Odhady kuželoseček a kvadrik a jejich přesnost

Eva Fišerová

Univerzita Palackého v Olomouci

Robust 2018 21.-26. ledna 2018, Rybník, Český les

・ロト ・四ト ・ヨト ・ヨト - ヨー

Prezentované výsledky vznikly ve spolupráci se

- Sandrou Donevskou,
- Viktorem Witkovským (SAV Bratislava),
- Gejzou Wimmerem (SAV Bratislava).

Motivation

Onics description

Methods for conics fitting

Conics fitting by least squares

Ellipsoids description

Ellipsoids fitting to correlated data

Conclusions

Motivation

The fitting of geometric features to given 2D/3D points is desired in various fields, e.g.

- quality control (e.g. steel coils quality assurance, grain sorting)
- metrology (e.g. optical interferometers or photogrammetric measurements)
- biology (e.g. chromosome analysis, cell segmentation, tumor modelling)

Segmentation of Cell Nuclei in Microscopy Images

A microscopy image

A pair of touching nuclei

Eva Fišerová (UP Olomouc)

Odhady kuželoseček a kvadrik a jejich přesnost

Robust 2018 4 / 47

General conic equation

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

Discriminant classification (determinant of matrix corresponding with the quadratic part)

- ellipse: $B^2 4AC < 0$
- circle: A = C, B = 0
- hyperbola: $B^2 4AC > 0$
- parabola: $B^2 4AC = 0$

The general conic equation

 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$

Assumptions for real non-degenerate conic

- $A^2 + B^2 + C^2 > 0$
- Non-zero determinant △ of the matrix

$$\begin{bmatrix} A & B/2 & D/2 \\ B/2 & C & E/2 \\ D/2 & E/2 & F \end{bmatrix},$$

• for the ellipse: $\Delta(A + C) < 0$

For the uniqueness, A, B, C, D, E, F must fulfil one linear restriction, e.g. A = 1, or F = -1.

Conic equation for the circle

 $x^2 + y^2 + Dx + Ey + F = 0$

Relationships between geometric and algebraic circle parameters:

$$R = \sqrt{D^2/4 + E^2/4} - F$$
, $X_c = -D/2$, $Y_c = -E/2$

Ellipse Geometric description

- α rotation angle, $\alpha \in (-\pi/2, \pi/2)$
- (X_c, Y_c) center
- a length of semi-major axis
- b length of semi-minor axis

Conic equation for the ellipse

$$x^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$
, $B^2 - 4C < 0$

Relationships between geometric and algebraic ellipse parameters:

$$\begin{aligned} X_c &= \frac{BE - 2CD}{4C - B^2} \\ Y_c &= \frac{BD - 2E}{4C - B^2} \\ a_x &= \frac{2\sqrt{C}}{4C - B^2} \sqrt{CD^2 - BDE + E^2 - F(4C - B^2)} \\ b_y &= \frac{2}{4C - B^2} \sqrt{CD^2 - BDE + E^2 - F(4C - B^2)} \\ \alpha &= \frac{1}{2} \operatorname{arccot} \left(\frac{1 - C}{B}\right) \text{ for } 1 < C, \text{ otherwise } \alpha + \frac{\pi}{2} \end{aligned}$$

- *p* focal parameter (distance from the focus to the directrix)
- α pose angle, $\alpha \in (-\pi, \pi)$
- (X_c, Y_c) vertex

$$Ax^{2} + 2Bxy + Cy^{2} + 2Dx + 2Ey + F = 0$$

 $B^{2} - AC = 0, \quad A + C - 1 = 0$

Relationships between geometric and algebraic parabola parameters:

$$A = \sin^2 \alpha, \quad B = -\sin \alpha \cos \alpha, \quad C = \cos^2 \alpha,$$
$$D = -X_c \sin^2 \alpha + Y_c \sin \alpha \cos \alpha - p \cos \alpha,$$
$$E = X_c \sin \alpha \cos \alpha - Y_c \cos^2 \alpha - p \sin \alpha,$$
$$F = (X_c \sin \alpha - Y_c \cos \alpha)^2 + 2p(X_c \cos \alpha + Y_c \sin \alpha).$$

y i (X_i, Y_i) • α pose angle, $\alpha \in (-\pi/2, \pi/2)$ (X_{i}', Y_{i}') • (X_c, Y_c) center ヒ a length of 11 semi-major axis Y b length of semi-minor axis (X_c, Y_c) х

Unique relationships between the algebraic and geometric parameters.

