Symmetric Promise Constraint Satisfaction Problems Beyond the Boolean Case

Libor Barto, Diego Battistelli, Kevin M. Berg

Department of Algebra, Charles University, Prague

STACS 2021, 17 March 2021

[^0]
Promise CSPs

The Constraint Satisfaction Problem (CSP) over a finite relational structure \mathbf{A} (also called a template), denoted $\operatorname{CSP}(\mathbf{A})$, can be defined as a homomorphism problem with a fixed target structure, A.

Promise CSPs

The Constraint Satisfaction Problem (CSP) over a finite relational structure A (also called a template), denoted $\operatorname{CSP}(\mathbf{A})$, can be defined as a homomorphism problem with a fixed target structure, A.

The Promise Constraint Satisfaction Problem (PCSP) over a promise template (\mathbf{A}, \mathbf{B}), where \mathbf{A}, \mathbf{B} are finite relational structures such that $\mathbf{A} \rightarrow \mathbf{B}$, is a homomorphism problem that generalizes the CSP.

Promise CSPs

The Constraint Satisfaction Problem (CSP) over a finite relational structure A (also called a template), denoted $\operatorname{CSP}(\mathbf{A})$, can be defined as a homomorphism problem with a fixed target structure, A.

The Promise Constraint Satisfaction Problem (PCSP) over a promise template (\mathbf{A}, \mathbf{B}), where \mathbf{A}, \mathbf{B} are finite relational structures such that $\mathbf{A} \rightarrow \mathbf{B}$, is a homomorphism problem that generalizes the CSP.

Problem (PCSP(A, B) - Search Version)

Given a relational structure \mathbf{X} such that $\mathbf{X} \rightarrow \mathbf{A}$ (the promise), find a homomorphism $\mathbf{X} \rightarrow \mathbf{B}$.

Promise CSPs

The Constraint Satisfaction Problem (CSP) over a finite relational structure A (also called a template), denoted $\operatorname{CSP}(\mathbf{A})$, can be defined as a homomorphism problem with a fixed target structure, A.

The Promise Constraint Satisfaction Problem (PCSP) over a promise template (\mathbf{A}, \mathbf{B}), where \mathbf{A}, \mathbf{B} are finite relational structures such that $\mathbf{A} \rightarrow \mathbf{B}$, is a homomorphism problem that generalizes the CSP.

Problem (PCSP(A, B) - Search Version)

Given a relational structure \mathbf{X} such that $\mathbf{X} \rightarrow \mathbf{A}$ (the promise), find a homomorphism $\mathbf{X} \rightarrow \mathbf{B}$.

Note that $\operatorname{CSP}(\mathbf{A})=\operatorname{PCSP}(\mathbf{A}, \mathbf{A})$.

Examples of CSPs and PCSPs

Many computational problems, such as 3-coloring and 3SAT, can be expressed in the language of CSPs: 3-coloring corresponds to the CSP over the clique on three vertices - $\operatorname{CSP}\left(\mathbf{K}_{3}\right)$ - and 3SAT corresponds to the CSP over a binary domain with all ternary relations.

Examples of CSPs and PCSPs

Many computational problems, such as 3-coloring and 3SAT, can be expressed in the language of CSPs: 3-coloring corresponds to the CSP over the clique on three vertices - $\operatorname{CSP}\left(\mathbf{K}_{3}\right)$ - and 3SAT corresponds to the CSP over a binary domain with all ternary relations.

Since PCSP is a generalization of CSP, these problems can also be expressed in the language of PCSPs. Moreover, PCSP is capable of expressing a vast number of additional problems, such as the problem of finding an l-coloring of a k-colorable graph when $k \leq I-\operatorname{PCSP}\left(\mathbf{K}_{k}, \mathbf{K}_{l}\right)$.

Examples of CSPs and PCSPs

Many computational problems, such as 3-coloring and 3SAT, can be expressed in the language of CSPs: 3-coloring corresponds to the CSP over the clique on three vertices - $\operatorname{CSP}\left(\mathbf{K}_{3}\right)$ - and 3SAT corresponds to the CSP over a binary domain with all ternary relations.

Since PCSP is a generalization of CSP, these problems can also be expressed in the language of PCSPs. Moreover, PCSP is capable of expressing a vast number of additional problems, such as the problem of finding an l-coloring of a k-colorable graph when $k \leq I-\operatorname{PCSP}\left(\mathbf{K}_{k}, \mathbf{K}_{l}\right)$.

CSPs are known to have a hardness dichotomy - all CSPs are either NP-complete or in P (Bulatov, Zhuk '17).

Examples of CSPs and PCSPs

Many computational problems, such as 3-coloring and 3SAT, can be expressed in the language of CSPs: 3-coloring corresponds to the CSP over the clique on three vertices - $\operatorname{CSP}\left(\mathbf{K}_{3}\right)$ - and 3SAT corresponds to the CSP over a binary domain with all ternary relations.

Since PCSP is a generalization of CSP, these problems can also be expressed in the language of PCSPs. Moreover, PCSP is capable of expressing a vast number of additional problems, such as the problem of finding an l-coloring of a k-colorable graph when $k \leq I-\operatorname{PCSP}\left(\mathbf{K}_{k}, \mathbf{K}_{l}\right)$.

