{M}$-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a solution satisfying $x_{1}+\cdots+x_{n}=0$ $\bmod M$.

Global modular constraint

Mod $_{M}$-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a solution satisfying $x_{1}+\cdots+x_{n}=0$ $\bmod M$.

- If Γ consists of linear equations on $\{0,1\}$ and $M=25$ then $\operatorname{Mod}_{M}-\operatorname{CSP}(\Gamma)$ is tractable

Global modular constraint

Mod $_{M}$-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1,1}}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a solution satisfying $x_{1}+\cdots+x_{n}=0$ $\bmod M$.

- If Γ consists of linear equations on $\{0,1\}$ and $M=25$ then $\operatorname{Mod}_{M}-\operatorname{CSP}(\Gamma)$ is tractable
- If Γ consists of linear equations on $\{0,1\}$ and $M=15$ then $\operatorname{Mod}_{M}-\operatorname{CSP}(\Gamma)$ is not tractable

Global modular constraint

Mod $_{M}$ - $\operatorname{CSP}(\Gamma)$

Given: a formula $R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1, n_{1}}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s}, n_{s}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$.
Decide: whether it has a solution satisfying $x_{1}+\cdots+x_{n}=0$ $\bmod M$.

- If Γ consists of linear equations on $\{0,1\}$ and $M=25$ then $\operatorname{Mod}_{M}-\operatorname{CSP}(\Gamma)$ is tractable
- If Γ consists of linear equations on $\{0,1\}$ and $M=15$ then $\operatorname{Mod}_{M}-\operatorname{CSP}(\Gamma)$ is not tractable
- If Γ consists of linear equations on $\{0,1\}$ and $M=24$ then the complexity of $\operatorname{Mod}_{M}-\operatorname{CSP}(\Gamma)$ is not known.

$$
\begin{cases}x_{1}+x_{2}+x_{3}=0 & \bmod 2 \\ x_{1}+x_{3}+x_{5}=0 & \bmod 2 \\ x_{2}+x_{4}+x_{5}=1 & \bmod 2 \\ x_{2}+x_{3}+x_{5}=0 & \bmod 24\end{cases}
$$

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality modulo M						

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality modulo M						

Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications
\square Some results

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality						
	modulo M						
Structural Restriction							

\square Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications
\square Some results

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality						
	modulo M						
Structural Restriction	edge						

\square Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications
\square Some results

Edge Constraint Satisfaction Problem
Γ is a set of relations on a finite set A.

Edge Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

Edge-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$ and every variable appears exactly twice. Decide: whether it has a solution.

Edge Constraint Satisfaction Problem

Γ is a set of relations on a finite set A.

Edge-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s}, n_{s}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$ and every variable appears exactly twice. Decide: whether it has a solution.

Edge Constraint Satisfaction Problem

Γ is a set of relations on a finite set \boldsymbol{A}.

Edge-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$ and every variable appears exactly twice. Decide: whether it has a solution.

- Edge-CSP $(\{1 \mathrm{IN} 2,1 \mathrm{IN} 3,1 \mathrm{IN} 4, \ldots\})$ is equivalent to the Perfect Matching Problem.

Edge Constraint Satisfaction Problem

Γ is a set of relations on a finite set \boldsymbol{A}.

Edge-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{s}\left(x_{i_{s, 1}}, \ldots, x_{i_{s, n_{s}}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$ and every variable appears exactly twice. Decide: whether it has a solution.

- Edge-CSP (\{1IN2, 1IN3, 1IN4, ... $\}$) is equivalent to the Perfect Matching Problem.

Edge Constraint Satisfaction Problem
Γ is a set of relations on a finite set \boldsymbol{A}.

Edge-CSP(Г)

Given: a formula $R_{1}\left(x_{i_{1}, 1}, \ldots, x_{i_{1}, n_{1}}\right) \wedge \cdots \wedge R_{S}\left(x_{i_{s, 1}}, \ldots, x_{i_{s}, n_{s}}\right)$, where $R_{1}, \ldots, R_{s} \in \Gamma$ and every variable appears exactly twice. Decide: whether it has a solution.

- Edge-CSP $(\{1 \mathrm{IN} 2,1 \mathrm{IN} 3,1 \mathrm{IN} 4, \ldots\})$ is equivalent to the Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classification of the complexity for planar Edge-CSP(Г) for every Γ on $\{0,1\}$.

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality						
	modulo M						
Structural Restriction	edge						

\square Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications
\square Some results

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality						
	modulo M						
Structural Restriction	edge						

\square Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications
\square Some results

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality						
	modulo M						
Structural Restriction	edge						

\square Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications
\square Some results

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	Approxim. CSP
Domain	finite						
	infinite						
Global Constraint	surjective	balanced					
	cardinality						
	modulo M						
Structural Restriction	edge planar						

\square Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications
\square Some results

		CSP	Quantified CSP	Valued CSP	Promise CSP	Counting CSP	Approxim. CSP
Domain	finite						
	infinite						
Global Constraint	surjective						
	balanced						
	cardinality						
	modulo M						
Structural Restriction	edge						
	planar						

\square Full classification
Partial classification (for larger domains)
Classification for 2-element domain
Some classifications
\square Some results

