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Abstract

It was shown in Bárta et al (2012) that every ordinary differential equation with a strict Lyapunov
function is a gradient system for an appropriate Riemannian metric. We extend this result to evolution
equations in Hilbert spaces including most of PDEs. We further study extensions of the gradient
structure to stationary points.
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1 Introduction

It was shown in Bárta et al (2012) that every ordinary differential equation (even on a Riemannian
manifold) with a strict Lyapunov function is a gradient system for an appropriate Riemannian metric.
In particular, if an ODE

u̇+ F (u) = 0 (ODE)

is given and E is a strict Lyapunov function for (ODE), i.e. ⟨∇E(u), F (u)⟩ > 0 whenever F (u) ̸= 0, then
we can find a Riemannian metric r such that the gradient of E with respect to r is equal to F , i.e.

∇rE(u) = F (u),

where ∇rE(u) is defined by ⟨∇rE(u), v⟩ = E′(u)v for every v ∈ Rn.
The main result in Bárta et al (2012) remains valid if F is a contiuous operator on a Hilbert space H
(with the same proof and the same setting). In the present paper we extend the result to unbounded
operators, i.e. F continuous from a Hilbert space W ↪→ H to H. The proof is still the same but the
settings change.
Unlike Bárta et al (2012), we prove existence of the gradient structure on the whole domain including
stationary points, if they are non-degenerate. For ODE’s this was done in B́ılý (2014). The problem was
then further studied in Brooks and Maas (2024) and it was shown e.g. how to construct a smooth gradient
metric. However, some questions concerning stationary points from Bárta et al (2012) have remained
unanswered. We give (negative) answers to some of them here.
The idea of finding an appropriate metric on a Hilbert space to interpret a given PDE as a gradient
system occurs, e.g. in Jordan et al (1998) (Fokker-Planck equation), Heida (2015) (Allen–Cahn equation,
Cahn–Hilliard equation), Erbar (2024) (Boltzmann equation), Erbar and Maas (2014) (discrete porous
medium equation), Erbar et al (2022) (equations on graphs, McKean–Vlasov equation).
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The paper is organized as follows. Section 2 contains definitions, settings, and the main result. Section 3
deals with existence of gradient metric at non-stationary points while Section 4 focuses on a neighborhood
of stationary points. Section 5 contains some examples and counterexamples.

2 Settings and the main result

Let W ↪→ H be two infinite-dimensional Hilbert spaces and let the embedding be dense. Let M be an
open subset of W . Consider an evolution equation

u̇+ F (u) = 0, (1)

where F : M → H is continuous. By N we denote the set of stationary points N = {u ∈ M : F (u) = 0}.
Moreover, we assume that E ∈ C1(M) is a Lyapunov function to (1) according to the following definition.
Definition 1 (strict Lyapunov function). We say that E ∈ C1(M) is a strict Lyapunov function to (1)
if for every w ∈ M

(i) E′(w) extends to a bounded linear functional on H and
(ii) E′(w)F (w) > 0 provided w ∈ M \N .

Here, E′(w)F (w) is the extended linear functional E′(w) : H → R applied to F (w) ∈ H. Condition (i) in
fact says that there exists a gradient of E on M (by the Riesz representation theorem); see the definition
below. An inner product on H is a continuous bilinear form from H × H to R that is symmetric and
positive definite.
Definition 2 (gradient). Let w ∈ M and let g be an inner product on H. Let u ∈ H satisfy ⟨u, v⟩g =
E′(w)v for all v ∈ H. Then we say that u is a gradient of E in w with respect to g, i.e. u = ∇gE(w).
If a gradient exists, then obviously it is unique. We denote by Inner(H) the space of all inner products
on H with the topology of strong convergence, i.e. gn → g means ⟨u, v⟩gn → ⟨u, v⟩g for all u, v ∈ H.
Definition 3 (metric, gradient metric, gradient system). Any continuous mapping r : M → Inner(H) is
called a metric on M . If ∇r(w)E(w) = F (w) for all w ∈ M , then r is called a gradient metric on M . If
there exists a gradient metric r to (1), then (1) is called a gradient system (with respect to the metric r).
Observe that continuity in this definition means: if ∥wn −w∥W → 0, then ⟨u, v⟩r(wn)

→ ⟨u, v⟩r(w) for all

u, v ∈ H. By Observation 22, this is equivalent to ⟨un, vn⟩r(wn)
→ ⟨u, v⟩r(w) for all un → u, vn → v in