CSPs are known to have a hardness dichotomy - all CSPs are either NP-complete or in P (Bulatov, Zhuk '17). No such dichotomy has yet been shown for PCSPs. The strongest classification result obtained so far in this direction is the dichotomy theorem over Boolean symmetric templates, i.e., templates whose relations are all invariant under permutations of coordinates (Brakensiek, Guruswami '18, Ficak et al. '19).

Our Template - PCSP(1in3, B)

There are two well-studied cases of PCSPs: arbitrary domains with a single binary symmetric relation, and Boolean domains with symmetric relations of arbitary arity.

Our Template - PCSP(1in3, B)

There are two well-studied cases of PCSPs: arbitrary domains with a single binary symmetric relation, and Boolean domains with symmetric relations of arbitary arity. We study a case in between: templates where the left-hand side is a single symmetric ternary relation over a two-element set. After eliminating known and trivial cases, we are left with problems of the form $\operatorname{PCSP}(1 i n 3, B)$.

Our Template - PCSP(1in3, B)

There are two well-studied cases of PCSPs: arbitrary domains with a single binary symmetric relation, and Boolean domains with symmetric relations of arbitary arity. We study a case in between: templates where the left-hand side is a single symmetric ternary relation over a two-element set. After eliminating known and trivial cases, we are left with problems of the form $\operatorname{PCSP}(1 i n 3, B)$.

1in3 is a binary domain $\{0,1\}$ with a single symmetric ternary relation $\{(0,0,1),(0,1,0),(1,0,0)\} . \operatorname{CSP}(1 i n 3)$ corresponds to the positive 1-in-3-SAT.

Our Template - PCSP(1in3, B)

There are two well-studied cases of PCSPs: arbitrary domains with a single binary symmetric relation, and Boolean domains with symmetric relations of arbitary arity. We study a case in between: templates where the left-hand side is a single symmetric ternary relation over a two-element set. After eliminating known and trivial cases, we are left with problems of the form $\operatorname{PCSP}(1 i n 3, B)$.

1in3 is a binary domain $\{0,1\}$ with a single symmetric ternary relation $\{(0,0,1),(0,1,0),(1,0,0)\} . \operatorname{CSP}(1 i n 3)$ corresponds to the positive 1-in-3-SAT.

These problems have a hypergraph coloring interpretation:

Our Template - PCSP(1in3, B)

There are two well-studied cases of PCSPs: arbitrary domains with a single binary symmetric relation, and Boolean domains with symmetric relations of arbitary arity. We study a case in between: templates where the left-hand side is a single symmetric ternary relation over a two-element set. After eliminating known and trivial cases, we are left with problems of the form $\operatorname{PCSP}(1 i n 3, B)$.

1in3 is a binary domain $\{0,1\}$ with a single symmetric ternary relation $\{(0,0,1),(0,1,0),(1,0,0)\} . \operatorname{CSP}(1 i n 3)$ corresponds to the positive 1-in-3-SAT.

These problems have a hypergraph coloring interpretation: given a 3-uniform hypergraph that is 1 in3-colorable (that is, each vertex can be assigned a color from $\{0,1\}$ so that there is exactly one 1 appearing in each hyperedge), find a \mathbf{B}-coloring (that is, a coloring by B such that the three colors appearing in each hyperedge are from R).

Three Element Symmetric Structures

The first non-Boolean domain size, $|B|=3$, already turns out to be interesting. From a straightforward equivalence in the paper, it can be shown that it suffices to consider symmetric relational structures with this domain size.

Three Element Symmetric Structures

The first non-Boolean domain size, $|B|=3$, already turns out to be interesting. From a straightforward equivalence in the paper, it can be shown that it suffices to consider symmetric relational structures with this domain size.

So we consider symmetric relational structures with a single ternary relation.

Three Element Symmetric Structures

The first non-Boolean domain size, $|B|=3$, already turns out to be interesting. From a straightforward equivalence in the paper, it can be shown that it suffices to consider symmetric relational structures with this domain size.

So we consider symmetric relational structures with a single ternary relation. We introduce shorthand to describe the structures of this form: to each such structure $\mathbf{B}=(B ; R)$ we associate its digraph by taking B as the vertex set and including the arc $b \rightarrow b^{\prime}$ if and only if $\left(b, b, b^{\prime}\right) \in R$. By \mathbf{B}^{+}we denote the structure obtained from \mathbf{B} by adding to R all the tuples ($b, b^{\prime}, b^{\prime \prime}$) with $\left|\left\{b, b^{\prime}, b^{\prime \prime}\right\}\right|=3$.

Three Element Symmetric Structures

The first non-Boolean domain size, $|B|=3$, already turns out to be interesting. From a straightforward equivalence in the paper, it can be shown that it suffices to consider symmetric relational structures with this domain size.

So we consider symmetric relational structures with a single ternary relation. We introduce shorthand to describe the structures of this form: to each such structure $\mathbf{B}=(B ; R)$ we associate its digraph by taking B as the vertex set and including the arc $b \rightarrow b^{\prime}$ if and only if $\left(b, b, b^{\prime}\right) \in R$. By \mathbf{B}^{+}we denote the structure obtained from \mathbf{B} by adding to R all the tuples $\left(b, b^{\prime}, b^{\prime \prime}\right)$ with $\left|\left\{b, b^{\prime}, b^{\prime \prime}\right\}\right|=3$.