• Least-squares methods

- algebraic fitting minimized error distances are deviations of the implicit equation from the zero
- geometric fitting minimized error distances are orthogonal (shortest) distances from given points to the geometric feature to be fitted
- Hough transform (Hough, 1962; Douda and Hart, 1972; Ballard, 1981)
- Moment method (Chaudhuri and Samanta, 1991; Safaee et. al, 1992; Voss and Süsse, 1997)
- Maximum likelihood method minimize orthogonal distances
 - accurate results
 - often inadequate for many practical scenarios time consuming and numerically unstable (Ahn, 2004; Chernov 2011)

- Other alternative techniques minimize different cost functions - balance between the accuracy of the orthogonal distance regression method and the simplicity of algebraic fitting methods
 - gradient-weighted method,
 - approximate maximum likelihood (AML),
 - hyper-accurate methods,
 - etc.

Minimizes the squares of algebraic distances

$$\min_{\theta} \sum_{i=1}^{n} (Ax_i^2 + Bx_iy_i + Cy_i^2 + Dx_i + Ey_i + F)^2$$
$$\theta = (A, B, C, D, E, F)'$$

Advantages: simple and quick calculation

Disadvantages: biased estimators, sometimes ends in unintended geometric feature, interpretation of errors, problem with the accuracy and inference

Least-Squares: Geometric Fitting

 Minimized error distances are orthogonal distances from given points (x_i, y_i) to the geometric feature to be fitted

min
$$\sum_{i=1}^{n} \{ (x_i - x'_i)^2 + (y_i - y'_i)^2 \}$$
 w.r.t

 $Ax_{i}^{\prime 2} + Bx_{i}^{\prime }y_{i}^{\prime } + Cy_{i}^{\prime 2} + Dx_{i}^{\prime } + Ey_{i}^{\prime } + F = 0$

- Iterative algorithms
 - Gander et al.(1994) slow, complicated and often divergent algorithms
 - Projection algorithms Ahn et. al (2001), Aigner et. al (2008), Sturm (2007), Wijewickrema (2010), Chernov (2012, 2014)
 - Köning et. al (2014) ellipse fitting by a linear model with nonlinear restrictions

Geometric Fitting by Linear Model with Constraints

Statistical model

$$\begin{aligned} x_i &= \mu_i + \varepsilon_{x,i}, \ i = 1, 2, \dots, n, \\ y_i &= \nu_i + \varepsilon_{y,i}, \ i = 1, 2, \dots, n, \\ \mu_i^2 + B\mu_i\nu_i + C\nu_i^2 + D\mu_i + E\nu_i + F = 0, \ i = 1, 2, \dots, n \end{aligned}$$

non-linear restrictions \nearrow

$$\operatorname{var}(\varepsilon_{\mathbf{x},i}) = \operatorname{var}(\varepsilon_{\mathbf{y},i}) = \sigma^2, \quad \operatorname{cov}(\varepsilon_{\mathbf{x},i},\varepsilon_{\mathbf{y},i}) = \mathbf{0}$$

Matrix form of a model:

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mu \\ \nu \end{pmatrix} + \begin{pmatrix} \varepsilon_x \\ \varepsilon_y \end{pmatrix}, \quad \operatorname{var}[\varepsilon'_x, \varepsilon'_y] = \sigma^2 \mathbf{I}_{2n}$$
$$\mathbf{B}\theta + \mathbf{b} = \mathbf{0},$$
where $\mathbf{B} = \begin{bmatrix} \mu\nu \vdots \nu^2 \vdots \mu \vdots \nu \vdots \mathbf{1} \end{bmatrix}, \ \theta = (B, C, D, E, F)', \text{ and } \mathbf{b} = \mu^2.$

