
Optimal control

In this chapter we will be dealing with the problem

x′ = f(x, u), (1)

x(0) = x0, (2)

where x : [0, t] → Rn is an unknown function, whereas u(·) is a control, which
we choose in other to optimize the behaviour of a system in a predetermined
sense.

The class of ”admissible regulations” typically has the form of

U =
{
u : (0, t) → Rm; u is measurable and u(s) ∈ U for a.e. s

}
, (3)

where U ⊂ Rm is a convex set. It usually holds that m < n, i.e. the value of
degrees of freedom, that acts on the system, is smaller than the dimension
of the whole system.

Let us assume that the properties of the function f can guarantee, that
for all u ∈ U there exists a unique solution to (1–2) on the interval [0, t]. If
x(t) = x1 holds for this solution, we will say, that the control u brings x0 to
x1 in time t, we denote this by

x0
t−−→

u(·)
x1. (4)

In the regulation theory we will most commonly meet the following three
types of problems:

1. For a given x1 and t > 0, characterize the set of points x1 such that

x0
t−−→

u(·)
x1 for some admissible regulation. (Controllability)

2. For a given x0 a x1 find an admissible control u such that x0
t−−→

u(·)
x1,

with the minimal time t possible. (Time optimal control)

3. Find u(·) ∈ U such that the value of the functional

P [u(·)] = g(x(T )) +

∫ T

0

r(x(t), u(t)) dt

is maximal. The value x(T ) is fixed (more generally it is an element
of a given set), whereas time T is arbitrary. Alternatively, we may
consider a problem, where time T is fixed, whereas the value x(T ) is
arbitrary.
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Controllability - linear problems

Simple control problems can be solved by elementary considerations. To be
able to express ourselves more simply, let us introduce the following notations
and notions.

Definition. For t > 0 and x0 ∈ R set

R(t) =
{
x0 ∈ Rn; x0

t−−→
u(·)

0 for a suitable u(·) ∈ U
}
.

where R(t) is a set of initial conditions, that can be brought by admissible
controls to the origin in time t. We call this set the domain of controllability
in time t.

The system is called locally controllable in time t, if R(t) contains
a neighbourhood of zero.

Example 1. Show that the system

x′ = y3,

y′ = u, u ∈ [−1, 1],

is locally controllable in the neighbourhood of the origin.

Solution. It suffies to consider, how the solutions behave for values u ≡ ±1
- they move along the curves

y4

4
= ±x+ c.

Those solutions fill the whole plane and it is easy to see, that for any t > 0
the set R(t) contains a neighbourhood of zero.

Example 2. Let f : Rn → Rn be a function of class C1 on a neighbourhood
of the origin. Then the system

x′ = f(x)u, u ∈ [−1, 1] (5)

is not locally controllable for any time t > 0.

Solution. Intuitively, the scalar control u only alters the velocity of movement
along the curve given by the equation

x′ = f(x), x(0) = 0. (6)

More accurately: let X(t) be a solution to (6). Then x(t) := X(
∫ t

T
u(s)ds)

is the solution to the former equation (5). Due to the uniqueness this is the
only solution (satisfying x(T ) = 0). Therefore R(T ) contains only points on
the trajectory X(t).
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Let us now consider the linear case, i.e.

x′ = Ax+Bu, (7)

x(0) = x0, (8)

where A ∈ Rn×n, B ∈ Rn×m are constant matrices. We choose

U = L∞(0, t;Rm).

as the class of admissible controls. The key object of the linear theory is the
Kalman matrix of control

K(A,B) = (B,AB,A2B, . . . An−1B),

which is a n×mnmatrix. The main result of the linear theory is the following
theorem.

Theorem 1. For all t > 0, R(t) is a vector space generated by the columns
of the matrix K(A,B).

Corollary. The problem (7) is globaly controllable – i.e. R(t) = Rn – for all
t > 0, if and only if the Kalman matrix K(A,B) has rank n.

Remark. Notice that the set R(t) does not depend on t. That is related
to the fact that the values of admissible controls can be arbitrarily large.
Therefore it apparently makes no sense to address time optimal controls.

Example 3. Let us consider the system

mx′′ = u, (9)

x(0) = x0, x′(0) = y0.

The goal is to choose u(·) ∈ L∞(0, t) such that x(t) = x′(t) = 0. The equation
describes the (one dimensional) problem of ”parking”, where m is the mass
of the car, the control u is the engine thrust and x0, y0 indicate the initial
distance from the origin and the velocity.

Let us transform the equation to a first order system for x and y = x′ :

x′ = y,

y′ =
u

m
.

In the sense of the general formulation of the system we get n = 2, m = 1
and

A =

(
0 1
0 0

)
, B =

(
0
1
m

)
.
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Therefore

K(A,B) =

(
0 1

m
1
m

0

)
and we see that the system is globaly controllable, moreover in an arbitrarily
small amount of time (although supposing the unrealistic condition of the
arbitrarily large thrust of the engine)

It is unsurprising, that one of the corollaries of the linear theorem is the
following local result for unlinear problems.

Theorem 2. Let f : V × U → Rn be a function of class C1, let V , U be
neighborhoods of the origin in Rn, Rm respectively, let the class of admissible
regulations be given by (3). Let (the key assumption) the matrix K(A,B)
have rank n, where

A = ∇xf(0, 0), B = ∇uf(0, 0).

Then the equation (1) is locally controllable for all t > 0.

Remark. The key assumption on the rank of K(A,B) is not necessary as
shown in Example 1 above.