So, for example, 1in3 becomes \rightarrow and NAE, the relation corresponding to Not-All-Equal 3SAT, becomes \leftrightarrows.

Diagrams of Three Element Symmetric Structures

Diagrams of Three Element Symmetric Structures

Diagram	\longrightarrow	\rightleftarrows	\longrightarrow	\longrightarrow	$乌$	\downarrow
Structure B	$\mathbf{1 i n 3}$	NAE	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$

Diagram	$\stackrel{\leftrightarrows}{\leftrightarrows}$	$\stackrel{\Downarrow}{\rightleftarrows}$	$\stackrel{4}{4}$	$\stackrel{\uparrow \underset{\rightleftarrows}{\rightleftarrows}}{\stackrel{\rightharpoonup}{2}}$	$\xrightarrow{\text { N }}$
Structure B	Q_{1}	Q_{2}	\mathbf{Q}_{3}	C	S

The Hierarchy of Three Element Symmetric Structures

Figure: The templates \mathbf{B} ordered by the relation $\mathbf{B} \leq \mathbf{B}^{\prime}$ if $\mathbf{B} \rightarrow \mathbf{B}^{\prime}$.

Three Element Symmetric Structures - Results

We were able to classify all but one case:

Three Element Symmetric Structures - Results

We were able to classify all but one case:

Theorem

Let (1in3, B) be a PCSP template, where B has domain-size three.

- If NAE $\rightarrow \mathbf{B}$ or $\mathbf{T}_{2} \rightarrow \mathbf{B}$, then $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ is in P.

Three Element Symmetric Structures - Results

We were able to classify all but one case:

Theorem

Let (1in3, B) be a PCSP template, where B has domain-size three.

- If NAE $\rightarrow \mathbf{B}$ or $\mathbf{T}_{2} \rightarrow \mathbf{B}$, then $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ is in P.
- If $\mathbf{B} \rightarrow \mathbf{T}_{1}$ or $\mathbf{B} \rightarrow \mathbf{D}_{1}^{+}$or $\mathbf{B} \rightarrow \mathbf{D}_{2}^{+}$, then $\operatorname{PCSP}(\mathbf{1 i n 3}, \mathbf{B})$ is NP-hard.

Three Element Symmetric Structures - Hierarchy of Results

Figure: The templates \mathbf{B} ordered by the relation $\mathbf{B}<\mathbf{B}^{\prime}$ if $\mathbf{B} \rightarrow \mathbf{B}^{\prime}$

Preliminaries - Polymorphisms

A crucial notion for the algebraic approach to PCSP is a polymorphism. A polymorphism of a template is simply a homomorphism from a Cartesian power of the first structure to the second one.

Preliminaries - Polymorphisms

A crucial notion for the algebraic approach to PCSP is a polymorphism. A polymorphism of a template is simply a homomorphism from a Cartesian power of the first structure to the second one.

Definition (Polymorphism)

Let (\mathbf{A}, \mathbf{B}) be a PCSP template. A mapping $f: A^{n} \rightarrow B$ is a polymorphism of arity n if, for each pair of corresponding relations R_{i} and R_{i}^{\prime} in the signatures of \mathbf{A} and \mathbf{B}, respectively, and any $\left(r_{1,1}, r_{2,1}, \ldots, r_{n, 1}\right)$, $\ldots,\left(r_{1, \mathrm{ar}_{i}}, r_{2, \mathrm{ar}_{i}}, \ldots, r_{n, \mathrm{ar}_{i}}\right)$ with $\left(r_{j, 1}, r_{j, 2}, \ldots, r_{j, \mathrm{ar}_{i}}\right) \in R_{i}$ for all $j \in[n]$, we have $\left(f\left(r_{1,1}, r_{2,1}, \ldots, r_{n, 1}\right), \ldots, f\left(r_{1, \mathrm{ar}_{i}}, r_{2, \mathrm{ar}_{i}}, \ldots, r_{n, \mathrm{ar}_{i}}\right)\right) \in R_{i}^{\prime}$.

Preliminaries - Minors

Another core concept in the algebraic approach is a minor.

Preliminaries - Minors

Another core concept in the algebraic approach is a minor.

Definition (Minor)

Let $f: A^{n} \rightarrow B, \alpha:[n] \rightarrow[m]$ be mappings. A minor of f given by α is the mapping $f^{\alpha}: A^{m} \rightarrow B$ defined by

$$
f^{\alpha}\left(a_{1}, \ldots, a_{m}\right)=f\left(a_{\alpha(1)}, \ldots, a_{\alpha(n)}\right)
$$

for every $a_{1}, \ldots, a_{m} \in A$. A function $g: A^{m} \rightarrow B$ is a minor of f if $g=f^{\alpha}$ for some α.

Preliminaries - Minors

Another core concept in the algebraic approach is a minor.