Estimation of Algebraic Parameters and Errorless Values

Results in the linearized model

- locally best linear unbiased estimators (LBLUE) of
 - ► the algebraic parameters *B*, *C*, *D*, *E*, *F*.
 - the errorless values μ and ν
- the covariance matrices of the estimators $\hat{\mu}$, $\hat{\nu}$ and $(\hat{B}, \hat{C}, \hat{D}, \hat{E}, \hat{F})'$
- the cross-covariance matrix of the estimators $\widehat{\mu}$ and $\widehat{
 u}$
- the cross-covariance matrix of the estimators $(\hat{\mu}', \hat{\nu}')'$ and $(\hat{B}, \hat{C}, \hat{D}, \hat{E}, \hat{F})'$

All results are data-dependent \implies need to solve it in an iterative procedure

• Determine an initial guess: the conics algebraic parameters $B^{(0)}$, $C^{(0)}$, $D^{(0)}$, $E^{(0)}$, $F^{(0)}$ and the errorless recordings $\mu^{(0)}$, $\nu^{(0)}$ on the following way:

$$\begin{array}{rcl} \mu^{(0)} & = & \mathbf{X} \\ \nu^{(0)} & = & \mathbf{y} \\ \theta^{(0)} & = & - \left(\mathbf{B}_0' \mathbf{B}_0 \right)^{-1} \mathbf{B}_0' \mathbf{x}^2, \end{array}$$

where $\theta^{(0)} = (B^{(0)}, C^{(0)}, D^{(0)}, E^{(0)}, F^{(0)})', \mathbf{B}_0 = \begin{vmatrix} \mathbf{y}^2 : \mathbf{x} \mathbf{y} : \mathbf{x} : \mathbf{y} : \mathbf{1} \end{vmatrix}$.

- Solution For all data points $(x_i, y_i)'$, i = 1, ..., n, calculate the estimates $\hat{\theta}, \hat{\mu}$ and $\hat{\nu}$.
- Opdate the initial values
- Repeat steps 2 through 4 until estimates converge.

Properties of the Iterative Procedure

- The iterative procedure converges very quickly, and after few iterations the estimates settle down at stable values.
- If the iterative procedure converges, the resulting estimates are the same as the maximum likelihood ones.
- The iterative procedure guarantees that resulting estimates satisfy the constraints, i.e.

$$\widehat{\mu}_i^2 + \widehat{B}\widehat{\mu}_i\widehat{\nu}_i + \widehat{C}\widehat{\nu}_i^2 + \widehat{D}\widehat{\mu}_i + \widehat{E}\widehat{\nu}_i + \widehat{F} = 0$$

Geometric Parameters Estimation

Geometric parameters are functions of algebraic parameters

 $g_j = f_j(B, C, D, E, F)$

 \Downarrow

In general, plug-in estimators of geometric parameters

 $\widehat{g}_j = f_j(\widehat{B}, \widehat{C}, \widehat{D}, \widehat{E}, \widehat{F})$

For example, for a circle we obtain:

$$\widehat{R}=\sqrt{\widehat{D}^2/4+\widehat{E}^2/4-\widehat{F}}, \hspace{1em} \widehat{X}_c=-\widehat{D}/2, \hspace{1em} \widehat{Y}_c=-\widehat{E}/2$$

Optimality properties of \hat{g}_i are in general unknown

 \rightarrow bootstrap, simulations

In general, plug-in estimators of geometric parameters

 $\widehat{g}_j = f_j(\widehat{B}, \widehat{C}, \widehat{D}, \widehat{E}, \widehat{F})$

Estimated variance-covariance matrix of \hat{g}

$$\begin{split} \widehat{\operatorname{var}}(\widehat{\boldsymbol{g}}) &= \widehat{\boldsymbol{J}} \operatorname{var}[(\widehat{B}, \widehat{C}, \widehat{D}, \widehat{E}, \widehat{F})'] \widehat{\boldsymbol{J}}' \\ \widehat{\boldsymbol{J}}_{j1} &= \frac{\partial f_j}{\partial B}, \dots, \widehat{\boldsymbol{J}}_{j5} = \frac{\partial f_j}{\partial F} \end{split}$$

2D conics - explicit expressions

Example: Circle Fitting

Fitted Circle

- Data: Ahn (2001)
- Convergence criterion

$$\|\widehat{\boldsymbol{\beta}}^{i}-\widehat{\boldsymbol{\beta}}^{i-1}\|_{E}^{2} < 10^{-6}$$

