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Miloš Kopa and Jitka Dupačová Robustness in stochastic programs



Outline

Robustness in stochastic programs with exogenous randomness using
contamination techniques

Motivation for decision dependent randomness

Tractable reformulations

Stability results and contamination bounds

Numerical examples: mean-risk models

Main quoted references
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The model

We shall deal with robustness properties of risk constrained stochastic
programs

min
x∈X

F0(x ,P)

subject to
Fj(x ,P) ≤ 0, j = 1, . . . , J; (1)

X ⊂ IRn is a fixed nonempty convex set,

functions Fj(x ,P), j = 0, . . . , J may depend on P

P is the probability distribution of a random vector ω with range
Ω ⊂ IRm

Denote X (P) set of feasible solutions, X ∗(P) set of optimal solutions,
ϕ(P) optimal value of the objective function in (1).
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Stability results and robustness wrt. P

Complete knowledge of the probability distribution is rare in practice –
stability, robustness, output analysis wrt. P is needed .
• Quantitative stability cf. Theorem 5 of Römisch (2003) applied to (1)
provides upper semicontinuity of the set of optimal solutions and a local
Lipschitz property of the optimal value function for stochastic programs
(1) with smooth, convex objective and one expectation type smooth
convex constraint F (x ,P) ≤ 0 if at the optimal solution x∗(P) of the
unperturbed problem

min
x∈X

F0(x ,P) s.t. F (x ,P) := EP f (x , ω) ≤ 0

the constraint is not active, or if ∇F (x∗(P),P) 6= 0.
To get metric regularity for multiple expectation type smooth convex
constraints Fj(x ,P) ≤ 0, j = 1, . . . , J, general constraint qualification
should be used or constraints reformulated as
F (x ,P) := maxj Fj(x ,P) ≤ 0 – again convex function.
• Contamination bounds for the optimal value function
• Another possibility – incorporate the incomplete knowledge of P into
the model – ambiguity, minimax.
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Robustness analysis via Contamination

was firstly derived by Dupacova (1990) for (2), i.e. for X (P) independent
of P and for expectation type objective F0(x ,P).
Assume that SP

min
x∈X

EP f (x, ω) (2)

was solved for P, denote ϕ(P) optimal value. Changes in probability
distribution P are modeled using contaminated distributions Pt ,

Pt := (1− t)P + tQ, t ∈ [0, 1]

with Q another fixed probability distribution.
Via contamination, robustness analysis wrt. changes in P gets reduced to
much simpler analysis wrt. scalar parameter t (see e.g. resist).
Objective function in (2) is linear in P =⇒ F0(x ,Pt) is linear wrt. t =⇒
optimal value function

ϕ(t) := min
x∈X

F0(x ,Pt)

is concave on [0, 1] =⇒ continuity and existence of directional derivatives
in (0, 1). Continuity at t = 0 is property related with stability for SP (2).
In general, one needs set of optimal solutions X ∗(P) 6= ∅, bounded.
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Contamination Bounds

Concave ϕ(t)=⇒ contamination bounds

ϕ(0) + tϕ′(0+) ≥ ϕ(t) ≥ (1− t)ϕ(0) + tϕ(1), t ∈ [0, 1]. (3)

Using arbitrary optimal solution x(P) of (2) → upper bound

ϕ′(0+) ≤ F (x(P),Q)− ϕ(0).

Contamination bounds (3) are global, valid for all t ∈ [0, 1]. They
quantify the change in optimal value due to considered perturbations of
(2); cf. application to stress test of CVaR. The approach can be
generalized to objective functions F (x ,P) convex in x and concave in P.

Stress testing and robustness analysis via contamination with respect to
changes in probability distribution P is straightforward for expected
disutility models (objective function is linear in P). Also stress testing for
convex risk or deviation measures via contamination can be developed:
When the risk or deviation measures are concave with respect to
probability distribution P they are concave wrt. parameter t of
contaminated probability distributions Pt .
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Contamination bounds – constraints dependent on P

New problems – ϕ(t) is no more concave in t.

Use Pt := (1− t)P + tQ, t ∈ (0, 1) in SP (1) at the place of P. Set of
feasible solutions of (1) for contaminated probability distribution Pt

X (Pt) = X ∩ {x |Fj(x ,Pt) ≤ 0, j = 1, . . . , J}. (4)

Denote X (t), ϕ(t), X ∗(t) the set of feasible solutions, the optimal value
ϕ(Pt) and the set of optimal solutions X ∗(Pt) of contaminated problem

minimize F0(x ,Pt) on the set X (Pt). (5)

The task is to construct computable lower and upper bounds for ϕ(t) &
exploit them for robustness analysis in risk-shaping with CVaR or for a
stochastic dominance test with respect to inclusion of additional
scenarios. Thanks to the assumed structure of perturbations
• lower bound can be derived for Fj(x ,P), j = 0, . . . , J, linear or concave
with respect to P without any smoothness or convexity assumptions with
respect to x ,
• convexity of SP (1) is essential for directional differentiability of the
optimal value function,
• further assumptions are needed for derivation of the upper bound.
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Lower bound

1. One constraint dependent on P and objective F0 independent of P:

min
x∈X

F0(x) subject to F (x ,P) ≤ 0. (6)

For contaminated probability distribution Pt we get

min
x∈X

F0(x) subject to F (x , t) := F (x ,Pt) ≤ 0 (7)

– nonlinear parametric program with scalar parameter t ∈ [0, 1], set of
feasible solutions X (t) := {x ∈ X |F (x , t) ≤ 0} depends on t.
In general, the optimal value function is not concave.

