Symmetric Promise Constraint Satisfaction Problems Beyond the Boolean Case

Libor Barto, Diego Battistelli, Kevin M. Berg

Department of Algebra, Charles University, Prague

STACS 2021, 17 March 2021

[^0]
Promise CSPs

Constraint Satisfaction Problem (CSP) over a finite relational structure A, $\operatorname{CSP}(\mathbf{A})$: homomorphism problem with a fixed target structure, \mathbf{A}.

Promise CSPs

Constraint Satisfaction Problem (CSP) over a finite relational structure A, $\operatorname{CSP}(\mathbf{A})$: homomorphism problem with a fixed target structure, \mathbf{A}.

Promise Constraint Satisfaction Problem (PCSP) over a promise template of finite relational structures (\mathbf{A}, \mathbf{B}), where $\mathbf{A} \rightarrow \mathbf{B}$: homomorphism problem that generalizes the CSP.

Promise CSPs

Constraint Satisfaction Problem (CSP) over a finite relational structure A, $\operatorname{CSP}(\mathbf{A})$: homomorphism problem with a fixed target structure, \mathbf{A}.

Promise Constraint Satisfaction Problem (PCSP) over a promise template of finite relational structures (A,B), where $\mathbf{A} \rightarrow \mathbf{B}$: homomorphism problem that generalizes the CSP.

Problem (PCSP(A, B) - Search Version)

Given a relational structure \mathbf{X} such that $\mathbf{X} \rightarrow \mathbf{A}$ (the promise), find a homomorphism $\mathbf{X} \rightarrow \mathbf{B}$.

Promise CSPs

Constraint Satisfaction Problem (CSP) over a finite relational structure A, $\operatorname{CSP}(\mathbf{A})$: homomorphism problem with a fixed target structure, \mathbf{A}.

Promise Constraint Satisfaction Problem (PCSP) over a promise template of finite relational structures (A,B), where $\mathbf{A} \rightarrow \mathbf{B}$: homomorphism problem that generalizes the CSP.

Problem (PCSP(A, B) - Search Version)

Given a relational structure \mathbf{X} such that $\mathbf{X} \rightarrow \mathbf{A}$ (the promise), find a homomorphism $\mathbf{X} \rightarrow \mathbf{B}$.
$\operatorname{CSP}(\mathbf{A})=\operatorname{PCSP}(\mathbf{A}, \mathbf{A})$.

Examples of PCSPs

PCSPs can express classic CSPs, e.g. 3SAT, and more. For example, the problem of finding an l-coloring of a k-colorable graph when $k \leq l$ is $\operatorname{PCSP}\left(\mathbf{K}_{k}, \mathbf{K}_{l}\right)$.

Examples of PCSPs

PCSPs can express classic CSPs, e.g. 3SAT, and more. For example, the problem of finding an l-coloring of a k-colorable graph when $k \leq l$ is $\operatorname{PCSP}\left(\mathbf{K}_{k}, \mathbf{K}_{l}\right)$.

CSPs are known to have a hardness dichotomy - either NP-complete or in P (Bulatov, Zhuk '17).

Examples of PCSPs

PCSPs can express classic CSPs, e.g. 3SAT, and more. For example, the problem of finding an l-coloring of a k-colorable graph when $k \leq l$ is $\operatorname{PCSP}\left(\mathbf{K}_{k}, \mathbf{K}_{l}\right)$.

CSPs are known to have a hardness dichotomy - either NP-complete or in P (Bulatov, Zhuk '17). No such dichotomy is currently known for PCSPs. There is a dichotomy theorem over Boolean symmetric templates (Brakensiek, Guruswami '18, Ficak et al. '19), i.e., templates for which the relations are invariant under permutations.

Our Template - PCSP(1in3, B)

Well-studied cases of PCSPs: single binary symmetric relation, and Boolean domains with symmetric relations.

Our Template - PCSP(1in3, B)

Well-studied cases of PCSPs: single binary symmetric relation, and Boolean domains with symmetric relations.