- Results:
 - 19 iterations
 - ▶ estimates (std errors): $\hat{X}_c = 4.740 (0.476)$ $\hat{Y}_c = 2.984 (1.543)$ $\hat{R} = 4.714 (1.499)$ ▶ $\hat{\sigma}^2 = 0.409$

- Performed for all types of conics
- Sample size of 10, 25, 50, 100, 500 given points evenly spaced around the conic
- Standard errors of measurements chosen from 0.01 to 0.1
- Convergence criterion higher than 10⁻¹²
- 1000 simulations for each case

Circle Fitting: Accuracy for Algebraic Parameter D

Averages from 1000 simulations (the same results for *E*, $X_c = -D/2$ and $Y_c = -E/2$)

$x^2 + y^2 + Dx + Ey + F = 0$

Eva Fišerová (UP Olomouc)

Robust 2018 26 / 47

Circle Fitting: Accuracy for Algebraic Parameter F

Averages from 1000 simulations

Eva Fišerová (UP Olomouc)

Robust 2018 27 / 47

Circle Fitting: Accuracy for Geometric Parameter R

Averages from 1000 simulations

 $R = \sqrt{D^2/4 + E^2/4 - F}$

Eva Fišerová (UP Olomouc)

Robust 2018 28 / 47

Properties of Circle Geometric Parameters Estimators $X_c = 3$, $Y_c = 1$, R = 5, $(n = 100, \sigma = 0.01, 0.05, 0.1)$

Histograms of the estimates of the radius of the circle resulting from the simulation study

Properties of Circle Geometric Parameters Estimators $X_c = 3$, $Y_c = 1$, R = 5, $(n = 100, \sigma = 0.01, 0.05, 0.1)$

Average values of the estimates

X _c	1.000	1.000	1.001
Y _c	3.000	3.000	3.000
R	5.000	5.000	5.001

• The coverage probability (in %) of 95% confidence interval

X _c	95.6	95.6	95.5
Y _c	94.3	94.3	94.3
R	94.2	93.9	94.0

• Average width of 95% confidence interval

X _c	0.006	0.028	0.056
Y _c	0.006	0.028	0.056
R	0.004	0.020	0.040

• Similar results for other types of conics

Ellipsoid description

The general ellipsoid is a second-order algebraic surface

 $Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Kz + L = 0$

Assumptions for real non-degenerate ellipsoid

- M₃, M₄ full rank matrices,
- M₃ positive definite matrix,
- the determinant of the matrix M₄ is negative

$$\mathbf{M}_{3} = \begin{bmatrix} A & D/2 & E/2 \\ D/2 & B & F/2 \\ E/2 & F/2 & C \end{bmatrix}, \quad \mathbf{M}_{4} = \begin{bmatrix} A & D/2 & E/2 & G/2 \\ D/2 & B & F/2 & H/2 \\ E/2 & F/2 & C & K/2 \\ G/2 & H/2 & K/2 & L \end{bmatrix}$$

For the uniqueness, A, B, C, D, E, F, G, H, K, L fulfil one linear restriction, e.g. A = 1, or L = -1.

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Kz + L = 0$$

$$(\mathbf{x} - \mathbf{x}_{c})'\mathbf{M}_{3}(\mathbf{x} - \mathbf{x}_{c}) = \kappa, \quad \kappa = \mathbf{x}_{c}'\mathbf{M}_{3}\mathbf{x}_{c} - L, \quad \mathbf{x} = (x, y, z)'$$
Centre $\mathbf{x}_{c} = (x_{c}, y_{c}, z_{c})'$

$$(\mathbf{x})$$

The semi-axis length in the direction of the eigenvector v_i of M_3

$$r_i = \sqrt{\kappa/\lambda_i}, \quad i = 1, 2, 3$$

 $\begin{pmatrix} x_c \\ y_c \\ z_c \end{pmatrix} = -\frac{1}{2} \mathbf{M}_3^{-1} \begin{pmatrix} \mathbf{G} \\ \mathbf{H} \\ \mathbf{K} \end{pmatrix}$

Ellipsoid Parametrization

- r_x , r_y , r_z semi-axes lengths in the direction of x-, y-, z-axis
- θ_x , θ_y , θ_z angles of rotations around x-, y-, z-axes
- a right-handed Cartesian coordinate system