H. Let us also note, that the norm associated with an inner product is not necessarily equivalent to the
original norm of H. In particular, r(w1), r(w2) are not necessarily equivalent.
Let us define uniform continuity of a metric, this notion is needed below.
Definition 4. We say that a metric r is norm-continuous at u, if

sup
∥x∥,∥y∥≤1

∣∣∣⟨x, y⟩r(un)
− ⟨x, y⟩r(u)

∣∣∣ → 0

whenever un → u in W .
Let r be any metric on M and Ẽ ∈ C1(M). Let us define F = ∇rẼ. Then obviously F : M → H is
continuous and Ẽ is a strict Lyapunov function for equation (1) (see Observation 22). The main result
states in some sense the opposite implication. Before we formulate it, let us write down one more definition
Definition 5 (non-degenerate stationary point). Let us consider equation (1) with a strict Lyapunov
function E. We say that a stationary point w ∈ N is non-degenerate, if E′(w) = 0, F ′(w) and E′′(w) exist,
F ′(w) has a bounded inverse F ′(w)−1 : H → W , and the mapping Φw : (X,Y ) 7→ (E′′(w)F ′(w)−1X)Y
belongs to InnerH and the associated norm is equivalent to the norm of H.
Theorem 6. Let M ⊂ W , F : M → H continuous, E : M → R be a strict Lyapunov function for (1),
and let each w ∈ N be non-degenerate. Then there exists a gradient metric g on M .

Proof. Stationary points of F are isolated, since otherwise they would have an accumulation point w̄,
F (w̄) = 0 and necessarily either F ′(w̄) = 0 or F ′(w̄) does not exist, which is a contradiction in both cases.
So, we can cover M by open sets each of them containing at most one stationary point, and consequently
exactly one. Let us denote Gw the open set containing the stationary point w. Then consider a partition
of unity (ρw) subordinate to this cover. On each Gw we define a gradient metric gw by Theorem 12.
Then g =

∑
w ρwgw is obviously a gradient metric on M .
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Remark 7. 1. A gradient metric on M \ N exists even without the non-degeneracy condition. The
gradient metric is not unique. Each metric on M \ N (and each Lyapunov function) yields a gradient
metric on M \N , these gradient metrics are different (in general), see Theorem 9 for details.
2. Problem of extending the gradient metric to stationary points is more delicate. For fixed E the gradient
metric at stationary points is unique, see Proposition 14. But it may vary with E. Non-degeneracy of a
stationary points is not a necessary condition for existence of a gradient metric on M . At degenerate
stationary points, existence of a gradient metric depends on the choice of a suitable Lyapunov function
in some cases, in other cases gradient metric does not exist for any Lyapunov function. For more details
see Section 4 and examples and counterexamples in Section 5 where this topic is discussed.
Remark 8. Througout the paper we assume H, W to be infinite-dimensional. However, the results
remain true in finite-dimensional case, there is only one restriction in Proposition 13 where we need
dimW ≥ 3 in the backward implication.

3 Gradient metric at non-stationary points

Theorem 9. Let M ⊂ W , F : M → H continuous, and let E : M → R be a strict Lyapunov function
for (1). Then there exists a gradient metric g on the open set

M̃ := M \N.

Proof. By assumption (ii) in Definition 1, 0 ̸= F (w) ̸∈ kerE′(w) and kerE′(w) ̸= H for every w ∈ M̃ .
As a consequence, for every w ∈ M̃ we have

H = kerE′(w)⊕ ⟨F (w)⟩. (2)

For every u ∈ H and w ∈ M̃ let us define

uw0 := u− ⟨E′(w), u⟩
⟨E′(w), F (w)⟩

F (w) and uw1 :=
⟨E′(w), u⟩

⟨E′(w), F (w)⟩
F (w). (3)

Then uw0 ∈ kerE′(w), uw1 ∈ ⟨F (w)⟩ and the mappings w 7→ uw0, w 7→ uw1 are continuous from W to H.
Now we choose an arbitrary metric r on H. Starting from this metric, we define a new metric on M̃ by
setting

⟨u, v⟩g(w) := ⟨uw0, vw0⟩r(w) +
1

⟨E′(w), F (w)⟩
⟨E′(w), u⟩ ⟨E′(w), v⟩

= ⟨uw0, vw0⟩r(w) +
1

⟨E′(w), F (w)⟩
⟨E′(w), uw1⟩ ⟨E′(w), vw1⟩ .

(4)

Precisely at this point we use the assumption that E is a strict Lyapunov function, that is, ⟨E′, F ⟩ > 0 on
M̃ , because this assumption implies that g really is a metric (in particular: positive definite). Continuity
of g follows from continuity of the mappings w 7→ uw0, w 7→ uw1, Observation 21 and continuity of r, E′

and F .
By definition of the metric g and by definition of the gradient ∇gE, we have for every v ∈ H, w ∈ M̃

⟨F (w), v⟩g(w) = 0 + ⟨E′(w), v⟩ =
〈
∇g(w)E(w), v

〉
g(w)

,

so g is a gradient metric on M̃ .

