Kernel estimation as alternative to (semi)parametric models in survival analysis

Iveta Selingerová, Stanislav Katina, Ivana Horová

Department of Mathematics and Statistics Faculty of Science, Masaryk University Brno

> ROBUST 2016 11 - 16 September 2016

Outline

- Introduction
 - Survival analysis
 - Kernel smoothing
- 2 Modeling hazard function using kernel method
 - Two types of kernel estimates of conditional hazard function
 - Cox proportional hazard model
 - Bandwidth selection
- Simulation study
 - Weibull model
 - Lognormal model
 - Cox model
 - General hazard function
- Real data
 - Triple negative breast cancer
- Conclusion

Survival analysis

- Survival time T with distribution function F
- Random right censoring
- Censoring time C with distribution function G
- Observed time $Y = \min(T, C)$ with distribution function L, censoring indicator $\delta = I(T \le C)$
- Survival function $\overline{F}(t) = P(T \ge t) = 1 F(t)$
- Hazard function

$$\lambda(t) = \lim_{\Delta t \to 0^+} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t} = \frac{f(t)}{\overline{F}(t)}$$

• Cumulative hazard function $\Lambda(t) = \int_0^t \lambda(u) du$

Properties

- Survival function of observed time $\overline{L}(t) = \overline{F}(t)\overline{G}(t)$
- Joint density of (Y, δ) is $I(\cdot, \cdot)$ and is composed of two "subdensities" $I(\cdot, 0)$ and $I(\cdot, 1)$
- Subdensity of the event time $r(t) = I(\cdot, 1) = f(t)\overline{G}(t)$
- Hazard function

$$\lambda(t) = \frac{r(t)}{\overline{L}(t)}$$

Nonparametric estimation

Kaplan-Meier estimator of the survival function

$$\widehat{\overline{F}}_{KM}(t) = \begin{cases} 1 & t \leq Y_{(1)}, \\ \prod_{i: Y_{(i)} < t} \left(\frac{n-i}{n-i+1}\right)^{\delta_{(i)}} & t > Y_{(1)}. \end{cases}$$

Nelson-Aalen estimator of the cumulative hazard

$$\hat{\Lambda}_{NA}(t) = \begin{cases} 0 & t \leq Y_{(1)}, \\ \sum_{i:Y_{(i) < t}} \frac{\delta_{(i)}}{n - i + 1} & t > Y_{(1)}. \end{cases}$$

ullet Smoothing techniques for estimation of hazard function $\lambda(t)$

Survival models

- $\mathbf{X} = (X_1, X_2, \dots, X_p)^T$ vector of p covariates
- Conditional hazard function

$$\lambda(t|\mathbf{x}) = \lim_{\Delta t \to 0^+} \frac{P(t \le T < t + \Delta t | T \ge t, \mathbf{X} = \mathbf{x})}{\Delta t}$$

- Parametric survival model
 - Assumption of distribution of survival time
 - Accelerated failure time (AFT) models, parametric proportional hazard (PH) models
- Semiparametric survival model Cox model
 - Exponential dependence on covariates
 - Assumption proportionality of hazard ratio
 - Nonparametric estimate of baseline hazard
- Nonparametric survival model
 - No assumption of distribution or dependence on covariates
 - Smoothing techniques

Kernel smoothing

- The value of unknown function at a point is estimated as a local weighted average of known observations in the neighbourhood of this point
- ullet Kernel K real function with support on [-1,1] satisfying

$$\int_{-1}^{1} x^{j} K(x) dx = \begin{cases} 1 & j = 0, \\ 0 & 0 < j < k, \\ b_{k} \neq 0 & j = k. \end{cases}$$