Rotation of θ_x radians in a counter-clockwise direction when looking towards origin about the *x*-axis

$$\mathbf{R}_{x}(\theta_{x}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_{x}) & -\sin(\theta_{x}) \\ 0 & \sin(\theta_{x}) & \cos(\theta_{x}) \end{pmatrix}$$

Rotation of θ_y radians about the y-axis:

$$\mathbf{R}_{y}(\theta_{y}) = \begin{pmatrix} \cos(\theta_{y}) & 0 & \sin(\theta_{y}) \\ 0 & 1 & 0 \\ -\sin(\theta_{x}) & 0 & \cos(\theta_{y}) \end{pmatrix}$$

Rotation of θ_z radians about the *z*-axis:

$$\mathbf{R}_{z}(\theta_{z}) = \begin{pmatrix} \cos(\theta_{z}) & -\sin(\theta_{z}) & 0\\ \sin(\theta_{z}) & \cos(\theta_{z}) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Rotations in 3D do not commute \longrightarrow it depends in which order multiple rotations are performed

Assume rotation firstly about *z*-axis, then about *y*-axis, and, finally, about *x*-axis (Turner et al., 1999):

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{R}_{x}(\theta_{x})\mathbf{R}_{y}(\theta_{y})\mathbf{R}_{z}(\theta_{z}) \begin{pmatrix} r_{x}\cos(u)\cos(v) \\ r_{y}\sin(u)\cos(v) \\ r_{z}\sin(v) \end{pmatrix} + \begin{pmatrix} x_{c} \\ y_{c} \\ z_{c} \end{pmatrix}$$
$$-\pi \leq u < \pi, \quad -\pi/2 \leq v < \pi/2$$

Ellipsoid Geometric Parameters - Particular Solution

• the centre $\mathbf{x}_c = (x_c, y_c, z_c)'$ - uniquely defined

 a class of rotations angles and semi-axes lengths triplets reproducing the same algebraic parameters

• semi-axes lengths: $(r_x, r_y, r_z) = (r_1, r_2, r_3), r_1 \ge r_2 \ge r_3$

The eigenvectors of M_3 form the rotation matrix $\mathbf{R} \longrightarrow \phi_x, \phi_y, \phi_z$

• $\phi_y \neq \pm \frac{\pi}{2}$, i.e. $R_{13} \neq \pm 1$: 2 triplets of angles

 $\phi_y^1 = \arcsin(R_{13}), \quad \phi_y^2 = \pi - \arcsin(R_{13})$

$$\phi_x^j = rctan 2[-R_{23}/\cos(\phi_y^j), R_{33}/\cos(\phi_y^j)],$$

 $\phi_{z}^{j} = \arctan 2[-R_{12}/\cos(\phi_{y}^{j}), R_{11}/\cos(\phi_{y}^{j})], \quad j = 1, 2$

• $\phi_y = \pm \frac{\pi}{2}$, i.e. $R_{13} = \pm 1$: infinite number of solutions

$$\phi_x = -\phi_z + \arctan 2(R_{21}, R_{22}) \text{ for } \phi_y = \frac{\pi}{2}$$

 $\phi_x = \phi_z - \arctan 2(R_{21}, R_{22})$ for $\phi_y = -\frac{\pi}{2}$

One possible solution - set $\phi_z = 0$ and to evaluate the corresponding value of ϕ_x .

Eva Fišerová (UP Olomouc)

Ellipsoid Geometric Parameters - Number of Equivalent Solutions

Lemma 1. 576 triplets (ϕ_x, ϕ_y, ϕ_z) under the assumption that the second rotation in the sequence of rotations about principal axes is not $\pm pi/2$.

