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Example

Check whether there exists a solution x1, x2, x3, . . . ∈ {0,1}.
x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 0 mod 2
x2 + x3 + x5 = 1 mod 2

Gaussian elimination solves the
problem in polynomial time.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3

The problem is NP-hard.


x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 3 mod 24

What is the complexity of this
problem? Nobody knows!
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What is CSP?

Constraint Satisfaction Problem
is a triple ⟨X,D,C⟩, where
▶ X = {x1, . . . , xn} is a set of variables,

▶ D = {D1, . . . ,Dn} is a set of the respective domains of
values, and

▶ C = {C1, . . . ,Cm} is a set of constraints,

Almost everything
is CSP!!!
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CSP example: map coloring

Problem: assign each territory a color such that no two adjacent 
territories have the same color

Variables:

Domain of variables:

Constraints:



  

Another example: sudoku

Slide: Berkeley CS188 course notes (downloaded Summer 2015)

 Variables:
 Each (open) square

 Domains:
 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch 
of pairwise inequality 
constraints)



Constraint Satisfaction Problem parameterized by a constraint language

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Example:
A = {0,1,2}, Γ = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.

Question

What is the complexity of CSP(Γ) for di�erent Γ?
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Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.
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Graph coloring (two colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸= ̸=

̸=

̸=

̸=

̸=

x1

x2

x3

x4

x6

x7

Contradiction!

▶ Either we can color every vertex,

▶ or we can �nd an odd cycle.

Local consistency check solves the problem.

Domain D = { , }
Constraint language Γ = {≠}.
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System of linear equations in a �nite �eld
x1 + x2 + 2x3 = 0 mod 3
x1 + 2x3 + x5 = 0 mod 3
2x2 + x4 + x5 = 0 mod 3
x1 + x3 + 2x5 = 1 mod 3

Gaussian elimination solves the problem.

Domain D = {0,1,2}
Constraint language
Γ = {a1x + a2y + a3z = a0 | a0,a1,a2,a3 ∈ D}.
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▶ Local consistency check doesn't give a contradiction.

▶ The instance has no solutions.

The problem is NP-hard.

Domain D = { , , }
Constraint language Γ = {≠}.
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Graph coloring (three colors)

x1

x2

x3

x4 x5

x6

x7

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸=

̸≠=
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Reduction from one language to another

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

primitive positive (pp) de�nition is

R(. . . ) = ∃y1 . . . ∃yℓ R1(. . . ) ∧ . . . ∧ Rs(. . . )

Fact [Schaefer, 1978]

Suppose |Γ1| < ∞, |Γ2| < ∞, Γ2 pp-de�nes Γ1. Then CSP(Γ1) is
log-space reducible to CSP(Γ2).

Theorem [Bodnarchuk, Kaluzhnin, Kotov, Romov, Geiger, 1969]

Γ2 pp-de�nes Γ1 IFF every operation preserving Γ2 preserves Γ1
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Polymorphisms

An operation f preserves a relation R,
(equivalently, f is a polymorphism of R)

if for all

a1
1
...

as
1

 , . . . ,

a1
n
...

as
n

 ∈ R,

f

a1
1 . . . a1

n
...

. . .
...

as
1 . . . as

n

 =

f (a1
1, . . . ,a

1
n)

...
f (as

1, . . . ,a
s
n)

 ∈ R

Example

The relation ≤ on {0,1,2} is

(
0 0 0 1 1 2
0 1 2 1 2 2

)

An operation f preserves ≤ i� f

a1
1 . . . a1

n

⩾ . . . ⩾

a2
1 . . . a2

n

 =

b1

⩾

b2


or, equivalently, f is monotone.
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CSP Dichotomy Theorem [Bulatov, Zhuk, 2017]

CSP(Γ) is solvable in polynomial time if there is a WNU
operation preserving Γ; it is NP-complete otherwise.

