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Introduction

MOTIVATION:

m The exact, asymptotic, and/or approximate methods of the statistical inference are
frequently based on distributions (PDF, CDF and/or QF) derived by inverting the
appropriate characteristic functions (CF).

m Metrology — combining information from independent sources, combining expert
knowledge with experimental evidence, expressing uncertainty in measurement, the
common mean problem in inter-laboratory comparisons (leading e.g. to a linear
combination of independent Student’s t or Fisher-Snenedor F distributed random
variables).

m Operational risk and insurance  — aggregate loss, compound distributions of
frequency and severity of claims, combining historical evidence with expert knowledge
(i.e. mixing empirical and parametric distributions), empirical distribution and heavy
tails.

m Working with CFs provides an alternative and frequently more simple route than
working directly with PDFs and/or CDFs.

m In particular, combining CFs is a simple and trivial task for

m convolutions or linear combinations of independent random variables (RVs),

m specific compound distributions

m weighted mixtures of distributions

m transformed (empirical/approximate) distributions , €.g., by transforming the
(approximate/empirical) CFs.
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Introduction

MOTIVATION FOR NUMERICAL METHODS:

A standard numerical approach for estimating distribution of combined random
variables is based on using Monte Carlo methods.

There is strong need for efficient methods and algorithms for arithmetic
computations with random variables and their distributions

(see e.g. Pacal: A Python package for arithmetic computations with random variables
by Korzen and Jaroszewicz (2014)).

m Derivation of the exact distribution functions by using the analytical inverse of the
Fourier transform is frequently too complicated — available only in special cases.

m In most practical situations, it is possible and sufficient to rely on numerical
methods for derivation of the PDF/CDF from the CF.

m The numerical inversion of the appropriate CF is applicable in parametric as well
as in nonparametric settings (based on using the empirical CDF or CF).

m In particular, numerical inversion of the appropriate CF can be very useful for the
applications related to the stochastic Gaussian processes.

Viktor WITKOVSKY (Bratislava) Inferencia zaloZzena na numerickej inverzii CHF ROBUST 2016 (Kurzovni/Jeseniky) 4146



Introduction

m Efficient numerical evaluation of the (inverse) Fourier transform is a well-known
and intensively studied problem for a long time.

m Frequently, it is connected with the problem of computing integrals of highly
oscillatory (complex) functions.

m The methods for computing integrals of oscillatory functions include, e.g., Sidi
(1982), Sidi (1988), Levin (1996), Milovanovi¢ (1998), Sidi (2012), Asheim & Huybrechs
(2013).

m The methods for inverting CF for obtaining the probability distribution fu nctions
include, e.g., Gil-Pelaez (1951), Imhof (1961), Bohman (1970, 1972), Davies (1980),
Abate & Whitt (1992), Shephard (1991), Waller, Turnbull & Hardin (1995), Zielihski
(2001), Strawderman (2004).

m Surprisingly, such methods are still not so much widespread among statisticians.
One possible reason might be that the characteristic functions and the algorithms
for numerical inversions are not directly available in standard statistical packages,
e.g., R, SAS, MATLAB.
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Introduction

m In general, methods for numerical inversion seems to be considered difficult.

m However, here we shall present brief overview of the very simple methods for
numerical inversion of the CFs, which could serve as a useful basic tool for
approximate statistical methods.

m In particular, here we focus on approximate numerical methods for computing
PDF/CDF of univariate continuous random variables from their CF, based on

m the Gil-Pelaez inversion formulae,

m and the Fast Fourier Transform (FFT) algorithm.
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Characteristic functions and their combinations

Let Y denotes the continuous univariate RV with its PDF pdf, (y). Recall that,

m CF of the distribution of Y is given by the Fourier transform,

cfy(t) =E [e‘”] :/ " pdf, () dy.

m Analytical expressions of the characteristic functions are known for many standard
probability distributions, see e.g. Lukacs (1970), or other available sources.

m Otherwise CFs can be computed by available software — analytically or
numerically.
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Characteristic functions and their combinations

Table: Characteristic functions of continuous univariate distributions used in metrological

applications (selected symmetric zero-mean distributions and non-negative distributions). Here,

K. (z) denotes the modified Bessel function of the second kind and J, (z) is the Bessel function of

the first kind.