Theorem

Let F (x , •) be concave function of t ∈ [0, 1]. Then the optimal value
function of (7)

ϕ(t) := min
x∈X

F0(x) subject to F (x , t) ≤ 0

is quasiconcave in t ∈ [0, 1] with the lower bound

ϕ(t) ≥ min{ϕ(1), ϕ(0)}. (8)
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Lower bound – cont.

Proof is based on inclusion

X ((1−λ)t1+λt2) ⊂ {x ∈ X | (1−λ)F (x , t1)+λF (x , t2) ≤ 0} ⊂ X (t1)∪X (t2)
(9)

valid for arbitrary t1, t2 ∈ [0, 1] and 0 ≤ λ ≤ 1.

2. When also objective function depends on probability distribution, i.e.
on contamination parameter t, the problem is

min
x∈X

F0(x , t) := F0(x ,Pt) subject to F (x , t) ≤ 0. (10)

For F0(x ,P) linear or concave in P, lower bound can be obtained by
application of the above quasiconcavity result (8) separately to F0(x ,P)
and F0(x ,Q):

ϕ(t) = min
x∈X (t)

F0(x , (1− t)P + tQ) ≥ min
x∈X (t)

[(1− t)F0(x ,P) + tF0(x ,Q)] ≥

(1− t) min{ϕ(0), min
X (Q)

F0(x ,P)}+ t min{ϕ(1), min
X (P)

F0(x ,Q)}. (11)

The bound is more complicated but still computable.
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Lower bound -cont.

3. For multiple constraints and contaminated probability distribution it
would be necessary to prove first the inclusion X (t) ⊂ X (0) ∪ X (1) and
then the lower bound (8) for the optimal value
ϕ(t) = minx∈X (t) F0(x ,Pt) can be obtained as in the case of one
constraint.

Denote Xj(t) = {x |Fj(x ,Pt) ≤ 0}. Then according to (9),
Xj(t) ⊂ Xj(0) ∪ Xj(1), hence

X (t) ⊂ X ∩
⋂
j

[Xj(0) ∪ Xj(1)] := X0.

To evaluate the corresponding lower bound minx∈X0 F0(x ,Pt) would
mean to solve a facial disjunctive program.

Notice that no convexity assumptions with respect to x were needed.
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Directional derivative

Assume now that problem (1) is convex with respect to x . Then
directional derivative of optimal value function ϕ(0) can be obtained acc.
to Gol’shtein (1970), Theorem 17 applied to Lagrange function

L(x , u, t) = F0(x , t) +
∑

j

ujFj(x , t)

when the set of optimal solutions X ∗(P) = X ∗(0) and the set of
Lagrange multipliers U∗(P) = U∗(0) are nonempty and compact and all
functions Fj are linear in P – linearity in the contamination parameter t:

ϕ′(0+) = min
x∈X∗(0)

max
u∈U∗(0)

∂

∂t
L(x , u, 0) = min

x∈X∗(0)
max

u∈U∗(0)
(L(x , u,Q)−L(x , u,P)).

(12)
Formula (12) simplifies substantially when U∗(0) is a singleton.
When the constraints do not depend on P we get

ϕ′(0+) = min
x∈X∗(0)

∂

∂t
F0(x , 0+) = min

x∈X∗(0)
F0(x ,Q)− ϕ(0)). (13)

These formulas can be exploited to construct an upper bound.
More general cases are treated in e.g. Bonnans-Shapiro.
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Upper bound

To derive an upper bound for optimal value of the contaminated problem
with probability dependent constraints we shall assume that all functions
Fj(x , t), j = 0, . . . , J, are linear in t on interval [0, 1]. Denote

F (x ,Pt) = F (x , t) := max
j

Fj(x , t).

For convex Fj(•,P)∀j the max function F (•,P) is convex and

X (t) = X ∩ {x : F (x , t) ≤ 0}
with one linearly perturbed convex constraint.
1. Assume first that for optimal solution x∗(0) of (1), F (x∗(0),P) = 0
and F (x∗(0),Q) ≤ 0. Then at least one of constraints is active at
optimal solution and x∗(0) ∈ X (t)∀t :

F (x∗(0), t) = max
j

[(1− t)Fj(x∗(0),P) + tFj(x∗(0),Q)]

≤ (1− t)F (x∗(0),P) + tF (x∗(0),Q) ≤ 0.

 trivial global upper bound F0(x∗(0), t) ≥ ϕ(t); if F0(x ,P) is linear in
P

ϕ(t) ≤ F0(x∗(0), t) = (1− t)ϕ(0) + tF0(x∗(0),Q)∀t ∈ [0, 1]; (14)
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Local upper bound via NLP stability results

In convex case – analyze optimal value function by 1st order methods:
If x∗(0) is nondegenerate point, X in (4) convex polyhedral, the
contaminated problem reduces locally into problem with parameter
independent set of feasible solutions e.g. [Robinson]→ for t small enough
optimal value function ϕ(t) is concave and its upper bound equals

ϕ(t) ≤ ϕ(0) + tϕ′(0+)∀t ∈ [0, t0]. (15)

Nondegenerate point: for X = IRn means independence of gradients of
active constraints at x∗(0) or nondegeneracy for LP.