A weak near unanimity operation (WNU) is an operation f
satisfying f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Examples: x ∨ y , x ∧ y , xy ∨ xz ∨ yz, x + y + z,0,min(x , y), . . .
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Hardness part

Theorem [McKenzie, Mar�oti, 2007]

Suppose Γ is not preserved by a WNU.

Then there exists
D ⊆ A, D = B0 ⊔ B1 s.t. D3 \ (B3

0 ∪ B3
1) is pp-de�nable from Γ.

Corollary

Suppose Γ is not preserved by a WNU. Then

▶ CSP(NAE3) is log-space reducible to CSP(Γ)
▶ CSP(Γ) is NP-complete.

▶ CSP(∆) is log-space reducible to CSP(Γ) for any �nite
constraint language ∆.
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2-SAT

Γ consists of relations xi = a ∨ xj = b, where a,b ∈ {0,1}.

Horn-SAT

Γ consists of relations x1 = 1 ∨ x2 = 0 ∨ · · · ∨ xn = 0 and
x1 = 0 ∨ · · · ∨ xn = 0 for n ≥ 0.

System of linear equations
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where each Ri is
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▶ of the form
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Tractable part

(x1 + · · ·+ xm = c) ∨ (xm+1 = dm+1) ∨ · · · ∨ (xn = dn)

Toy Algorithm

1. If x = c then substitute and simplify.

2. (x = a ∨ y = b) and (y = c ∨ z = d), where b ̸= c,
produce (x = a ∨ z = d)

3. (x = a ∨ x = a) produces x = a.
4. Take all linear equations L, solve them

if L ⇒ (xi = c) produce xi = c.
5. Repeat steps 1-4.

▶ Real algorithm is much harder.
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In�nite Domain CSP

Γ is a set of relations on Q.
CSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula is satis�able.

Examples

1. CSP({x < y}) is in P.

CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x1 < x3, has a solution
x1 < x2 ∧ x2 < x3 ∧ x3 < x1, has no solutions
The instance has a solution IFF there is no oriented cycle.
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Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

CSP(Γ)

Given: a sentence

∃x1 . . . ∃xn R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.



Quanti�ed Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

QCSP(Γ)

Given: a sentence

∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )),

where R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples:
A = {0,1,2}, Γ = {x ̸= y}. QCSP instances:

∀x∃y1∃y2(x ̸= y1 ∧ x ̸= y2 ∧ y1 ̸= y2), true

∀x1∀x2∀x3∃y(x1 ̸= y ∧ x2 ̸= y ∧ x3 ̸= y), false
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What is the complexity of QCSP(Γ) for di�erent Γ?
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QCSP Complexity Classes

▶ If Γ contains all predicates then QCSP(Γ) is PSPACE-complete.

▶ If Γ consists of linear equations in a �nite �eld then QCSP(Γ) is
in P.

Theorem [Schaefer 1978 + Creignou et al. 2001/ Dalmau 1997.]

Suppose Γ is a constraint language on {0,1}. Then
▶ QCSP(Γ) is in P if Γ is preserved by an idempotent WNU

operation,

▶ QCSP(Γ) is PSPACE-complete otherwise.
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QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
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▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE

coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

▶ Put A′ = A ∪ {∗}, Γ′ is Γ extended to A′. Then QCSP(Γ′) is
equivalent to CSP(Γ).

▶ there exists Γ on a 3-element domain such that QCSP(Γ) is
coNP-complete.

▶ there exists Γ on a 4-element domain such that QCSP(Γ) is
DP-complete, where DP = NP ∧ coNP.

▶ there exists Γ on a 10-element domain such that
QCSP(Γ) is ΘP

2 -complete.