Remark 10. 1. One can see from the proof that the metric g is not unique, different r’s in general yield
different g’s. On the other hand, every gradient metric comes from some r via the construction described
above. In fact, if r is a gradient metric, then g defined in the proof of Theorem 9 is equal to r.
2. If ∥ · ∥r(w) is equivalent to ∥ · ∥H then also ∥ · ∥g(w) is equivalent to these norms (and, in particular, it
is complete). On the other hand, if ∥ · ∥r(w) is not equivalent to ∥ · ∥H , then ∥ · ∥g(w) can, but does not
have to, be equivalent to ∥ · ∥r(w). See Proposition 11 for more details.
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Proposition 11. Let w ∈ H. Let us denote ∥ · ∥ the standard norm in the Hilbert space H, let r be
an inner product on H and let g be defined by (4), (3) (with g = g(w), r = r(w)). We denote by ∼
equivalence of two norms and by ⪵ the fact that the norm on the left is bounded above by the norm on
the right but not equivalent. Then the following holds.

1. If ∥ · ∥r ∼ ∥ · ∥, then ∥ · ∥r ∼ ∥ · ∥g.
2. If ∥ · ∥r ⪵ ∥ · ∥ and kerE′(w) is closed in H w.r.t. ∥ · ∥r, then ∥ · ∥r ∼ ∥ · ∥g.
3. If ∥ · ∥r ⪵ ∥ · ∥ and kerE′(w) is not closed in H w.r.t. ∥ · ∥r, then ∥ · ∥r ⪵ ∥ · ∥g ⪵ ∥ · ∥ and kerE′(w)

is closed w.r.t. g.

Proof. 1. and 2. It is well known that if H = G ⊕ R and G is a closed subspace of codimension 1 of
a normed linear space H with the norm inherited from H, then it has a topological complement, and
therefore ∥ · ∥2H ∼ ∥ · ∥2G + ∥ · ∥2R.
3. Since w is fixed, let us write E′, F instead of E′(w), F (w). Since H is a Hilbert space, the projections
to KerE′ and ⟨F ⟩ are continuous, so for z = u + dF , d ∈ R we have ∥z∥2g = ∥u∥2r + d2⟨E′, F ⟩ ≤
c∥u∥2+∥dF∥2g ≤ c∥z∥2. Further, ∥z∥2r ≤ (∥u∥r+∥dF∥r)2 ≤ (∥u∥g+c∥dF∥g)2 ≤ 2(∥u∥2g+∥dF∥2g) = 2∥z∥g.
So, ∥ · ∥r ≺ ∥ · ∥g ≺ ∥ · ∥. Obviously, since ∥ · ∥g = ∥ · ∥r ⪵ ∥ · ∥ on kerE′ we have ∥ · ∥g ⪵ ∥ · ∥.
Finally, since kerE′ is not closed w.r.t. r, we have kerE′∥·∥r

= H. So, there exists un ∈ kerE′ with
un → F in r. However, ∥un − F∥2g = ∥un∥2r + ⟨E′, F ⟩ → ∥F∥2r + ⟨E′, F ⟩ ≠ 0. Hence, ∥ · ∥r ⪵ ∥ · ∥g.
Finally, if z ̸= kerE′, then z = u + dF for some u ∈ kerE′, d ∈ R. Then for all v ∈ kerE′ we have
∥z − v∥2g = ∥u− v∥2r + d2⟨E′, F ⟩ ≥ d2⟨E′, F ⟩, so z is not in the g-closure of kerE′.

4 Extension to stationary points

In this section we show that gradient metric can be extended to stationary points if they are non-
degenerate.
Theorem 12. Let N = {w} and let w be non-degenerate. Then there exists a gradient metric on M .

Proof. Let us consider a constant metric r defined by ⟨x, y⟩r(u) = Φw(x, y). Then apply Theorem 9 to

define g on M \ {w} and the following Proposition to extend g to w. Obviously, the assumptions of the
following Proposition are met since r is norm-continuous and satisfies ⟨x, y⟩r(w) = Φw(x, y).

