
Constraint Satisfaction Problem:
what makes the problem easy

Dmitriy Zhuk

International Congress of Matematicians

CoCoSym: Symmetry in Computational Complexity

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 771005)

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem?

Nobody knows!

Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!

P

PNP

20

20

What is CSP?

Constraint Satisfaction Problem
is a triple ⟨X,D,C⟩, where
▶ X = {x1, . . . , xn} is a set of variables,

▶ D = {D1, . . . ,Dn} is a set of the respective domains of
values, and

▶ C = {C1, . . . ,Cm} is a set of constraints,

Almost everything
is CSP!!!

What is CSP?

Constraint Satisfaction Problem
is a triple ⟨X,D,C⟩, where
▶ X = {x1, . . . , xn} is a set of variables,

▶ D = {D1, . . . ,Dn} is a set of the respective domains of
values, and

▶ C = {C1, . . . ,Cm} is a set of constraints,

Almost everything
is CSP!!!

What is CSP?

Constraint Satisfaction Problem
is a triple ⟨X,D,C⟩, where
▶ X = {x1, . . . , xn} is a set of variables,

▶ D = {D1, . . . ,Dn} is a set of the respective domains of
values, and

▶ C = {C1, . . . ,Cm} is a set of constraints,

Almost everything
is CSP!!!

CSP example: map coloring

Problem: assign each territory a color such that no two adjacent
territories have the same color

Variables:

Domain of variables:

Constraints:

Another example: sudoku

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Variables:
 Each (open) square

 Domains:
 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch
of pairwise inequality
constraints)

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4,

No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions

x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1,

x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?

Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.

System of linear equations in a �nite �eld
x1 + x2 + 2x3 = 0 mod 3
x1 + 2x3 + x5 = 0 mod 3
2x2 + x4 + x5 = 0 mod 3
x1 + x3 + 2x5 = 1 mod 3

Gaussian elimination solves the problem.

Domain D = {0,1,2}
Constraint language
Γ = {a1x + a2y + a3z = a0 | a0,a1,a2,a3 ∈ D}.

System of linear equations in a �nite �eld
x1 + x2 + 2x3 = 0 mod 3
x1 + 2x3 + x5 = 0 mod 3
2x2 + x4 + x5 = 0 mod 3
x1 + x3 + 2x5 = 1 mod 3

Gaussian elimination solves the problem.

Domain D = {0,1,2}
Constraint language
Γ = {a1x + a2y + a3z = a0 | a0,a1,a2,a3 ∈ D}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=
x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=

̸=

x1

x2

x3

x4

x7

x6

x6

x1

x3

x4

x2

x7

x6

Contradiction!

▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

2-S
AT

3-S
AT

Linear
Equations

Graph
2-Colouring

Graph
3-Colouring

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) de�nition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-de�nes Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]

Γ2 pp-de�nes Γ1 IFF every operation preserving Γ2 preserves Γ1

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) de�nition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-de�nes Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]

Γ2 pp-de�nes Γ1 IFF every operation preserving Γ2 preserves Γ1

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) de�nition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-de�nes Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]

Γ2 pp-de�nes Γ1 IFF every operation preserving Γ2 preserves Γ1

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) de�nition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-de�nes Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]

Γ2 pp-de�nes Γ1 IFF every operation preserving Γ2 preserves Γ1

Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) de�nition is

R(. . .) = ∃y1 . . . ∃yℓ R1(. . .) ∧ . . . ∧ Rs(. . .)

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-de�nes Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]

Γ2 pp-de�nes Γ1 IFF every operation preserving Γ2 preserves Γ1

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is

(
0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ i� f

a1
1 . . . a1

n

⩾ . . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2


or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is

(
0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ i� f

a1
1 . . . a1

n

⩾ . . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2


or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2}

is

(
0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ i� f

a1
1 . . . a1

n

⩾ . . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2


or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is

(
0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ i� f

a1
1 . . . a1

n

⩾ . . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2


or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is

(
0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ i� f

a1
1 . . . a1

n

⩾ . . . ⩾
a2

1 . . . a2
n

 =

b1

⩾

b2



or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is

(
0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ i� f

a1
1 . . . a1

n

⩾ . . . ⩾
a2

1 . . . a2
n

 =

b1

⩾

b2


or, equivalently, f is monotone.