P

NP

PSPACE
coNP

DP

ΘP
2



QCSP Complexity Classes

Theorem [Zhuk, Martin, 2019]

Suppose Γ is a constraint language on {0,1,2} containing
{x = a | a ∈ {0,1,2}}. Then QCSP(Γ) is
▶ in P, or

▶ NP-complete, or

▶ coNP-complete, or

▶ PSPACE-complete.
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QCSP Complexity Classes

Theorem [Zhuk, 2021]

QCSP(Γ)
▶ is either PSpace-complete,

▶ or in ΠP
2 .
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Lemma [Zhuk, 2021]

There exists Γ on a 6-element set such that QCSP(Γ) is
ΠP

2 -complete.

Are there any other complexity classes?
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In�nite Domain QCSP

Γ is a set of relations on Q.

QCSP(Γ)

Given: a sentence ∃y1∀x1 . . . ∃yt∀xt(R1(. . . ) ∧ · · · ∧ Rs(. . . )), where
R1, . . . ,Rs ∈ Γ.
Decide: whether it holds.

Examples

1. QCSP({x = y})

is in P.

QCSP instances:
∀x1∃x2∃x3∃x4(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), True
∀x1∀x4∃x2∃x3(x1 = x2 ∧ x2 = x3 ∧ x3 = x4), False
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4. QCSP({x = y → y = z}) is PSPACE-complete [Zhuk, Martin, 2021].

Classi�cation for equality constraints
[Bodirsky, Chen, 2010 + Zhuk, Martin, 2021]

A full classi�cation of the complexity for constraint languages whose
relations are boolean combinations of equalities. (P, NP-complete,
PSPACE-complete)

What is the complexity of QCSP({x = y → z > t})?
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Valued Constraint Satisfaction Problem

Γ is a set of cost functions on a �nite set A, i.e. mappings An → Q∪{∞}.

VCSP(Γ)

Given: a threshold T and a sum f1(. . . ) + f2(. . . ) + · · ·+ fs(. . . ),
where f1, . . . , fs ∈ Γ.
Decide: whether f1(. . . ) + f2(. . . ) + · · ·+ fs(. . . ) < T is satis�able.

Example

A = {0, 1}, f (x , y) =

{
1, if x = y
0, otherwise

.

▶ f (x1, x2) + f (x1, x3) + f (x2, x3) < 2 is an instance VCSP({f})
▶ VCSP({f}) is equivalent to MAX-CUT problem.

▶ VCSP({f}) is NP-complete.

Complexity classi�cation
[Kolmogorov, Krokhin, Rol�inek, 2015+Bulatov, Zhuk, 2017]

A full classi�cation of the complexity for any �nite set of cost
functions Γ (P vs NP-complete).
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Promise Constraint Satisfaction Problem

There are two versions of each relation (weak and strong) in Γ

PCSP(Γ)

Given a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
Distinguish between two cases:

▶ Strong version is satis�ed

▶ Weak version is not satis�ed

Example 1

▶ Strong version is 1IN3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
▶ Weak version is NAE3 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}
▶ CSP({NAE3}) and CSP({1IN3}) are NP-hard, but PCSP({1IN3,NAE3})

is in P (promise helps).

Theorem [Ficak, Kozik, Ols�ak, Stankiewicz, 2019])

A classi�cation of the complexity of PCSP(Γ) for Γ consising of
symmetric relations on {0,1}.
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Counting Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Counting-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Find the number of solutions.

Theorem [Bulatov, 2008]

A classi�cation of the complexity of Counting-CSP(Γ) for every Γ.
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Surjective Constraint Satisfaction Problem

Γ is a set of relations on A.

SCSP(Γ)

Given: a conjunction of relations, i.e. a formula

R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),

where R1, . . . ,Rs ∈ Γ.
Decide: whether the formula has a surjective solution, that is, a
solution such that {x1, . . . , xn} = A.

Example

A = {0,1,2}, Γ = {x ≤ y}. Surjective CSP instances:
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x4, x1 = 0, x2 = 1, x3 = x4 = 2.
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, No surjective solutions

Question

What is the complexity of the SCSP(Γ)?
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Surjective Graph Homomorphism Problem

Let H be a �nite graph.

