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Promise CSPs

The Constraint Satisfaction Problem (CSP) over a finite relational
structure A (also called a template), denoted CSP(A), can be defined as a
homomorphism problem with a fixed target structure, A.

The Promise Constraint Satisfaction Problem (PCSP) over a promise
template (A,B), where A, B are finite relational structures such that
A→ B, is a homomorphism problem that generalizes the CSP.

Problem (PCSP(A,B) – Search Version)

Given a relational structure X such that X→ A (the promise), find a
homomorphism X→ B.

Note that CSP(A) = PCSP(A,A).
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Examples of CSPs and PCSPs

Many computational problems, such as 3-coloring and 3SAT, can be
expressed in the language of CSPs: 3-coloring corresponds to the CSP
over the clique on three vertices – CSP(K3) – and 3SAT corresponds to
the CSP over a binary domain with all ternary relations.

Since PCSP is a generalization of CSP, these problems can also be
expressed in the language of PCSPs. Moreover, PCSP is capable of
expressing a vast number of additional problems, such as the problem of
finding an l-coloring of a k-colorable graph when k ≤ l – PCSP(Kk ,Kl).

CSPs are known to have a hardness dichotomy – all CSPs are either
NP-complete or in P (Bulatov, Zhuk ’17). No such dichotomy has yet
been shown for PCSPs. The strongest classification result obtained so far
in this direction is the dichotomy theorem over Boolean symmetric
templates, i.e., templates whose relations are all invariant under
permutations of coordinates (Brakensiek, Guruswami ’18, Ficak et al. ’19).

L. Barto, D. Battistelli, K. M. Berg (MFF) Symmetric PCSPs STACS 2021 3 / 20



Examples of CSPs and PCSPs

Many computational problems, such as 3-coloring and 3SAT, can be
expressed in the language of CSPs: 3-coloring corresponds to the CSP
over the clique on three vertices – CSP(K3) – and 3SAT corresponds to
the CSP over a binary domain with all ternary relations.

Since PCSP is a generalization of CSP, these problems can also be
expressed in the language of PCSPs. Moreover, PCSP is capable of
expressing a vast number of additional problems, such as the problem of
finding an l-coloring of a k-colorable graph when k ≤ l – PCSP(Kk ,Kl).

CSPs are known to have a hardness dichotomy – all CSPs are either
NP-complete or in P (Bulatov, Zhuk ’17). No such dichotomy has yet
been shown for PCSPs. The strongest classification result obtained so far
in this direction is the dichotomy theorem over Boolean symmetric
templates, i.e., templates whose relations are all invariant under
permutations of coordinates (Brakensiek, Guruswami ’18, Ficak et al. ’19).

L. Barto, D. Battistelli, K. M. Berg (MFF) Symmetric PCSPs STACS 2021 3 / 20



Examples of CSPs and PCSPs

Many computational problems, such as 3-coloring and 3SAT, can be
expressed in the language of CSPs: 3-coloring corresponds to the CSP
over the clique on three vertices – CSP(K3) – and 3SAT corresponds to
the CSP over a binary domain with all ternary relations.

Since PCSP is a generalization of CSP, these problems can also be
expressed in the language of PCSPs. Moreover, PCSP is capable of
expressing a vast number of additional problems, such as the problem of
finding an l-coloring of a k-colorable graph when k ≤ l – PCSP(Kk ,Kl).

CSPs are known to have a hardness dichotomy – all CSPs are either
NP-complete or in P (Bulatov, Zhuk ’17).

No such dichotomy has yet
been shown for PCSPs. The strongest classification result obtained so far
in this direction is the dichotomy theorem over Boolean symmetric
templates, i.e., templates whose relations are all invariant under
permutations of coordinates (Brakensiek, Guruswami ’18, Ficak et al. ’19).