Proposition 13. Let N = {w} and let w be non-degenerate. Let r be a metric on M and let g be
the gradient metric on M \ {w} defined in the proof of Theorem 9. Moreover, assume that r is norm-
continuous at w. Then g has a contiunuous extension to w, if and only if ⟨x, y⟩r(w) = Φw(x, y). In this

case, ⟨x, y⟩g(w) = Φw(x, y)

Proof. Let us assume (without loss of generality) that w = 0. Take ρ > 0 such that B(0, ρ) ⊂ M̃ ∪ {0}.
Take an arbitrary u ∈ W , u ̸= 0 and fix δ > 0 such that δu ∈ B(0, ρ). Then for every x ∈ H and every
h ∈ (−δ, δ), h ̸= 0 we have

⟨F (hu)− F (0), x⟩g(hu) = ⟨F (hu), x⟩g(hu) = ⟨∇gE(hu), x⟩g(hu) = E′(hu)x = E′(hu)x− E′(0)x.

Dividing by h and taking limit for h → 0 we obtain

lim
h→0

〈
1

h
(F (hu)− F (0)), x

〉
g(hu)

= (E′′(0)u)x.

Let us first assume that g has a continuous extension to zero. Then g(hu) → g(0) and 1
h (F (hu)−F (0)) →

F ′(0)u in H, so by Observation 21 we have

⟨F ′(0)u, x⟩g(0) = (E′′(0)u)x. (5)

Since F ′(0) : W → H is a bijection we have ⟨v, x⟩g(0) = (E′′(0)F ′(0)−1v)x = Φ0(v, x) for all x, v ∈ H.

Further, we follow B́ılý (2014) to show ⟨x, y⟩g(0) = ⟨x, y⟩r(0) for all x, y ∈ H. Let us fix x, y ∈ H. By

4



225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

definition of g we have for every u ∈ W and for every small enough real h ̸= 0

⟨x, y⟩g(hu) =
〈
x− ⟨E′(hu), x⟩

⟨E′(hu), F (hu)⟩
F (hu), y − ⟨E′(hu), y⟩

⟨E′(hu), F (hu)⟩
F (hu)

〉
r(hu)

+
1

⟨E′(hu), F (hu)⟩
⟨E′(hu), x⟩ ⟨E′(hu), y⟩

= ⟨x, y⟩r(hu) −

〈
E′(hu)

h , x
〉

〈
E′(hu)

h , F (hu)
h

〉 〈
F (hu)

h
, y

〉
r(u)

−

〈
E′(hu)

h , y
〉

〈
E′(hu)

h , F (hu)
h

〉 〈
F (hu)

h
, y

〉
r(u)

+

〈
E′(hu)

h , x
〉

〈
E′(hu)

h , F (hu)
h

〉
〈

E′(hu)
h , y

〉
〈

E′(hu)
h , F (hu)

h

〉 〈
F (hu)

h
,
F (hu)

h

〉
r(u)

+
1〈

E′(hu)
h , F (hu)

h

〉 〈
E′(hu)

h
, x

〉〈
E′(hu)

h
, y

〉

(6)

Taking limits we obtain

⟨x, y⟩g(0) = ⟨x, y⟩r(0) −
⟨E′′(0)u, x⟩ ⟨F ′(0)u, y⟩r(0)

⟨E′′(0)u, F ′(0)u⟩
−

⟨E′′(0)u, y⟩ ⟨F ′(0)u, x⟩r(0)
⟨E′′(0)u, F ′(0)u⟩

+
⟨E′′(0)u, x⟩

⟨E′′(0)u, F ′(0)u⟩
⟨E′′(0)u, y⟩ ⟨F ′(0)u, F ′(0)u⟩r(0)

⟨E′′(0)u, F ′(0)u⟩
+

⟨E′′(0)u, x⟩ ⟨E′′(0)u, y⟩
⟨E′′(0)u, F ′(0)u⟩

(7)

By (5) we have

⟨x, y⟩g(0) = ⟨x, y⟩r(0) −
⟨F ′(0)u, x⟩g(0) ⟨F ′(0)u, y⟩r(0)

∥F ′(0)u∥g(0)
−

⟨F ′(0)u, y⟩g(0) ⟨F ′(0)u, x⟩r(0)
∥F ′(0)u∥g(0)

+
⟨F ′(0)u, x⟩g(0)
∥F ′(0)u∥g(0)

⟨F ′(0)u, y⟩g(0) ∥F ′(0)u∥r(0)
∥F ′(0)u∥g(0)

+
⟨F ′(0)u, x⟩g(0) ⟨F ′(0)u, y⟩g(0)

∥F ′(0)u∥g(0)
.