Definition (Minor)

Let $f: A^{n} \rightarrow B, \alpha:[n] \rightarrow[m]$ be mappings. A minor of f given by α is the mapping $f^{\alpha}: A^{m} \rightarrow B$ defined by

$$
f^{\alpha}\left(a_{1}, \ldots, a_{m}\right)=f\left(a_{\alpha(1)}, \ldots, a_{\alpha(n)}\right)
$$

for every $a_{1}, \ldots, a_{m} \in A$. A function $g: A^{m} \rightarrow B$ is a minor of f if $g=f^{\alpha}$ for some α.

The significance of polymorphisms and minors stems from the fact that the computational complexity of $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ depends only on the set of all polymorphisms of the template (\mathbf{A}, \mathbf{B}). This set is a minion, i.e., it is closed under taking minors.

Preliminaries - Chain of Minors

Our NP-hardness results rely on a criterion that requires one final piece of notation.

Preliminaries - Chain of Minors

Our NP-hardness results rely on a criterion that requires one final piece of notation.

Definition (Chain of Minors)

A chain of minors is a sequence of the form $\left(f_{0}, \alpha_{0,1}, f_{1}, \alpha_{1,2}, \ldots, \alpha_{I-1, I}\right.$, f_{l}) where $f_{0}, \ldots, f_{l}: A^{n_{i}} \rightarrow B, \alpha_{i-1, i}:\left[n_{i-1}\right] \rightarrow\left[n_{i}\right]$, and $f_{i-1}^{\alpha_{i-1, i}}=f_{i}$ for every $i \in[/]$. We write $\alpha_{i, j}:\left[n_{i}\right] \rightarrow\left[n_{j}\right]$ for the composition of $\alpha_{i, i+1}$, $\alpha_{i+1, i+2}, \ldots, \alpha_{j-1, j}$. Note that $f_{i}^{\alpha_{i, j}}=f_{j}$.

The NP-Hardness Criterion

Theorem (Brandts, Wrochna, Živný '20)

Let (\mathbf{A}, \mathbf{B}) be a PCSP template. Suppose there are constants $k, I \in \mathbb{N}$ and an assignment of a set of at most k coordinates $\operatorname{sel}(f) \subseteq[\operatorname{ar}(f)]$ to every polymorphism f of (\mathbf{A}, \mathbf{B}) such that for every chain of minors $\left(f_{0}, \alpha_{0,1}, \ldots, f_{l}\right)$ with each f_{i} a polymorphism of (\mathbf{A}, \mathbf{B}), there are $0 \leq i<j \leq 1$ such that $\alpha_{i, j}\left(\operatorname{sel}\left(f_{i}\right)\right) \cap \operatorname{sel}\left(f_{j}\right) \neq \emptyset$ (or, equivalently, $\left.\operatorname{sel}\left(f_{i}\right) \cap \alpha_{i, j}^{-1}\left(\operatorname{sel}\left(f_{j}\right)\right) \neq \emptyset\right)$. Then $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ is NP-hard.

The NP-Hardness Criterion

Theorem (Brandts, Wrochna, Živný '20)

Let (\mathbf{A}, \mathbf{B}) be a PCSP template. Suppose there are constants $k, I \in \mathbb{N}$ and an assignment of a set of at most k coordinates $\operatorname{sel}(f) \subseteq[\operatorname{ar}(f)]$ to every polymorphism f of (\mathbf{A}, \mathbf{B}) such that for every chain of minors $\left(f_{0}, \alpha_{0,1}, \ldots, f_{l}\right)$ with each f_{i} a polymorphism of (\mathbf{A}, \mathbf{B}), there are $0 \leq i<j \leq 1$ such that $\alpha_{i, j}\left(\operatorname{sel}\left(f_{i}\right)\right) \cap \operatorname{sel}\left(f_{j}\right) \neq \emptyset$ (or, equivalently, $\left.\operatorname{sel}\left(f_{i}\right) \cap \alpha_{i, j}^{-1}\left(\operatorname{sel}\left(f_{j}\right)\right) \neq \emptyset\right)$. Then $\operatorname{PCSP}(\mathbf{A}, \mathbf{B})$ is $N P$-hard.

Our general approach to showing NP-hardness relies on observing key properties of the polymorphisms for a given template, and using these properties to define "types" of polymorphisms. We then analyze a chain of minors based on these types, and apply the criterion. This is similar to the "smug sets" approach in BWZ '20.

PCSP(1in3, $\left.\mathrm{D}_{2}^{+}\right)$

For our example proof, we consider $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$, where $\mathbf{D}_{2}^{+}=(\{0,1,2\}, R)$ and R consists of all the permutations of the tuples $(0,0,1),(1,1,2)$, and ($0,1,2$).

PCSP(1in3, $\left.\mathrm{D}_{2}^{+}\right)$

For our example proof, we consider $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$, where $\mathbf{D}_{2}^{+}=(\{0,1,2\}, R)$ and R consists of all the permutations of the tuples $(0,0,1),(1,1,2)$, and ($0,1,2$).

Let $f:\{0,1\}^{n} \rightarrow\{0,1,2\}$ be a polymorphism of $\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$.

PCSP(1in3, $\left.\mathrm{D}_{2}^{+}\right)$

For our example proof, we consider $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$, where $\mathbf{D}_{2}^{+}=(\{0,1,2\}, R)$ and R consists of all the permutations of the tuples $(0,0,1),(1,1,2)$, and ($0,1,2$).