• Epanechnikov kernel $K(x) = -\frac{3}{4}(x^2 - 1)I([-1, 1])$

Kernel smoothing

• The bandwidth sequence $\{h(n)\}$

$$\lim_{n\to\infty}h(n)=0,\ \lim_{n\to\infty}nh(n)=\infty$$

- Statistical properties of an estimator $\hat{\vartheta}(x)$ of a function $\vartheta(x)$
 - Local error of an estimator

$$MSE\left(\hat{\vartheta}(x)\right) = E\left(\vartheta(x) - \hat{\vartheta}(x)\right)^{2} = Var\left(\hat{\vartheta}(x)\right) + Bias^{2}\left(\hat{\vartheta}(x)\right)$$

Global error of an estimator

$$MISE\left(\hat{\vartheta}\right) = \int MSE\left(\hat{\vartheta}(x)\right) \omega(x) dx$$

Bandwidths

Two types of kernel conditional hazard estimates

External estimator

•
$$\overline{L}(t|x) = \overline{F}(t|x)\overline{G}(t|x)$$

$$\lambda(t|x) = \frac{f(t|x)}{\overline{F}(t|x)} = \frac{f(t|x)\overline{G}(t|x)}{\overline{L}(t|x)} = \frac{f(t|x)}{\overline{L}(t|x)}$$

•

$$\hat{\lambda}_{E}(t|x) = \frac{\hat{r}(t|x)}{\hat{\overline{L}}(t|x)} = \frac{\frac{1}{h_{t}} \sum_{i=1}^{n} w_{i}(x) K\left(\frac{t-Y_{i}}{h_{t}}\right) \delta_{i}}{\sum_{i=1}^{n} w_{i}(x) W\left(\frac{Y_{i}-t}{h_{t}}\right)}$$

Nadaraya-Watson weights

$$w_i(x) = \frac{K\left(\frac{x-X_i}{h_x}\right)}{\sum_{j=1}^n K\left(\frac{x-X_j}{h_x}\right)}, \ i = 1, \dots, n$$

Two types of kernel conditional hazard estimates

Internal estimator

Beran estimator of conditional cumulative hazard function

$$\hat{\Lambda}(t|x) = \begin{cases} 0 & t \leq Y_{(1)} \\ \sum_{i:Y_{(i) < t}} \frac{\delta_{(i)}w_{(i)}(x)}{1 - \sum_{i=1}^{i-1} w_{(i)}(x)} & t > Y_{(1)} \end{cases}$$

•

$$\hat{\lambda}_{I}(t|x) = \frac{1}{h_{t}} \int K\left(\frac{t-u}{h_{t}}\right) d\hat{\Lambda}(u|x)$$

$$= \frac{1}{h_{t}} \sum_{i=1}^{n} K\left(\frac{t-Y_{(i)}}{h_{t}}\right) \frac{\delta_{(i)} w_{(i)}(x)}{1-\sum_{i=1}^{i-1} w_{(i)}(x)}$$

 h_t influences smoothing in direction of the time h_x influences smoothing in direction of the covariate

Cox proportional hazards model

Cox model

$$\lambda(t|x) = \lambda_0(t)e^{\beta x}$$

- Properties and assumptions:
 - Hazard ratios are constant over time, i.e.

$$\frac{\lambda(t|x_1)}{\lambda(t|x_2)} = e^{\beta(x_1-x_2)}$$

- The dependence on covariate is exponential
- No distribution of the survival time is assumed
- \bullet Maximum partial likelihood estimator of the model parameter β

Cox proportional hazards model

Breslow estimator of baseline hazard function

$$\hat{\Lambda}_0(t) = \sum_{i: t_{(i)} < t} \hat{\lambda}_0(t_{(i)}) = \sum_{i: t_{(i)} < t} \frac{d_i}{\sum_{j \in \mathbb{R}_i} e^{\beta X_j}}$$

Kernel estimator of baseline hazard function

$$\begin{split} \hat{\lambda}_0(t) &= \frac{1}{h} \int K\left(\frac{t-u}{h}\right) \mathrm{d}\hat{\lambda}_0(u) \\ &= \frac{1}{h} \sum_{i=1}^n K\left(\frac{t-Y_i}{h}\right) \frac{\delta_i}{\sum_{i=1}^n I(Y_i \ge Y_i) \mathrm{e}^{\beta X_i}} \end{split}$$