Proof: $2 \times 6 \times 6 \times 8 = 576$

- 2 particular solutions
- 6 possible ordering of eigenvectors
- 6 possible sequences of rotations
- the multiplication of eigenvectors by -1 results in 8 options for each triplet of eigenvectors

Lemma 2. 6 triplets (r_x, r_y, r_z)

Proof: No relationship between eigenvalues and *x*-, *y*, *z*-axis \rightarrow 6 triplets (r_x , r_y , r_z)

Theorem 3. $6 \times 576 = 3454$ sextuplets ($r_x, r_y, r_z, \phi_x, \phi_y, \phi_z$)

Fitting Ellipsoid to Correlated Data

Statistical model

$$\begin{aligned} x_i &= \mu_i + \varepsilon_{x,i}, \ i = 1, 2, \dots, n, \\ y_i &= \nu_i + \varepsilon_{y,i}, \ i = 1, 2, \dots, n, \\ z_i &= \xi_i + \varepsilon_{z,i}, \ i = 1, 2, \dots, n, \end{aligned}$$

non-linear restrictions:

$$\mu_i^2 + B\nu_i^2 + C\xi_i^2 + D\mu_i\nu_i + E\mu_i\xi_i + F\nu_i\xi_i + G\mu_i + H\nu_i + K\xi_i + L = 0$$

$$\operatorname{var}(\varepsilon_{\mathbf{x},i}) = \operatorname{var}(\varepsilon_{\mathbf{y},i}) = \operatorname{var}(\varepsilon_{\mathbf{z},i}) = \sigma^2$$

$$\operatorname{cov}(\varepsilon_{x,i},\varepsilon_{y,i}) = \varrho_{x,y}\sigma^2, \ \operatorname{cov}(\varepsilon_{x,i},\varepsilon_{z,i}) = \varrho_{x,z}\sigma^2, \ \operatorname{cov}(\varepsilon_{y,i},\varepsilon_{z,i}) = \varrho_{y,z}\sigma^2$$

Fitting Ellipsoid to Correlated Data

Matrix form of a model:

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} \mu \\ \nu \\ \mathbf{\xi} \end{pmatrix} + \begin{pmatrix} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \varepsilon_{\mathbf{z}} \end{pmatrix}$$
$$\operatorname{var}[(\varepsilon_{\mathbf{x}}', \varepsilon_{\mathbf{y}}', \varepsilon_{\mathbf{z}}')'] = \mathbf{\Sigma} = \sigma^{2} \begin{pmatrix} \mathbf{I}_{n,n} & \varrho_{\mathbf{x},\mathbf{y}}\mathbf{I}_{n,n} & \varrho_{\mathbf{x},\mathbf{z}}\mathbf{I}_{n,n} \\ \varrho_{\mathbf{x},\mathbf{y}}\mathbf{I}_{n,n} & \mathbf{I}_{n,n} & \varrho_{\mathbf{y},\mathbf{z}}\mathbf{I}_{n,n} \\ \varrho_{\mathbf{x},\mathbf{z}}\mathbf{I}_{n,n} & \varrho_{\mathbf{y},\mathbf{z}}\mathbf{I}_{n,n} & \mathbf{I}_{n,n} \end{pmatrix} = \sum_{i=1}^{4} \vartheta_{i}\mathbf{V}_{i}$$
$$\mathbf{B}\boldsymbol{\theta} + \mathbf{b} = \mathbf{0},$$

where

$$\mathbf{B} = \begin{bmatrix} \nu^2 \vdots \xi^2 \vdots \mu \nu \vdots \mu \xi \vdots \nu \xi \vdots \mu \vdots \nu \vdots \xi \vdots \mathbf{1} \end{bmatrix}$$

 $\boldsymbol{\theta} = (\boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}, \boldsymbol{F}, \boldsymbol{G}, \boldsymbol{H}, \boldsymbol{K}, \boldsymbol{L})'$, and $\mathbf{b} = \boldsymbol{\mu}^2$.

Estimation of Variance Components

The variance-covariance matrix of random errors

$$\operatorname{var}[(\boldsymbol{\varepsilon}_{x}^{\prime},\boldsymbol{\varepsilon}_{y}^{\prime},\boldsymbol{\varepsilon}_{z}^{\prime})^{\prime}] = \sigma^{2} \begin{pmatrix} \mathbf{I}_{n,n} & \varrho_{x,y}\mathbf{I}_{n,n} & \varrho_{x,z}\mathbf{I}_{n,n} \\ \varrho_{x,y}\mathbf{I}_{n,n} & \mathbf{I}_{n,n} & \varrho_{y,z}\mathbf{I}_{n,n} \\ \varrho_{x,z}\mathbf{I}_{n,n} & \varrho_{y,z}\mathbf{I}_{n,n} & \mathbf{I}_{n,n} \end{pmatrix} = \sum_{i=1}^{4} \vartheta_{i}\mathbf{V}_{i}$$

where

$$\vartheta_1 = \sigma^2, \quad \vartheta_2 = \sigma^2 \varrho_{x,y}, \quad \vartheta_3 = \sigma^2 \varrho_{x,z}, \quad \vartheta_4 = \sigma^2 \varrho_{y,z}$$