Our case: $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ - templates where the left-hand side is a single symmetric ternary relation over a two-element set.

Our Template - PCSP(1in3, B)

Well-studied cases of PCSPs: single binary symmetric relation, and Boolean domains with symmetric relations.

Our case: $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ - templates where the left-hand side is a single symmetric ternary relation over a two-element set.

1in3 is $\{0,1\}$ with the single relation $\{(0,0,1),(0,1,0),(1,0,0)\}$. CSP(1in3) corresponds to the positive 1-in-3-SAT.

Our Template - PCSP(1in3, B)

Well-studied cases of PCSPs: single binary symmetric relation, and Boolean domains with symmetric relations.

Our case: $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ - templates where the left-hand side is a single symmetric ternary relation over a two-element set.

1in3 is $\{0,1\}$ with the single relation $\{(0,0,1),(0,1,0),(1,0,0)\}$. CSP(1in3) corresponds to the positive 1-in-3-SAT.

These problems have a hypergraph coloring interpretation:

Our Template - PCSP(1in3, B)

Well-studied cases of PCSPs: single binary symmetric relation, and Boolean domains with symmetric relations.

Our case: $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ - templates where the left-hand side is a single symmetric ternary relation over a two-element set.

1in3 is $\{0,1\}$ with the single relation $\{(0,0,1),(0,1,0),(1,0,0)\}$. CSP(1in3) corresponds to the positive 1-in-3-SAT.

These problems have a hypergraph coloring interpretation: given a 3-uniform hypergraph that is $\mathbf{1 i n} 3$-colorable, find a B-coloring.

Three Element Symmetric Structures

$|B|=3$ is already interesting. In the paper we show a reduction to those cases where \mathbf{B} are symmetric relational structures.

Three Element Symmetric Structures

$|B|=3$ is already interesting. In the paper we show a reduction to those cases where \mathbf{B} are symmetric relational structures.

Notational shortcuts:

Three Element Symmetric Structures

$|B|=3$ is already interesting. In the paper we show a reduction to those cases where \mathbf{B} are symmetric relational structures.

Notational shortcuts: \mathbf{B}^{+}is the structure obtained from \mathbf{B} by adding to R all the tuples $\left(b, b^{\prime}, b^{\prime \prime}\right)$ with $\left|\left\{b, b^{\prime}, b^{\prime \prime}\right\}\right|=3$,

Three Element Symmetric Structures

$|B|=3$ is already interesting. In the paper we show a reduction to those cases where \mathbf{B} are symmetric relational structures.

Notational shortcuts: \mathbf{B}^{+}is the structure obtained from \mathbf{B} by adding to R all the tuples $\left(b, b^{\prime}, b^{\prime \prime}\right)$ with $\left|\left\{b, b^{\prime}, b^{\prime \prime}\right\}\right|=3$, and to each such structure $\mathbf{B}=(B ; R)$ we associate its digraph $-B$ is the vertex set, include the arc $b \rightarrow b^{\prime}$ if and only if $\left(b, b, b^{\prime}\right) \in R$.

Three Element Symmetric Structures

$|B|=3$ is already interesting. In the paper we show a reduction to those cases where \mathbf{B} are symmetric relational structures.

Notational shortcuts: \mathbf{B}^{+}is the structure obtained from \mathbf{B} by adding to R all the tuples $\left(b, b^{\prime}, b^{\prime \prime}\right)$ with $\left|\left\{b, b^{\prime}, b^{\prime \prime}\right\}\right|=3$, and to each such structure $\mathbf{B}=(B ; R)$ we associate its digraph $-B$ is the vertex set, include the arc $b \rightarrow b^{\prime}$ if and only if $\left(b, b, b^{\prime}\right) \in R$.
E.g., 1in3 becomes \rightarrow and NAE, the relation for Not-All-Equal 3SAT, becomes \leftrightarrows.