Example 4. Let us consider the motion of a pendulum with friction, de-
scribed by the equation

mx′′ + q(x′) + sin x = u,

x(0) = x0, x′(0) = y0.

The function q(·) expresses friction therefore we usually place reasonable
physical demands on it. For the purposes of the exercise it will suffice to
demand that q is a function of class C1 and q(0) = 0.

Let us transform the equation into a system for x and y, i.e.

x′ = y,

y′ = − 1

m
sinx− 1

m
q(y) +

1

m
u.

It can be easily solved, the corresponding linearizations are given by the
matrices

A =

(
0 1

− 1
m

− a
m

)
, B =

(
0
1
m
,

)
where a = q′(0). Then

K(A,B) =

(
0 1

m
1
m

− a
m2

)
,

which is clearly a regular matrix. The system is therefore locally controllable.
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Solve exercices on controllability.

1. Prove that the following points x̃ do not belong to the range of control-
lability.

(a) x̃ ∈ {(x, y) ∈ R2; y > 0}

x′ = u

y′ = coshx

(b) x̃ ∈ R2 \ (0, 0)

x′ = xy2u

y′ = x2yu

(c) x̃ ∈ {(x, y) ∈ R2; x2 + y2 ≥ 1}

x′ =
x2

(x2 + y2)
3
4

− x2

(x2 + y2)
1
2

− uy2

y′ = xy

(
1

(x2 + y2)
3
4

− 1

(x2 + y2)
1
2

+ u

)

for (x, y) ̸= (0, 0); otherwise x′ = y′ = 0.

(d) x̃ ∈ {(x, y) ∈ R2; x2 + y > 1}

x′ =

{
u

x2+y−1
, x2 + y ̸= 1

0, x2 + y = 1

y′ = x2 + u2

2. Find the set of controllability of the following systems:

(a)

x′ = xy

y′ =

{
u2

x+y−1
, x+ y ̸= 1

0, x+ y = 1

(b)
x′ = cos(xy)

y′ = cosx+ u

3. Determine the area of controllability of the following system

x′ = xyu

y′ = arctg x− arccotg y.

How, if at all, will this set change without the demand on the essential
boundness of the function u?
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4. Without finding exact solutions, design a control procedure of a (globally
controllable) system.

x′ = sin y

y′ = x+ u.

5.

x′ = −x+ z

y′ = y − z + u

z′ = −y + z − u

6. For which choices of the vector (a, b) ∈ R2 are the following systems
globally controllable? (

x
y

)′

=A
(
x
y

)
+

(
a
b

)
u

Consider the following three choices of the matrix A:(
0 −1
1 0

)
,

(
2 0
0 −2

)
,

(
1 1
1 −1

)
.

First try to guess the result (and explain it intuitively) based on the behaviour
of the system without a control (i.e. set u = 0).

7. Show that the equation

x(n) + a1x
(n−1) + · · ·+ anx = u

is globally controllable.

8. For n ∈ N determine the area of control of the system.

x′ = Ax+Bu,

where

A =


1 1 0 . . . 0 0
0 1 1 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 1
1 0 0 . . . 0 1


n×n

and the matrix of control B is as follows
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(a)

B =


0
0
...
0
1


n×1

(b)

B =


1
1
...
1
1


n×1

9. Let n ∈ N. Depending on the parameters α, β ∈ R determine the area
of controllability of the system

x′ = Ax+Bu,

where

A =


0 0 0 . . . 0 0 1
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0


n×n

and the control matrix B is in the form

(a)

B =


α
0
...
0
β


n×1

(b)

B =


α
β
...
β
β


n×1

10. For n ∈ N determine the domain of controllability of the system

x′ = Ax+Bu,

where

A =


0 1 2 . . . n− 3 n− 2 n− 1
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0

 B =


2
−1
0
...
0


n×1

7



11. For n ∈ N determine the domain of controllability of the system

x′ = Ax+Bu,

where

A =


0 1 0 0 . . . 0 0
0 0 2 0 . . . 0 0
0 0 0 3 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 n− 1
n 0 0 0 . . . 0 0

 B =



1
0
0
...
0
1


n×1

12. Show that the following system is locally controllable in the origin:

x′ = x+ y2 + u

y′ = sin z + u2

z′ = x+ sin y + cos z − 1

13. Generalize the theorem about local controllability so that the result is
controllability of an equation on a neigbourhood of a point x̃ given in advance.
Apply this theorem subsequently to the following systems to prove their
controllability on a neigbourhood of corresponding points x̃. In some cases it
will be necessary to determine correct values of the parameters α, β, γ ∈ R.
(a) x̃ = (π/2, 0, π)

x′ = sin(αyz) + u2

y′ = cosx+ βu

z′ = cotg x+ cos y + sin z + γ

(b) x̃ = (1, 1)

x′ = −βxy + yα + βe
αu
β − β2 + (α− 1)(α + 1)

y′ = αx− 3 + βu

(c) x̃ ∈ {(x, y) ∈ R2; x ∈ (−π/2, π/2) ∧ x− y = π
2
}

x′ = α sinx− β cos y − u2

y′ = sin2 x+ β cos2 y + u

(d) x̃ ∈ {(x, y) ∈ R2; x2 + y2 = 4 ∧ xy ≥ 0}

x′ =
√

x2 + y2 − x2 − y2 + ux

y′ = ex
2+y2 + uy
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Hints and solutions.

1) (a) y′ ≥ 1.

(b) Let us notice that (x2 − y2)′ = 0, therefore we can immediately discard
points (x, y) that do not satisfy the equation x2 = y2 (see Figure 1).
Non-controllability (1-dimensional) of the equation x′ = x3u can be
shown by integration and using the essential boundness of u.