Let $f:\{0,1\}^{n} \rightarrow\{0,1,2\}$ be a polymorphism of $\left(\mathbf{1 i n 3} 3, \mathbf{D}_{2}^{+}\right)$. We adopt two shorthand conventions for $X \subseteq[n]: f(X)$ denotes f evaluated with 1 in the i th position for all $i \in X$ and 0 in all other coordinates, and we say X is a j-set if $f(X)=j$.

PCSP(1in3, $\left.\mathrm{D}_{2}^{+}\right)$

For our example proof, we consider $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$, where $\mathbf{D}_{2}^{+}=(\{0,1,2\}, R)$ and R consists of all the permutations of the tuples $(0,0,1),(1,1,2)$, and ($0,1,2$).

Let $f:\{0,1\}^{n} \rightarrow\{0,1,2\}$ be a polymorphism of $\left(\mathbf{1 i n 3}, \mathbf{D}_{2}^{+}\right)$. We adopt two shorthand conventions for $X \subseteq[n]: f(X)$ denotes f evaluated with 1 in the i th position for all $i \in X$ and 0 in all other coordinates, and we say X is a j-set if $f(X)=j$.

Lemma

Let X and Y be disjoint subsets of $[n]$.

PCSP(1in3, $\left.\mathrm{D}_{2}^{+}\right)$

For our example proof, we consider $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$, where $\mathbf{D}_{2}^{+}=(\{0,1,2\}, R)$ and R consists of all the permutations of the tuples $(0,0,1),(1,1,2)$, and ($0,1,2$).

Let $f:\{0,1\}^{n} \rightarrow\{0,1,2\}$ be a polymorphism of $\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$. We adopt two shorthand conventions for $X \subseteq[n]: f(X)$ denotes f evaluated with 1 in the i th position for all $i \in X$ and 0 in all other coordinates, and we say X is a j-set if $f(X)=j$.

Lemma

Let X and Y be disjoint subsets of $[n]$.
(a) If $f(\emptyset)=0, f(X)=0$, and $f(Y) \in\{0,2\}$, then $f(X \cup Y) \in\{0,2\}$.

PCSP(1in3, $\left.\mathrm{D}_{2}^{+}\right)$

For our example proof, we consider $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$, where $\mathbf{D}_{2}^{+}=(\{0,1,2\}, R)$ and R consists of all the permutations of the tuples $(0,0,1),(1,1,2)$, and ($0,1,2$).

Let $f:\{0,1\}^{n} \rightarrow\{0,1,2\}$ be a polymorphism of $\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$. We adopt two shorthand conventions for $X \subseteq[n]: f(X)$ denotes f evaluated with 1 in the i th position for all $i \in X$ and 0 in all other coordinates, and we say X is a j-set if $f(X)=j$.

Lemma

Let X and Y be disjoint subsets of $[n]$.
(a) If $f(\emptyset)=0, f(X)=0$, and $f(Y) \in\{0,2\}$, then $f(X \cup Y) \in\{0,2\}$.
(b) If $f(\emptyset)=0, f(X)=1$, and $f(Y) \in\{0,1\}$, then $f(X \cup Y)=1$.

PCSP(1in3, $\left.\mathrm{D}_{2}^{+}\right)$

For our example proof, we consider $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$, where $\mathbf{D}_{2}^{+}=(\{0,1,2\}, R)$ and R consists of all the permutations of the tuples $(0,0,1),(1,1,2)$, and ($0,1,2$).

Let $f:\{0,1\}^{n} \rightarrow\{0,1,2\}$ be a polymorphism of $\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$. We adopt two shorthand conventions for $X \subseteq[n]: f(X)$ denotes f evaluated with 1 in the i th position for all $i \in X$ and 0 in all other coordinates, and we say X is a j-set if $f(X)=j$.

Lemma

Let X and Y be disjoint subsets of $[n]$.
(a) If $f(\emptyset)=0, f(X)=0$, and $f(Y) \in\{0,2\}$, then $f(X \cup Y) \in\{0,2\}$.
(b) If $f(\emptyset)=0, f(X)=1$, and $f(Y) \in\{0,1\}$, then $f(X \cup Y)=1$.
(c) If $f(\emptyset)=1, f(X)=f(Y)=1$, then $f(X \cup Y) \in\{0,1\}$.

PCSP(1in3, $\left.\mathrm{D}_{2}^{+}\right)$

For our example proof, we consider $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$, where $\mathbf{D}_{2}^{+}=(\{0,1,2\}, R)$ and R consists of all the permutations of the tuples $(0,0,1),(1,1,2)$, and ($0,1,2$).

Let $f:\{0,1\}^{n} \rightarrow\{0,1,2\}$ be a polymorphism of $\left(\mathbf{1 i n} 3, \mathbf{D}_{2}^{+}\right)$. We adopt two shorthand conventions for $X \subseteq[n]: f(X)$ denotes f evaluated with 1 in the i th position for all $i \in X$ and 0 in all other coordinates, and we say X is a j-set if $f(X)=j$.