(8)

Now, let us choose u such that ⟨F ′(0)u, x⟩g(0) = 0 and ⟨F ′(0)u, y⟩g(0) = 0. This yields ⟨x, y⟩g(0) =

⟨x, y⟩r(0).
To show the second implication let us fix x, y ∈ H and prove limu→0 ⟨x, y⟩g(u) = ⟨x, y⟩r(0). We again

follow the proof for finite-dimensional setting in B́ılý (2014). By definition of g(u), u ∈ M \ {0} we need
to estimate∣∣∣∣∣

〈
x− ⟨E′(u), x⟩

⟨E′(u), F (u)⟩
F (u), y − ⟨E′(u), y⟩

⟨E′(u), F (u)⟩
F (u)

〉
r(u)

+
⟨E′(u), x⟩ ⟨E′(u), y⟩

⟨E′(u), F (u)⟩
− ⟨x, y⟩r(0)

∣∣∣∣∣
Since ⟨x, y⟩r(u) → ⟨x, y⟩r(0) it remains to show that the following expressions tend to zero

∣∣∣∣ ⟨E′(u), x⟩
⟨E′(u), F (u)⟩

(
⟨E′(u), y⟩ − ⟨F (u), y⟩r(u)

)∣∣∣∣ ,∣∣∣∣ ⟨E′(u), y⟩
⟨E′(u), F (u)⟩

(
⟨E′(u), x⟩ − ⟨F (u), x⟩r(u)

)∣∣∣∣ ,∣∣∣∣∣ ⟨E′(u), x⟩ ⟨E′(u), y⟩
⟨E′(u), F (u)⟩2

(
∥F (u)∥2r(u) − ⟨E′(u), F (u)⟩

)∣∣∣∣∣ .
(9)
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We have E′(u) = E′(0)+E′′(0)u+o(∥u∥W ) = ∥u∥W (E′′(0)ũ+o(1)) and F (u) = F (0)+F ′(0)u+o(∥u∥W ) =
∥u∥W (F ′(0)ũ+ o(1)) where ũ = u

∥u∥W
. Therefore,

∥u∥W
⟨E′(u), x⟩

⟨E′(u), F (u)⟩
=

⟨E′′(0)ũ, x⟩+ o(1)

⟨E′′(0)ũ, F ′(0)ũ⟩+ o(1)

and the right-hand side is bounded by a constant independent of ũ since

⟨E′′(0)ũ, F ′(0)ũ⟩ =
〈
E′′(0)F ′(0)−1F ′(0)ũ, F ′(0)ũ

〉
= Φ0(F

′(0)ũ, F ′(0)ũ) ≥ c∥F ′(0)ũ∥ ≥ c′ > 0

since F ′(0) has bounded inverse and ∥ũ∥W = 1. Similarly, the term

∥u∥2W
⟨E′(u), x⟩ ⟨E′(u), y⟩

⟨E′(u), F (u)⟩2
(10)

is bounded. Further, we have

1

∥u∥W
⟨F (u), y⟩r(u) = ⟨F ′(0)ũ, y⟩r(u) + o(1)

= ⟨F ′(0)ũ, y⟩r(u) − ⟨F ′(0)ũ, y⟩r(0) + ⟨F ′(0)x̃, y⟩r(0) + o(1)

= ⟨F ′(0)ũ, y⟩r(u) − ⟨F ′(0)ũ, y⟩r(0) + ⟨E′′(0)ũ, y⟩+ o(1).

Hence,

1

∥u∥W

∣∣∣⟨E′(u), y⟩ − ⟨F (u), y⟩r(u)
∣∣∣ = ∣∣∣⟨F ′(0)ũ, y⟩r(u) − ⟨F ′(0)ũ, y⟩r(0) + o(1)

∣∣∣
which tends to zero by norm-continuity of r. So, the first term in (9) converges to zero and the same is
obviously true for the second term.
Convergence to zero of the third term follows from boundedness of (10), the following equalities

1

∥u∥2W

(
∥F (u)∥2r(u) − ⟨E′(u), F (u)⟩

)
= ⟨F ′(0)ũ, F ′(0)ũ⟩r(u) − ⟨E′′(0)ũ, F ′(0)ũ⟩+ o(1)

= ⟨F ′(0)ũ, F ′(0)ũ⟩r(u) − ⟨F ′(0)ũ, F ′(0)ũ⟩r(0) + o(1)

and norm-continuity of r.

One can see from the proof that one implication of Proposition 13 holds under weaker assumptions on
the stationary point w. Namely, norm-continuity of r is not needed and we also do not need that the
norm associated with Φw is equivalent. The following proposition is an immediate consequence of the
proof of Proposition 13
Proposition 14. Let N = {w} and let E′(w) = 0, F ′(w) and E′′(w) exist, and F ′(w) has a bounded
inverse F ′(w)−1 : H → W . Let g be a gradient metric on M , then ⟨x, y⟩g(w) = Φw(x, y). If, moreover, g

comes from a metric r on M \ {w} as in the proof of Theorem 9, then ⟨x, y⟩g(w) = ⟨x, y⟩r(w) = Φw(x, y).