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .

Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU.

Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU.

Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU.

Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A,

D = B0 ⊔ B1 s.t. D3 \ (B3
0 ∪ B3

1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1

s.t. D3 \ (B3
0 ∪ B3

1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)

▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU. Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.

Tractable part

2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations

Γ consists of relations a1x1 + · · ·+ anxn = a0.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on {0,1}.
R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ of the form

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Tractable part

2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations

Γ consists of relations a1x1 + · · ·+ anxn = a0.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on {0,1}.
R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ of the form

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Tractable part

2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations

Γ consists of relations a1x1 + · · ·+ anxn = a0.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on {0,1}.
R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ of the form

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Tractable part

2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations

Γ consists of relations a1x1 + · · ·+ anxn = a0.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on {0,1}.
R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ of the form

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Tractable part

2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations

Γ consists of relations a1x1 + · · ·+ anxn = a0.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on {0,1}.

R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ of the form

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Tractable part

2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations

Γ consists of relations a1x1 + · · ·+ anxn = a0.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on {0,1}.
R is preserved by a WNU ⇒

R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ of the form

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Tractable part

2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations

Γ consists of relations a1x1 + · · ·+ anxn = a0.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on {0,1}.
R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),

where each Ri is

▶ pp-de�nable from R
▶ of the form

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Tractable part

2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations

Γ consists of relations a1x1 + · · ·+ anxn = a0.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on {0,1}.
R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R

▶ of the form
(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Tractable part

2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations

Γ consists of relations a1x1 + · · ·+ anxn = a0.

Theorem [Zhuk, 2015]

Suppose R is a multi-sorted relation on {0,1}.
R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ of the form

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Tractable part

Theorem [Zhuk, 2015]

R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ ∃A1, . . . ,An ⊆ A s. t. (A1 × A2 × · · · × An) ∩ Ri can be

represented as a disjunction of a linear equation and
equalities.

Tractable part

Theorem [Zhuk, 2015]

R is preserved by a WNU ⇒

R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ ∃A1, . . . ,An ⊆ A s. t. (A1 × A2 × · · · × An) ∩ Ri can be

represented as a disjunction of a linear equation and
equalities.

Tractable part

Theorem [Zhuk, 2015]

R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),

where each Ri is

▶ pp-de�nable from R
▶ ∃A1, . . . ,An ⊆ A s. t. (A1 × A2 × · · · × An) ∩ Ri can be

represented as a disjunction of a linear equation and
equalities.

Tractable part

Theorem [Zhuk, 2015]

R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R

▶ ∃A1, . . . ,An ⊆ A s. t. (A1 × A2 × · · · × An) ∩ Ri can be
represented as a disjunction of a linear equation and
equalities.

Tractable part

Theorem [Zhuk, 2015]

R is preserved by a WNU ⇒R(. . .) = R1(. . .) ∧ · · · ∧ Rs(. . .),
where each Ri is

▶ pp-de�nable from R
▶ ∃A1, . . . ,An ⊆ A s. t. (A1 × A2 × · · · × An) ∩ Ri can be

represented as a disjunction of a linear equation and
equalities.