Diagrams of Three Element Symmetric Structures

Diagram	\longrightarrow	\rightleftarrows	\longrightarrow	\longrightarrow	$乌$	\downarrow
Structure B	$\mathbf{1 i n 3}$	NAE	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$

Diagram	$\stackrel{\leftrightarrows}{\leftrightarrows}$	$\stackrel{\Downarrow}{\rightleftarrows}$	$\stackrel{4}{4}$	$\stackrel{\uparrow \underset{\rightleftarrows}{\rightleftarrows}}{\stackrel{\rightharpoonup}{2}}$	$\xrightarrow{\text { N }}$
Structure B	Q_{1}	Q_{2}	\mathbf{Q}_{3}	C	S

The Hierarchy of Three Element Symmetric Structures

Figure: The templates \mathbf{B} ordered by the relation $\mathbf{B} \leq \mathbf{B}^{\prime}$ if $\mathbf{B} \rightarrow \mathbf{B}^{\prime}$.

Three Element Symmetric Structures - Results

By combining this hierarchy with known hardness criteria (e.g. Brandts, Wrochna, Živný '20) and sufficient tractability conditions (e.g. Brakensiek, Guruswami '20), we were able to classify all but one case:

Three Element Symmetric Structures - Results

By combining this hierarchy with known hardness criteria (e.g. Brandts, Wrochna, Živný '20) and sufficient tractability conditions (e.g. Brakensiek, Guruswami '20), we were able to classify all but one case:

Theorem

Let (1in3, B) be a PCSP template, where B has domain-size three.

- If $\mathbf{N A E} \rightarrow \mathbf{B}$ or $\mathbf{T}_{2} \rightarrow \mathbf{B}$, then $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ is in P.

Three Element Symmetric Structures - Results

By combining this hierarchy with known hardness criteria (e.g. Brandts, Wrochna, Živný '20) and sufficient tractability conditions (e.g. Brakensiek, Guruswami '20), we were able to classify all but one case:

Theorem

Let (1in3, B) be a PCSP template, where B has domain-size three.

- If $\mathbf{N A E} \rightarrow \mathbf{B}$ or $\mathbf{T}_{2} \rightarrow \mathbf{B}$, then $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ is in P.
- If $\mathbf{B} \rightarrow \mathbf{T}_{1}$ or $\mathbf{B} \rightarrow \mathbf{D}_{1}^{+}$or $\mathbf{B} \rightarrow \mathbf{D}_{2}^{+}$, then $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ is NP-hard.

The Hierarchy of the Results

Figure: The templates \mathbf{B} ordered by the relation $\mathbf{B} \leq \mathbf{B}^{\prime}$ if $\mathbf{B} \rightarrow \mathbf{B}^{\prime}$.

The Remaining Case $-\mathbf{T}_{1}^{+}$

PCSP(1in3, $\left.\mathbf{T}_{1}^{+}\right)$, corresponds to an apparently new hypergraph coloring problem:

The Remaining Case $-\mathbf{T}_{1}^{+}$

PCSP(1in3, \mathbf{T}_{1}^{+}), corresponds to an apparently new hypergraph coloring problem: given a 1in3-colorable 3-uniform hypergraph, find a 3-coloring such that, in each hyperedge, if two colors are equal, then the third one is higher (as opposed to "different" for the standard hypergraph coloring).

The Remaining Case $-\mathbf{T}_{1}^{+}$

$\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{T}_{1}^{+}\right)$, corresponds to an apparently new hypergraph coloring problem: given a 1in3-colorable 3-uniform hypergraph, find a 3-coloring such that, in each hyperedge, if two colors are equal, then the third one is higher (as opposed to "different" for the standard hypergraph coloring).

Conjecture

$\operatorname{PCSP}\left(1 \mathrm{in} 3, \mathbf{T}_{1}^{+}\right)$, and a broad generalization to larger domain templates, is NP-complete.