Lemma

Let X and Y be disjoint subsets of $[n]$.
(a) If $f(\emptyset)=0, f(X)=0$, and $f(Y) \in\{0,2\}$, then $f(X \cup Y) \in\{0,2\}$.
(b) If $f(\emptyset)=0, f(X)=1$, and $f(Y) \in\{0,1\}$, then $f(X \cup Y)=1$.
(c) If $f(\emptyset)=1, f(X)=f(Y)=1$, then $f(X \cup Y) \in\{0,1\}$.
(d) If $f(\emptyset)=1, f(X)=f(Y)=0$, then $f(X \cup Y)=2$.

Combinatorial Lemmata

The preceding lemma is the basis for more complex results about polymorphisms for this template.

Combinatorial Lemmata

The preceding lemma is the basis for more complex results about polymorphisms for this template.

Lemma

Assume $f(\emptyset)=0$ and that f has no singleton 2-set. Then f has a singleton 1 -set and does not have any two disjoint 1 -sets.

Combinatorial Lemmata

The preceding lemma is the basis for more complex results about polymorphisms for this template.

Lemma

Assume $f(\emptyset)=0$ and that f has no singleton 2-set. Then f has a singleton 1 -set and does not have any two disjoint 1 -sets.

Lemma

Assume $f(\emptyset)=1$ and that, for some $j \geq 2$, all at most j-element subsets of [n] are 1-sets. Then $j<n$ and all $(j+1)$-element subsets of $[n]$ are 1 -sets.

Combinatorial Lemmata

The preceding lemma is the basis for more complex results about polymorphisms for this template.

Lemma

Assume $f(\emptyset)=0$ and that f has no singleton 2-set. Then f has a singleton 1 -set and does not have any two disjoint 1 -sets.

Lemma

Assume $f(\emptyset)=1$ and that, for some $j \geq 2$, all at most j-element subsets of [n] are 1 -sets. Then $j<n$ and all $(j+1)$-element subsets of $[n]$ are 1 -sets.

Lemma

 If $f(\emptyset)=1$, then there exists a 0 -set or a 2 -set of size at most 2.
NP-Hardness

Theorem
 PCSP(1in3, $\left.\mathbf{D}_{2}^{+}\right)$is NP-hard.

NP-Hardness

Theorem
 PCSP(1in3, $\left.\mathbf{D}_{2}^{+}\right)$is NP-hard.

Proof.

We will apply the NP-Hardness Criterion with $k=2$ and $I=5$.

NP-Hardness

Theorem

PCSP(1in3, $\left.\mathbf{D}_{2}^{+}\right)$is NP-hard.

Proof.

We will apply the NP-Hardness Criterion with $k=2$ and $I=5$. We assign to a polymorphism its type and define $\operatorname{sel}(f)$ as follows:

NP-Hardness

Theorem

PCSP $\left(1 \operatorname{in} 3, \mathbf{D}_{2}^{+}\right)$is NP-hard.

Proof.

We will apply the NP-Hardness Criterion with $k=2$ and $I=5$. We assign to a polymorphism its type and define $\operatorname{sel}(f)$ as follows:

- Type 1: f has a 2 -set X of size at most 2 . In this case we set $\operatorname{sel}(f)=X$.

NP-Hardness

Theorem

PCSP $\left(1 \mathrm{in} 3, \mathbf{D}_{2}^{+}\right)$is NP-hard.

Proof.

We will apply the NP-Hardness Criterion with $k=2$ and $I=5$. We assign to a polymorphism its type and define $\operatorname{sel}(f)$ as follows:

- Type 1: f has a 2 -set X of size at most 2 . In this case we set $\operatorname{sel}(f)=X$.
- Type 2: f has no 2-set of size at most $2, f(\emptyset)=0$, and $\{x\}$ is a 1 -set for some $x \in[n]$. We set $\operatorname{sel}(f)=\{x\}$.

NP-Hardness

Theorem

$\operatorname{PCSP}\left(1 i n 3, \mathbf{D}_{2}^{+}\right)$is NP-hard.

Proof.

We will apply the NP-Hardness Criterion with $k=2$ and $I=5$. We assign to a polymorphism its type and define $\operatorname{sel}(f)$ as follows:

- Type 1: f has a 2 -set X of size at most 2 . In this case we set $\operatorname{sel}(f)=X$.
- Type 2: f has no 2-set of size at most $2, f(\emptyset)=0$, and $\{x\}$ is a 1 -set for some $x \in[n]$. We set $\operatorname{sel}(f)=\{x\}$.
- Type 3: f has no 2 -set of size at most $2, f(\emptyset)=1$, and f has a 0 -set X of size at most 2 . We set $\operatorname{sel}(f)=X$.

NP-Hardness

Theorem

PCSP(1in3, $\left.\mathbf{D}_{2}^{+}\right)$is NP-hard.

Proof.

We will apply the NP-Hardness Criterion with $k=2$ and $I=5$. We assign to a polymorphism its type and define $\operatorname{sel}(f)$ as follows:

- Type 1: f has a 2 -set X of size at most 2 . In this case we set $\operatorname{sel}(f)=X$.
- Type 2: f has no 2-set of size at most $2, f(\emptyset)=0$, and $\{x\}$ is a 1 -set for some $x \in[n]$. We set $\operatorname{sel}(f)=\{x\}$.
- Type 3: f has no 2 -set of size at most $2, f(\emptyset)=1$, and f has a 0 -set X of size at most 2 . We set $\operatorname{sel}(f)=X$.
By the previous lemmata, every polymorphism is of these types.