R)R(. . .) = R1(. . .) ^ · · · ^ Rs(. . .)
Ri

I R
I 9A1, . . . , An ✓ A (A1 ⇥ A2 ⇥ · · · ⇥ An) \ Ri

RE A

Не

R)R(. . .) = R1(. . .) ^ · · · ^ Rs(. . .)
Ri

I R
I 9A1, . . . , An ✓ A (A1 ⇥ A2 ⇥ · · · ⇥ An) \ Ri

RE A

Не

R)R(. . .) = R1(. . .) ^ · · · ^ Rs(. . .)
Ri

I R
I 9A1, . . . , An ✓ A (A1 ⇥ A2 ⇥ · · · ⇥ An) \ Ri

RE A

t

ДА
ЙА

Tractable part

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Toy Algorithm

1. If x = c then substitute and simplify.

2. (x = a ∨ y = b) and (y = c ∨ z = d), where b ̸= c,
produce (x = a ∨ z = d)

3. (x = a ∨ x = a) produces x = a.
4. Take all linear equations L, solve them

if L ⇒ (xi = c) produce xi = c.
5. Repeat steps 1-4.

▶ Real algorithm is much harder.

Tractable part

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Toy Algorithm

1. If x = c then substitute and simplify.

2. (x = a ∨ y = b) and (y = c ∨ z = d), where b ̸= c,
produce (x = a ∨ z = d)

3. (x = a ∨ x = a) produces x = a.
4. Take all linear equations L, solve them

if L ⇒ (xi = c) produce xi = c.
5. Repeat steps 1-4.

▶ Real algorithm is much harder.

Tractable part

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Toy Algorithm

1. If x = c then substitute and simplify.

2. (x = a ∨ y = b) and (y = c ∨ z = d), where b ̸= c,
produce (x = a ∨ z = d)

3. (x = a ∨ x = a) produces x = a.
4. Take all linear equations L, solve them

if L ⇒ (xi = c) produce xi = c.
5. Repeat steps 1-4.

▶ Real algorithm is much harder.

Tractable part

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Toy Algorithm

1. If x = c then substitute and simplify.

2. (x = a ∨ y = b) and (y = c ∨ z = d), where b ̸= c,
produce (x = a ∨ z = d)

3. (x = a ∨ x = a) produces x = a.
4. Take all linear equations L, solve them

if L ⇒ (xi = c) produce xi = c.
5. Repeat steps 1-4.

▶ Real algorithm is much harder.

Tractable part

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Toy Algorithm

1. If x = c then substitute and simplify.

2. (x = a ∨ y = b) and (y = c ∨ z = d), where b ̸= c,
produce (x = a ∨ z = d)

3. (x = a ∨ x = a) produces x = a.

4. Take all linear equations L, solve them
if L ⇒ (xi = c) produce xi = c.

5. Repeat steps 1-4.

▶ Real algorithm is much harder.

Tractable part

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Toy Algorithm

1. If x = c then substitute and simplify.

2. (x = a ∨ y = b) and (y = c ∨ z = d), where b ̸= c,
produce (x = a ∨ z = d)

3. (x = a ∨ x = a) produces x = a.
4. Take all linear equations L, solve them

if L ⇒ (xi = c) produce xi = c.

5. Repeat steps 1-4.

▶ Real algorithm is much harder.

Tractable part

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Toy Algorithm

1. If x = c then substitute and simplify.

2. (x = a ∨ y = b) and (y = c ∨ z = d), where b ̸= c,
produce (x = a ∨ z = d)

3. (x = a ∨ x = a) produces x = a.
4. Take all linear equations L, solve them

if L ⇒ (xi = c) produce xi = c.
5. Repeat steps 1-4.

▶ Real algorithm is much harder.

Tractable part

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Toy Algorithm

1. If x = c then substitute and simplify.

2. (x = a ∨ y = b) and (y = c ∨ z = d), where b ̸= c,
produce (x = a ∨ z = d)

3. (x = a ∨ x = a) produces x = a.
4. Take all linear equations L, solve them

if L ⇒ (xi = c) produce xi = c.
5. Repeat steps 1-4.

▶ Real algorithm is much harder.