Probability distribution

Characteristic function

Gaussian N(0, 1)

Student's t,
Rectangular R(—1, 1)
Triangular T(—1, 1)

Arcsine U(—1,1)

cf(t) = exp (—%tz)
1 1\ 2 1
Cf('[): m (u?‘tl) K% (1/2‘“)

cf(t) = %ﬁ)
of(t) = 2— 2tzcos(t)

of(t) = Jo(t)
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Characteristic functions and their combinations
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Figure: Characteristic functions of selected symmetric distributions.
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Characteristic functions and their combinations

If the analytical form of the CF is unknown or it is too complicated, as it depends on
nonstandard special functions and/or complicated series expansions (as is the case,
e.g., for the Pareto, Weibul, log-normal and/or log-logistic distributions), such CFs can
be still evaluated numerically, either directly from its definition, and/or any other suitable

representation.

m For example, by using the half-space Fourier integral transformation for a positive
continuous random variable X (defined for X > 0) with its PDF given by an
analytical function pdf, (z), which is well defined for complex z € C and decays at
infinity, (as e.g. for the Weibul, Pareto, log-normal and log-logistic distributions),

we get
1 iX x
cfx(t):/ {pdfx (T)e dx, teR,
0

e.g. Asheim & Huybrechs (2013).
m Moreover, by using a suitable stabilizing transformation from (0, co) to (0, 1), the
CF can be numerically evaluated by using a simple Gaussian quadrature rule of a

well behaved integral,
2
1 i x \2\ 2xe (%)
cfx(t):/o * pfy (t (14) ) et
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Characteristic functions and their combinations

Table: Selected characteristic functions used as the components of the compound CFs of the aggregate loss
distributions. Here, U(a, b, z) denotes the confluent hypergeometric function of the second kind.

Probability distribution Characteristic function
Poisson cfn(t) = exp ()\ (e“ -1 )
Binomial cfn(t) = (1 —p+ pe")
Negative Binomial cfn(t) = p' (1 -(1- p)e“) a
Exponential ofx (t) = 2%
Gamma cfx(t) = (1 — %)
" N D I vy
Fisher-Snedecor F, .., cf(t) = WU (7, 1-
2

Pareto (Type I) cfx (t) = e U (1,1 — a, —ito), or alternatively

cfy (t) = e x cf} (t)

cf% (t) by numerical integration from pdf, (z) = ac® (o + z)~(*+1
Weibull cfx (t) by numerical integration from pdf, (z) = & (2)*~* ef(i)

(log(2)— )
Log-normal cfx (t) by numerical integration from pdf, (z) = %}eﬁ 202
L (z
Log-logistic cfx (t) by numerical integration from pdf, (z) = (“(‘*)>>
Generalized Pareto cfx (t) = €% x cfy (t), where 6 is the threshold parameter, and
B
cfy (t) by numerical integration from pdf, (z) = L (1+¢£2) g+
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Characteristic functions and their combinations
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Figure: Selected characteristic functions used as the components of the compound CFs of the aggregate loss

distributions.