(c) Following the transition into polar coordinates, to which we are encour-
aged by radial elements, we get

r′ =
√
r(1−

√
r) cosω

ω′ = ru sinω.

If the solution penetrates the unit circle, it will not leave it.
If we do not want to use polar coordinates, it is possible to multiply the
first equation by x, the second by y, sum up both equations and notice
that on the unit circle (x2 + y2)′ = 0 holds.

(d) If the solution gets to the dividing parabola, it can only contiune in the
positive direction of the y axis.

2) (a) First we plot the given vector field (see Figure 2). After a short con-
sideration we discard everything apart from the set {(0, s); s ∈ (0, 1)},
after that it is sufficient to choose u ≡ 1.

(b) Following the graphical depiction (it is important to plot the curve
xy = π

2
+ kπ correctly, see Figure 3) we deduce that the set {(x, y) ∈

R2; x < 0} is the area of controllability.
An example of a control procedure is to first set u ≡ −2 sgn y0 + y0/x0.
This way we will meet the trajectory of the controled solution, which
exists in the set {(x, y) ∈ R2; |xy| ≤ π/4∧ x < 0} and going backwards
in time to infinity it has the limit (0,−∞).

3) On the set {(x, y) ∈ R2; y = 0} we observe y′ < 0 (see Figure 4) and
on a certain neigbourhood of the origin we have y′ ≤ c < 0. From this we
get the non-controllablity of {(x, y) ∈ R2; y ≤ 0}. On the other hand the
set {(0, y); y > 0} is controllable inependently of the choice of u. On the
remaining areas it holds that |x′| ≤ |x| · y0 · ∥u∥∞ due to y being decreasing
close to the x-axis. The corresponding solutions are therefore pushed off of
zero by the function x0 exp(−t · y0 · ∥u∥∞) in the x-coordinate.
If we abandon the demand ∥u∥∞ < ∞, we are still unable to improve the
situation of {(x, y) ∈ R2; y ≤ 0} for the same reasons as in the previous
case. However, the same does not apply to {(x, y) ∈ R2; x ̸= 0, y > 0}. By
choosing u as a piecewise constant function (“stairs to the sky”), we are able
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to maintain |x′| ≥ c > 0, where c is a constant big enough so that the solution
approaches the y-axis faster than the x-axis. (e.g. c = 3π|x0|y−1

0 /2). Due to
the limit of a monotone sequence such a solution must necessarily end up on
the y-axis in time bounded by the constant c. By weakening the assumptions
we have extended the domain of controllability to {(x, y) ∈ R2; y > 0}.
4) We will show the idea in three steps. By their combination, we will

control the solution for any initial condition. To better visualize this see
Figures 5 and 6.

I/(x0, y0) = (0, 2kπ), k ∈ N.

Set u ≡ −1. Since (
(x− 1)2

2
+ cos y

)′

= 0

holds, the solution with the initial condition satisfies x = 1−
√
3− 2 cos y,

which is a 2π-periodical function in y, strictly negative on (2(k−1)π, 2kπ).
From this and the equation for y′ we get that the solution in question
will reach (0, 2(k − 1)π) no later than at t = 2π. See also that

C := max
y∈[2(k−1)π,2kπ]

|x(y)| =
√
5− 1.

Analogous process with u ≡ 1 will ensure the passing (0,−2kπ) →
(0,−2(k − 1)π).

II/(x0, y0) ∈ {(x, y) ∈ R2; y ∈ [2kπ + 5π/4, 2kπ + 7π/4], k ∈ Z ∧ (x, y)
lies on the right of the trajectory of the previous point in between
(0, 2(k + 1)π) and (0, 2kπ)}.

The interval [2kπ+5π/4, 2kπ+7π/4] marks a strip in which x′ ≤ −1/
√
2.

By a suitably switching u we will stay in this interval with the y-
coordinate. We have achieved a drift in the x-coordinate up to the
touch with the trajectory from the previouse point, which is when we
will involve the corresponding value of u. The time continuation of this
phase won’t exceed the value

√
2(|x0|+ C).

An analogous method will work for (x0, y0) such that y0 ∈ [2kπ +
π/4, 2kπ + 3π/4], k ∈ Z, and moreover (x0, y0) lies on the left of the
trajectory of the previous point in between (0, 2(k + 1)π) and (0, 2kπ).

III/(x0, y0) everywhere else.

By plugging a suitable constant for u we will reach “the pipe” from
the previous case or we will cross the trajectory from the first case. E.g.
by choosing u ≡ −x0 + 2π it will happen in time t < 3.
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5) The Kalman matrix has rank 2 and its columns generate the hyperplane
y + z = 0.

6) (i) a2 + b2 ̸= 0, (ii) ab ̸= 0, (iii) b2 + 2ab− a2 ̸= 0.

7) Transform the equation to a system of n equations; the Kalman matrix
has ones on the adjacent diagonal and is null above it.

8) (a) K(A,B) is a lower triangular matrix with ones on the diagonal.

(b)

K(A,B) =


1 2 . . . 2n−1

1 2 . . . 2n−1

. . . . . . . . . . . . . . .
1 2 . . . 2n−1


The columns of the Kalman matrix generate lin{(1, 1, . . . , 1)}.

9) (a)

K(A,B) =


α β 0 . . . 0 0
0 α β . . . 0 0
0 0 α . . . 0 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 . . . α β
β 0 0 . . . 0 α


n×n

If n is odd then: α ̸= −β ⇒ h(K(A,B)) = n.
α = −β ̸= 0 ⇒ h(K(A,B)) = n − 1, the columns of K(A,B) generate
the hyperplane (1, . . . , 1)⊥.