NP-Hardness

Theorem

$\operatorname{PCSP}\left(1 \mathbf{i n} 3, \mathbf{D}_{2}^{+}\right)$is NP-hard.

Proof.

We will apply the NP-Hardness Criterion with $k=2$ and $I=5$. We assign to a polymorphism its type and define $\operatorname{sel}(f)$ as follows:

- Type 1: f has a 2 -set X of size at most 2 . In this case we set $\operatorname{sel}(f)=X$.
- Type 2: f has no 2-set of size at most $2, f(\emptyset)=0$, and $\{x\}$ is a 1 -set for some $x \in[n]$. We set $\operatorname{sel}(f)=\{x\}$.
- Type 3: f has no 2 -set of size at most $2, f(\emptyset)=1$, and f has a 0 -set X of size at most 2 . We set $\operatorname{sel}(f)=X$.
By the previous lemmata, every polymorphism is of these types. Further, the presence of at least two polymorphisms of the same type results in a nonempty intersection.

NP-Hardness

Theorem

$\operatorname{PCSP}\left(1 \mathbf{i n} 3, \mathbf{D}_{2}^{+}\right)$is NP-hard.

Proof.

We will apply the NP-Hardness Criterion with $k=2$ and $I=5$. We assign to a polymorphism its type and define $\operatorname{sel}(f)$ as follows:

- Type 1: f has a 2 -set X of size at most 2 . In this case we set $\operatorname{sel}(f)=X$.
- Type 2: f has no 2-set of size at most $2, f(\emptyset)=0$, and $\{x\}$ is a 1 -set for some $x \in[n]$. We set $\operatorname{sel}(f)=\{x\}$.
- Type 3: f has no 2-set of size at most $2, f(\emptyset)=1$, and f has a 0 -set X of size at most 2 . We set $\operatorname{sel}(f)=X$.
By the previous lemmata, every polymorphism is of these types. Further, the presence of at least two polymorphisms of the same type results in a nonempty intersection. This will satisfy the conditions of the criterion.

The Remaining Case $-\mathbf{T}_{1}^{+}$

PCSP(1in3, $\left.\mathbf{T}_{1}^{+}\right)$, corresponds to a natural hypergraph coloring problem that appears to be new:

The Remaining Case $-\mathbf{T}_{1}^{+}$

PCSP(1in3, $\left.\mathbf{T}_{1}^{+}\right)$, corresponds to a natural hypergraph coloring problem that appears to be new: given a 1in3-colorable 3-uniform hypergraph, find a 3-coloring such that, in each hyperedge, if two colors are equal, then the third one is higher (as opposed to "different" for the standard hypergraph coloring).

The Remaining Case $-\mathbf{T}_{1}^{+}$

PCSP (1in3, $\left.\mathbf{T}_{1}^{+}\right)$, corresponds to a natural hypergraph coloring problem that appears to be new: given a 1in3-colorable 3-uniform hypergraph, find a 3-coloring such that, in each hyperedge, if two colors are equal, then the third one is higher (as opposed to "different" for the standard hypergraph coloring).

Conjecture

$\operatorname{PCSP}\left(1 \mathrm{in} 3, \mathbf{T}_{1}^{+}\right)$and the generalization to larger domains, is NP-complete.

The Remaining Case $-\mathbf{T}_{1}^{+}$

PCSP $\left(1 \mathrm{in} 3, \mathbf{T}_{1}^{+}\right)$, corresponds to a natural hypergraph coloring problem that appears to be new: given a 1in3-colorable 3-uniform hypergraph, find a 3-coloring such that, in each hyperedge, if two colors are equal, then the third one is higher (as opposed to "different" for the standard hypergraph coloring).

Conjecture

$\operatorname{PCSP}\left(1 i n 3, \mathbf{T}_{1}^{+}\right)$and the generalization to larger domains, is NP-complete.

If this conjecture holds, there is a unique source of hardness for our templates.

Larger Domains

For a 4-element B, the conjecture would resolve all the cases with the exception of the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation containing the tuples $(0,0,1),(1,1,2),(2,2,3),(3,3,0)$ and their permutations, and $\check{\mathbf{C}}^{+}$is given by the same relation with all the "rainbow" tuples (i, j, k) such that $|\{i, j, k\}|=3$.

Larger Domains

For a 4-element B, the conjecture would resolve all the cases with the exception of the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation containing the tuples $(0,0,1),(1,1,2),(2,2,3),(3,3,0)$ and their permutations, and $\check{\mathbf{C}}^{+}$is given by the same relation with all the "rainbow" tuples (i, j, k) such that $|\{i, j, k\}|=3$. We suspect both ends of this interval are NP-hard, and can prove it for the bottom.

Larger Domains

For a 4-element B, the conjecture would resolve all the cases with the exception of the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation containing the tuples $(0,0,1),(1,1,2),(2,2,3),(3,3,0)$ and their permutations, and $\check{\mathbf{C}}^{+}$is given by the same relation with all the "rainbow" tuples (i, j, k) such that $|\{i, j, k\}|=3$. We suspect both ends of this interval are NP-hard, and can prove it for the bottom.