WITKOVSKY (Bratislava)

Inferencia zaloZzena na numerickej inverzii CHF

ROBUST 2016 (Kurzovni/Jeseniky)

12/ 46



Characteristic functions and their combinations

Working with CFs provides an alternative and frequently more simple route than
working directly with PDFs and/or CDFs. In particular, derivation of the CF of a
weighted sum of independent random variable is a very simple trivial task.

m CF of a linear combination, Y = c1X1 + - - - 4 caXs, where X are independent RVs
with known cfy, (t) and coefficients c;, is given by

cfy (t) = f[ Cfxl (Cjt)A

m CF of a stochastic convolution, Y = X; + - -- + Xy, (compound distribution), where
X; are i.i.d. RVs with common cfx (t) and N is a discrete RV defined on
non-negative integers with cfy(t), is given by

ofy (t) = cfy (— ilog (cfx(t))>.
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Characteristic functions and their combinations
m CF of a weighted mixture of distribution F,, = Zj”:l w;Fy; , with Z;‘Zl wj=1,is

o, (1) = > wjcfy (1)
j=1

m ECF — the empirical characteristic function, based on the observed data
X1,...,Xn (realization of the random sample Xu, ..., Xs, where X; ~ F) is defined
as a (equally weighted) mixture of the characteristic functions of the Dirac random
variables (concentrated at the values x;, i.e. cfy (t) = e'™):

n

ij cfy (t) = = Z e MM of. (1) = cfe (t) x cfz (opt),

J 1

where cfz (t) = e’§ and oy, is the pre-selected bandwidth parameter.

m The approximate (discretized/empirical) characteristic function of a RV Y with
known distribution F and quantile function F ~*(p), is defined as a mixture of the
Dirac random variables at q; = F ~*(p;), for equidistant p; € (0, 1):

n

~ 1 itg: transformin A smoothln
() = [ D et T Ze“g .

i=1
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Characteristic functions and their combinations

ECF of the observed DATA

Figure: Empirical characteristic function based on observed data.
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The Gil-Pelaez inversion formulae

PDF is given by the inverse Fourier transform,

pdf, () =5 [ e eyt

27

Gil-Pelaez (1951) derived the inversion formulae of the absolutely integrable CFs over
(—o0, 00), suitable for numerical evaluation of the PDF and/or the CDF, which require
integration of a real-valued functions, only. In particular,

pdfy (y)

cdfy(y) =

% /O g CRETOK:.

< N
ot _ —it _
2 J-E:o: wiR (e cfy (1))

oo —ity
1/ N (e cfy(t)) "
T™Jo t

¢ N —itjy
6 e Y cfy (t
IZWJ_S,< : Y(J)>7
i ]

Q

m N is sufficiently large integer, w; are the quadrature weights (for trapezoidal rule use
Wo =Wy = % otherwise w; = 1), t; denote the appropriate nodes (here equidistant) from
(0, T), for sufficiently large T, e.g. T = N27 where (A, B) = mean(Y ) T 6std(Y).
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The Gil-Pelaez inversion formulae

TECHNICAL DETAILS:

m Particular selection of the values N and T influences the total approximation error,
i.e. combination of the truncation error and the integration error, of the used
integral approximation based on the trapezoidal quadrature rule. The trade-off
between N and T strongly depends on the particular distribution of Y and its CF.

m If the optimum values of N and T are unknown, we suggest, as a simple rule of
thumb, to start with the application of the following six-sigma-rule.

m For that, set &; = 27/(B — A), where the interval (A,B) = E(Y) F k/var(Y) with
k = 6 (or other more suitable value of the multlpllcatlon coef‘ﬂuent k) specmes the
substantial part of the distribution support of the random variable Y, and then set
N and T = N¢ such that the value of the integrand function is sufficiently small for
all't > T, say [S (e "V cfy(t)/t)| < |cfy(t)/t] <& withe = 107",
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The Gil-Pelaez inversion formulae

FURTHER TECHNICAL DETAILS:

m For computing the first term of the Gil-Pelaez formula for CDF, we can use the
following result:
(e*“y cfy (t)

t

i (&3 —

tIil‘lo R ) E(Y)—-y.

m The required location and scale (dispersion) parameters, i.e. E(Y) and var(Y),
can be evaluated either analytically, from the moments of the distribution (i.e. the
expectation and the variance of Y, if they exist and are known), or approximately,
by using numerical differentiation of the (known) characteristic function of Y,
cfy (). In particular,