If n is even then: α ̸= ±β ⇒ h(K(A,B)) = n.
α = −β ̸= 0 ⇒ h(K(A,B)) = n − 1, the columns of K(A,B) generate
the hyperplane (1, . . . , 1)⊥.
α = β ̸= 0 ⇒ h(K(A,B)) = n− 1, the columns of K(A,B) generate the
hyperplane (1,−1, . . . , 1,−1)⊥.

(b)

K(A,B) =


α β β . . . β
β α β . . . β
β β α . . . β
. . . . . . . . . . . . . . . .
β β β . . . α


n×n

α = β ̸= 0 ⇒ the columns of K(A,B) generate lin{(α, α, . . . , α)}.
α = −(n − 1)β ̸= 0 ⇒ h(K(A,B)) = n − 1, the columns generate the
hyperplane (1, . . . , 1)⊥.
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10)

K(A,B) =



2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
0 0 −1 2 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 2 −1
0 0 0 0 . . . −1 2


n×n

The Kalman matrix is regular, which we can check by calculating its deter-
minant. After drawing a recurent formula and checking a guess derived from
n = 1, 2, 3 we get det(K(A,B)) = n+ 1.

11)

K(A,B) =


1 0 0 0 . . . 0 (n− 1)!
0 0 0 0 . . . (n− 1)! n!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 (n− 3)(n− 2)(n− 1) . . . 0 0
0 0 (n− 2)(n− 1) (n− 2)(n− 1)n . . . 0 0
0 n− 1 (n− 1)n 0 . . . 0 0
1 n 0 0 . . . 0 0


The Kalman Matrix is regular (again, we can easily calculate the determinant
det(K(A,B))).

13) The only modification is in the assumption f(x̃, 0) = 0 and in us-
ing ∇xf(x̃, 0),∇uf(x̃, 0), where x′ = f(x, u) – generalization of f(0, 0) =
0, ∇xf(0, 0), ∇uf(0, 0). In the following we denote A = ∇xf(x̃, 0), B =
∇uf(x̃, 0).

(a)

K(A,B) =

0 αβπ 0
β 0 −αβπ
0 0 αβπ


α ̸= 0, β ̸= 0, γ = −1.

(b)

K(A,B) =

(
α −β2

β α2

)
α = β = 3.

(c)

K(A,B) =

(
0 cosx
1 sin(2x)

)
α = β = −1.

(d)

K(A,B) =

(
x −6
y 8e4

)
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Figure 1: Exercise 1b – level sets of the function x2 − y2 for values
−3,−2, . . . , 3.

Figure 2: Phase portrait of Exercise 2a, where equal colours denote the equal
combination of signs of x′ and y′.
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Figure 3: Exercise 2b – level sets of the function xy for values −5π/2,
−3π/2. . . 5π/2 with the x′ direction depicted. The highlighted set is {(x, y) ∈
R2; |xy| ≤ π/4 ∧ x < 0}.

Figure 4: An aid to Exercise 3, where the highlighted depicts y′ < 0.
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Figure 5: A depiction of x′ from Exercise 4.
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Figure 6: The trajectory of controled solutions that begin in (0,−2π) and
(0, 2π) from exercise 4. The highlighted regions depict the initial conditions
which fall under step II.
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Observability.

Let us now consider a general non-linear equation

x′ = f(x) (10)

and let us define an ,,observed variable”

y = g(x), (11)

where g : Rn → Rm. Again, it usually holds m < n, i.e. the observation
contains less information than the whole system.

Definition. We say, that the equation (10) is observable via the quantity
(11), if for any two solutions x1, x2 and a time t > 0 it holds:

g(x1) = g(x2) on [0, t] =⇒ x1(0) = x2(0).

Remark. Considering the uniqueness of the solution, the conclusion of the
implication x1(0) = x2(0) is equivalent to the solution being equal on the
whole interval [0, t].

Observability exercises can again be solved by elementary considerations.
In the linear case we get a general solution; moreover it can be seen that
observability is in a certain way a dual term to controllability.

Theorem 3. Let A ∈ Rn×n and B ∈ Rm×n be constant matrices. Then the
equation

x′ = Ax (12)

is observable via
y = Bx, (13)

if and only if the equation

x′ = ATx+BTu

is globally controllable.

Corollary. The equation (12) is observable via (13), if and only if K(AT , BT )
has rank n.

Example 5. Find a necessary and sufficient condition for the numbers aij,
such that the system

x′ = a11x+ a12y

y′ = a21x+ a22y

is observable in the quantity x.
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Solution. In concord with the previous theorem we have

A =

(
a11 a21
a12 a22

)
, BT =

(
1
0

)
,

which means

K(AT , BT ) =

(
1 a11
0 a12

)
;

this matrix has the required rank 2, if and only if a12 ̸= 0.
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Solve the following exercises on observability.

14. Find (the simplest) example of a matrix A such that the systemx
y
z

′

=A
x
y
z


is observable via the quantity x, eventually characterize such matrices.

15. Depending on m,n ∈ N, m < n, determine, for which V ∈ Rm×n will
the system x′ = Ax be observable via the quantity y = V x, where

A =


1 2 3 . . . n
2 4 6 . . . 2n
3 6 9 . . . 3n
. . . . . . . . . . . . . . . . . . .
n 2n 3n . . . n2


16. Examine the observability of the following systems via V1 and V2:

(a) x′ = y2

y′ = x2

V1 = x− y
V2 = x

(b) x′ = y2

y′ = −x−4

V1 = x · y
V2 = x

17. Consider the systems
x′ = xy

y′ = −y/x.