5 Examples

This section is devoted to examples and counterexamples demonstrating necessity and non-necessity of
various assumptions of the results proved in previous sections and other related phenomena.
The following example shows that various r’s and various Lyapunov functions yield various gradient
metrics in non-stationary points.
Example 15 (Heat equation). Let us consider the heat equation

ut −∆u = 0 (11)
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with Dirichlet boundary conditions on a bounded domain Ω ⊂ Rn with Lipschitz boundary. This fits in
our settings with H = L2(Ω), M = W = H1

0 (Ω) ∩ H2(Ω) and F (w) = −∆w. It is known that (11) is
a gradient system for E(w) = 1

2

∫
Ω
|∇w|2 and r being the scalar product on H. On the other hand, one

can consider r1 defined as ⟨u, v⟩r1(w) =
∫
Ω
(1+ ∥x∥)u(x)v(x)dx and obtain a gradient metric on M \ {0}

given by

⟨u, v⟩g1(w) =

∫
(1 + ∥x∥)uv + 1

∥∆w∥2

(
−
∫

∇w∇u

∫
(1 + ∥x∥)∇w∇v

−
∫

∇w∇v

∫
(1 + ∥x∥)∇w∇u+

∫
∇w∇u

∫
∇w∇v

)
+

1

∥∆w∥4

∫
∇w∇u

∫
∇w∇v

∫
(1 + ∥x∥)∆w∆w

or one can replace the term ∥x∥ by ∥w∥ to get a non-constant metric r2 and the corresponding gradient
metric g2.
Further, one can consider E(w) = 1

2

∫
Ω
|w|2 which is another Lyapunov function for (11) and keep the

original r. By Theorem 9, there exists a gradient metric g on M \ {0} for this Lyapunov function and
the gradient metric is given (for w ̸≡ 0) by the formula

⟨u, v⟩g(w) = aw

∫
uv −

∫
uw

∫
v∆w −

∫
vw

∫
u∆w +

bw
aw

∫
uw

∫
vw

where aw =
∫
w∆w, bw = 1+

∫
∆w∆w (all integrals over Ω). It is not immediately clear whether this g

can be extended to the origin.
The following example shows that it can happen: 1st For various Lyapunov functions there exist gradient
metrics extendable to stationary points. 2nd Not every gradient metric is extendable to stationary points,
one needs to choose r appropriately. 3rd Some gradient metrics are not equivalent to the original norm
on H. 4th For some E the unique gradient metric at stationary points is not equivalent to original norm
on H. 5th For some E no gradient metric at stationary points exists (for any metric r).
Example 16 (1D heat equation as multiplication operator). Let us consider the Dirichlet Laplacian
on [0, 1] and represent it via Fourier series. So, H = l2, M = W = {u ∈ l2 : (n2u(n)) ∈ l2},
F (u) = (n2u(n)).
1. The most natural Lyapunov function for this problem is E(u) = 1

2

∑
n2u(n)2, which corresponds to

1
2

∫
|∇u|2 and F (u) = ∇E(u) w.r.t. ⟨x, y⟩ =

∑
x(n)y(n).

2. Let us now consider E(u) = 1
2

∑
u(n)2, which corresponds to 1

2

∫
|u|2. Then

E′(u)x =
∑

u(n)x(n) = ⟨∇gE(u), x⟩g(u) .

To get a gradient system, we need the previous epression to be equal to ⟨F (u), x⟩g(u). We can define

⟨x, y⟩g(u) =
∑

1
n2x(n)y(n), then ⟨F (u), x⟩g(u) =

∑
1
n2n

2u(n)x(n) = E′(u)x. So, u̇ = F (u) is a gradient
system on W w.r.t. metric g, but the norm associated with g is not equivalent to the norm on H,
it is not complete. Further, we have (E′′(0)u)v =

∑
u(n)v(n) and F ′(0)u = (n2u(n)), so Φ0(x, y) =

(E′′(0)F−1(0)x)y =
∑

1
n2x(n)v(n). So, we can see that in this case a gradient metric exists on M even

if the norm associated with Φ0 is not equivalent.
3. Now, let us still consider E(u) = 1

2

∑
u(n)2 but take r as ⟨x, y⟩r(w) =

∑
x(n)y(n) and the gradient

metric g as in the proof of Theorem 9. Then the corresponding metric g cannot be extended to the origin,
by Proposition 14.
4. Let us now consider E(u) = 1

