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Survival analysis

Survival time T with distribution function F
Random right censoring
Censoring time C with distribution function G

Observed time Y = min(T, C) with distribution function L,
censoring indicator § = I(T < C)

e Survival function F(t) = P(T > t) =1 — F(t)
e Hazard function
< >
ME) = lim P(t<T<t+AtT>1t) i(t)
At—0+ At F(t)

Cumulative hazard function A(t) = [y A(u)du
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Properties

@ Survival function of observed time L(t) = F(t)G(t)

e Joint density of (Y,6) is /(-,-) and is composed of two
"subdensities” /(-,0) and /(-,1)

e Subdensity of the event time r(t) = I(-,1) = f(t)G(¢t)

e Hazard function

A(t) = 28
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Nonparametric estimation

o Kaplan-Meier estimator of the survival function
t < »/(1)7
11 i VO sy,
I':Y(;)<t n—i+1 (1)

@ Nelson-Aalen estimator of the cumulative hazard

%KM(t) =

t < 3/(1)7

) 0
Analt) = W > Yy,

)
iY(iy<t n—i+1

@ Smoothing techniques for estimation of hazard function \(t)
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Survival models

o X = (Xy,Xa,...,Xp,)" vector of p covariates
o Conditional hazard function
Pt<T<t+At|T >t,X=
At = lim PEST<tr 8T 26X =x)
At—0+ At

Parametric survival model

e Assumption of distribution of survival time
o Accelerated failure time (AFT) models, parametric
proportional hazard (PH) models
@ Semiparametric survival model — Cox model
e Exponential dependence on covariates
e Assumption proportionality of hazard ratio
e Nonparametric estimate of baseline hazard
@ Nonparametric survival model

e No assumption of distribution or dependence on covariates
e Smoothing techniques
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Kernel smoothing

@ The value of unknown function at a point is estimated as a
local weighted average of known observations in the
neighbourhood of this point

e Kernel K — real function with support on [—1, 1] satisfying

X 1 j=0,
/ x/K(x)dx =40 0<j<k,
-1
by #0 j=k.
e Epanechnikov kernel K(x) = —%(X2 - 1)I([-1,1])
/ A\\
\
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Kernel smoothing

@ The bandwidth sequence {h(n)}

lim h(n) =0, Jim nh(n) = oo

n—oo

e Statistical properties of an estimator J(x) of a function ¥(x)
o Local error of an estimator

MSE (@(X)) =E (19()() - ﬁ(x))2 = Var (@(X)) +Bias? (ﬁ(x))
e Global error of an estimator

MISE / MSE (x)dx
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Bandwidths
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Two types of kernel conditional hazard estimates

External estimator

o L(t|x) = F(t|x)G(t|x)
)\(t‘X) = f(t|x) — f(t|X)E(t|X) — r(t|x)

Fltlx) — L(tlx) L(tlx)

3\ (t‘x ?(t|x) h%Z?:l W,'(X)K (t;:’,) 5
E = = _

L(t]x) >imy wilx)W (Yﬂt>

Nadaraya—Watson weights

K (%)

_ \hJ
n x=X;\’
K (5)
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Two types of kernel conditional hazard estimates

Internal estimator

@ Beran estimator of conditional cumulative hazard function

. 0 t < Y(l)
/\(t|X) = Z Syw(iy (%)

: ; t> Y
i Yiy<t 172;;11 w(j)(x) > T()

M(tlx) =

/ ( )d/\(u\x)
2K

< Y )> Sy wii(x)

1 - wy(x)
h; influences smoothing in direction of the time
hy influences smoothing in direction of the covariate

1
he
1
" h
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Cox proportional hazards model

@ Cox model
A(t]x) = Ao(t)e®

@ Properties and assumptions:
e Hazard ratios are constant over time, i.e.

)\(t|X1) — eB(Xl—Xz)
At]x2)

e The dependence on covariate is exponential
e No distribution of the survival time is assumed

@ Maximum partial likelihood estimator of the model parameter

B
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Cox proportional hazards model

@ Breslow estimator of baseline hazard function

~ . d;
Pol) = 2. Aolto) = 2
JER

i:t(,-)<t i:t(,-)<t

@ Kernel estimator of baseline hazard function
A 1 t—u\
X(t)== | K dA

ot) =5 [ K () dho(w)
1 n

SEE -
hes "\ ) S > Ve
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Bandwidth selection

Asymptotically optimal bandwidths
@ Minimize MISE

@ Theoretical value of bandwidths

@ Need to know distribution of survival time, observed time, or
covariate
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Bandwidth selection

Cross-validation method
V(he, he) = = Z/ﬁ(ﬂx Jo Al
2 YIX) f A i(uPX)du g
gZ

Fa L(Y|X)
) (/A7X,c\/7 Et,cv) = argminp,n,) CV/(hx, ht)
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Bandwidth selection