Determine whether it is observable via the quantity V = x · y, if we only
suppose the following initial conditions (x0, y0):

(a) (x0, y0) ∈ R2 \ lin{e2}
(b) (x0, y0) ∈ {(a, a)| a ∈ R \ {0,±1}}

18. Without refering to the controllability theory, determine the observ-
ability of the equation x′′′ − x′′ + x′ − x = 0 via the quantities:

(a) V = x+ x′′

(b) V = x+ x′ + x′′

(c) V = (x+ x′′)x′
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19. Prove, that the system
x′ = y

y′ = ex

is not observable via the quantity V = sin 1
y
.

(hint: focus on the case y0 =
√
2ex0 )

20. Consider the linear system

x′ = y

y′ = −x,

(x, y) = (x(t), y(t)), t ∈ [0, π].

Examine its observability via the given quantities. In case of non-observability,
characterize all the solutions, which the given quantity can not separate.

(a) V = x2 + y2

(b) V = x

(c) V = x · y
(d) V = x(0) · y(0)
(e) V = S · (x− y),

where S = S(t) is the area of
the region delimited by the curve
{(x(s), y(s)), s ∈ [0, t]} and the
lines connecting its end points with
the origin (0, 0).
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Solutions

14) First row (0, 1, 0), second row (0, 0, 1). It can not have a smaller rank
than A.

15) The columns of the matrices A(= AT ), A2, . . . , An−1 are multiples
of the vector (1, . . . , n) and therefore the columns of K(AT , V T ) generate
lin{v1, . . . , vm, (1, 2, . . . , n)}, where vi are the rows of the matrix V . The sys-
tem is observable via V if and only if m = n−1 and {v1, . . . , vm, (1, 2, . . . , n)}
is a linearly independet set.

16) (a) x0 = y0 ⇒ V1 ≡ 0, i.e. the system is not observable via V1. The
system is however observable via V2. We can prove by contradiction
(x1 ≡ x2 ∧ y10 ̸= y20), we will use that y is non-decrasing.

(b) x0 = 1/y0 ⇒ V1 ≡ 1 and therefeore the system is not observable via V1.
Observability via V2 can be proved as in the previous system.

17) (a) x0 = 1/y0 ⇒ V1 ≡ 1, the system is not observable.

(b) Set c = (x2
0 − 1)/x0. Then the solution of the system is

x(t) =
x2
0e

ct − 1

c

y(t) =
cx2

0e
ct

x2
0e

ct − 1

From the quantity V = x · y = x2
0e

ct we can determine a unique x0, and
therefore the system is observable for the given initial conditions.

18) x(t) = c1e
t + c2 sin t+ c3 cos t,

where c1,2,3 = c1,2,3(x0, x
′
0, x

′′
0) is a one to one function R3 → R3.

(a) V = x+ x′′ = 2c1e
t,

and therefore V does not distinguish the solution from the identical c1.
The equation is not observable via V .

(b) V = x+ x′ + x′′ = 3c1e
t + c2 cos t− c3 sin t,

from which we can uniquely determine (c1, c2, c3) (therefore also (x0, x
′
0, x

′′
0)).

The equation is observable via V .

(c) V does not distinguish solutions with oposite signs, i.e. the equation is
not observable via V .

19) If we consider the case y0 =
√
2ex0 , the given system is solved by the

functions

x(t) = ln

(
2

2− y0t

)2

+ x0

y(t) =
2y0

2− y0t
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from which

V = sin
1

y
= sin

(
1

y0
− t

2

)
= sin

(
1√
2ex0

− t

2

)
.

If we select a second initial condition as

x1 = 2 ln

√
ex0

1 + 2π
√
2ex0

,

then the solutions will not be distinguishible via V because of the sine peri-
odicity.

20) The system is solved by

x(t) = r0 sin(t+ ω0)

y(t) = r0 cos(t+ ω0),

where (x(0), y(0)) = (r0 sinω0, r0 cosω0), r0 ≥ 0, ω0 ∈ [0, 2π). Considering
the restriction of the domain to [0, π] the graph is a semicircle with its center
in the origin and it is drawn in a constant speed in the clockwise orientation.

(a) non-observable
Every solution with the identical quantity r0 coincide.

(b) observable
By controllability theory or by an elementary consideration.

(c) non-observable
The solutions (x, y) and (−x,−y) can not be distinguished; i.e. the

quantity V =
r20
2
sin(2t + 2ω0) determine ω0 except for a multiple of π,

however we would need to determine ω0 except for a multiple of 2π.

(d) observable
The coinciding solutions are those for which (x(0), y(0)) = (x(0), V/x(0))
hold for V ̸= 0 and with the initial conditions on the axes x, y for V = 0.

(e) observable

S(t) =
r20
2
t and using a suitable sum formula (for trigonometric func-

tions) we get

V = − r30√
2
t cos

(
t+ ω0 +

π

4

)
,

from which we can uniquely determine (r0, ω0) on [0, π].
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Time optimal control. Maximum principle.

Let us once again consider the linear problem

x′ = Ax+Bu, (14)

however for bounded values of admissible controls only. More precisely, we
want

u(·) ∈ U =
{
u : (0, t) → U measurable, U = [−1, 1]m

}
(15)

The goal is to choose u(·) such that x0
t−−→

u(·)
0 in the shortest amount of time

possible.
Let us first entertain questions of controllability of the exercise (14–15).