1 ([ cfy(—2h) —8cfy(=h
EY)~ i ( Clécfv(zl)*CCfYY((Zh)) )

var(Y) ~E (Y2) ~ [E(YV)P,
where
ny(—4h) — 16 CfY (—3h)
2 1 +64ny(*2h)+16cfy(fh)
E (Y ) N ~130
144h +16cfy (h) + 64 cfy (2h)

for any smallh > 0, e.g., h = 1074,
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The Gil-Pelaez inversion formulae

Integrand of the Gil-Pelaez formula for computing PDF of Y ~ Xf aty =15
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Figure: Example: Integrands of the Gil-Pelaez formulae for computing PDF/CDF. Here
foar (1) = R (671 cfy (1)) = R (e7125(1 — 2it) ~2/2), foge (t) = S (e~15(1 — 2it) = /2 t).
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Numerical inversion by using the FFT algorithm

m Recall that the continuous Fourier transform (CFT) of the function f(u) is given by

F(y) = ‘/:X) f(u) e=2™W du

m CFT can be approximated by the discrete Fourier transform (DFT), which is
defined, for the complex numbers fy, . .., fn—1, by the following relation

N—1
Fo=> fie 2™ % k=0,... N-1
j=0

= Numerically, DFT can be efficiently evaluated by the Fast Fourier Transform (FFT)
algorithm:
Fn = FFT(fy)

where fN = (fo, e 7fN71) and Fn = (Fo, ey FNfl).
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Numerical inversion by using the FFT algorithm

m We can represent the inverse Fourier transform
1 o0 ;
pdf (1) = 5 [ e e (Ot
27 ) oo

as CFT and approximate it by DFT/FFT, see e.g., Hiirlimann (2013):

m Let N is a sufficiently large integer and (A, B) is a sufficiently large interval (approximate
support), where the distribution of Y is concentrated. A reasonable starting rule for (A, B) can be,
for example, the six-sigma-rule: (A, B) = mean(Y) F 6std(Y).

m Denote
Wy =A+kdy, & =25 k=0,...,N-1,
W= T4k, 6=g% T="050 k=0,... ,N-1
1 NA
B C=(Co...,Cn 1), Ci=gli(-D)"WE=™ —0o . N-1,
—2A
mD=(Do,...,Dn 1), Dg=(-1)F-A% k=0,...,N—1,
m cfy = (cfy (o), ..., cfy (thl ),
W pdfy = (pdfy (Yo), - - -, pdfy (Yn-1))
m Then,

pdf,, ~ C ® FFT(D & cfy).

W CDF can be approximated by interpolation from the simple cumulative sum from the evaluated PDF
values. QF can be evaluated by interpolation from the CDF.
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Applications
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1. Exact distribution of the LRT statistic in normal linear regression

m LetY ~ N(X8,o?l) be an n-dimensional normally distributed random vector with full-ranked
(n x k)-design matrix X and parameters 8 € R¥ and ¢2 > 0.

m Consider testing Ho : (8,02) = (80, 02), vs. Ha : (8, 02) # (Bo, 03), based on the log-LRT

statistic
it = —2(loglik (8o, 03 |Y) ~ loglik (B, A2|Y>>
1 f\2
= S(Y =XBo) (Y —Xfo) —nlog -n
90 a5

H v
~ Qk+{(Qufn)fnlog<Q )}sz+W,,,
where Q¢ ~ xZ and Q, ~ x2, with v = n — k, are independent RVs.

m Here, W, = (Q, —n) —nlog < ) denotes the log-Lambert W x x? random variable, with
known distribution and its characteristic function.

m That is, under Hg, the LRT statistic is distributed as a linear combination of two independent
RVs, with x2 and LW (x2, 6) distributions, where v = n — k and § = (n(log(n) — 1),n, 1).