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed

NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

To sum up

WNU
polymorpism

Any CSP(∆)
can be

expressed
NP-complete

Horn-Sat

2-Sat

+

+

+

Linear

Local
Consistency
Checking

Gaussian
elimination

YES

NO

Quanti�ed Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domain)

Full classi�cation

Quanti�ed Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domain)

Full classi�cation

Quanti�ed Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domain)

Full classi�cation

Quanti�ed Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domain)

Full classi�cation

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

PNP

PNP

Undecidable

Р

i

Undecidable

Р

i

Undecidable

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y})

is in P.

CSP instances:

x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3,

has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution

x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1,

has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions

The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y})

is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x})

is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x})

is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y})

is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1})

is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

2. CSP({x < y < z ∨ z < y < x}) is NP-complete.

3. CSP({x = y < z ∨ x = z < y ∨ y = z < x}) is in P.

4. CSP({x = y < z ∨ x = z < y}) is NP-complete.

5. CSP({x = y < z ∨ x = z < y ∨ y = z < x , x = y + 1}) is NP-complete.

Classi�cation for temporal constraint languages [Bodirsky, K�ara, 2008]

A full classi�cation of the complexity for constraint languages
admitting a �rst-order de�nition in(Q;<) (P vs NP-complete).

Quanti�ed Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domain)

Full classi�cation

Quanti�ed Valued Promise Counting Approxim.

CSP

CSP CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domain)

Full classi�cation

Quanti�ed

Valued Promise Counting Approxim.

CSP
CSP

CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domain)

Full classi�cation

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for di�erent Γ?

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}.

QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for di�erent Γ?

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2),

true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for di�erent Γ?

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for di�erent Γ?

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y),

false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for di�erent Γ?

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for di�erent Γ?

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2),

true

Question

What is the complexity of QCSP(Γ) for di�erent Γ?

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for di�erent Γ?

Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false

∀x1∃y1∀x2∃y2(x1 ̸= y1 ∧ y1 ̸= y2 ∧ y2 ̸= x2), true

Question

What is the complexity of QCSP(Γ) for di�erent Γ?

20

O

PSPACE

Ksp
PSPACE

QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a �nite �eld then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU

operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE

QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a �nite �eld then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU

operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P

PSPACE

QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a �nite �eld then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU

operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE

QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a �nite �eld then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU

operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.

P PSPACE

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0,1,2} containing
{x = a | a ∈ {0,1,2}}. Then QCSP(Γ) is
▶ in P, or

▶ NP-complete, or

▶ coNP-complete, or

▶ PSPACE-complete.

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0,1,2} containing
{x = a | a ∈ {0,1,2}}. Then QCSP(Γ) is
▶ in P, or

▶ NP-complete, or

▶ coNP-complete, or

▶ PSPACE-complete.

P

NP

PSPACE
coNP

DP

ΘP
2

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2

ΠP
2

PSPACE

Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .

P

NP

coNP

DP

ΘP
2 ΠP

2

PSPACE

Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?

Quanti�ed

Valued Promise Counting Approxim.

CSP
CSP

CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domain)

Full classi�cation

Quanti�ed

Valued Promise Counting Approxim.

CSP
CSP

CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed

Valued Promise Counting Approxim.

CSP
CSP

CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:

∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4),

True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True

∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4),

False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classi�cation for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classi�cation of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x = y → z > t})?

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classi�cation for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classi�cation of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x = y → z > t})?

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classi�cation for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classi�cation of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x = y → z > t})?

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classi�cation for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classi�cation of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x = y → z > t})?

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classi�cation for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classi�cation of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x = y → z > t})?

In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . .) ∧ · · · ∧ Rs(. . .)), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y}) is in P.

2. QCSP({x = y ∨ y = z}) is NP-complete.

3. QCSP({x = y → z = t}) is PSPACE-complete [Bodirsky, Chen, 2010].

4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classi�cation for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classi�cation of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x = y → z > t})?

Quanti�ed

Valued Promise Counting Approxim.

