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Introduction
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Interval data and statistics

@ One-dimensional dataset of exact values is unobservable.
@ Observable is a collection of intervals.

@ There is no other information about data but the lower and
upper bound.

@ Under these weak assumptions, the only information we can
infer about statistics from the observable data is the lower
and upper bound.

@ In this work we deal with the upper bound of sample variance.
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Intervals

Given a center x¢ € R and a radius x® € R, the interval x is the
set {€:x° —xB < €< x°+xAL

Iterval with lower bound x and upper bound X will be written as
[x, x].

Narrowed interval

Given a center x¢ and radius x2 of interval x and positive real «,
the a-narrowed interval x, denoted x“ is interval with center x¢

and radius ax?®, i.e. [x¢ — ax®,x + ax?].

In this talk, we need only a < 1 — this explains the term
“narrowing”.
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Problem formulation

Our problem

Input: intervals x1,...,x,, given as centers xi,...,x5 and
radii x{, ..., x5,

Output: minimal and maximal variance among samples of crisp
values (x1,...,xp) chosen from x1 X - -+ X Xxp.

It consists of solving

1

1 n n 2
. 2 . L= )
optimize o~ = S E i1 <X, - g =1 XJ>

subject to x; € x; fori=1,...,n.
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Properties of our problem

@ Sample variance o2

set.

is convex in x;, the set of all x; is a convex

@ The lower bound of sample variance over interval data can be
found in polynomial time.

@ Computation of the upper bound of sample variance over
interval data is known to be NP-hard problem.

e We studied the behaviour of specialized algorithms (by Ferson
(2005) and Xiang (2007)) on “common” randomly generated
instances of this problem, exploiting their polynomial
behaviour on “good” instances.

@ Experiments show that random instances are usually
solvable in reasonable time.
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Complexity of Ferson's algorithm

We focus on behaviour of Ferson's algorithm.

If the the %-narrowed intervals do not intersect, the
algorithm computes o2 in quadratic time in n.

If the %-narrowed intervals have a common point, then the
computational complexity of the algorithm is O(2%n?), where
k is the maximal number of the narrowed intervals that have

at least one common point.
Formally, define G, = ({1,...,n}, E), where

1 1
E:={{ij} : x} Nx} #0}.
Let w, be the size of the largest clique in G, then k = wy,.

The instances with “small” k are of interest. But how
frequent are these instances?
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Experiments

@ The experiments tested the size of k(= w,) on randomly
generated intervals.

e Denote by ® the distribution of centers of the intervals.

o Denote by W the (nonnegative) distribution of radii of the
intervals.

e The samples were independent.

@ The experiments suggest that if the intervals come from
reasonable distributions ® and V, the size of the largest
clique of the average case can be approximated by
function of log n.



Results for & = N(0, 1) and various A of W = Exp(\)
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Conjecture

The conclusions of the experiments is formalized in the following:

If ® is a continuous distribution with finite first and second
moments and its density function is limited from above and W has
finite first and second moments, then Ew, = O(log n) and
Var(w,) = O(1).
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Our goal

o If the conjecture is true, then the algorithm runs in
polynomial time on the random data.

@ Our goal is to decide the conjecture.

@ It appears to be hard in its full generality. We restrict
ourselves to the following stochastic setup:
e centers are uniformly distributed on [0, 1],
e radii are constant and equal to 1.



We subdivide the whole domain [0,1] by | 5] + 1 equidistant
points tg, ..., tL%J

In every such point, say point t, we express the distribution of
the (random) number A,(t) of L-narrowed intervals
containing t.

It is sufficient to compute max; An(t;). Unfortunately, random
variables A,(t;) are not independent, however, they have
negative covariance vanishing with n — oo.

Now, it is sufficient to overcome the dependency — we suggest
to approximate A,(t;) with (independent) Poisson variables,
however, we are not able to do this yet.



Transformation

@ Define the indicator variable

1
Z%(t): 1, iftGX,-",
' 0, otherwise.

o Let A,(t) denote the number of i-narrowed intervals
intersecting t.

1
e As Z/(t) for i =1,...,n has alternative distribution and
1 1
Z/(t) and Z;(t) are independent for j # j, then A,(t) has
1
binomial distribution Bi(n, 2) as An(t) = Y1y Z/(¢).

e Now, A,(t) has approximately Poisson distribution with
parameter 2.
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@ Let choose | 7] + 1 equidistant points on interval [0, 1].

For every k such that i < k < j and |i — j| < % it follows that
An(k) < An(i) + An()-

e With this placement of points, the covariance of A,(t) and
An(s) for t # s is diminishing with n — oo as
cov(An(t), An(s)) = —2.
@ Now, we need to compute the distribution of the maximum of
| 5] + 1 correlated variables with identical binomial (Poisson?)
distribution.

Lemma (Kimber (1983))

Let Xn(j) ~ Pois()), are independent for j=1,...,n, A >0 and
M = max(X(j) : j € {1,...,n}). Then for n — oo,
M = log n/ log log n.




Summary and references

Summary

@ We deal with computation of maximal variance over
interval data — an NP-hard problem in general.

e Computational experiments suggest that Ferson’s algorithm
runs in polynomial time for most instances.

@ We propose an approache to provide theoretical reasoning for
what we observed empirically.

@ However, some open “hard” steps remain unresolved.

Thank you for your attention.
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