ﬁ V. Witkovsky, G. Wimmer and T. Duby, Logarithmic Lambert W x F random variables for the family of
chi-squared distributions and their applications, Statistics & Probability Letters 96, 223 (2015).

Viktor WITKOVSKY (Bratislava) Inferencia zaloZzena na numerickej inverzii CHF ROBUST 2016 (Kurzovni/Jeseniky) 23/ 46



2. Gaussian processes and their distribution

Let {X(t)} denote a centered Gaussian processes defined on [0, 1]* with d > 1. Denote the covariance
function of X by

K(t,s) = E (X(1)X(s)), fort,s € [0, 1],
then by Mercer’s theorem,

K(t,s) = i)\iei(t)ei(s)v

i=1
where )\ and e;(t are the set of eigenvalues and normalized eigenvectors of the integral operator corresponding
to the covariance function in the sense of

() = / K(t,s)f(s)ds, t,s € [0, 1],
fo,21¢
The well-known Karhunen-Loéve (KL) expansion for Gaussian process X (t) on [0, 1]9 is

XM =3 neit)z,
i=1

where Z; are i.i.d. standard normal random variables. Note that e; (t) forms an orthogonal base in L,([0, 1]¢)
and thus a natural consequence of the KL expansion is the distributional identity

/ X2(t)dt = > Nz?.
J10,13¢ i—1
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3. Distribution of the Cramér-von Mises and the Anderson-Darling statistics

The CvM and the A-D statistics belong to the class of quadratic goodness-of-fit test statistics based on the
empirical distribution function. By using the theory of stochastic processes, the asymptotic distributions are
derived from the KL representation of functionals of the Brownian motion (resp. Brownian bridge) processes.

Such approach can be used to decompose also other stochastic processes.

Let Fn(x) denotes the empirical CDF based on n i.i.d. observations X, . .

distribution F, i.e. Xj ~ F.

m The Cramér-von Mises statistic is defined by

wn:n/oo (Ba00) —F ()" aF(x) 2 sz/le(t)dtNZ -
e 0

cfw, (t)fncf 2 ((7) :ﬁ(l— (531)2)_% _

=1

., Xn from continuous

oo 2
= (im)?
V2it
sin(v/2it)”

m The Anderson-Darling statistic is a (weighted) generalization of Wy, defined by

An = n/Oo (Ifn(x) B F(X))z

—0o FOO)A=F(X)

oo o0 . _1
cfa (1) = HCfxf (ﬁ) = H (1* J(JZTltl)> ‘=

[
HN
[l
HN
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3. Distribution of the Cramér-von Mises and the Anderson-Darling statistics

m Analytical inversion of the characteristic function leads to a complicated and
computationally rather strange expressions, see Anderson and Darling (1952):

i
>
8
A
X
Il
N
3
(e
i
N[

(4i+1)°7% oo 20 N2 2
L= PN we(4j+1)w
j )e 8z /O exp { s(leZ) — & }dw

B REMARK: Recently, an efficient method for numerical evaluation of the asymptotic
Anderson-Darling distribution, based on a sophisticated recurrence relation, was proposed
by Marsaglia and Marsaglia (2004). The algorithm is currently available also in the
R-package gof t est .
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2. Distribution of the Cramér-von Mises and the Anderson-Darling statistics

Exact and Asymptotic CFs of Cramér-von Mises statistics
T T T T T

real W _
imagw _| |
—-—-real W,

— - imag W

Exact and Asymptotic CFs of Anderson-Darling statistics
T T T T T

real A
05 - ——imagA_| |
—-—-realA,
—-—-imag A,
5 o -
-05 - q
" 1 1 1 1 1 1 1 1 1
-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure: The exact and the asymptotic CFs of the Cramér-von Mises and the Anderson-Darling statistics.
The 'exact’ CFs were approximated by using the Chebyshev polynomials, and based on similar iterative
procedure as suggested by Knott (1974) and further improved by Csorgé and Faraway (1996).
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3. Distribution of the Cramér-von Mises and the Anderson-Darling statistics