4u(1)
4 + 1

2

∑∞
n=2 n

2u(n)2. Obviously, this is a Lyapunov function, since
E′(u)F (u) = u(1)4 +

∑∞
n=2 n

4u(n)2 > 0 if u ̸≡ 0. So, there exists a gradient metric g on M \ {0}.
However, Φ0(x, y) = (E′′(0)F ′(0)−1x)y =

∑∞
n=2

1
n2n

2x(n)y(n) which is positive semidefninite bilinear
form. Therefore, there is no gradient metric on the whole M by Proposition 14, e.g. for any r, the g
associated to r cannot be extended to the origin.
The following proposition provides examples where gradient metric cannot be extended to stationary
points not only for any choice of r but even for any choice of a Lyapunov function. The example is finite-
dimensional but can be easily extended to the infinite-dimensional case by adding further coordinates.
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Typically, if there are orbits in the shape of spirals around the stationary point, then the extension of g
is impossible. This is often the case of second order equations with damping.
Proposition 17. Let F ∈ C1(Rn) be such that F (0) = 0 and F ′(0) is a regular matrix with at least
one eigenvalue having non-zero imaginary part. Then there does not exist a gradient metric on any
neigborhood of 0 for any Lyapunov function E ∈ C2.

Proof. Let us assume for contradiction that a Lyapunov function E ∈ C2 and a gradient metric g exist
on a neighborhood of zero. Then, by Proposition 14 is the matrix A = E′′(0)F ′(0)−1 symmetric positive
definite. In particular, it is invertible and F ′(0) = A−1E′′(0). However, on the right-hand side is a product
of two symmetric matrices where the first of them is positive definite. Such product has necessarily real
spectrum which is a contradiction.

Example 18. Let us consider F (x, y) = (−y, 2x− 2y). Then F ′(0) =

(
0 −1
2 −2

)
with eigenvalues −1± i.

Then E(x, y) = 2x2 + y2 − εxy is a strict Lyapunov function if ε > 0 is small enough. So, there exist
many Lyapunov functions and many gradient metrics on R2 \ {(0, 0)}. So, there are many ways how to
write (ẋ, ẏ) = F (x, y) as a gradient system on R2 \ {(0, 0)} but it is not possible to write it as a gradient
system on R2 (with C2 Lyapunov function).
The following example shows that non-degeneracy of a stationary point is not a necessary condition for
existence of gradient metric. In particular, gradient metric may exist even if F ′(0) is not invertible. In
fact, here F is a bounded operator and the example works even if restricted to a finite-dimensional space.
Example 19. Let H = l2, M = W = H, F (u) = (u(1)3, u(2), u(3), . . . ). Then F ′(0)u =
(0, u(2), u(3), . . . ), so F ′(0) is not invertible. Let us further define E(u) = 1

4u(1)
4 + 1

2

∑∞
n=2 u(n)

2. Then
E′(u)v = u(1)3v(1) +

∑∞
n=2 u(n)v(n). So, ∇E(u) = F (u) w.r.t. the standard inner product on l2 for all

u ∈ l2. So, if we take r equal to the standard inner product, then g = r on l2, in particular g can be
extended to the origin although F ′(0) is not invertible and definition of Φ0 does not have sense.
Example 20 (Damped wave equation). Let us consider the wave equation with linear damping

utt + ut −∆u = 0, (12)

or more generally

utt + g(ut)ut +∇E(u) = 0 (13)

on a bounded domain Ω ⊂ Rn with smooth boundary. We can represent this problem as (1) as follows

d

dt

(
u
v

)
+

(
−v

g(v)v +∇E(u)

)
= 0 (14)

where the second vector is F (u, v). We take H = H1
0 (Ω)× L2(Ω), W = (H1

0 (Ω) ∩H2(Ω))×H1
0 (Ω) and

assume that E ∈ C1(H1
0 (Ω)) with E′(w) extendable to a bounded functional on L2(Ω) (then ∇E(w) is

defined) for each w ∈ H1
0 (Ω) ∩H2(Ω). Then F is continuous from W to H, if v 7→ g(v)v is continuous

from H1
0 to L2 and ∇E is continuous from (H1

0 (Ω) ∩H2(Ω)) to L2.

Here the first condition is satisfied if g(v)(x) = g̃(v(x)), g̃ continuous with |g̃(v)| ≤ c|v|
2

n−2 . In fact, in
this case the Nemytskii operator v 7→ vg(v) is continuous from Lq to L2 for q = 2n

n−2 (see e.g. (Appell

and Zabrejko, 1990, Section 3.2)) and it holds that H1
0 ↪→ Lq.

