Parameter estimation for the stochastic equation of second order

Josef Janák

Charles University, Department of Probability and Mathematical Statistics

Robust, Jeseníky

11-16 September 2016

Introduction

Consider the following wave equation

$$\frac{\partial^{2} u}{\partial t^{2}}(t,\xi) = bAu(t,\xi) - 2a\frac{\partial u}{\partial t}(t,\xi) + Q^{\frac{1}{2}}\dot{B}(t,\xi), (t,\xi) \in \mathbb{R}_{+} \times D,
u(0,\xi) = u_{1}(\xi), \quad \xi \in D,
\frac{\partial u}{\partial t}(0,\xi) = u_{2}(\xi), \quad \xi \in D,
u(t,\xi) = 0, \quad (t,\xi) \in \mathbb{R}_{+} \times \partial D,$$

where $D \subset \mathbb{R}^d$ is a bounded domain with a smooth boundary, a > 0, b > 0 are unknown parameters and the $\dot{B}(t, \xi)$ is the formal time derivative of the Brownian motion.

• Based on the observation of trajectory of process $\{X_t = (u(t,\cdot), \frac{\partial u}{\partial t}(t,\cdot))^\top, 0 \le t \le T\}$, the strong consistent estimators of parameters a and b will be proposed.

Assumptions

- Assume, that $\{e_n, n \in \mathbb{N}\}$ is the orthonormal basis in $L^2(D)$ and the operator $A: L^2(D) \to L^2(D)$ is such that
 - (i) $Ae_n = -\alpha_n e_n$,
 - (ii) $\exists \varepsilon > 0 \, \forall n \in \mathbb{N} \quad \alpha_n > \varepsilon$,
 - (iii) $\alpha_n \to \infty$.
- These assumptions cover the case, that if the set $D \subset \mathbb{R}^d$ is open, bounded and with a smooth boundary, then the operator $A = \Delta|_{\mathsf{Dom}(A)}$ and $\mathsf{Dom}(A) = H^2(D) \cap H^1_0(D)$.

Assumptions

- Assume, that the operator Q is positive nuclear operator in $L^2(D)$ with eigenvalues $\{\lambda_n, n \in \mathbb{N}\}$, i.e.
 - (iv) $Qe_n = \lambda_n e_n$,
 - (v) $\forall n \in \mathbb{N} \quad \lambda_n > 0$,
 - (vi) $\sum_{n=1}^{\infty} \lambda_n < \infty$.
- We consider the diagonal case. That means, that the eigenvectors $\{e_n, n \in \mathbb{N}\}$ of the operator Q are the same as the eigenvectors of the operator A.

General setting

 This problem may be rewritten as an infinite dimensional stochastic differential equation

$$dX_t = AX_t dt + \Phi dB_t,$$

$$X_0 = x_0 = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}.$$
(1)

• To this aim, introduce the Hilbert space $\mathcal{H} = \mathsf{Dom}((-A)^{\frac{1}{2}}) \times L^2(D)$ endowed with the norm

$$\left\| \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \right\|_{\mathcal{H}}^2 = \left\| x_1 \right\|_{\mathsf{Dom}((-A)^{\frac{1}{2}})}^2 + \left\| x_2 \right\|_{L^2(D)}^2$$
$$= \left\| (-A)^{\frac{1}{2}} x_1 \right\|_{L^2(D)}^2 + \left\| x_2 \right\|_{L^2(D)}^2. \tag{2}$$

General setting

• Define the linear operator A:

$$\mathcal{A}x=\mathcal{A}\left(\begin{array}{c}x_1\\x_2\end{array}\right)=\left(\begin{array}{cc}0&I\\bA&-2aI\end{array}\right)\left(\begin{array}{c}x_1\\x_2\end{array}\right),$$

$$\forall x \in \mathsf{Dom}(\mathcal{A}) = \mathsf{Dom}(A) \times \mathsf{Dom}((-A)^{\frac{1}{2}}).$$

• Also define the linear operator Φ in ${\mathcal H}$ as follows

$$\Phi = \left(\begin{array}{cc} 0 & 0 \\ 0 & Q^{\frac{1}{2}} \end{array}\right).$$

Semigroup S(t)

Assume, that

$$\forall n \in \mathbb{N} \quad a^2 - b\alpha_n < 0. \tag{3}$$

• Under this assumption, the eigenvalues $\{I_n, n \in \mathbb{N}\}$ of the operator \mathcal{A} equal to

$$I_n^{1,2} = -a \pm i\sqrt{b\alpha_n - a^2}$$

and the operator \mathcal{A} generates a C_0 -semigroup in \mathcal{H} , which has the following form.

Semigroup S(t)

Lemma

For all
$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathcal{H}$$
, the semigroup $S(t)$ equals to

$$S(t)\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} s_{11}(t) & s_{12}(t) \\ s_{21}(t) & s_{22}(t) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},$$

where

$$\begin{split} s_{11}(t) &= e^{-at} \left(\cos(\beta t) + a\beta^{-1} \sin(\beta t) \right), \\ s_{12}(t) &= e^{-at} \beta^{-1} \sin(\beta t), \\ s_{21}(t) &= e^{-at} \left(-\beta - a^2 \beta^{-1} \right) \sin(\beta t), \\ s_{22}(t) &= e^{-at} \beta^{-1} \left(-a \sin(\beta t) + \beta \cos(\beta t) \right). \end{split}$$

Semigroup S(t)

- The operator $\beta: L^2(D) \to L^2(D)$ in the previous formulae is defined by $\beta = (-bA a^2I)^{\frac{1}{2}}$.
- All operators are defined by their respective series. For example

$$\beta x = \sum_{n=1}^{\infty} \sqrt{b\alpha_n - a^2} \langle x, e_n \rangle e_n,$$

$$\sin(\beta t) x = \sum_{n=1}^{\infty} \sin\left(\sqrt{b\alpha_n - a^2} t\right) \langle x, e_n \rangle e_n,$$

where $x \in L^2(D)$ are from their respective domains.