PDF

PDF of the Cramér-von Mises statistic W

CDF of the Cramér-von Mises statistic W

CDF
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PDF of the Anderson-Darling statistic A

CDF of the Anderson-Darling statistic A

CDF

08
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04

02

Figure: Distribution functions (PDF/CDF) of the asymptotic distribution of the Cramér-von Mises
statistic and the Anderson-Darling statistic calculated by the FFT numerical inversion of their CFs.
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4. PDF/CDF estimation by numerical inversion of the smoothed ECF

® Numerical inversion of the smoothed empirical characteristic function is an
alternative method for the kernel density estimation.

m Convolution of the empirical distribution with the kernel (e.g., Gaussian
distribution) is an efficient tool for getting smooth PDF estimator.
The shape of the estimated PDF depends critically on the value of the bandwidth parameter.

m The smoothed ECF is defined as

1

1 n : 1 242 1 n et 1 2.2
Cf';” (t) = Cf,en (t) x cfz (O’bt) = n E e | x e7 2% = 0 E et 295t R
j=1 =1

where cf; (opt) is the kernel CF. Here, cfz (opt) = e*%as‘z, is CF of a normally
distributed RV Z ~ N(0, o), with a given bandwidth parameter oy,.

The resulted distribution defined by the smoothed ECF with Gaussian kernel is an equally weighted
mixture of normal distributions.

m The kernel estimate of PDF/CDF can be evaluated by numerical inversion of the
smoothed ECF.
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4. PDF/CDF estimation by numerical inversion of the smoothed ECF

m For illustration, we have generated the data X, . .., Xn:
A random sample of size n = 3000 from a mixture distribution defined by

3 2 1
pdfe (x) = & pdi(57l)(X) + 5 pdft3(x) + 6 pde%(x)

Histogram of the artificially gerenated data
T T T

-15 -10 5 0 5 10 15

Standard kernel density estimator with b=0.15
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4. PDF/CDF estimation by numerical inversion of the smoothed ECF

The EMPIRICAL characteristic function of the observed DATA
T T T T

‘The smoothed EMPIRICAL function of the observed DATA
T T T T

-20 -15 -10 5 0 5 10 15 20

Figure: Plot of the empirical characteristic function and its smoothed version: A convolution of the
ECF and the Gaussian kernel distribution with o = 0.15.
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4. PDF/CDF estimation by numerical inversion of the smoothed ECF

CDF estimated by numerical inversion of the smoothed ECF
T T T

PDF estimated by numerical inversion of the smoothed ECF
T T

0.25 B

0.15 |- B

0.05 B

Figure: Plot of the estimated CDF and PDF computed by numerical FFT inversion of the
smoothed empirical characteristic function.
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5. Distribution of the test statistic for testing symmetry based on ECF

m Feuerverger and Mureika (1977) suggested the following test statistic based on the ECF
Cfl’:'n (t) for testing symmetry of the distribution, see also Meintanis etal (2016),

nTh :/jo S(cfe ()2 dG(t) ZZ(&G X — Xg) — cfe (X +xk)),

jlkl

X1, ..., Xn is a random sample from F, F, is the ECDF, and G(t) is the chosen weighing zero-mean
symmetric CDF (e.g. normal, triangular on (-1,1), or U-shaped arcsine on (-1,1)) with its (known)
characteristic function cfg (t).

m The suggested approximate distribution:
[e o]
nTn—/ Wi (t)” dG(t / W(t)2dG(t) ~ > NZF =~ Az,
=1 j

W (t) is a zero-mean Gaussian process (with the same covariance function as Wy(t)), Z2 UE X1~ >\J are
the eigenvalues of the (n x n)-matrix D, defined by its elements

Djk = CfG(Xj — Xk) — CfG(Xj + Xk)-

m Thus, the approximate FM distribution can be evaluated by numerical inversion of the
characteristic function of a linear combination of independent chi-squared random variables:

N .\ —1)2
SFem(t) =TTy (1 - 21,\jt)
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5. Compound distribution derived by inversion of the compound ECF

m In financial risk management, estimation of the operational risk capital requires evaluation of
aggregate (compound) loss distributions of the operational loss L = Zmzl Sm, where Sy, is
the sum of losses of the mth cell of the portfolio, see e.g., Kaas etal (2008).

m As a special case, consider the collective risk model in insurance which requires distribution
of the aggregate loss S = Zszl X; of an insurance portfolio in a certain period of time, e.g. 1
year, defined as a compound distribution of the severity and frequency distributions.

m The sizes of these claims are taken to be iid RVs Xy, ..., Xy, with X; ~ Fx, where Fy is the
continuous severity distribution (e.g., gamma, Pareto, Weibull, log-normal), independent of
the random number of insurance claims generated in the given time period N, with N ~ Fy;,
where Fy is the discrete frequency distribution (e.g., Poisson, binomial, negative-binomial).
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5. Compound distribution derived by inversion of the compound ECF

m CDF of the collective risk S = Zszl X; is given as a mixture Fs = >-7% Pr(N = n)Fg,
where F{ denotes the n-times convolved distribution, and its CF is given by

ofs(t) = cfy ( — ilog (cf (1)) )

m Let IEN denotes the ECDF of the observed historic figures of the realized claims nq, ..., ny,
in each of J historic years, with its ECF CfﬁN (t) = % Zf:l el

Let Ifx denotes the ECDF based on K observed historic values of claims x4, ..., Xk, with its
ECF cfe (1) = % Zle e™c, Then, the compound empirical CF is
X

~ 17 L nj
cfs(t) = cfﬁN <fi|og <cf,g>< (t))) =3 Z <K Zenxk> )
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5. Compound distribution derived by inversion of the compound ECF

450 Danish insurance data i losses 1080 - 1990 4 10°__Aguregate loss distibution A Aggregate loss distribution
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Figure: Compound aggregate loss (collective risk) distribution for 1-year period, based on historic
Danish insurance data (2167 fire losses X > 1 mil. DKK, and 11 frequencies N, with n = 197,

observed in 1980-1990), derived by numerical inversion from ECF cfs(t) = 1 P (% SR e“xk)"j
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5. Compound distribution derived by inversion of the compound ECF

m Combination of the empirical CDF and the fitted generalized Pareto CDF is frequently used
for modeling the heavy tailed (severity) distributions, based on the observed data.

m The characteristic function of such distribution, say chAX (t), can be expressed as a weighted
mixture of the empirical CF and the generalized Pareto CF,

cfa(t) =px cf,g><L (t) + (1 —p) x cfgp(t),
where p € (0, 1) is chosen probability level specifying the tail part of the distribution,
typically p = 0.8 orp = 0.9

[ ] Cfﬁx (t) denotes the empirical CF based on the lower p-part of the observed values (x; < 6,
L
where 6 is the threshold selected as the p-quantile of the distribution),

m cfgp(t) denotes the CF of the fitted generalized Pareto distribution, GP (¢, o, 8), with the
parameters £ and o estimated (e.g., by the maximum likelihood estimation method) from the
observed valuesxx — 6 >0,k =1,...,K.
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6. Compound distribution derived by inversion of the compound ECF
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Figure: Hurricane damage data (1926-1995). ICAT developed website to provide easy access to historical
hurricane damage information. All information is open source and based upon publicly available data. The data
has been normalized to reflect current inflation, wealth, and population from what existed at the time of the
actual storm activity, see Pielke, R., Jr., Gratz, J., Landsea, C., Collins, D., Saunders, M., and Musulin, R.
(2008). Normalized Hurricane Damage in the United States: 1900-2005. Nat. Hazards Rev. (2008), 29-42.
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7. Bootstrap distribution by numerical inversion of the convolved ECF

m In simple cases (e.g., for estimators that are linear functions of the sample), the
bootstrap distribution can be derived directly, without any simulations, by the
numerical inversion of the n-times convolved empirical CF.