Let us once again set

R(t) =
{
x0 ∈ Rn; x0

t−−→
u(·)

0 for suitable u(·) ∈ U
}

and then let us define
R =

⋃
t>0

R(t).

Then the following theorem holds.

Theorem 4. Let the matrix K(A,B) have rank n. Then for every t > 0 the
problem (14–15) is locally controllable, i.e. R(t) contains a neighbourhood 0.

If in addition Reλ ≤ 0 for all eigenvalues λ of the matrix A, the problem
is globally controllable, i.e. R = Rn.

Deciding on the existence of the time optimal control is simple – thanks
to the linearity of the equation and the convexity of the set U .

Theorem 5. Let x0 ∈ R(t) for some t > 0. Then there exists a t∗ ≤ t and

u∗(·) ∈ U such that x0
t∗−−→

u∗(·)
0, where time t∗ is the smallest possible.

The following theorem gives us a necessary condition for the optimality
of a control.

Theorem 6 (Pontryagin maximum principle). Let u(·) ∈ U bring x0 ∈ Rn

to 0 in the optimal – i.e. smallest possible – time t. Then there exists a
non-zero vector h ∈ Rn such that

hT exp(−sA)Bu(t) = max
η∈[−1,1]m

hT exp(−sA)Bη (16)

for almost every s ∈ (0, t).
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Remark. Let us recall the method of Lagrange multipliers. The necessary
condition for x to be an extremum point of a function f(x) in the set
{x; g1(x) = 0, . . . , gk(x) = 0}, is – considering suitable assumptions on
the smoothness of functions f , gj – the existence of numbers λ1, . . . , λk such
that

∇g(x) = λ1∇g1(x) + · · ·+ λk∇gk(x). (17)

When solving exercises, we usually do not have to compute the values of λj;
we get some information from the equation (17), thanks to which we restrict
the set of ,,suspected“ points to just a few points. With the information
about the existence of extrema, we easily identify the ,,culprit“.

The situation here is simmilar: the condition (16) seems rather mysteri-
ous, however in concrete cases it easily gives enough information for us to
identify the form of the optimal control.

Exercise 3 – continuation. Let us find a control u : (0, t) → [−1, 1],
that will park in the smallest amount of time possible. Its existence is ensured
by Theorems 4, 5 together with the spectrum of A containing only the value 0.
It can be easily computed from the definition that

exp(−sA) =

(
1 −s
0 1

)
.

By the Pontryagin maximum principle there exists a non-zero vector h =
(h1, h2) such that

(h2 − h1s)u(s) = max
η∈[−1,1]

(h2 − h1s)η.

From this we easily get that u(s) = sgn(h2−h1s) for almost every s. Specially
this means that u is only equal to ±1 and the change of sign occurs at most
once. In other to construct an optimal control, it is useful to sketch out
the behaviour of the system for u = ±1. It can easily be shown that the
corresponding first integrals are parabolas

±x = c− m

2
(x′)2.

It is best to construct the optimal control in reverse: for u = −1 we see
the solution in Figure 7, which brings the system in finite time to the origin
(in blue). We get to this trajectory by u = 1 (in red). It is not difficult to
figure out, that any initial condition can be controlled in this unique way.
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Figure 7: Exercise 3 – solutions for u = −1 (in blue) and u = 1 (in red).

Maximum principle – general case.

Finally let us formulate the Pontryagin maximum principle in a general form
as a necessary condition for optimal control.

Let us consider the general problem

x′ = f(x, u), (18)

with admissible controls in the form

u(·) ∈ U =
{
u : (0, T ) → U ; u is measurable and u(s) ∈ U for a.e. s

}
,
(19)

where U ⊂ Rm is an arbitrary set. The goal is to maximize the functional

P [u(·)] = g(x(T )) +

∫ T

0

r(x(t), u(t)) dt. (20)

Let us introduce the following notions. The Hamiltonian H : Rn × Rn ×
Rm → R as

H(x, p, a) = f(x, a) · p+ r(x, a)

and the adjoint problem

p′ = −∇xH(x, p, u) (21)
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Theorem 7. Let u(·) be the maximizer of the problem (18–20), where time
T > 0 and the initial condition x(0) = x0 are given, whereas x(T ) is not. Let
us assume, that the functions f , r and g are continuous and have continuous
derivatives with respect to x.

Then for almost every s ∈ (0, T ) the equality

H(x(t), p(t), u(t)) = max
η∈U

H(x(t), p(t), η)

holds, where p(t) is a solution of the adjoint problem (21) with the final
condition

p(T ) = ∇xg(x(T )). (22)

The assumptions of the theorem guarantee that for a given u(·) ∈ U there
exists a unique solution x(t) of the equation (18). Coordinates of the adjoint
problem (21), (22) satisfy

p′i = −
n∑

j=1

∂fj
∂xi

(x(t), u(t))pj −
∂r

∂xi

(x(t), u(t)), pi(T ) =
∂g

∂xi

(x(T )).

That is a linear equation and therefore has – for given x(t), u(t) – a unique
solution p(t) on the interval [0, T ].

Example 6. The national economy follows the equation

x′ = kxu,

where x is the total capital, k > 0 is the constant that expresses the natural
rate of growth and

u : (0, T ) → [0, 1]

expresses the percentage of reinvestments i.e. 1− u is the part of production
that is consumed. The goal is to choose u such that the total consumption

P [u(·)] =
∫ T

0

(1− u(t))x(t) dt

is maximal. Time T > 0 is fixed; the quantity x(T ) is arbitrary.