In the linearized model, locally minimum norm quadratic unbiased estimator (LMINQUE) of $\vartheta_1, \ldots, \vartheta_4$ based on Rao's procedure (Rao and Kleffe, 1988) can be determined.

Results are data-dependent \implies need to solve it in an iterative procedure

Steps of the Iterative Procedure

Determine an initial guess: the ellipsoid algebraic parameters θ⁽⁰⁾, the errorless recordings μ⁽⁰⁾, ν⁽⁰⁾, ξ⁽⁰⁾ and variance components ϑ₀ in the following way:

$$\begin{aligned} \vartheta_1^{(0)} &= \sigma^{2(0)} = 1, \ \vartheta_2^{(0)} = \sigma^{2(0)} \varrho_{x,y} = 0 \\ \vartheta_3^{(0)} &= \sigma^{2(0)} \varrho_{x,z} = 0, \ \vartheta_4^{(0)} = \sigma^{2(0)} \varrho_{y,z} = 0 \\ \mu^{(0)} &= \mathbf{x}, \ \nu^{(0)} = \mathbf{y}, \ \boldsymbol{\xi}^{(0)} = \mathbf{z} \\ \boldsymbol{\theta}^{(0)} &= -\left(\left[\mathbf{B}^{(0)} \right]' \mathbf{B}^{(0)} \right)^{-1} \left[\mathbf{B}^{(0)} \right]' \mathbf{x}^2, \\ \mathbf{B}^{(0)} &= \left[\mathbf{y}^2 \vdots \mathbf{z}^2 \vdots \mathbf{x} \mathbf{y} \vdots \mathbf{x} \mathbf{z} \vdots \mathbf{y} \mathbf{z} \vdots \mathbf{x} \vdots \mathbf{y} \vdots \mathbf{z} \vdots \mathbf{1} \right]. \end{aligned}$$

- **2** For all data points $(x_i, y_i, z_i)'$, i = 1, ..., n, calculate the estimates $\hat{\theta}, \hat{\mu}, \hat{\nu}$ and $\hat{\xi}$.
- Solution \mathfrak{G} Calculate the estimates of variance components ϑ .
- Update the initial values
 - Repeat steps 2 through 5 until estimates converge.

Eva Fišerová (UP Olomouc)

Odhady kuželoseček a kvadrik a jejich přesnost

Geometric Parameters Estimation - Quadric Surfaces, e.g. Ellipsoid

- The centre is uniquely determined by the algebraic parameters (there exists explicite function)
- Other geometric parameters relate with the sequence of axes rotations and their orientation ⇒ a class of rotations angles and semi-axes lengths triplets reproducing the same algebraic parameters
 - choice of particular solution
- Accuracy of estimators

$$\widehat{\mathrm{var}}(\widehat{\boldsymbol{g}}) = \widehat{\boldsymbol{J}} \operatorname{var}[(\widehat{B}, \widehat{C}, \widehat{D}, \widehat{E}, \widehat{F}, \widehat{G}, \widehat{H}, \widehat{K}, \widehat{L})'] \ \widehat{\boldsymbol{J}}'$$

 numerical differentiation should be used for estimating derivatives w.r.t algebraic parameters Similated data

- *n* = 100
- $(X_c, Y_c, Z_c) = (1, 2, 3)$
- $(r_x, r_y, r_z) = (3, 2, 1)$
- $(\theta_x, \theta_y, \theta_z) = (-0.7, 1.18, 0.7)$
- $\sigma^2 = 0.01$