m For example, assume that we want to derive the bootstrap distribution of the
sample mean X = % Zj":l Xj, based on the observed data xi, . .., Xn.

m Recall that ECF is defined by
1 n
N o 72 : itxJ
Can (t) n = € )

and the bootstrap version of the sample mean is X * = % Zj“:l X", where X" ~ =

m The distribution of the bootstrap sample mean X * is defined by its bootstrap

characteristic function
n

n
ofg.(t) =cfe (&) x -+ xcfg (§) = <Cfﬁn (%))n — %Zei%m‘
j=1
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7. Bootstrap distribution by numerical inversion of the convolved ECF

Histogram of the observed data

Bootstrap CF of the sample mean

POF

Empirical CF of the observed data

Numerically inverted bootstrap distribution (PDF)

Figure: Numerically inverted distribution of the bootstrap sample mean X *, based on n = 100
observed data, Xq, . . ., X100, generated from the mixture distribution

pdfe (x) = %Pdi(s,l)(X) + %pdft3 (x) + %pdfxi(x) with the true mean value p = 2.67.
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8. Re-weighted and smoothed bootstrap distribution of the kth order statistic

m The gth population quantile, for a fixed q € (0, 1), can be estimated by the kth
order statistic, where k is suitable chosen order (e.g. k = [q x (n — 1) + 1]).

m Let F, denotes the empirical CDF, based on the observed values X, ..., X,. Then
the bootstrap distribution of the kth order statistic, say lfk*, is a discrete CDF
function with possible non-zero steps (jumps) concentrated at distinct values of the
observed data xi, . . ., Xn.

m The bootstrap CDF of the kth order statistic F,;" can be evaluated at
Xj € {X1,...,Xn} directly (without simulations) as

Fo(x) =B (ﬁn(xj),k,n f1- k) ,

where B(z, a, b) is the incomplete beta function.

m [tis known that the bootstrap confidence intervals for the qth population quantile
have notably poor coverages, especially for the large population quantiles.
Different approaches have been suggested to improve the coverage probability of
the bootstrap confidence intervals, see e.g. Ho and Lee (2005).

m Here we illustrate alternative methods for smoothing and re-weighting the
bootstrap distribution of the kth order statistic, which is used as an estimator of the
gth population quantile.
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8. Re-weighted and smoothed bootstrap distribution of the kth order statistic

ECDF and the bootstrap distributions of the order statistic
T T T T T
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Figure: The empirical CDF (blue) and the bootstrap distribution (red) of the kth order statistic

(k = 10.9 x (n — 1) + 1] = 54), based on n = 60 observed data, X1, . . . , Xgo, generated from the mixture

distribution pdf (x) = 2 pdfy s 1) (x) + pdf, (x) + § pdf_ 2 (x) plotted together with the re-weighted and
X1

smoothed bootstrap distribution (black), re-welghted from other (iterated) bootstrap distributions of the kth order
statistic, based on the bootstrapped samples x;", . . . , Xgy -
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Conclusions

m The characteristic functions represent a complete characterization of the
distribution of the random variables. However, analytical inversion of the
characteristic functions (if it is possible and available) frequently lead to a
complicated and computationally rather strange expressions of the corresponding
PDF/CDF.

m As an alternative, here we advocate to use the efficient methods for numerical
inversion of the characteristic functions - based e.g. on the Gil-Pelaez
inversion formulae with trapezoidal rule, used for the required integration, or based
on the computationally efficient fast FFT algorithm.

m At present time, the standard statistical software packages (a se.g. R, SAS,
MATLAB ) to not offer efficient tools and algorithms for computing, combinin g
and inverting the characteristic functions.
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THANK YOU!
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