Theorem

$\operatorname{PCSP}(1 \mathrm{in} 3, \mathrm{C})$ is NP-hard.

Larger Domains

For a 4-element B, the conjecture would resolve all the cases with the exception of the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation containing the tuples $(0,0,1),(1,1,2),(2,2,3),(3,3,0)$ and their permutations, and $\check{\mathbf{C}}^{+}$is given by the same relation with all the "rainbow" tuples (i, j, k) such that $|\{i, j, k\}|=3$. We suspect both ends of this interval are NP-hard, and can prove it for the bottom.

Theorem

PCSP(1in3, Č) is NP-hard. The template (1in3, C $^{+}$) does not have a block symmetric polymorphism with two blocks of sizes 23 and 24

Larger Domains

For a 4-element B, the conjecture would resolve all the cases with the exception of the interval between $\check{\mathbf{C}}$ and $\check{\mathbf{C}}^{+}$, where $\check{\mathbf{C}}$ is given by the relation containing the tuples $(0,0,1),(1,1,2),(2,2,3),(3,3,0)$ and their permutations, and $\check{\mathbf{C}}^{+}$is given by the same relation with all the "rainbow" tuples (i, j, k) such that $|\{i, j, k\}|=3$. We suspect both ends of this interval are NP-hard, and can prove it for the bottom.

Theorem

PCSP(1in3, Č) is NP-hard. The template (1in3, C $^{+}$) does not have a block symmetric polymorphism with two blocks of sizes 23 and 24 (and therefore fails to satisfy the known sufficient condition for tractability in PCSPs from, e.g. Brakensiek, Guruswami '20).

Conjectures

Let $\mathbf{L O}_{k}$ denote the k-element domain structure whose relations are permutations relations (b, b, c) where $b<c$ in the linear order $0<1<2<\ldots<k-1$.

Conjectures

Let $\mathbf{L O}_{k}$ denote the k-element domain structure whose relations are permutations relations (b, b, c) where $b<c$ in the linear order $0<1<2<\ldots<k-1$.

Conjecture
For every $2 \leq k<1, \operatorname{PCSP}\left(\mathbf{L O}_{k}, \mathbf{L O}_{l}\right)$ is NP-hard.

Conjectures

Let $\mathbf{L O}_{k}$ denote the k-element domain structure whose relations are permutations relations (b, b, c) where $b<c$ in the linear order $0<1<2<\ldots<k-1$.

Conjecture
For every $2 \leq k<1, \operatorname{PCSP}\left(\mathbf{L O}_{k}, \mathbf{L} \mathbf{O}_{l}\right)$ is NP-hard.
This is a generalization of our earlier conjecture about $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{T}_{1}^{+}\right)$.

Conjectures

Let $\mathbf{L O}_{k}$ denote the k-element domain structure whose relations are permutations relations (b, b, c) where $b<c$ in the linear order $0<1<2<\ldots<k-1$.

Conjecture
For every $2 \leq k<I, \operatorname{PCSP}\left(\mathbf{L O}_{k}, \mathbf{L O}_{l}\right)$ is NP-hard.
This is a generalization of our earlier conjecture about $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{T}_{1}^{+}\right)$.
For four-element domains, the remaining cases include the structures in the interval between Č and Č $^{+}$.

Conjectures

Let $\mathbf{L O}_{k}$ denote the k-element domain structure whose relations are permutations relations (b, b, c) where $b<c$ in the linear order $0<1<2<\ldots<k-1$.

Conjecture

For every $2 \leq k<1, \operatorname{PCSP}\left(\mathbf{L O}_{k}, \mathbf{L} \mathbf{O}_{l}\right)$ is NP-hard.
This is a generalization of our earlier conjecture about $\operatorname{PCSP}\left(\mathbf{1 i n} 3, \mathbf{T}_{1}^{+}\right)$.
For four-element domains, the remaining cases include the structures in the interval between Č and Č $^{+}$.
Conjecture
$\operatorname{PCSP}\left(1 \mathbf{i n} 3, \check{\mathbf{C}}^{+}\right)$is NP-hard.

Conjectures

Let $\mathbf{L O}_{k}$ denote the k-element domain structure whose relations are permutations relations (b, b, c) where $b<c$ in the linear order $0<1<2<\ldots<k-1$.

Conjecture

For every $2 \leq k<1, \operatorname{PCSP}\left(\mathbf{L O}_{k}, \mathbf{L O}_{l}\right)$ is NP-hard.
This is a generalization of our earlier conjecture about $\operatorname{PCSP}\left(\mathbf{1 i n 3}, \mathbf{T}_{1}^{+}\right)$.
For four-element domains, the remaining cases include the structures in the interval between Č and Č $^{+}$.

Conjecture

$\operatorname{PCSP}\left(\mathbf{1 i n} 3, \check{\mathbf{C}}^{+}\right)$is NP-hard.
Negative resolution of this conjecture would also be valuable - it would require a polynomial-time algorithm that has not yet been used for PCSPs.

Thank you for your time!

[^0]: CoCoSym: Symmetry in Computational Complexity
 This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 771005)