CSP
CSP

CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed

Valued Promise Counting Approxim.

CSP
CSP

CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued

Promise Counting Approxim.

CSP
CSP CSP

CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a �nite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satis�able.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classi�cation
[Kolmogorov, Krokhin, Rol�inek, 2015+Bulatov, Zhuk, 2017]

A full classi�cation of the complexity for any �nite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a �nite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satis�able.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classi�cation
[Kolmogorov, Krokhin, Rol�inek, 2015+Bulatov, Zhuk, 2017]

A full classi�cation of the complexity for any �nite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a �nite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satis�able.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classi�cation
[Kolmogorov, Krokhin, Rol�inek, 2015+Bulatov, Zhuk, 2017]

A full classi�cation of the complexity for any �nite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a �nite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satis�able.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classi�cation
[Kolmogorov, Krokhin, Rol�inek, 2015+Bulatov, Zhuk, 2017]

A full classi�cation of the complexity for any �nite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a �nite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satis�able.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})

▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classi�cation
[Kolmogorov, Krokhin, Rol�inek, 2015+Bulatov, Zhuk, 2017]

A full classi�cation of the complexity for any �nite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a �nite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satis�able.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classi�cation
[Kolmogorov, Krokhin, Rol�inek, 2015+Bulatov, Zhuk, 2017]

A full classi�cation of the complexity for any �nite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a �nite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satis�able.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classi�cation
[Kolmogorov, Krokhin, Rol�inek, 2015+Bulatov, Zhuk, 2017]

A full classi�cation of the complexity for any �nite set of cost
functions Γ (P vs NP-complete).

Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a �nite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . .) + f2(. . .) + · · ·+ fs(. . .),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . .) + f2(. . .) + · · ·+ fs(. . .) < T is satis�able.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classi�cation
[Kolmogorov, Krokhin, Rol�inek, 2015+Bulatov, Zhuk, 2017]

A full classi�cation of the complexity for any �nite set of cost
functions Γ (P vs NP-complete).

Quanti�ed Valued

Promise Counting Approxim.

CSP
CSP CSP

CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued

Promise Counting Approxim.

CSP
CSP CSP

CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise

Counting Approxim.

CSP
CSP CSP CSP

CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Ols�ak, Stankiewicz, 2019])

A classi�cation of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Ols�ak, Stankiewicz, 2019])

A classi�cation of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Ols�ak, Stankiewicz, 2019])

A classi�cation of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Ols�ak, Stankiewicz, 2019])

A classi�cation of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}

▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})
is in P (promise helps).

Theorem [Ficak, Kozik, Ols�ak, Stankiewicz, 2019])

A classi�cation of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P

(promise helps).

Theorem [Ficak, Kozik, Ols�ak, Stankiewicz, 2019])

A classi�cation of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Ols�ak, Stankiewicz, 2019])

A classi�cation of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Ols�ak, Stankiewicz, 2019])

A classi�cation of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 2 ((K , L)-colorability)

Given a graph G. Distinguish between two cases

▶ the graph is K -colorable;

▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 2 ((K , L)-colorability)

Given a graph G.

Distinguish between two cases

▶ the graph is K -colorable;

▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 2 ((K , L)-colorability)

Given a graph G. Distinguish between two cases

▶ the graph is K -colorable;

▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 2 ((K , L)-colorability)

Given a graph G. Distinguish between two cases

▶ the graph is K -colorable;

▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 2 ((K , L)-colorability)

Given a graph G. Distinguish between two cases

▶ the graph is K -colorable;

▶ the graph is not even L-colorable;

Open questions

▶ What is the complexity of (3,6)-colorability?

▶ What is the complexity of (3,1000000000)-colorability?

Quanti�ed Valued Promise

Counting Approxim.

CSP
CSP CSP CSP

CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise

Counting Approxim.

CSP
CSP CSP CSP

CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Counting Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Counting-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Find the number of solutions.