It is easy to show that

E1(u, v) =
1

2
∥v∥2 + E(u)

is a Lyapunov function for (14) which is not strict. One can show that (under additional assumptions)

E(u, v) = E1(u, v) + εB(E1(u, v)) ⟨∇E(u), v⟩−1

is a strict Lyapunov function for an appropriate function B and ε > 0 small enough. In particular, if
g(v) = |v|α and E satisfies the  Lojasiewicz gradient inequality

∥E′(u)∥ ≥ c∥E(u)− E(0)∥1−θ

8
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and ∥E′(u)∥ ≤ C∥E(u)−E(0)∥1/2, then B(s) = sβ with β = α(1−θ). This (slightly more general) result
is shown in Hassen and Haraux (2011), for a further generalization you can see Bárta (2016). In fact,
denoting

H(t) = E(u(t), v(t))

for a solution (u(·), v(·)) of (14), we have

⟨E′(u, v), F (u, v)⟩ = −E′(u, v)

(
u̇
v̇

)
= −H ′(t)

and it is shown in (Hassen and Haraux, 2011, proof of Theorem 2.2), resp. (Bárta, 2016, proof of Theorem
2.1) that −H ′(t) > 0, whenever (∇E(u), v) ̸= (0, 0), i.e. F (u, v) ̸= 0.
Therefore, equations (12) and (13) (under the assumptions from Hassen and Haraux (2011) or Bárta
(2016)) are gradient systems on the set where F ̸= 0 by Theorem 9.
There is no gradient metric on the whole domain for the Lyapunov function E defined above, since
E′′(F ′)−1 is not symmetric in stationary points. In fact, stationary points are (u, 0) where ∇E(u) = 0.
Then

F ′(u, 0) =

(
0 −1

g′(0) E′′(u)

)
and F ′(u, 0)−1 =

1

g′(0)

(
E′′(u) 1
−g′(0) 0

)
.

Further,

E′′(u, 0) =

(
E′′(u) 0

0 1

)
if ε = 0,

so

E′′(u, 0)F ′(u, 0)−1 =

(
E′′(u)g′(0)E′′(u) E′′(u)

−1 0

)
+ o(1) as ε → 0.

Hence, the bilinear form is not symmetric.

6 Appendix

Observation 21. (i) (uniform boundedness principle for bilinear forms) Let A be a set of bilinear forms
on H. If for every u, v ∈ H the set {a(u, v) : a ∈ A} is bounded, then {∥a∥ : a ∈ A} is bounded.
(ii) (continuity of a Riemannian metric) Let r be a Riemannian metric V → Inner(H). Let wn → w in
V , vn → v in H and un → u in H. Then ⟨un, vn⟩r(wn)

→ ⟨u, v⟩r(w).

Proof. (i) Since a(u, ·) are linear mappings, we have for each fixed u boundedness of {∥a(u, ·)∥ : a ∈ A}.
Since the mappings La : u 7→ a(u, ·) are linear and {La(u) : a ∈ A} is bounded for every u ∈ V ,
boundedness of {∥La∥ : a ∈ A} follows and this is exactly what we need.
(ii) Let us estimate

| ⟨un, vn⟩r(wn)
− ⟨u, v⟩r(w) | ≤ | ⟨un, vn⟩r(wn)

− ⟨un, v⟩r(wn)
|

+ | ⟨un, v⟩r(wn)
− ⟨u, v⟩r(wn)

|

+ | ⟨u, v⟩r(wn)
− ⟨u, v⟩r(w) |.

Here the first term on the right-hand side is estimated by

sup ∥un∥H sup ∥r(wn)∥H×H→R∥vn − v∥H ,

where the second supremum is finite due to boundedness of {⟨u, v⟩r(wn)
: n ∈ N} for every fixed u,

v ∈ H (follows from strong continuity of r) and (i). The other two terms on the right-hand side can be
estimated analogously, so convergence to zero follows.

Observation 22. If E ∈ C1(M), F : M → H and F (w) = ∇r(w)E(w) for every w ∈ M , then E is a
strict Lyapunov function for (1).
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Proof. Since ∇r(w)E(w) exists, E′(w) can be extended to a bounded linear functional on H as follows

E′(w)h =
〈
∇r(w)E(w), h

〉
r(w)

. Further,

E′(w)F (w) =
〈
∇r(w)E(w), F (w)

〉
r(w)

=
〈
∇r(w)E(w),∇r(w)E(w)

〉
r(w)

> 0,

whenever 0 ̸= ∇r(w)E(w) = F (w).
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