Solution. In the sense of the established setting the Hamiltonian is equal to

H = x
(
1 + a(pk − 1)

)
.

The Pontryagin maximum principle then says that in case of an optimal
solution we have

x(t)
(
1 + u(t)(p(t)k − 1)

)
= max

η∈[0,1]
x(t)

(
1 + η(p(t)k − 1)

)
.
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It is sensible to assume x(0) > 0, from which x(t) > 0 for all t ≥ 0. It is
sufficient to maximize the second parenthesis; from this we deduce that the
optimal control satisfies

u(t) =

{
0, if p(t)k < 1,

1, if p(t)k > 1.

Now we need to find a solution to the adjoint problem. Since d
dx
H = 1 +

a(pk − 1) we have the equation

p′ =

{
−1, if p(t)k < 1,

−pk, if p(t)k > 1.

For our problem g = 0 and therefore the corresponding final condition is

p(T ) = 0.

Now (backtracking from t = T ) we compute that

p(t) =

{
T − t, t ∈ [T − 1

k
, T ],

exp
(
k(T − t)− 1

)
, t < T − 1

k
.

In total we get: if 1
k
< T , it is optimal to choose u = 1 for t ∈ [0, T − 1

k
] and

u = 0 pro t ∈ [T − 1
k
, T ]. In case that 1

k
≥ T we always choose u = 0.

Example 7. Let us consider the equation x′ = x/u, x(0) = 1. Find the

necessary condition on u : [0, T ] → [1, 3], so that P [u(·)] =
∫ 3

0
x(t)u(t)dt is

maximal.

Solution. The hamiltonian is H = x(p/u + u). From the linearity of the
equation in x and the initial condition we get that x(t) > 0; therefore the
maximum condition can be written as follows

p(t)

u(t)
+ u(t) = max

a∈[1,3]

p(t)

a
+ a.

Let us examine the course of the function h(a) = p0
a
+ a, a > 0, depending

on p0 ∈ R. For p0 ≤ 0, h(a) is strictly increasing. For p0 > 0, h(a) is strictly
convex with a global minimum at a =

√
p0. In both cases the maximum

with respect to a ∈ [1, 3] is in one of the extremal points of the interval. By
plugging in we can easily compute that for p0 > 3 we get amax = 1, whereas
for p0 < 3 we get amax = 3.
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From the maximum principle we get, that u(t) = 1 if p(t) > 3, whereas
u(t) = 3 for p(t) < 3.

The adjoint equation looks as follows

p′ = − p

u(t)
− u(t), p(3) = 0,

since g = 0. The solution will once again be constructed ,,backwards”. Set

t0 = inf
{
t ∈ [0, 3]; p < 3 na [t, 3]

}
.

From continuity we get that t0 < 3 and clearly p(t) < 3 and therefore u(t) = 3
on (t0, 3]. Therefore we have the equation p′ = −p/3−3, which has a general
solution p = ce−t/3 − 9. From the assumption p(3) = 0 we get c = 9e. In
total we have

p = 9e1−t/3 − 9, t ∈ (t0, 3]. (23)

From the definition of t0 we get that p(t0+) = 3, or t0 = 0. The function
(23) is equal to 3 at t = 3− 3 ln 4/3 > 0, therefore necessarily

t0 = 3− 3 ln 4/3. (24)

p is clearly decreasing and positive on the interval [0, t0) ; therefore in par-
ticular we have here p > 3 and u = 1. The adjoint equation transforms
into p′ = −p − 1. The general solution is p = ce−t − 1, from the condition
p(t0) = 3 we get c = 4(3/4)3e3. In total

p = 4

(
4

3

)3

e3−t − 1, t ∈ [0, t0). (25)

The important equation is however about the optimal control, i.e. u = 1 on
(0, t0) and u = 3 on (t0, 3). – Let us stress, that we only showed, that if an
optimal control exists, it must have the stated form. The existence of the
maximum is non-trivial (because of the non-linearity of the problem). From
this we can easily compute the solution: x = et for t ∈ [0, t0] and x = 16

9
e2+t/3

for t ∈ [t0, 3].
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Solve the following problems on Pontryagin maximum principle.

21. A weight on a spring follows the equation x′′ + x = u. Find the force
u : [0,+∞) → [−1, 1] such that x = x′ = 0 arises in the smallest time
possible.

22. A police car follows the equation x′ = u, x(0) = 0. Determine the

motor thrust u : [0, T ] → R so that P [u(·)] = −
∫ T

0
(x(t) − z(t))2 + αu2(t)dt

is maximal. Time T > 0, the constant α > 0 and the trajectory of the
criminal z(t) is given. – Solve the problem generally and then for the following
particular cases (i) z(t) = 1, (ii) z(t) = t and (iii) z(t) = cos t, α = 1, T = 2π.

23. The equation x′ = x + u is given. Determine u : [0, T ] → R such that

P [u(·)] = −
∫ T

0
x2(t) + u2(t)dt is maximal. * Seek a control in the form of

feedback, i.e. find an equation for c, where u(t) = c(t)x(t).

24. Maximize P [u(·)] =
∫ 2

0
2x(t)− 3u(t)dt, where x′ = x+ u, x(0) = 4 and

u : [0, T ] → [0, 2].

25. Maximize P [u(·)] =
∫ 4

0
3x(t)dt, where x′ = x + u, x(0) = 5 and u :

[0, T ] → [0, 2].

26. Maximize P [u(·)] =
∫ 2

0
x(t) − u2(t)dt, where x′ = u, x(0) = 0 and

u : [0, T ] → R.