SurjHom(H):

Given: a graph G.

Decide: whether there exists a surjective homomorphism from G to H.
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1 2

SurjHom(H) is equivalent to SCSP({x + y ̸= 0 mod 3}).
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History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4 ) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).

▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]
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▶ The complexity cannot be described in terms of
polymorphisms [Zhuk, 2020]



History

▶ The complexity was described for a two-element domain
[Creignou, N., and H�ebrard, 1997].

▶ The complexity of SurjHom(H) was described for all graphs
of size 4 other than Cref

4 [S. Dantas, Figueiredo, Gravier,
Klein, 2005]

▶ the complexity of SurjHom(H) was described for partially
re�exive forests [Golovach, Paulusma, Song, 2011]

▶ SurjHom(Cref
4 ) is NP-complete [Martin, Paulusma, Vikas,

2011]

▶ SurjHom(C6) is NP-complete [Vikas, 2017]

▶ The No-Rainbow Problem is NP-complete [Zhuk, 2020]
SCSP({(a,b, c) | {a,b, c} ≠ {0,1,2}}).
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Balanced CSP

Γ is a set of relations on a �nite set A.

Balanced-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a balanced solution, i.e., a solution with
equal number of every element.

Balanced-CSP(=) on {0,1}

solvable in polynomial time

Given an instance xi1 = xj1 ∧ · · · ∧ xis = xjs . Decide whether it
has a solution with equal number of 0 and 1.

Balanced-CSP(≤) on {0,1}

NP-complete

Given an instance xi1 ≤ xj1 ∧ · · · ∧ xis ≤ xjs . Decide whether it
has a solution with equal number of 0 and 1.

Theorem [Creignou, H. Schnoor, I. Schnoor, 2008]

A classi�cation of the complexity of Balanced-CSP(Γ) and
Cardinality-CSP(Γ) for each Γ on {0,1}.
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Global cardinality constraint

Γ is a set of relations on a �nite set A.

Cardinality-CSP(Γ)

Given: a mapping π : A → N and a formula
R1(xi1,1 , . . . , xi1,n1

) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns
), where

R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution containing each element a ∈ A
exactly π(a) times.

Cardinality-CSP(Linear Equations in Z2)

NP-complete

Given a system of linear equations in Z2 and k ∈ N.
Decide whether there exists a solution with exactly k 1s.

Theorem [Bulatov, Marx, 2009]

A classi�cation of the complexity of Cardinality-CSP(Γ) for each Γ.
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Global modular constraint

ModM -CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ.
Decide: whether it has a solution satisfying x1 + · · ·+ xn = 0
mod M.

▶ If Γ consists of linear equations on {0, 1} and M = 25 then
ModM -CSP(Γ) is tractable

▶ If Γ consists of linear equations on {0, 1} and M = 15 then
ModM -CSP(Γ) is not tractable

▶ If Γ consists of linear equations on {0, 1} and M = 24 then the
complexity of ModM -CSP(Γ) is not known.

x1 + x2 + x3 = 0 mod 2
x1 + x3 + x5 = 0 mod 2
x2 + x4 + x5 = 1 mod 2
x2 + x3 + x5 = 0 mod 24
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Edge Constraint Satisfaction Problem

Γ is a set of relations on a �nite set A.

Edge-CSP(Γ)

Given: a formula R1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ Rs(xis,1 , . . . , xis,ns

),
where R1, . . . ,Rs ∈ Γ and every variable appears exactly twice.
Decide: whether it has a solution.

R1

R2

R3

R4

R5

R6
x1 x2

x3

x4

x5

x6

x7

x1

x5

x7

▶ Edge-CSP({1IN2, 1IN3, 1IN4, . . . }) is equivalent to the
Perfect Matching Problem.

Theorem [Kazda, Kolmogorov, Rolinek, 2018]

A classi�cation of the complexity for planar Edge-CSP(Γ) for
every Γ on {0,1}.
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