Bandwidth selection

Asymptotically optimal bandwidths

- Minimize MISE
- Theoretical value of bandwidths
- Need to know distribution of survival time, observed time, or covariate

Bandwidth selection

Cross-validation method

$$CV(h_x,h_t) = rac{1}{n} \sum_{i=1}^n \int \hat{\lambda}^3(t|X_i) \mathrm{e}^{-\int_0^t \hat{\lambda}(u|X_i) \mathrm{d}u} \mathrm{d}t$$

•

$$-\frac{2}{n}\sum_{i=1}^n\frac{\hat{\lambda}_{-i}^2\big(Y_i\big|X_i\big)}{\widehat{\overline{L}}\big(Y_i\big|X_i\big)}\mathrm{e}^{-\int_0^{Y_i}\hat{\lambda}_{-i}(u|X_i)\mathrm{d}u}\delta_i$$

 $\bullet \ (\hat{h}_{x,CV},\hat{h}_{t,CV}) = \arg\min_{(h_x,h_t)} CV(h_x,h_t)$

Bandwidth selection

Maximum likelihood method

- $\bullet \ \mathrm{ML}(h_x,h_t) = \prod_{i=1}^n \hat{\lambda}_{-i}^{\delta_i} (Y_i|X_i) \widehat{\overline{F}}_{-i} (Y_i|X_i)$
- ullet $(\hat{h}_{\mathsf{x},\mathit{ML}},\hat{h}_{t,\mathit{ML}}) = \operatorname{arg\,max}_{(h_{\mathsf{x}},h_{t})} \operatorname{ML}(h_{\mathsf{x}},h_{t})$

Simulation study

Introduction

- 200 triples of observed data (X_i, Y_i, δ_i)
- 100 samples
- ullet Specified conditional hazard function $\lambda(t|x)$
- Covariate $X_i \sim \mathcal{U}(0, 10)$
- Survival time T_i obtained as $T_i = F^{-1}(U_i|X_i)$, where $U_i \sim \mathcal{U}(0,1)$ and $F(t|x) = 1 \mathrm{e}^{-\int_0^t \lambda(u|x)} \mathrm{d}u$
- Censoring time $C_i \sim \log \mathcal{N}(\mu; 0.2^2)$, where μ influences censoring rate (30%, 60% or 90%)
- Observed time $Y_i = \min(T_i, C_i)$
- Censoring indicator $\delta_i = 1$ for $Y_i = T_i$ and $\delta_i = 0$ for other
- Error between true and estimated conditional hazard function measured by

$$ASE(\hat{\lambda}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{\lambda}(Y_i|X_i) - \lambda(Y_i|X_i))^2$$

Weibull model

- $\lambda(t|x) = \nu \mu t^{\mu-1} e^{\beta x}$
- $\nu =$ 0.018, $\mu =$ 1.3, $\beta =$ 0.2
- The interpretation using PH or AFT model

Lognormal model

•
$$\lambda(t|x) = \frac{\frac{1}{\sigma t} \phi(\frac{\log t - \beta x}{\sigma})}{\Phi(\frac{\beta x - \log t}{\sigma})}$$

- $\sigma = 0.5$, $\beta = \frac{1}{3}$
- The interpretation using AFT model In $T_i = \beta X_i + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$

Cox model

•
$$\lambda(t|x) = \frac{1}{15e} (1.5 - \cos(\frac{t}{1.7} + 1)) e^{\beta x}$$

- $\beta = 0.2$
- $\lambda_0(t) = \frac{1}{15e} \left(1.5 \cos \left(\frac{t}{1.7} + 1 \right) \right)$

•
$$\lambda(t|x) = \frac{1}{40000} \left(t (t - 25)^2 + 200 \right) \times \left(\sin(0.7x - 5) + 2 \right)$$