If also strict complementarity holds true, one faces locally an
unconstrained minimization problem. More detailed insight can be
obtained by a second order analysis; e.g. if ∃ continuous trajectory
[x∗(t), u∗(t)] of optimal solutions and Lagrange multipliers of (5)
emanating from the unique optimal solution x∗(0) and unique Lagrange
multipliers u∗(0) of (1) we get (15) with

ϕ′(0+) = (L(x∗(0), u∗(0),Q)− ϕ(P)). (16)
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Illustrative example – mean-CVaR models

Consider S = 53 equiprobable scenarios of weakly returns % of N = 9
assets (9 European stock market indexes: AEX, ATX, BCII, BFX, FCHI,
GDAXI, PSI20, IBEX, ISEQ) in period 5.10.2007 - 3.10.2008. The
scenarios can be collected in the matrix

R =


r 1

r 2

...
rS


where r s = (r s

1 , r
s
2 , . . . , r

s
N) is the s-th scenario. We will use x for the

vector of portfolio weights and the portfolio possibilities are given by

X = {x ∈ IRN |1′x = 1, xn ≥ 0, n = 1, 2, ...,N}

that is, the short sales are not allowed. The historical data comes from
pre-crisis period. The data are contaminated by a scenario rS+1 from
10.10.2008 when all indexes strongly fell down. The additional scenario
can be understood as a stress scenario or the worst-case scenario.
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Illustrative example – mean-CVaR models

Index Country Mean Max Min A.S.
AEX Netherlands -0.0098 0.10508 -0.12649 -0.24551
ATX Austria -0.01032 0.067022 -0.06982 -0.28503
BCII Italy -0.01051 0.047976 -0.06044 -0.19581
BFX Belgium -0.00997 0.051099 -0.07386 -0.2253
FCHI France -0.00795 0.050254 -0.06292 -0.21704
GDAXI Germany -0.00742 0.040619 -0.07568 -0.21151
PSI20 Portugal -0.00998 0.049866 -0.07404 -0.18116
IBEX Spain -0.00625 0.053098 -0.06992 -0.2074
ISEQ Ireland -0.01378 0.113174 -0.14689 -0.26767

Table: Descriptive statistics of 9 European stock indexes and the additional
scenario

We will apply the contamination bounds to mean-risk models with CVaR
as a measure of risk. Two formulations are considered: In the first one,
we are searching for a portfolio with minimal CVaR and at least the
prescribed expected return. Secondly, we minimize the expected loss of
the portfolio under the condition that CVaR is below a given level.
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Illustrative example – CVaR minimizing

Mean-CVaR model with CVaR minimization is a special case of the
general formulation (1) when F0(x ,P) = CVaR(−%′x) and
F1(x ,P) = EP(−%′x)− µ(P); µ(P) is the maximal allowable expected
loss. We choose

µ(P) = −EP%′(
1

9
,

1

9
, ...,

1

9
)′ =

1

53

53∑
s=1

−rs(
1

9
,

1

9
, ...,

1

9
)′.

It means that the minimal required expected return is equal to the
average return of the equally diversified portfolio. The significance level
α = 0.95 and X is a fixed convex polyhedral set representing constraints
that do not depend on P.

We construct:

Lower bound (globally for t ∈ [0, 1]):

(1− t) min{ϕ(0), min
X (Q)

F0(x ,P)}+ t min{ϕ(1), min
X (P)

F0(x ,Q)}
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Illustrative example – CVaR minimizing

Trivial upper bound (globally for t ∈ [0, 1]): Since x∗(0) is a feasible
solution of fully contaminated problem, we may use the trivial global
bound:

F0(x∗(0),Pt) = CVaRα(x∗(0), (1− t)P + tQ))

The disadvantage of this trivial bound is the fact, that it would
require evaluation of the CVaR for each t. Linearity with respect to
t does not hold true, but using concavity of CVaR with respect to t,
we may derive an upper estimate for F0(x∗(0), t):

Upper estimate of upper bound (globally for t = [0, 1]):

CVaRα(x∗(0), (1− t)P + tQ)

≤ (1− t)CVaRα(x∗(0),P) + tΦα(x∗(0), v∗(x ,P),Q),

see [D-P].
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Illustrative example – CVaR minimizing

The lower bound is linear, the upper bound is piecewise linear in t and for
small values of t it coincides with the estimated upper bound.
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Figure: Comparison of optimal values (CVaR(t)) of mean-CVaR models with
lower bound (LB), upper bound (UB) and the estimated upper bound (EUB)
for the contaminated data.
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Illustrative example – Expected loss minimizing

As the second example, consider the mean-CVaR model minimizing the
expected loss subject to a constraint on CVaR. This corresponds to (1)
with F0(x ,P) = EP(−%′x) and F1(x ,P) = CVaR(−%′x)− c where
c = 0.19 is the maximal accepted level of CVaR. For simplicity, this level
does not depend on the probability distribution. Similarly to the previous
example, we compute the optimal value ϕ(t) and its lower and upper
bound.

Lower bound (globally for t ∈ [0, 1]):

(1− t) min{ϕ(0), min
X (Q)

F0(x ,P)}+ t min{ϕ(1), min
X (P)

F0(x ,Q)}

Upper bound (locally for t ∈ [0, t0]): In this case x∗(0) /∈ X (Q),
hence the trivial upper bound can not be used. Therefore we apply
the more general upper bound:

ϕ(t) ≤ ϕ(0) + tϕ′(0+)∀t ∈ [0, t0].

that leads to:

ϕ(t) ≤ (1− t)ϕ(0) + tF0(x∗(0),Q)∀t ∈ [0, t0].
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Illustrative example – Expected loss minimizing
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Figure: Comparison of minimal mean loss values with its lower bound (LB) and
upper bound (UB) for the contaminated data.