• $\rho = 0$

Param.	True	Est.	Stand. error	Lower 95%CI	Upper 95%CI
X _c	1	1.000	0.0014	0.997	1.003
Y _c	2	2.001	0.0021	1.997	2.005
Z_c	3	2.998	0.0026	2.993	3.003
r_x	3	2.999	0.0034	2.993	3.006
r_y	2	1.993	0.0029	1.988	1.999
rz	1	1.000	0.0014	0.997	1.002
θ_{x}	-0.7	-0.699	0.0039	-0.707	-0.692
θ_y	1.18	1.182	0.0014	1.179	1.184
θ_z	0.7	-0.701	0.0046	-0.710	-0.692

similar accuracy for correlated data

Conclusions

Conics and quadric surfaces fitting

- currently very topical issue
- many algorithms problem with accuracy, time computing, statistical inference, not include correlations between coordinates
- proposed solution via linear model with restrictions avoid these problems:
 - estimators of geometric parameters (together with their uncertainties)
 - possible to perform statistical inference
 - high accuracy of algebraic and geometric parameters
 - for data spaced around a small part of conic/quadric surface, the correction for bias should be used (see e.g. Schaffrin and Snow, 2010)

Key References

- Chernov, N. (2010). Circular and Linear Regression: Fitting Circles and Lines by Least Squares. Chapman&Hall/CRC.
- Donevska, S., Fišerová, E., Hron, K. (2011) On the Equivalence between Orthogonal Regression and Linear Model with Type-II Constraints. Acta Univ. Palacki. Olomuc., Mathematica 50, 19–27.
- Fišerová, E., Donevska, S (2015) Conics fitting by least squares. In: Souvenir Booklet of the 24th IWMS, 98-104.
- Kubáček, L., Kubáčková, L., Volaufová, J. (1995) Statistical models with linear structures. Veda, Bratislava.
- Köning, R., Wimmer, G., Witkovský, V. (2014) Ellipse fitting by linearized nonlinear constraints to demodulate quadrature homodyne interferometer signals and to determine the statistical uncertainty of the interferometric phase. Meas. Sci. Technol. 25, 115001.
- Rao, C.R., Kleffe, J. (1988) Estimation of Variance Components and Applications.
- Schaffrin, B., Snow, K. (2010) Total Least-Squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Algebra and its Applications 432, 2061–2076.
- Turner, D.A., Anderson, I.J., Mason, J.C., Cox, M.G. (1999) An algorithm for fitting an ellipsoid to data.

Eva Fišerová (UP Olomouc)

Odhady kuželoseček a kvadrik a jejich přesnost

Robust 2018 45 / 47

References: List of methods

- Aigner, M. and Jüttler, B. (2008). Gauss-Newton type techniques for robustly fitting implicitly defined curves and surfaces to unorganized data points, *Shape Modeling International.*, 121–130.
- Ahn, S. J., Rauh, W. and Warnecke, H.J. (2001). Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola, *Pattern Recog.*, 34, 2283–2303.
- Ahn, S. J. (2004). Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space, Springer, Berlin.
- Berman, M. (1989). Large sample bias in least squares estimators of a circular arc center and its radius, CVGIP, 45, 126-128.
- Chan, N. N. (1965). On circular functional relationships, J. R. Statist. Soc. B., 27, 45-56.
- Chernov, N., Lesort, C. (2004). Statistical efficiency of curve fitting algorithms, *Comp. Stat. Data Anal.*, 47, 713-728.
- Chernov, N. and Ma, H. (2011). Least squares fitting of quadratic curves and surfaces, *Computer Vision*, (Yoshida, S. R., eds.), Nova Science Publishers, 285-302.
- Gander, W., Golub, G. H. and Strebel, R. (1994). Least-squares fitting of circles and ellipses, *BIT Numer. Math.*, 34, 34-558.

- K. Kanatani, K., (1994) Statistical bias of conic fitting and renormalization, *IEEE Trans. PAMI*, 16, 320-326.
- Rosin, P.L. (1993). A note on the least squares fitting of ellipses, *Pattern Recognition Lett.*, 14, 799-808.
- Rosin, P.L. (1996). Assessing error of fit functions for ellipses, *Graphical Models Image Process.*, 58, 494-502.
- Safaee-Rad, R., Tchoukanov, I., Benhabib, B. and Smith, K.C. (1991). Accurate parameter estimation of quadric curves from grey-level images, *CVGIP: Image Understanding*, 54, 259-274.