Covariance operator $Q_{\infty}^{(a,b)}$

- The equation (1) is a linear equation ⇒ there exists a mild solution X_t.
- The semigroup S(t) is exponentially stable \Rightarrow there exists an invariant measure $\mu_{\infty}^{(a,b)}$, which fullfils $\mu_{\infty}^{(a,b)} = N\left(0,Q_{\infty}^{(a,b)}\right)$.
- The covariance operator $Q_{\infty}^{(a,b)}$ of the limit measure $\mu_{\infty}^{(a,b)}$ satisfies

$$Q_{\infty}^{(a,b)} = \int_0^{\infty} S(t) \Phi \Phi^* S^*(t) dt. \tag{4}$$

Covariance operator $Q_{\infty}^{(a,b)}$

The computation yields

$$Q_{\infty}^{(a,b)} = \int_{0}^{\infty} \begin{pmatrix} q_{11}(t) & q_{12}(t) \\ q_{21}(t) & q_{22}(t) \end{pmatrix} dt,$$

$$= \begin{pmatrix} \frac{1}{4ab}Q(-A)^{-1} & 0 \\ 0 & \frac{1}{4a}Q \end{pmatrix}, \tag{5}$$

where

$$\begin{split} q_{11}(t) &= e^{-2at}\beta^{-1}\sin(\beta t)Q\beta^{-1}\sin(\beta t), \\ q_{12}(t) &= e^{-2at}\beta^{-1}\sin(\beta t)Q\beta^{-1}\left(-a\sin(\beta t) + \beta\cos(\beta t)\right), \\ q_{21}(t) &= e^{-2at}\beta^{-1}\left(-a\sin(\beta t) + \beta\cos(\beta t)\right)Q\beta^{-1}\sin(\beta t), \\ q_{22}(t) &= e^{-2at}\beta^{-1}\left(-a\sin(\beta t) + \beta\cos(\beta t)\right)Q\beta^{-1} \times \\ &\quad \times \left(-a\sin(\beta t) + \beta\cos(\beta t)\right). \end{split}$$

Estimators of parameters

 According to [Maslowski, Pospíšil], some Birkohoff–type ergodic theorem may be applied. Namely

$$\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \|X_{t}^{x_{0}}\|_{\mathcal{H}}^{2} dt = \int_{\mathcal{H}} \|y\|_{\mathcal{H}}^{2} d\mu_{\infty}^{(a,b)}(y)$$

$$= \operatorname{Tr} Q_{\infty}^{(a,b)},$$
(6)

for any initial contidion $x_0 \in \mathcal{H}$.

• From the expression (5), Tr $Q_{\infty}^{(a,b)}$ equals to

Tr
$$Q_{\infty}^{(a,b)} = \frac{1}{4ab}$$
 Tr $Q(-A)^{-1} + \frac{1}{4a}$ Tr Q (8)

$$=\frac{1}{4ab}\sum_{n=1}^{\infty}\frac{\lambda_n}{\alpha_n}+\frac{1}{4a}\sum_{n=1}^{\infty}\lambda_n. \tag{9}$$

Estimators of parameters

- If we denote $Y_T := \frac{1}{T} \int_0^T \|X_t^{x_0}\|_{\mathcal{H}}^2 dt$, then (based on (7) and (8)) some strongly constistent estimators of parameters a and b may be proposed.
- If the true value of the parameter b is known, then the strongly consistent estimator of the parameter a is

$$\hat{a}_{\mathcal{T}} = \frac{1}{4Y_{\mathcal{T}}} \left(\frac{1}{b} \operatorname{Tr} Q(-A)^{-1} + \operatorname{Tr} Q \right). \tag{10}$$

 If the true value of the parameter a is known, then the strongly consistent estimator of the parameter b is

$$\hat{b}_{T} = \frac{\text{Tr } Q(-A)^{-1}}{4aY_{T} - \text{Tr } Q}.$$
 (11)

What if $a^2 - b\alpha_n \ge 0$?

If

$$\exists n \in \mathbb{N} \quad a^2 - b\alpha_n > 0, \tag{12}$$

or

$$\exists n \in \mathbb{N} \quad a^2 - b\alpha_n = 0, \tag{13}$$

then the eigenvalues of the operator \mathcal{A} are different and the semigroup S(t) has different forms. But the covariance operator $Q_{\infty}^{(a,b)}$ will remain the same.

Asymptotic normality

Are the estimators asymptotic normal?

•

$$\sqrt{T} (\hat{a}_T - a) \stackrel{?}{\to} Z_1 \sim N(0, V_1),$$

 $\sqrt{T} (\hat{b}_T - b) \stackrel{?}{\to} Z_2 \sim N(0, V_2).$

- If so, we could make interval estimators very easily.
- We could test some hypotheses about the parameters.

Possible future extensions

- We could consider a non-diagonal case.
- We could consider another operator A.
- We could consider B_t^H instead of B_t .

References

- G. Da Prato, J. Zabczyk: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications 45, Cambridge University Press, 2008.
- T. E. Duncan, B. Maslowski, B. Pasik–Duncan: Linear stochastic equations in a Hilbert space with a fractional Brownian motion, International Series in Operations Research & Management Science, Vol. 94, 201–222, Springer Verlag, 2006.
- B. Maslowski, J. Pospíšil: *Ergodicity and parameter estimates* for infinite—dimensional fractional Ornstein—Uhlenbeck process, Applied Mathematics and Optimization, Vol. 57, Issue 3, 401–429, 2007.