The upper bound coincides with ϕ(t) for t ≤ 0.043. It illustrates the fact
that the local upper bound is meaningful if the probability of the
additional scenario is not too large, i.e. no more than the double of
probabilities of the original scenarios for our example.
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Markowitz model example – Expected loss minimizing

Consider the mean-var (Markowitz) model minimizing the expected loss
subject to a constraint on var. This corresponds to (1) with
F0(x ,P) = EP(−%′x) and F1(x ,P) = x>Σx − v where v = 0.001 is the
maximal accepted level of var. We compute the optimal value ϕ(t) and
its lower and upper bound.

original distribution - 40 monthly return scenarios before the crises

alternative distribution - 40 monthly return scenarios during the
crises

Lower bound (globally for t ∈ [0, 1]):

(1− t) min{ϕ(0), min
X (Q)

F0(x ,P)}+ t min{ϕ(1), min
X (P)

F0(x ,Q)}

Upper bound (locally for t ∈ [0, t0]): We apply the local upper
bound:

ϕ(t) ≤ ϕ(0) + tϕ′(0+)∀t ∈ [0, t0].

that leads to:

ϕ(t) ≤ (1− t)ϕ(0) + tF0(x∗(0),Q)∀t ∈ [0, t0].
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Illustrative example – Markowitz model
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Figure: Comparison of minimal mean loss values with its lower bound (LB) and
upper bound (UB) for the contaminated data.

The upper bound holds true all t ∈ [0, 1].
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Illustrative example – Mean-VaR0.97model
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Figure: Comparison of minimal mean loss values with its lower bound (LB)

The upper bound holds true for t ≤ 0.028.
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Illustrative example – Mean-VaR0.95model
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Figure: Comparison of minimal mean loss values with its lower bound (LB)
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Motivation for decision dependent randomness

Common assumption – decisions do not infuence probability distribution
of random parameters – need not be adequate.

Important applications
Jonsbraten, Wets, Woodruff – production line (1998)
Plambeck, Robinson, Suri – PERT (1996)
Goel, Gupta, Grossmann – oil and gass field development, (2004, 2007,
2012, ...)
Many new chalenging problems – network interdiction

Finance:

Decision dependent randomness is typically observed on the illiquid
markets or/and in the case of intraday trading, when the distribution
of rate of returns may change if a relatively high percentage of
stocks are bought or sold by the decision maker.

Another example of rate of returns depending on the investment
volume can be found in retail savings, some banks offer higher
interest rates for small volumes of savings as a marketing action.
Several ranges for investment volumes are considered.
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Extension of newsboy problem

Additional decision variable – price p of product. Random demand
depends on p; cf. BRNO group 2012.

Newsboy sells newspapers at p and has to buy them at c before he starts
selling. Newspapers left over at the end of the day cannot be stored. The
demand ω is random, with distribution function F (t), the newsboy wants
to maximize his expected profit:

max
x

(p − c)x − p

∫
x≥t

(x − t)dF (t).

Known formulas for case of ω uniformly distributed U(a, b).

Demand depends on price p – additional decision variable. Form of
dependence – ω(p) uniformly distributed on [a(p), b(p)] and expected
profit

(p − c)x − p(x − a(p))2

2(b(p)− a(p))

is maximized wrt. b(p) ≥ x ≥ 0, p ∈ [p0, p1].

Similar approach appears in PERT problem by Plambeck et al.
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Model with fixed feasibility set

The easiest case of decision dependent randomness occurs if the set of
feasible solutions does not depend on the random vector. In this case the
problem with decision dependent randomness takes the form:

min
x∈X

F0(x ,P(x)) (17)

where

X ⊆ IRn is a nonempty convex set,
P(x) is the probability distribution of a random vector ω(x) with
range Ω ⊂ IRm for all x ∈ X . We asume that ω(x) and P(x) are
uniquely assigned to each x ∈ X . Moreover, we shall denote P the
set of all such P(x), i.e. P = {P(x) : x ∈ X}
F0 : X × P → IR is a function which may depend on P(x),
we assume that a solution of (17) exists.

Increased complexity; search for tractable cases, e.g.

decision dependent parameters of the distribution or scenario
probabilities
suitable transformation of decision dependent probability distribution
finite number of considered probability distributions

Miloš Kopa and Jitka Dupačová Robustness in stochastic programs



Decision dependent probabilities - model with fixed
feasibility set A

Now, P denotes set of probability distributions on a fixed finite set of
atoms/scenarios Ω = {ω1, . . . , ωI}. Hence, P(x) ∈ P are given by
probabilities p(x , ωi )) ≥ 0, i = 1, . . . , I ,

∑
i p(x , ωi ) = 1 for x ∈ X . Zero

probabilities are not excluded and degenerated distributions can be
considered. With objective functions

F0(x ,P(x)) =
∑I

i=1
p(x , ωi )f (x , ωi ),

two plausible assumptions are p(x , ωi ) and f (x , ωi ) continuous functions
of x ∀i or the set of feasible decisions X is discrete.
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Model with fixed feasibility set A - contamination

Consider alternative probability distributions Q(x) ∈ P determined by
probabilities q(x , ωi ), i = 1, . . . , I . For a fixed x ∈ X , contaminated
distribution P(x , λ) = (1− λ)P(x) + λQ(x) is defined by probabilities
(1− λ)p(x , ωi ) + λq(x , ωi ). Linearity of F0(x ,P(x , λ)) in λ implies that
contaminated optimal value

ϕ(λ) = minx F0(x ,P(x , λ))

is concave wrt. λ provided that optimal solutions exist. Hence, the lower
contamination bounds are valid, the upper bounds based on directional
derivatives are more involved:

ϕ(0) + λϕ′(0+) ≥ ϕ(λ) ≥ (1− λ)ϕ(0) + λϕ(1), λ ∈ [0, 1]. (18)

Identical supports ΩP ,ΩQ ⊂ Ω correspond to changing probabilities
pi (x), different supports ΩP ,ΩQ ⊂ Ω correspond e.g. to a pooled sample
of two scenario beds.
This scheme fits well the static and two-stage stochastic programs. To
apply it to linear multistage problems, it will be necessary to use the
forms with explicit nonanticipativity constraints for x and to keep
identical constraints both for P(x) and Q(x).
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Simple example