Maximum likelihood method

® ML(hs, h) = [ [ A%, (YiIX)F-i(Yil X))

i=1

o (i‘lX,ML, Bt,ML) = arg maX, k) ML(hX, ht)

ML(h, h)
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Simulation study

200 triples of observed data (X;, Y}, d;)

100 samples

Specified conditional hazard function A(t|x)

Covariate X; ~ U(0, 10)

Survival time T; obtained as T; = F~1(U;|X;), where

U ~ U(0,1) and F(t|x) = 1 — e~ Jo Ml gy

e Censoring time C; ~ log N'(1;0.22), where 1 influences
censoring rate (30%, 60% or 90%)

@ Observed time Y; = min(T;, G;)

@ Censoring indicator §; = 1 for Y; = T; and §; = 0 for other

@ Error between true and estimated conditional hazard function
measured by

ASE() = 137 (A(V1X) — A(ViX))°

i=1
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Weibull model

o \(t|x) = vuthLefx
o »=0.018, p =1.3,
8 =0.2

@ The interpretation
using PH or AFT
model

Censoring rate
= 30% = 60% = 90%

10g(ASE)

Internal —

External o
Internal —
Weibull —
External 7
Internal —
Weibull = -

Cox kernel

External o
Cox kernel o
Cox kernel —
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Lognormal model

%QS log t—Bx
o At = 2ttgr)

e 0=05 0= %

@ The interpretation
using AFT model
InT; = BXi +¢;,
Ej~ N(O, 0'2)

log(ASE)
|
5 %w%&&s

- Censoring rate
B 30% 0 60% H 90%|

T
&

External —
Internal o
AFT —
External —
Internal —
AFT —
External —
Internal —
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Cox model

° A(t|x) =

1—; (1.5 —cos ({5 +1)) efx
e =02
) )\E(t) =

155 (1.5 —cos ({5 + 1))
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General hazard function

Simulation study
®0
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Results of simulation study

e If assumptions of the (semi)parametric models are satisfied,
these models have slightly better results

@ This difference between models are diminished with increasing
censoring rate

@ The differences between kernel estimates and parametric
models are more pronounced than between kernel estimates
and Cox model. This is due to stronger assumptions of the
parametric models.

@ The simulation of general conditional hazard function
(violated assumptions of the (semi)parametric models) shows
kernel estimates as preferable

@ In practice, time distribution and dependence on covariates
are not known = general conditional hazard is most frequent
situation
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Triple negative breast cancer

@ 408 patients diagnosed and/or treated at Masaryk Memorial
Cancer Institute in Brno in the period 2004-2011

@ 100 deaths (82 deaths in the first 4 years from diagnosis ~
80% censoring rate)

@ The age at diagnosis varies between 25 and 88 years (the
average 55 years)

e Is survival time affected by patient age? (Testing of
hypothesis that 3 = 0 versus 5 # 0 )

Patients’ times Death rate
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Triple negative breast cancer

Weibull model p-value=0.129

£ =0.0128, & = 0.0005, /i = 1.41

PH interpretation: increase of age about one year
increases risk of death 1.0128 times

AFT interpretation: increase of age about one year

shortens survival time 0.9910 times

Lognormal model p-value=0.045
8 = —0.0126, 6 = 1.290, 1 = 5.616

AFT interpretation: increase of age about one year

shortens survival time 0.9875 times

Cox model p-value=0.127
8 =0.0126
PH interpretation: increase of age about one year

increases risk of death by 1.0127 times
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Triple negative breast cancer

(R
(RS
A

R
X

External kernel estimate Internal kernel estimate
@ High risk of death for patients over 70 years and increased risk
of death for patients up to 40 years

@ Slightly different shape of hazard function for various age
groups

o It offers possibility to divide patients into groups with similar
risk of death (up to 40, 41-70, over 70 years)
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@ In practice, the theoretic shape of the conditional hazard
function or distribution of the survival time is not known,
assumptions of PH model are often violated — using kernel
estimates is therefore very helpful alternative

@ The kernel estimates of the conditional hazard function can be
useful for verifying assumptions of the (semi)parametric
models and for finding thresholds of continuous variables

@ The kernel estimates are able to capture any changes in the
hazard function in direction of covariate and time

@ The kernel methods are able to estimate different shapes of
the hazard function without any constrains and smooth them
out

@ The kernel estimation produces functions more useful for
presentation
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Advantage Disadvantage
Kernel Flexibility Complexity of calculating
estimates Visualization Estimate influenced

No assumptions
Finding groups
with similar risk

by choice of bandwidth

Parametric
model

Easy interpretation
Quality of estimate for
known time distribution

Semiparametric
model

Easy interpretation
No distribution
assumption

Inadequate results can
be obtained where
assumptions of models
are violated
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