The Remaining Case $-\mathbf{T}_{1}^{+}$

$\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{T}_{1}^{+}\right)$, corresponds to an apparently new hypergraph coloring problem: given a 1in3-colorable 3-uniform hypergraph, find a 3-coloring such that, in each hyperedge, if two colors are equal, then the third one is higher (as opposed to "different" for the standard hypergraph coloring).

Conjecture

PCSP(1in3, $\left.\mathbf{T}_{1}^{+}\right)$, and a broad generalization to larger domain templates, is NP-complete.

If true, there is a unique source of hardness for our templates.

Larger Domains

When $|B|=4$, our conjecture leaves the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation of the permutations of $(0,0,1),(1,1,2)$, $(2,2,3),(3,3,0)$.

Larger Domains

When $|B|=4$, our conjecture leaves the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation of the permutations of $(0,0,1),(1,1,2)$, $(2,2,3),(3,3,0)$.

Theorem

PCSP(1in3, Č) is NP-hard.

Larger Domains

When $|B|=4$, our conjecture leaves the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation of the permutations of $(0,0,1),(1,1,2)$, $(2,2,3),(3,3,0)$.

Theorem

PCSP(1in3, Č) is NP-hard. The template (1in3, C $^{+}$) does not have a block symmetric polymorphism with two blocks of sizes 23 and 24

Larger Domains

When $|B|=4$, our conjecture leaves the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation of the permutations of $(0,0,1),(1,1,2)$, $(2,2,3),(3,3,0)$.

Theorem

$\operatorname{PCSP}(\mathbf{1 i n 3}, \check{\mathbf{C}})$ is NP-hard. The template $\left(\mathbf{1 i n 3}, \check{\mathbf{C}}^{+}\right)$does not have a block symmetric polymorphism with two blocks of sizes 23 and 24 (i.e. it fails to satisfy the known sufficient condition for tractability in PCSPs from, e.g. Brakensiek, Guruswami '20).

Larger Domains

When $|B|=4$, our conjecture leaves the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation of the permutations of $(0,0,1),(1,1,2)$, $(2,2,3),(3,3,0)$.

Theorem

PCSP(1in3, Č) is NP-hard. The template (1in3, $\check{\mathbf{C}}^{+}$) does not have a block symmetric polymorphism with two blocks of sizes 23 and 24 (i.e. it fails to satisfy the known sufficient condition for tractability in PCSPs from, e.g. Brakensiek, Guruswami '20).

Conjecture

$\operatorname{PCSP}\left(1 i n 3, \check{\mathbf{C}}^{+}\right)$is NP-hard.

Larger Domains

When $|B|=4$, our conjecture leaves the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation of the permutations of $(0,0,1),(1,1,2)$, $(2,2,3),(3,3,0)$.

Theorem

PCSP(1in3, Č) is NP-hard. The template (1in3, C $^{+}$) does not have a block symmetric polymorphism with two blocks of sizes 23 and 24 (i.e. it fails to satisfy the known sufficient condition for tractability in PCSPs from, e.g. Brakensiek, Guruswami '20).

Conjecture

$\operatorname{PCSP}\left(1 \mathrm{in} 3, \check{\mathbf{C}}^{+}\right)$is NP-hard.
A negative answer would also be valuable

Larger Domains

When $|B|=4$, our conjecture leaves the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation of the permutations of $(0,0,1),(1,1,2)$, $(2,2,3),(3,3,0)$.

Theorem

PCSP(1in3, Č) is NP-hard. The template (1in3, C $^{+}$) does not have a block symmetric polymorphism with two blocks of sizes 23 and 24 (i.e. it fails to satisfy the known sufficient condition for tractability in PCSPs from, e.g. Brakensiek, Guruswami '20).

Conjecture

$\operatorname{PCSP}\left(\mathbf{1 i n 3}, \check{\mathbf{C}}^{+}\right)$is NP-hard.
A negative answer would also be valuable - it would need a P algorithm that has not yet been used for PCSPs!

Thank you for your time!

[^0]: CoCoSym: Symmetry in Computational Complexity
 This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