Consider a simple maximizing expected utility problem:

max
x∈X

Eu(ω(x)Tx)

where ω(x) is a random vector of returns depending on x as follows:

ω(x) takes only two values (scenarios): ω1 and ω2.
probability of taking ω1 depends on x : p(x)

The problem can be reformulated as follows:

max
x∈X

p(x)u(ωT
1 x) + (1− p(x))u(ωT

2 x)

Alternative distribution Q(x) differs only in the probability of taking
scenario ω1: q(x) and contaminated problem is of the form:

max
x∈X

((1−λ)p(x)+λq(x))u(ωT
1 x)+((1−λ)(1−p(x))+λ(1−q(x)))u(ωT

2 x)

Example of p(x): p(x) = p1 iff x ∈ X1 ⊂ X and p(x) = p2 otherwise.
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Transformation function - model with fixed feasibility set B

Under specific assumptions, dependence of P on x can be removed by a
suitable transformation of the decision-dependent probability distribution
P(x) cf. Varayia-Wets, Pflug 1990, 1999.
ASSUME expectation type of objective function and existence of densities
p(x , ω) of P(x) ∈ P with respect to a common probability measure µ.

Objective function can be rewritten as

F0(x ,P(x)) =

∫
f (x , ω)p(x , ω)µ(dω) =

∫
Ω

f̃ (x , ω)µ(dω)

with f̃ (x , ω) := f (x , ω)p(x , ω) and decision-independent distribution µ.

Problems

When using transformation, convenient properties of random objective
function f (x , ω) can get lost → difficulties in evaluation of subgradients
of F (x), etc. Properties of the resulting objective function depend on
structure of the problem & on type of dependence of P on x .
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Model with fixed feasibility set B – Contamination

Meaning of contamination?
Instead of P(x) consider other distributions, say Q(x) ∈ P with densities
q(x , ω) with respect to µ → two objectives

F0(x ,P(x)) =

∫
Ω

f (x , ω)p(x , ω)µ(dω)

F0(x ,Q(x)) =

∫
Ω

f (x , ω)q(x , ω)µ(dω)

Contamination means here contamination of density p(x , ω) by q(x , ω) :

ϕ(λ) = minx F0(x ,P(x , λ)) = minx

∫
f (x , ω)((1−λ)p(x , ω)+λq(x , ω))µ(dω)

Hence F0(x ,P(x , λ)) is linear in λ.
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Model with fixed feasibility set B – Contamination

Assuming continuous integrands and fixed set X some of contamination
results could be obtained (optimal value is again concave in λ).
Concavity of the contaminated objective function will be OK also for
other choices of Q(x). Expectation form of the objective can be relaxed
to objective functions concave in distribution P to include risk criteria.
For a fixed x (in fact for a fixed tripple x ,P(x),Q(x))

F0(x , (1− λ)P(x) + λQ(x)) ≥ (1− λ)F0(x ,P(x)) + λF0(x ,Q(x))

However, the optimal values of the two objectives F0(x ,P(x)),
F0(x ,Q(x)) may be attained in different points, say xP , xQ and for
corresponding distributions P(xP), Q(xQ). Anyway, for
x(λ) ∈ argminxF0(x , (1− λ)P(x) + λQ(x)):

ϕ(λ) = F0(x(λ),P(x(λ), λ))

≥ (1− λ)F0(x(λ),P(x(λ))) + λF0(x(λ),Q(x(λ)))

≥ (1− λ) min
x

F0(x ,P(x)) + λmin
x

F0(x ,Q(x))

≥ (1− λ)ϕ(0) + λϕ(1).
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Model with fixed feasibility set B – upper bound

Although ϕ(λ) is concave in λ it may be DIFFICULT to compute the
directional derivative for the upper bound. In this case (since
F0(x ,P(x , λ)) is linear in λ) at least the following triavial upper bound
can be used:

ϕ(λ) = F0(x(λ),P(x(λ), λ))

≤ F0(x(0),P(x(0), λ))

≤
∫

Ω

f (x(0), ω) ((1− λ)p(x(0), ω) + λq(x(0), ω))µ(dω)

≤ (1− λ)ϕ(0) + λF0(x(0),Q(x(0)))

Summarizing:

(1−λ)ϕ(0)+λϕ(1) ≤ ϕ(λ) ≤ (1−λ)ϕ(0)+λF0(x(0),Q(x(0))) ∀λ ∈ [0, 1]

Neither the assumption on convexity in x nor on differentiability in x is
needed. However, the trivial global upper bound will not hold if
F0(x ,P(x , λ)) is not linear in λ.
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Finite cardinality of P - model with fixed feasibility set C

Assume now that there exists a partition of X : (X1,X2, ...,XI ) such that:

(i) Xi ∩ Xj = ∅ ∀i 6= j ,

(ii)
⋃I

i=1 Xi = X ,
(iii) P(x) = Pi ∀x ∈ Xi , i = 1, . . . , I ,
(iv) F0(x ,Pi ) is continuous in x on clo(Xi ), i = 1, . . . , I .

Then (17) can be solved using the following I auxiliary problems:

ϕi (Pi ) = min
x∈clo(Xi )

F0(x ,Pi ), i = 1, . . . , I (19)

After solving these programs, using standard stochastic programming
techniques and algorithms we identify a set of indexes I ∗ for which the
auxiliary problem has a solution. Then problem (17) is equivalent to:

ϕ(P) = min
i∈I∗

min
x∈clo(Xi )

F0(x ,Pi ).