L. Barto, D. Battistelli, K. M. Berg (MFF) Symmetric PCSPs STACS 2021 3 / 20



Examples of CSPs and PCSPs

Many computational problems, such as 3-coloring and 3SAT, can be
expressed in the language of CSPs: 3-coloring corresponds to the CSP
over the clique on three vertices – CSP(K3) – and 3SAT corresponds to
the CSP over a binary domain with all ternary relations.

Since PCSP is a generalization of CSP, these problems can also be
expressed in the language of PCSPs. Moreover, PCSP is capable of
expressing a vast number of additional problems, such as the problem of
finding an l-coloring of a k-colorable graph when k ≤ l – PCSP(Kk ,Kl).

CSPs are known to have a hardness dichotomy – all CSPs are either
NP-complete or in P (Bulatov, Zhuk ’17). No such dichotomy has yet
been shown for PCSPs. The strongest classification result obtained so far
in this direction is the dichotomy theorem over Boolean symmetric
templates, i.e., templates whose relations are all invariant under
permutations of coordinates (Brakensiek, Guruswami ’18, Ficak et al. ’19).

L. Barto, D. Battistelli, K. M. Berg (MFF) Symmetric PCSPs STACS 2021 3 / 20



Our Template – PCSP(1in3,B)

There are two well-studied cases of PCSPs: arbitrary domains with a single
binary symmetric relation, and Boolean domains with symmetric relations
of arbitary arity.

We study a case in between: templates where the
left-hand side is a single symmetric ternary relation over a two-element set.
After eliminating known and trivial cases, we are left with problems of the
form PCSP(1in3,B).

1in3 is a binary domain {0, 1} with a single symmetric ternary relation
{(0, 0, 1), (0, 1, 0), (1, 0, 0)}. CSP(1in3) corresponds to the positive
1-in-3-SAT.

These problems have a hypergraph coloring interpretation: given a
3-uniform hypergraph that is 1in3-colorable (that is, each vertex can be
assigned a color from {0,1} so that there is exactly one 1 appearing in
each hyperedge), find a B-coloring (that is, a coloring by B such that the
three colors appearing in each hyperedge are from R).
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Three Element Symmetric Structures

The first non-Boolean domain size, |B| = 3, already turns out to be
interesting. From a straightforward equivalence in the paper, it can be
shown that it suffices to consider symmetric relational structures with this
domain size.

So we consider symmetric relational structures with a single ternary
relation. We introduce shorthand to describe the structures of this form:
to each such structure B = (B;R) we associate its digraph by taking B as
the vertex set and including the arc b → b′ if and only if (b, b, b′) ∈ R. By
B+ we denote the structure obtained from B by adding to R all the tuples
(b, b′, b′′) with |{b, b′, b′′}| = 3.

So, for example, 1in3 becomes → and NAE, the relation corresponding to
Not-All-Equal 3SAT, becomes �.
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Diagrams of Three Element Symmetric Structures

Diagram

Structure B 1in3 NAE D1 D2 T1 T2

Diagram

Structure B Q1 Q2 Q3 C S
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The Hierarchy of Three Element Symmetric Structures

Figure: The templates B ordered by the relation B ≤ B′ if B→ B′.
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Three Element Symmetric Structures – Results

We were able to classify all but one case:

Theorem

Let (1in3,B) be a PCSP template, where B has domain-size three.

If NAE→ B or T2 → B, then PCSP(1in3,B) is in P.

If B→ T1 or B→ D+
1 or B→ D+

2 , then PCSP(1in3,B) is NP-hard.
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Three Element Symmetric Structures – Hierarchy of
Results

Figure: The templates B ordered by the relation B ≤ B′ if B→ B′.
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Preliminaries – Polymorphisms

A crucial notion for the algebraic approach to PCSP is a polymorphism. A
polymorphism of a template is simply a homomorphism from a Cartesian
power of the first structure to the second one.