Theorem [Bulatov, 2008]

A classi�cation of the complexity of Counting-CSP(Γ) for every Γ.

Counting Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Counting-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Find the number of solutions.

Theorem [Bulatov, 2008]

A classi�cation of the complexity of Counting-CSP(Γ) for every Γ.

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global

balanced

Constraint

cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global

balanced

Constraint

cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example

A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question

What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example

A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question

What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example

A = {0,1,2}, Γ = {x ≤ y}.

Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question

What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example

A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4,

x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question

What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example

A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.

x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question

What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example

A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1,

No surjective solutions

Question

What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example

A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question

What is the complexity of the SCSP(Γ)?

Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example

A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question

What is the complexity of the SCSP(Γ)?

Surjective Graph Homomorphism Problem

Let H be a �nite graph.

SurjHom(H):

Given: a graph G.

Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

Surjective Graph Homomorphism Problem

Let H be a �nite graph.

SurjHom(H):

Given: a graph G.

Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

Surjective Graph Homomorphism Problem

Let H be a �nite graph.

SurjHom(H):

Given: a graph G.

Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

Surjective Graph Homomorphism Problem

Let H be a �nite graph.

SurjHom(H):

Given: a graph G.

Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

Surjective Graph Homomorphism Problem

Let H be a �nite graph.

SurjHom(H):

Given: a graph G.

Decide: whether there exists a surjective homomorphism from G to H.

Graph G Graph H

x1

x2

x3

x4

x6

x5 0

1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).

History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global

balanced

Constraint

cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global

balanced

Constraint

cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint

cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Balanced CSP

Γ is a set of relations on a �nite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classi�cation of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP

Γ is a set of relations on a �nite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classi�cation of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP

Γ is a set of relations on a �nite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classi�cation of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP

Γ is a set of relations on a �nite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classi�cation of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP

Γ is a set of relations on a �nite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1} solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classi�cation of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP

Γ is a set of relations on a �nite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1} solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1} NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classi�cation of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Balanced CSP

Γ is a set of relations on a �nite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1} solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1} NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classi�cation of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint

cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint

cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Global cardinality constraint

Γ is a set of relations on a �nite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2)

NP-complete

Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]

A classi�cation of the complexity of Cardinality-CSP(Γ) for each Γ.

Global cardinality constraint

Γ is a set of relations on a �nite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2)

NP-complete

Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]

A classi�cation of the complexity of Cardinality-CSP(Γ) for each Γ.

Global cardinality constraint

Γ is a set of relations on a �nite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2) NP-complete

Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]

A classi�cation of the complexity of Cardinality-CSP(Γ) for each Γ.

Global cardinality constraint

Γ is a set of relations on a �nite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2) NP-complete

Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]

A classi�cation of the complexity of Cardinality-CSP(Γ) for each Γ.

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24

Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24

Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24

Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural

edge

Restriction

planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction

planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Edge Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classi�cation of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classi�cation of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classi�cation of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classi�cation of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classi�cation of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Edge Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classi�cation of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction

planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction

planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting

Approxim.

CSP
CSP CSP CSP CSP

CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction

planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting Approxim.
CSP

CSP CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

Quanti�ed Valued Promise Counting Approxim.
CSP

CSP CSP CSP CSP CSP

Domain
�nite

in�nite

surjective

Global balanced

Constraint cardinality

modulo M

Structural edge

Restriction planar

Some results

Some classi�cations

Classi�cation for 2-element domain

Partial classi�cation (for larger domains)

Full classi�cation

	Example
	What is CSP?
	Formal definition
	Three methods
	Infinite domain CSP
	Quantified CSP
	Missing Monster
	Infinite domain QCSP
	Valued Constraint Satisfaction Problem
	Promise Constraint Satisfaction Problem
	Counting CSP
	Surjective CSP
	Other Global Constraints
	Edge CSP