If the i-th auxiliary problem does not have a solution, i.e. i /∈ I ∗, it can
not contribute to the solution of (17). Therefore only i ∈ I ∗ are
considered. x∗i (X ∗i (Pi )) denotes optimal solutions (sets).
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Model with fixed feasibility set C – Contamination
considerations

Consider alternative probability distribution Q(x) such that optimal value
ϕ(Q) and optimal solution exist.

ASSUME that Q has the same structure as P, i.e. there is an identical
partition with Q(x) = Qi on Xi .

ASSUME that F0(x ,Pi ) are concave in Pi , ∀i .

For contaminated distributions Pλ(x) = (1− λ)P(x) + λQ(x)
contamination bounds for

ϕi (λ) = min F0(x , (1− λ)Pi + λQi ) s.t. x ∈ cloXi

based on concavity can be constructed under modest assumptions:

Li (λ) = (1− λ)ϕi (Pi ) + λϕi (Qi )

Ui (λ) = ϕi (Pi ) + λϕ′i (O+)

→ Contamination bounds for
ϕ(λ) = mini minx{F0(x , (1− λ)Pi + λQi ) s.t. x ∈ X}
mini Li (λ) ≤ ϕ(λ) ≤ maxi Ui (λ)
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Model with fixed feasibility set C – Contamination
considerations

Under modest additional assumptions,

ϕ′i (0+) =
d

dλ
ϕi (0+) = min

x∈X∗(Pi )

d

dλ
Fi (x , 0+).

Cf. Chapter 4.3.1 of B-S for results concerning the directional derivative.
Hence, the upper bound Ui (λ) follows.

ASSUME ∃i∗ such that ϕ(λ) = ϕi∗(λ) for λ small enough. Then we
have contamination bounds for ϕi∗(λ) with directional derivative
computed at the optimal solution x∗i∗ .

ASSUME FURTHER that ϕi (Pi ) > ϕi∗(Pi∗)i 6= i∗. Consider two
possibilities.

• Only Pi∗ contaminated; =⇒ ϕi (λ) = ϕi (Pi ) ≥ ϕi∗(λ) for λ small
enough and i 6= i∗.

• Change of another Pi

In both cases x∗i∗ remains optimal for λ small enough.

COMMENTS

Role of the second smallest ϕi (Pi ) to determine bound for λ ?

OK for static models, also for stage independent multistage; some more
effort needed for general multistage.
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Model with RANDOM feasibility set

If the set of feasible solutions depends on the probability distribution
P(x), the problem takes the form:

min
x∈X

F0(x ,P(x)) (20)

subject to

(x ,P(x)) ∈ Y (21)

where

X ⊆ IRn is a fixed nonempty convex set,

P(x) is the probability distribution of a random vector ω(x) with
range Ω ⊂ IRm for all x ∈ X . We asume that ω(x) and P(x) are
uniquely assigned to each x ∈ X . Moreover, we shall denote P the
set of all such P(x), i.e. P = {P(x) : x ∈ X},
set Y expresses the constraints depending on probability
distributions,

F0 : X × P → IR is a function which may depend on P(x),

we assume that a solution of (20) - (21) exists.
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Model with RANDOM feasibility set A - decision
dependent probabilities

ASSUME again that P(x) ∈ P are given by probabilities
p(x , ωi )) ≥ 0, i = 1, . . . , I ,

∑
i p(x , ωi ) = 1 of fixed scenarios ω1, . . . , ωI

and only the probabilities are affected by the contamination. The
alternative probabilities are q(x , ωi )) ≥ 0, i = 1, . . . , I ,

∑
i q(x , ωi ) = 1.

Let objective function (20) be expressed as follows:

F0(x ,P(x)) =
∑I

i=1
p(x , ωi )f0(x , ωi ),

and condition (21) is in the form:

Gj(x ,P(x)) ≤ 0, j = 1, ..., J.

Then, taken F1(x ,P(x)) = maxj Gj(x ,P(x)) and assuming that there
exists f1(x , ω) such that:

F1(x ,P(x)) =
∑I

i=1
p(x , ωi )f1(x , ωi ),
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Model with RANDOM feasibility set A - lower
contamination bound

we have:

min
x∈X

∑I

i=1
p(x , ωi )f0(x , ωi ) (22)

s.t.
∑I

i=1
p(x , ωi )f1(x , ωi ) ≤ 0. (23)

Let X (λ) = {x ∈ X :
∑I

i=1((1− λ)p(x , ωi ) + λq(x , ωi ))f1(x , ωi ) ≤ 0}.
Since F0(x ,P(x , λ)) =

∑I
i=1((1− λ)p(x , ωi ) + λq(x , ωi ))f0(x , ωi ) and

F1(x ,P(x , λ)) =
∑I

i=1((1− λ)p(x , ωi ) + λq(x , ωi ))f1(x , ωi ) are linear in
λ, lower bound can be obtained by application of (18) separately to
F0(x ,P(x , 0)) and F0(x ,P(x , 1)) :

ϕ(λ) = min
x∈X (λ)

F0(x ,P(x , λ) = min
x∈X (λ)

F0(x , (1− λ)P(x) + λQ(x))

= min
x∈X (λ)

[(1− λ)F0(x ,P(x)) + λF0(x ,Q(x))]

≥ (1− λ) min{ϕ(0),min
X (1)

F0(x ,P(x))}

+λmin{ϕ(1),min
X (0)

F0(x ,Q(x))}. (24)
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Model with RANDOM feasibility set A - upper
contamination bound

Basically, two upper bounds could be considered:

local bound (for λ sufficiently small) based on the directional
derivative ϕ(0+)

local or global trivial bound (valid for all λ ∈ [0, 1]) using the
optimal solution of non-contaminated problem