Definition (Polymorphism)

Let (A,B) be a PCSP template. A mapping f : An → B is a
polymorphism of arity n if, for each pair of corresponding relations Ri and
R ′i in the signatures of A and B, respectively, and any (r1,1, r2,1, . . . , rn,1),
. . . , (r1,ari , r2,ari , . . . , rn,ari ) with (rj ,1, rj ,2, . . . , rj ,ari ) ∈ Ri for all j ∈ [n],
we have (f (r1,1, r2,1, . . . , rn,1), . . . , f (r1,ari , r2,ari , . . ., rn,ari )) ∈ R ′i .
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Preliminaries – Minors

Another core concept in the algebraic approach is a minor.

Definition (Minor)

Let f : An → B, α : [n]→ [m] be mappings. A minor of f given by α is
the mapping f α : Am → B defined by

f α(a1, . . . , am) = f (aα(1), . . . , aα(n))

for every a1, . . . , am ∈ A. A function g : Am → B is a minor of f if g = f α

for some α.

The significance of polymorphisms and minors stems from the fact that
the computational complexity of PCSP(A,B) depends only on the set of
all polymorphisms of the template (A,B). This set is a minion, i.e., it is
closed under taking minors.
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Preliminaries – Chain of Minors

Our NP-hardness results rely on a criterion that requires one final piece of
notation.

Definition (Chain of Minors)

A chain of minors is a sequence of the form (f0, α0,1, f1, α1,2, . . . , αl−1,l ,
fl) where f0, . . . , fl : Ani → B, αi−1,i : [ni−1]→ [ni ], and f

αi−1,i

i−1 = fi for
every i ∈ [l ]. We write αi ,j : [ni ]→ [nj ] for the composition of αi ,i+1,
αi+1,i+2, . . . , αj−1,j . Note that f

αi,j

i = fj .
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The NP-Hardness Criterion

Theorem (Brandts, Wrochna, Živný ’20)

Let (A,B) be a PCSP template. Suppose there are constants k , l ∈ N and
an assignment of a set of at most k coordinates sel(f ) ⊆ [ar(f )] to every
polymorphism f of (A,B) such that for every chain of minors
(f0, α0,1, . . . , fl) with each fi a polymorphism of (A,B), there are
0 ≤ i < j ≤ l such that αi ,j(sel(fi )) ∩ sel(fj) 6= ∅ (or, equivalently,
sel(fi ) ∩ α−1i ,j (sel(fj)) 6= ∅). Then PCSP(A,B) is NP-hard.

Our general approach to showing NP-hardness relies on observing key
properties of the polymorphisms for a given template, and using these
properties to define “types” of polymorphisms. We then analyze a chain of
minors based on these types, and apply the criterion. This is similar to the
“smug sets” approach in BWZ ’20.
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PCSP(1in3,D+
2 )

For our example proof, we consider PCSP(1in3,D+
2 ), where

D+
2 = ({0, 1, 2},R) and R consists of all the permutations of the tuples

(0, 0, 1), (1, 1, 2), and (0, 1, 2).

Let f : {0, 1}n → {0, 1, 2} be a polymorphism of (1in3,D+
2 ). We adopt

two shorthand conventions for X ⊆ [n]: f (X ) denotes f evaluated with 1
in the ith position for all i ∈ X and 0 in all other coordinates, and we say
X is a j-set if f (X ) = j .

Lemma

Let X and Y be disjoint subsets of [n].

(a) If f (∅) = 0, f (X ) = 0, and f (Y ) ∈ {0, 2}, then f (X ∪ Y ) ∈ {0, 2}.
(b) If f (∅) = 0, f (X ) = 1, and f (Y ) ∈ {0, 1}, then f (X ∪ Y ) = 1.

(c) If f (∅) = 1, f (X ) = f (Y ) = 1, then f (X ∪ Y ) ∈ {0, 1}.
(d) If f (∅) = 1, f (X ) = f (Y ) = 0, then f (X ∪ Y ) = 2.
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Combinatorial Lemmata

The preceding lemma is the basis for more complex results about
polymorphisms for this template.