Results of simulation study

- If assumptions of the (semi)parametric models are satisfied, these models have slightly better results
- This difference between models are diminished with increasing censoring rate
- The differences between kernel estimates and parametric models are more pronounced than between kernel estimates and Cox model. This is due to stronger assumptions of the parametric models.
- The simulation of general conditional hazard function (violated assumptions of the (semi)parametric models) shows kernel estimates as preferable
- In practice, time distribution and dependence on covariates are not known ⇒ general conditional hazard is most frequent situation

Triple negative breast cancer

- 408 patients diagnosed and/or treated at Masaryk Memorial Cancer Institute in Brno in the period 2004–2011
- 100 deaths (82 deaths in the first 4 years from diagnosis \sim 80% censoring rate)
- The age at diagnosis varies between 25 and 88 years (the average 55 years)
- Is survival time affected by patient age? (Testing of hypothesis that $\beta = 0$ versus $\beta \neq 0$

Patients' times

Triple negative breast cancer

Weibull model p-value=0.129

 $\hat{\beta} = 0.0128, \ \hat{\nu} = 0.0005, \ \hat{\mu} = 1.41$

PH interpretation: increase of age about one year

increases risk of death $1.0128\ times$

AFT interpretation: increase of age about one year shortens survival time 0.9910 times

Lognormal model p-value=0.045

 $\hat{\beta} = -0.0126$, $\hat{\sigma} = 1.290$, $\hat{\mu} = 5.616$

AFT interpretation: increase of age about one year shortens survival time 0.9875 times

Cox model p-value=0.127

 $\hat{\beta} = 0.0126$

PH interpretation: increase of age about one year increases risk of death by 1.0127 times

Triple negative breast cancer

External kernel estimate

Internal kernel estimate

- High risk of death for patients over 70 years and increased risk of death for patients up to 40 years
- Slightly different shape of hazard function for various age groups
- It offers possibility to divide patients into groups with similar risk of death (up to 40, 41-70, over 70 years)

Conclusion

- In practice, the theoretic shape of the conditional hazard function or distribution of the survival time is not known, assumptions of PH model are often violated – using kernel estimates is therefore very helpful alternative
- The kernel estimates of the conditional hazard function can be useful for verifying assumptions of the (semi)parametric models and for finding thresholds of continuous variables
- The kernel estimates are able to capture any changes in the hazard function in direction of covariate and time
- The kernel methods are able to estimate different shapes of the hazard function without any constrains and smooth them out
- The kernel estimation produces functions more useful for presentation

Conclusion

	Advantage	Disadvantage
Kernel	Flexibility	Complexity of calculating
estimates	Visualization	Estimate influenced
	No assumptions	by choice of bandwidth
	Finding groups	
	with similar risk	
Parametric	Easy interpretation	
model	Quality of estimate for	Inadequate results can
	known time distribution	be obtained where
Semiparametric	Easy interpretation	assumptions of models
model	No distribution	are violated
	assumption	

References

- I. Selingerová, H. Doleželová, I. Horová, S. Katina, J. Zelinka, Survival of Patients with Primary Brain Tumors: Comparison of Two Statistical Approaches, PloS one 11(2), 2016.
- T. R. Fleming and D. P. Harrington, Counting processes and survival analysis, John Wiley & Sons, 2011.
- I. Horová, J. Koláček, J. Zelinka, Kernel Smoothing in MATLAB: Theory and Practice of Kernel Smoothing, World Scientific Publishing, 2012.
- L. Spierdijk, Nonparametric Conditional Hazard Rate Estimation: A Local Linear Approach, Computational Statistics & Data Analysis 52, 2008, 2419–2434.
- M. Svoboda et al., Triple-Negative Breast Cancer: Analysis of Patients Diagnosed and/or Treated at the Masaryk Memorial Cancer Institute between 2004–2009 (in Czech), Clinical Oncology 25(3), 2012, 188–198.

Thank you for your attention!