1. If for optimal solution of non-contaminated problem x(0) the
constraint is not active, then (from linearity of F1(x ,P(x , λ)) in λ), there
exists λ0 > 0 such that x(0) ∈ X (λ) and, hence, trivial local upper
bound is:

ϕ(λ) ≤ F0(x(0),P(x(0), λ)) ∀λ ∈ [0, λ0]

and using linearity of F0(x ,P(x , λ)) in λ:

ϕ(λ) ≤ [(1− λ)F0(x(0),P(x(0))) + λF0(x(0),Q(x(0)))] ∀λ ∈ [0, λ0].
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Model with RANDOM feasibility set A - upper
contamination bound

2 Assume that x(0) is a feasible solution for fully contaminated problem,
too. Then

x(0) ∈ X (0)⇒
∑I

i=1
p(x(0), ωi )f1(x(0), ωi ) ≤ 0

x(0) ∈ X (1)⇒
∑I

i=1
q(x(0), ωi )f1(x(0), ωi ) ≤ 0

and, consequently:∑I

i=1
((1− λ)p(x(0), ωi ) + λq(x(0), ωi ))f1(x(0), ωi ) ≤ 0 ∀λ ∈ [0, 1]

hence x(0) ∈ X (λ) ∀λ ∈ [0, 1] and x(0) is used for the trivial upper
bound construction:

ϕ(λ) ≤ F0(x(0),P(x(0), λ))

≤ (1− λ)F0(x(0),P(x(0))) + λF0(x(0),Q(x(0))) ∀λ ∈ [0, 1](25)

i.e. this is again the same upper bound, but now valid for all λ ∈ [0, 1].
3. If there exists a feasible solution x ∈ X (λ) it can be used in (25)
instead of x(0).
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Model with RANDOM feasibility set A - upper
contamination bound

Notice that the trivial upper bound (25) holds true without any convexity
or smoothness assumptions and for an arbitrary distributions Q(x) forthe
given scenarios.

4. Upper bound based on directional derivative: ϕ(0) + λϕ′(0+) would
be possible to construct only under quite strong assumptions (for
example: differentiability, strong complementarity, uniqueness of optimal
solution x(0), ...) - difficult to fulfill
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Model with RANDOM feasibility set B - transformation
functions

ASSUME again expectation type of objective function and existence of
densities p(x , ω) of P(x) ∈ P with respect to a common probability
measure µ. Moreover, let condition (21) is in the form:

Egj(x , ω(x)) ≤ 0, j = 1, ..., J.

Then, taken f1(x , ω(x)) such that Ef1(x , (ω(x))) = maxj Egj(x , ω(x)) we
reformulate the problem as follows:

min
x∈X

∫
p(x , ω)f0(x , ω)µ(dω) (26)

s.t.

∫
p(x , ω)f1(x , ω)µ(dω) ≤ 0. (27)
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Model with RANDOM feasibility set B - contamination

Contamination means here contamination of density p(x , ω) by q(x , ω) :

ϕ(λ) = minx∈X (λ) F0(x ,P(x , λ))

= minx∈X (λ)

∫
f0(x , ω)((1− λ)p(x , ω) + λq(x , ω))µ(dω)

where

X (λ) = {x ∈ X :

∫
f1(x , ω)((1− λ)p(x , ω) + λq(x , ω))µ(dω) ≤ 0}.

Again: F0(x ,P(x , λ)) =
∫

f0(x , ω)((1− λ)p(x , ω) + λq(x , ω))µ(dω) and
F1(x ,P(x , λ)) =

∫
f1(x , ω)((1− λ)p(x , ω) + λq(x , ω))µ(dω) are linear in

λ and x ∈ X (0) ∩ X (1)⇒ x ∈ X (λ) ∀ λ ∈ [0, 1].
Hence, the same lower and upper bounds appear as in model A.
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Model with RANDOM feasibility set C - finite cardinality
of P

For all distributions, assume again that there exists a partition of
X : (X1,X2, ...,XI ) such that:

(i) Xi ∩ Xj = ∅ ∀i 6= j ,

(ii)
⋃I

i=1 Xi = X ,
(iii) P(x) = Pi ∀x ∈ Xi , i = 1, . . . , I ,
(iv) F0(x ,Pi ) is continuous in x on clo(Xi ), i = 1, . . . , I .

Then (20)-(21) can be solved using the following auxiliary problems:
min F0(x ,Pi ) (28)

(x ,Pi ) ∈ Yi (29)

where Yi = {(x ,P(x)) ∈ Y : x ∈ clo(Xi ), P(x) = Pi ∀x ∈ clo(Xi )} for
each i = 1, . . . , I .

The solution of (20)-(21) can be identified by minimization over i ∈ I ∗,
i.e. problem (20)-(21) is equivalent to:

min
i∈I∗

min{F0(x ,Pi ) : (x ,Pi ) ∈ Yi}.
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Model with RANDOM feasibility set C - MIP reformulation

If moreover

Y = {(x ,P(x)) ∈ X × P : Fj(x ,P(x)) ≤ 0, j = 1, . . . , J} (30)

then problem (20)-(21) can alternatively be rewritten using binary
variables bi as follows:

min
x∈X

I∑
i=1

biF0(x ,Pi ) (31)

subject to

I∑
i=1

biFj(x ,Pi ) ≤ 0, j = 1, . . . , J, (32)

bi = 1 iff x ∈ clo(Xi ), otherwise bi = 0, i = 1, . . . , I . (33)

The randomness in this problem again does not depend on the decision
vector, however the tractable reformulation of (33) may not be available
in some cases.
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Model with RANDOM feasibility set C - Contamination

Consider alternative probability distribution Q(x) such that optimal value
ϕ(Q) and optimal solution exist.