Lemma

Assume f (∅) = 0 and that f has no singleton 2-set. Then f has a
singleton 1-set and does not have any two disjoint 1-sets.

Lemma

Assume f (∅) = 1 and that, for some j ≥ 2, all at most j-element subsets of
[n] are 1-sets. Then j < n and all (j + 1)-element subsets of [n] are 1-sets.

Lemma

If f (∅) = 1, then there exists a 0-set or a 2-set of size at most 2.
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NP-Hardness

Theorem

PCSP(1in3,D+
2 ) is NP-hard.

Proof.

We will apply the NP-Hardness Criterion with k = 2 and l = 5. We assign
to a polymorphism its type and define sel(f ) as follows:

Type 1: f has a 2-set X of size at most 2. In this case we set
sel(f ) = X .

Type 2: f has no 2-set of size at most 2, f (∅) = 0, and {x} is a 1-set
for some x ∈ [n]. We set sel(f ) = {x}.
Type 3: f has no 2-set of size at most 2, f (∅) = 1, and f has a 0-set
X of size at most 2. We set sel(f ) = X .

By the previous lemmata, every polymorphism is of these types. Further,
the presence of at least two polymorphisms of the same type results in a
nonempty intersection. This will satisfy the conditions of the criterion.
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The Remaining Case – T+
1

PCSP(1in3,T+
1 ), corresponds to a natural hypergraph coloring problem

that appears to be new:

given a 1in3-colorable 3-uniform hypergraph, find
a 3-coloring such that, in each hyperedge, if two colors are equal, then the
third one is higher (as opposed to “different” for the standard hypergraph
coloring).

Conjecture

PCSP(1in3,T+
1 ) and the generalization to larger domains, is

NP-complete.

If this conjecture holds, there is a unique source of hardness for our
templates.
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Larger Domains

For a 4-element B, the conjecture would resolve all the cases with the
exception of the interval between Č and Č+, where Č is given by the
relation containing the tuples (0, 0, 1), (1, 1, 2), (2, 2, 3), (3, 3, 0) and their
permutations, and Č+ is given by the same relation with all the “rainbow”
tuples (i , j , k) such that |{i , j , k}| = 3.

We suspect both ends of this
interval are NP-hard, and can prove it for the bottom.

Theorem

PCSP(1in3, Č) is NP-hard. The template (1in3, Č+) does not have a
block symmetric polymorphism with two blocks of sizes 23 and 24 (and
therefore fails to satisfy the known sufficient condition for tractability in
PCSPs from, e.g. Brakensiek, Guruswami ’20).
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block symmetric polymorphism with two blocks of sizes 23 and 24 (and
therefore fails to satisfy the known sufficient condition for tractability in
PCSPs from, e.g. Brakensiek, Guruswami ’20).

L. Barto, D. Battistelli, K. M. Berg (MFF) Symmetric PCSPs STACS 2021 18 / 20



Larger Domains

For a 4-element B, the conjecture would resolve all the cases with the
exception of the interval between Č and Č+, where Č is given by the
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permutations, and Č+ is given by the same relation with all the “rainbow”
tuples (i , j , k) such that |{i , j , k}| = 3. We suspect both ends of this
interval are NP-hard, and can prove it for the bottom.

Theorem
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Larger Domains
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Conjectures

Let LOk denote the k-element domain structure whose relations are
permutations relations (b, b, c) where b < c in the linear order
0 < 1 < 2 < . . . < k − 1.

Conjecture

For every 2 ≤ k < l , PCSP(LOk ,LOl) is NP-hard.

This is a generalization of our earlier conjecture about PCSP(1in3,T+
1 ).

For four-element domains, the remaining cases include the structures in
the interval between Č and Č+.

Conjecture

PCSP(1in3, Č+) is NP-hard.

Negative resolution of this conjecture would also be valuable – it would
require a polynomial-time algorithm that has not yet been used for PCSPs.
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Thank you for your time!
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