27. Maximize P [u(·)] = −1
2

∫ 1

0
x2(t) + u2(t)dt, where x′ = u − x, x(0) = 1

and u : [0, T ] → R.
28. Consider the problem (interpret geometrically!)

x′ = cosu, y′ = sinu

x(0) = y(0) = 0

P [u(·)] = max{
√

x2(t) + y2(t), t ∈ [0, T ]}

Prove that it does not attain its minimum over admissible controls in L∞(0, T ).

29. Your weekend house has a temperature x(0) = x0 and you want it to be
reasonably warm also at time t = T , not spending too much on the energy
bill. A possible model is

x′ = −kx+ u, x(0) = x0

maxP [u(·)] = log x(T )−
∫ T

0

cu(t) dt

where u(t) : [0, T ] → [0,M ] is the heating power, k > 0 is the temperature
decay, and c > 0 is the price of energy. Try to identify optimal u(·).
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30. Same problem as above, but with admissible controls u(t) : [0, T ] →
[0,∞) and the functional

P [u(·)] = βx(T )−
∫ T

0

u(t) + αu2(t) dt

31. * Let P [u(·)] =
∫ T

0
ϕ(u(t)) dt, where ϕ is a convex, C1 function.

(i) Prove that if un
∗
⇀ u∗ in L∞(0, T ) and P [un(·)] → P∗, then P [u∗(·)] ≤ P∗.

(ii) Use this to prove existence of optimal control in previous exercise (the
weekend house problem).
(iii) Show that the inequality in (i) might be strict.
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Solutions.

21) Let us transform the equation to a system (14), where

A =

(
0 1
−1 0

)
, B =

(
0
1

)
.

The existence of an optimal control is guaranteed by Theorems 4, 5. The
maximum principle gives us

(−h1 sin t+ h2 cos t)u(t) = max
|η|≤1

(−h1 sin t+ h2 cos t)η,

for a suitable non-zero vector (h1, h2). We can write (h1, h2) = (a sinω, a cosω),
where a > 0, ω ∈ R. From maxη ηa cos(t + ω); we see that the optimal u
changes the value 1 and −1 with period π, more precisely

u(t) = sgn cos(t+ ω). (26)

For u = ±1 the solutions are circles (in the equation (x, x′)) with centers
(±1, 0). It’s easy to think through, that for each initial condition there
exists a unique optimal control in the form (26).

22) The Hamiltonian H = pu−αu2 has only one maximum for u = p/2α.
In the optimal case we then have x′ = p/2α, x(0) = 0; the adjoint problem
is p′ = 2x− 2z, p(T ) = 0. That can be transformed to a single equation

x′′ − x

α
= − z

α
, x(0) = 0, x′(0) = c,

where c is determined so that x′(T ) = 0 ( ⇐⇒ p(T ) = 0). For the specific
functions z we have firstly

x = 1− cosh(t/
√
α) + c

√
a sinh(t/

√
α) (i)

from that c = tanh(T/
√
α). In the second case

x = t−
√
α(c− 1) sinh(t/

√
α); (ii)

from which c− 1 = 1/ cosh(T/
√
α). And finally for the third case

x =
cos t

2
+

2c− 1

4
et +

2c+ 1

4
e−t; (iii)

from which c = tanh(2π)/2.
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23) The Hamiltonian H = px − x2 + pu − u2 has a unique maximum for
u = p/2. The adjoint problem is in the form p′ = 2x− p, p(T ) = 0. We need
to find the solution of the system

x′ = x+ p/2, x(0) = x0,

p′ = 2x− p, p(0) = p0,

where p0 is chosen so that p(T ) = 0. Feedback: set d(t) = p(t)/x(t) and thus
c(t) = d(t)/2. Following the substitution, the equation for d(t) is

d′ = 2− 2d− d2

2
, d(T ) = 0.

Finally, its solution can be found it the form of d(t) = 2b′(t)/b(t), where the
auxiliary function b(t) satisfies the equation

b′′ + 2b′ − b = 0, b(T ) = 1, b′(T ) = 0,

which we know how to solve.

24) u = 2, x = 6et − 2 on [0, t0]; u = 0, x = (6− 2e−t0)et on [t0, 2], where
t0 = 2− ln(5/2).

25) u = 2, x = 7e−t − 2 on [0, 4].

26) u = −t/2 + 1, x = −t2/4 + t on [0, 2].

27) u = c1(
√
2 + 1)e

√
2t + c2e

−
√
2t, x = −c2(

√
2 + 1)e−

√
2t + c1e

√
2t, where

c1, c2 is such that x(0) = 1 and u(1) = 0.

28) The infimum is zero: take suitable piecewise constant u; alternatively,
take u = Nt for very large N . However, P = 0 would mean x = y = 0 for
all t, which is not possible.

29) Adjoint equation p′ = kp, p(T ) = 1/x(T ); at most one change from
u = 0 to u = M .
30) Adjoint equation p′ = kp, p(T ) = β can be solved explicitly; control

u(t) can be expressed in terms of p(t) (minimization of a quadratic function
– however, beware of the condition u ≥ 0.)

31) (i) By convexity ϕ(v) ≥ ϕ(u) + ϕ′(v)(u − v) for all u, v ∈ R. Set

v = un(t), u = u∗(t), integrate
∫ T

0
dt and . . .

(iii) un(t) = cos(nt)
∗
⇀ 0 (by Riemann-Lebesgue), but (un(t))

2 ∗
⇀ 1/2 by the

formula cos2 y = (1 + cos 2y)/2
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