ASSUME that Q(x) has the same structure as P(x), i.e. there is an
identical partition with Q(x) = Qi∀x ∈ Xi .

ASSUME that F0(x ,Pi ) are linear (concave) in Pi , ∀i .

If for all relevant auxiliary problems (28) - (29) lower bounds Li and
upper bounds Ui can be somehow derived then:
mini∈I∗ Li is a lower bound and maxi∈I∗ Ui is an upper bound for the
model C.
Let x(0) ∈ Xi(0). More tight bounds can be derived under assuption that
the optimal solution of contaminated problem x(λ) ∈ Xi(0), too.
However, these bounds would typically be valid only locally, i.e. for
sufficiently small λ.
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Financial example - mean-variance model

In many applications Y can be formulated via J inequality constraints as
follows:

Y = {(x ,P(x)) ∈ X × P : Fj(x ,P(x)) ≤ 0, j = 1, . . . , J} (34)

For example, if:

F0(x ,P(x)) = varP(x)(x ′ω) = var(x ′ω(x)), (35)

Y = {(x ,P(x)) ∈ X × P :

µ− EP(x)(x ′ω) = µ− E(x ′ω(x)) ≤ 0}, (36)

X = {x ∈ IRn : 1′x = 1}, (37)

then one gets the well know mean-variance problem with decision
dependent randomness of returns, where µ is a minimal required mean
return parameter.
Similarly for other measures of risk...
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Toy example

Some banks offer their deposit certificates with the nonrandom rate of
return which depends on the investment volume:
Assume that a decision maker wants to invest 1 Million USD. She can
invest in deposit certificate and a stock index. The rate of return of the
deposit certificate is 2% if at most 0.5 Million USD is invested and it
decreases to 1% if the investment volume x1 exceeds 0.5 Million USD.
The rate of return of the stock index is random with expected value 4%
and variance 0.01. The distribution of the rate of return of the stock
index does not depend on the amount x2 invested in it. We will formulate
the mean-variance model using (35) - (37) with x = (x1, x2)′ and
µ = 3%:

min
x1,x2

F0(x ,P(x)) = varP(x)(x ′ω) = 0.01x2
2

subject to

µ− E(x ′ω(x)) = 0.03− 0.02x1 − 0.04x2 ≤ 0 if x1 ≤ 0.5

= 0.03− 0.01x1 − 0.04x2 ≤ 0 if x1 > 0.5

x1 + x2 = 1.

The optimal solution is (x∗1 , x
∗
2 ) = (0.5, 0.5) because the objective

function is increasing and x2 < 0.5 is not feasible.
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Toy example con’t

Now let’s apply the partitioning. It is easy to check that sets:
X1 = {x ∈ IR2 : x1 ≤ 0.5, x2 = 1− x1} and
X2 = {x ∈ IR2 : x1 > 0.5, x2 = 1− x1} satisfy all assumptions (i) - (iv).
The first auxiliary problem:

min
x1,x2

0.01x2
2

subject to

0.03− 0.02x1 − 0.04x2 ≤ 0, x1 + x2 = 1

x1 ≤ 0.5

has the optimal solution (x∗1 , x
∗
2 ) = (0.5, 0.5) The second auxiliary

problem:
min
x1,x2

0.01x2
2

subject to

0.03− 0.01x1 − 0.04x2 ≤ 0, x1 + x2 = 1

x1 ≥ 0.5

has no solution, so I ∗ = {1} and hence the optimal solution of (20)-(21)
is (x∗1 , x

∗
2 ) = (0.5, 0.5).
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Dynamic (multi-stage) problems

Seem to be the most important and most difficult class of problems.
Problems of Jonsbraten et al. and also Goel and Grossmann belong
there. Similarly as in these papers, we shall assume that there is a finite
number of possible probability distributions and each of them has been
approximated by a discrete distribution carried by a finite number of
atoms / scenarios. For multistage stochastic programs, these discrete
probability distributions are used to create scenario trees. We assume that
the horizon and position of stages is given and identical path probabilities
are attached to scenarios related to the exogenous uncertainty (demand,
capacity, etc). However, there is no universal scenario tree when the
distribution of some random parameters is decision dependent.
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Decision dependent scenario trees

Resulting scenario trees and path probabilities are indexed by a finite
number of vector valued indices d . In principle, one may apply full
enumeration with respect to d , a version of the branch-and-bound
method, cf. Jonsbraten et al., or disjunctive programming techniques, cf.
Goel and Grossmann.

For each scenario tree separately, one can solve the multistage stochastic
program and also to carry over the stability analysis. However,
endogenous uncertainty may lead to different nonanticipativity
conditions, i.e. to various scenario trees with different branching schemes
attached to scenarios.(Notice that the explicit form of nonanticipativity
conditions corresponding to scenario tree d is kept fixed.) Contamination
of the original probability distribution Pd leads to contamination bounds

l(Pd) ≤ ϕ(Pd) ≤ u(Pd).

Again, it is straightforward to get the lower bound for mind ϕ(Pd) which
is not the case of the upper bound. The variational analysis of
Jonsbraten et al. may give the first hint.

The first stage decisions d can be interpreted as decisions on timing of an
operation which helps to get a more precise information about scenarios.
see Jonsbraten et al., or Goel and Grossmann.Miloš Kopa and Jitka Dupačová Robustness in stochastic programs



Future work

More tractable reformulations

More financial & energy applications

Stochastic dominance formulations for decision dependent
randomness

Robustness in the sense of worst-case solutions
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